全等三角形经典题型汇集(培优专练)

合集下载

全等三角形培优竞赛训练题

全等三角形培优竞赛训练题

全等三角形培优竞赛训练题全等三角形是初中几何中的重要内容,它不仅是证明线段和角相等的重要工具,也是解决许多几何问题的基础。

在培优竞赛中,全等三角形的题目往往具有较高的难度和综合性,需要我们熟练掌握全等三角形的判定定理和性质,并具备灵活运用知识的能力。

下面我们就来一起探讨一些全等三角形培优竞赛训练题。

一、基础巩固1、已知:如图 1,AB = AC,AD = AE,求证:∠B =∠C。

证明:在△ABD 和△ACE 中,AB = AC,∠A =∠A,AD = AE,所以△ABD≌△ACE(SAS)所以∠B =∠C2、如图 2,点 D 在 AB 上,点 E 在 AC 上,AB = AC,AD = AE。

求证:BE = CD。

证明:在△ABE 和△ACD 中,AB = AC,∠A =∠A,AE = AD,所以△ABE≌△ACD(SAS)所以 BE = CD二、能力提升1、已知:如图 3,在△ABC 中,∠ACB = 90°,AC = BC,AE 是 BC 边上的中线,过 C 作 CF⊥AE 于 F,过 B 作 BD⊥BC 交 CF 的延长线于 D。

求证:(1)AE = CD;(2)若 BD = 5cm,求 AC 的长。

证明:(1)因为 CF⊥AE,所以∠DCB +∠DBC = 90°,又因为∠ACB = 90°,所以∠EAC +∠AEC = 90°,而∠AEC =∠DCB(对顶角相等),所以∠EAC =∠DBC。

在△CBD 和△CAE 中,∠DBC =∠EAC,BC = AC,∠DCB =∠ECA = 90°,所以△CBD≌△CAE(ASA)所以 AE = CD(2)因为△CBD≌△CAE,所以 BD = CE。

因为 AE 是 BC 边上的中线,所以 CE = 1/2BC。

又因为 AC = BC,BD = 5cm,所以 AC = 10cm2、如图 4,在△ABC 中,∠B = 60°,△ABC 的角平分线 AD、CE 相交于点 O。

全等三角形经典培优题型(含答案解析)

全等三角形经典培优题型(含答案解析)

全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2ADBC3已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BECDB A BC DEF 21 AB A CDF2 1 E6 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

八上全等三角形经典培优习题汇集-学而思

八上全等三角形经典培优习题汇集-学而思

全等三角形经典习题汇集第一讲全等三角形的性质及判定【例1】 如图,AC DE ∥,BC EF ∥,AC DE =.求证:AF BD =.【补充】如图所示:AB CD ∥,AB CD =.求证:AD BC ∥.【例2】 已知:如图,B 、E 、F 、C 四点在同一条直线上,AB DC =,BE CF =,B C ∠=∠.求证:OA OD =.【补充】已知:如图,AD BC =,AC BD =,求证:C D ∠=∠.【补充】如图,在梯形ABCD 中,AD BC ∥,E 为CD 中点,连结AE 并延长AE 交BC 的延长线于点F .求证:FC AD =.FEDCBA【例3】 如图,AB CD ,相交于点O ,OA OB =,E 、F 为CD 上两点,AE BF ∥,CE DF =.求证:FEDCBADCBA F E O D CB AO D CBAAC BD ∥.OF E DCBA【补充】已知,如图,AB AC =,CE AB ⊥,BF AC ⊥,求证:BF CE =.F E CBA【例4】 如图,90DCE CD CE AD AC BE AC ∠=︒=⊥⊥,,,,垂足分别为A B ,,试说明AD AB BE +=EDCBA【例10】 如图所示, 已知AB DC =,AE DF =,CE BF =,证明:AF DE =.【例11】 E 、F 分别是正方形ABCD 的BC 、CD 边上的点,且BE CF =.求证:AE BF ⊥.PFEDCBAF DC BA【补充】E 、F 、G 分别是正方形ABCD 的BC 、CD 、AB 边上的点,GE EF ⊥,GE EF =.求证:BG CF BC +=.GA BC DEF【例12】 在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =,M 为CD 中点.求证:AM CD ⊥.【补充】如图所示:AF CD =,BC EF =,AB DE =,A D ∠=∠.求证:BC EF ∥.A BCD EF【例13】 (1)如图,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?GFEDCB AMEDC BA【例14】 如图,ABC ∆中,AB BC =,90ABC ∠=︒,D 是AC 上一点,且CD CB AB ==,DE AC ⊥交AB于E 点.求证:AD DE EB ==.CB DEA【例15】 ABC ∆中,90B ∠=︒,M 为AB 上一点,使得AM BC =,N 为BC 上一点,使得CN BM =,连AN 、CM 交于P 点.试求APM ∠的度数,并写出你的推理证明的过程.图3P DM N B C A【例16】 如图,I 是ABC △的内心,且CA AI BC +=.若80BAC ∠=︒,求ABC ∠和AIB ∠的大小.AB CI【例17】 已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.PDQCBEA【例18】 ⑴ 如左下图,在矩形ABCD 中,E 为CB 延长线上一点且AC CE =,F 为AE 的中点.求证:BF FD ⊥.⑵ 如右下图,在ABC ∆中,BE 、CF 分别为边AC 、AB 的高,D 为BC 的中点,DM EF ⊥于M .求证:FM EM =.F EDCBAMFED CB A18.补充:如图,已知60ABD ACD ∠=∠=︒,且1902ADB BDC ∠=︒-∠.求证:ABC ∆是等腰三角形.【例19】 如图,ABC ∆为边长是1的等边三角形,BDC ∆为顶角()BDC ∠是120︒的等腰三角形,以D 为顶点作一个60︒角,角的两边分别交AB 于M ,AC于N ,连接MN ,形成一个AMN ∆.求AMN ∆的周长.AM NBCD【习题1】 已知:如图,AB DE ∥,AC DF ∥,BE CF =. 求证:AB DE =.FEDC B A【习题2】 已知:△DEF ≌△MNP ,且EF =NP ,∠F =∠P ,∠D =48°,∠E =52°,MN =12cm ,求:∠P 的度数及DE 的长.【习题3】如图,矩形ABCD 中,E 是AD 上一点,CE EF ⊥交AB 于F 点,若2DE =,矩形周长为16,且CE EF =,求AE 的长.EDCBF A【习题4】在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E .求证:当BE 是B ∠的角平分线时,有AD BC AB +=.【备选1】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.月测备选家庭作业CE O【备选2】 如图所示,在ABC △中,AD BC ⊥于点D ,2B C ∠=∠.求证:AB BD CD +=.【备选3】 如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF . (1)求证:BG =CF .(2)请你判断BE +CF 与EF 的大小关系,并说明理由.FE DCBAG第二讲 全等三角形与中点问题版块一 倍长中线【例1】 在△ABC 中,9,5==AC AB ,则BC 边上的中线AD 的长的取值范围是什么?【补充】已知:ABC ∆中,AD 是中线.求证:1()2AD AB AC <+.C D B ABBC【例2】 已知:如图,梯形ABCD 中,AD BC ∥,点E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F .求证:BCE FDE ∆∆≌.DFECBA【例3】 如图,在ABC ∆中,D 是BC 边的中点,F ,E 分别是AD 及其延长线上的点,CF BE ∥.求证:BDE CDF ∆∆≌.【例4】 如图,ABC ∆中,<AB AC ,AD 是中线.求证:<DAC DAB ∠∠.【例5】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.F E D C BAB C FED CBA【例6】 如图所示,在ABC ∆和A B C '''∆中,AD 、A D ''分别是BC 、B C ''上的中线,且AB A B ''=,AC A C ''=,AD A D ''=,求证ABC A B C '''∆∆≌.【例7】 如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交EF于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.【例8】 已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.【例9】 在Rt ABC ∆中,90A ∠=︒,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED FD ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形或钝角三角形?B F G E DC B AF E A B D CA【例10】 已知△ABC ,∠B =∠C ,D ,E 分别是AB 及AC 延长线上的一点,且BD =CE ,连接DE 交底BC 于G ,求证GD =GE .GEDCBA【例11】 如图所示,在ABC ∆中,D 是BC 的中点,DM 垂直于DN ,如果2222BM CN DM DN +=+,求证()22214AD AB AC =+.(勾股定理的内容,选做)NMDCBA【例10】 在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.【习题1】 如图,在等腰ABC ∆中,AB AC =,D 是BC 的中点,过A 作AE DE ⊥,AF DF ⊥,且AE AF =.求证:EDB FDC ∠=∠.【习题2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,AF 与EF 相等吗?为什么?【习题3】 如右下图,在ABC ∆中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.A家庭作业图 6G EF D B C A F ED C BAD FE C B A【备选1】如图,已知AB=DC,AD=BC,O是BD中点,过O点的直线分别交DA、BC的延长线于E,F.求证:∠E=∠F【备选2】如图,ABC∆中,AB AC=,90BAC∠=︒,D是BC中点,ED FD⊥,ED与AB交于E,FD 与AC交于F.求证:BE AF=,AE CF=.第三讲全等三角形与角平分线问题【例1】在ABC∆中,D为BC边上的点,已知BAD CAD∠=∠,BD CD=,求证:AB AC=.D CBA【例2】已知ABC∆中,AB AC=,BE、CD分别是ABC∠及ACB∠平分线.求证:CD BE=.EDCBA【例3】如图,在ABC∆中,60B∠=︒,AD、CE分别平分BAC∠、BCA∠,且AD与CE的交点为F.求证:FE FD=.AB CDEFFBEDCA【例4】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【补充】如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.【例5】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBA【例6】 如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.E DC B A4321AOCB A B CD E O【例7】 如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.PDBOCA【例8】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFA CD E B【例10】 如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作CE AB E ⊥于,并且1()2AE AB AD =+,则ABC ADC ∠+∠等于多少?EDCBA【补充】长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED 交AB 于F ,则EF =__________.FEDCBA【补充】在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.CD B PA【例11】 如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A【例12】 如图,ABC ∆中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.AB CD【巩固】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【例13】 如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBACB【例14】 如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE⊥于E .求证:AD AE =.HG D AB C E【例15】 如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.EDCB A【习题2】如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.DC B A家庭作业【习题3】AD是ABC∆的角平分线,BE AD⊥交AD的延长线于E,EF AC∥交AB于F.求证:AF FB=.DECFBA【习题4】如图所示,AD平行于BC,DAE=EAB∠∠,ABE=EBC∠∠,AD=4,BC=2,那么AB=________.【习题5】ABC∆中,D为BC中点,DE BC⊥交BAC∠的平分线于点E,EF AB⊥于F EG AC⊥于G.求证:BF CG=.EGFDCBA【备选1】在ABC∆中,AD平分BAC∠,AB BD AC+=.求:B C∠∠的值.CDBA月测备选【备选2】如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA【备选3】如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B∠的平分线时,有AD BC AB +=.EBCDA第四讲 全等三角形与旋转问题【例1】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.(1)求证:AN BM =.A C(2)求证:CD=CE(3) 求证:CF 平分∠MCN(4) 求证:DE ∥AB【例2】 如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:AE CG .AAC BA CG FEDCBA【例3】 如图,等边三角形ABC ∆与等边DEC ∆共顶点于C 点.求证:AE BD =.DECBA【例4】 如图,D 是等边ABC ∆内的一点,且BD AD =,BP AB =,DBP DBC ∠=∠,问BPD ∠的度数是否一定,若一定,求它的度数;若不一定,说明理由.PDC BA【例5】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF+为定值.OB ECF A【补充】如图,正方形OGHK 绕正方形ABCD 中点O 旋转,其交点为E 、F ,求证:AE CF AB +=.54321OHBE DKG CF A【例6】 (2004河北)如图,已知点E 是正方形ABCD 的边CD 上一点,点F 是CB 的延长线上一点,且EA AF ⊥. 求证:DE BF =.FED CBA【补充】如图所示,在四边形ABCD 中,90ADC ABC ∠=∠=︒,AD CD =,DP AB ⊥于P ,若四边形ABCD的面积是16,求DP 的长.PDCBA【例7】 E 、F 分别是正方形ABCD 的边BC 、CD 上的点,且45EAF =︒∠,AH EF ⊥,H 为垂足,求证:AH AB =.【巩固】如图,正方形ABCD 的边长为1,点F 在线段CD 上运动,AE 平分BAF ∠交BC 边于点E .⑴求证:AF DF BE =+.⑵设DF x =(01x ≤≤),ADF ∆与ABE ∆的面积和S 是否存在最大值?若存在,求出此时x 的值及S .若不存在,请说明理由.FEDC BA【补充】(1)如图,在四边形ABCD 中,AB =AD ,∠B =∠D =90︒,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD .求证:EF =BE +FD ;FED CBAC HF E D BA(2) 如图,在四边形ABCD 中,AB =AD ,∠B+∠D =180︒,E 、F 分别是边BC 、CD 上的点,且∠EAF=12∠BAD , (1)中的结论是否仍然成立?不用证明.FEDCB A【习题1】 如图,已知ABC ∆和ADE ∆都是等边三角形,B 、C 、D 在一条直线上,试说明CE 与AC CD+相等的理由.EDCBA【习题2】 (湖北省黄冈市2008年初中毕业生升学考试)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.FEDCBA【习题3】 在梯形ABCD 中,AB CD ∥,90A ∠=︒,2AB =,3BC =,1CD =,E 是AD中点,试判断EC 与EB 的位置关系,并写出推理过程.家庭作业CD【习题4】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.CG 、CH 分别是ACN ∆、MCB ∆ 的高.求证:CG CH =.HG NM CBA【备选1】 在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.【备选2】 如图,正方形ABCD 中,FAD FAE ∠=∠.求证:BE DF AE +=.FEDCBA月测备选APMCQ B【备选3】 等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA第五讲 轴对称和等腰三角形【例1】 在ABC ∆中,AB AC =,BC BD ED EA ===.求A ∠.【补充】在ABC ∆中,AB AC =,BC BD =,AD ED EB ==.求A ∠.EDCB A【例2】 ABC ∆的两边AB 和AC 的垂直平分线分别交BC 于D 、E ,若150BAC DAE ∠+∠=︒,求BAC ∠.【例3】 如图,点O 是等边AO AD =内一点,110AOB ∠=,BOC α∠=.将BOC △绕点C 按顺时针方向旋转19060αα-=-∴°°得ADC △,连接OD ,则COD △是等边三角形;当α为多少度时,AOD △是等腰三角形?【例4】 如图,在ABC ∆中,B C ∠=∠,D 在BC 上,50BAD ∠=,在AC 上取一点E ,使得ADE AED ∠=∠,求EDC ∠的度数.【例5】 如图,ABC ∆为等边三角形,延长BC 到D ,又延长BA 到E ,使AE BD =,连接,CE DE ,求证:CDE ∆为等腰三角形.E D C B A O D C B AAB CD EE【例6】 如图,在ABC ∆中,B ∠,C ∠为锐角,,,M N D 分别为边AB 、AC 、BC 上的点,满足AM AN =,BD DC =,且BDM CDN ∠=∠.求证:AB AC =.板块三、轴对称在几何最值问题中的应用【例7】 已知点A 在直线l 外,点P 为直线l 上的一个动点,探究是否存在一个定点B ,当点P 在直线l 上运动时,点P 与A 、B 两点的距离总相等,如果存在,请作出定点B ;若不存在,请说明理由.【例8】 如图,在公路a 的同旁有两个仓库A 、B ,现需要建一货物中转站,要求到A 、B 两仓库的距离和最短,这个中转站M 应建在公路旁的哪个位置比较合理?aBA【例9】 如图,45AOB ∠=︒,角内有点P ,在角的两边有两点Q 、R (均不同于O 点),求作Q 、R ,使得PQR ∆的周长的最小.ABCD MNPl【补充】如图,M 、N 为ABC ∆的边AC 、BC 上的两个定点,在AB 上求一点P ,使PMN ∆的周长最短.【例10】 已知如图,点M 在锐角AOB ∠的内部,在OB 边上求作一点P ,使点P 到点M 的距离与点P 到OA 的边的距离和最小.【补充】已知:A 、B 两点在直线l 的同侧, 在l 上求作一点M ,使得||AM BM -最小.【补充】已知:A 、B 两点在直线l 的同侧,在l 上求作一点M ,使得||BM AM -最大.【例11】 如图,正方形ABCD 中,8AB =,M 是DC 上的一点,且2DM =,N 是AC 上的一动点,求DN MN +的最小值与最大值.M BO A lBA NM D A【补充】例题中的条件不变,求DN MN -的最小值与最大值.【补充】如图,已知正方形ABCD 的边长为8,M 在DC 上,且2DM =,N 是AC 上的一个动点,则DN MN +的最小值是MD CBA【习题1】 (2007双柏中考)等腰三角形的两边长分别为4和9,则第三边长为 . 【习题2】 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形的底边的长为( )A .17cmB .5cmC .17cm 或5cmD .无法确定【习题3】 已知等腰三角形的周长为20,腰长为x ,求x 的取值范围.【习题4】 (2004天津)在下列图形中,既是轴对称图形,又是中心对称图形的是( )【习题5】 判断下列图形(图)是否为轴对称图形?如果是,说出它有几条对称轴.⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼家庭作业【备选1】 ABC ∆的一个内角的大小是040,且A B ∠=∠,那么C ∠的外角的大小是( )A .140︒B .80︒或100︒C . 100︒或140︒D . 80︒或140︒【备选2】 已知等腰三角形一腰上的中线将它们的周长分为12和15两部分,求腰长和底长. 【备选3】 (四川省竞赛题)如图,在等腰Rt ABC ∆中,3CA CB ==,E 的BC 上一点,满足2BE =,在斜边AB 上求作一点P 使得PC PE +长度之和最小.PECBA【备选4】 在正方形ABCD 中,E 在BC 上,2BE =,1CE =,P 在BD 上,求PE 和PC 的长度之和的最小值.E PDCB AE‘E PDCB A月测备选第六讲 全等三角形中的截长补短板块一、截长补短【例1】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【例3】 AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为 ( )A . aB . kC .2k h+ D . h MDCBA【例4】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .D OECB ANEB M A DF DA【例5】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.FABCDEOOEDCBA【例6】 (北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例7】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDEN MDCB A板块二、全等与角度【例10】 如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例11】 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.CEDB AD CBAD E CBA。

word完整版全等三角形经典培优题型含答案推荐文档

word完整版全等三角形经典培优题型含答案推荐文档

三角形培优练习题1已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD2 已知:BC=DE,/ B= / E,/ C= / D , F 是CD 中点,求证:A 3 已知:/ 1 = / 2, CD=DE , EF//AB,求证:EF=AC4 已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C5 已知:AC 平分/ BAD , CE 丄 AB ,/ B+ / D=1806如图,四边形 ABCD 中,AB // DC , BE 、CE 分别平分/ ABC 、/ BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

7 已知:AB=CD ,/ A= / D ,求证:/ B= / C8.P 是/ BAC 平分线 AD 上一点,AC>AB ,求证:PC-PB<AC-AB,求证:AE=AD+BE9 已知,E 是AB 中点,AF=BD , BD=5 , AC=7,求DC10.如图,已知AD // BC ,Z PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP 于D .求证:AD + BC=AB.11如图,△ ABC中,AD是/ CAB的平分线,且AB=AC+CD,求证:/ C=2/ B12 如图:AE BC交于点M F 点在AMk, BE// CF, BE=CF求证:人皿是厶ABC的中线。

E13已知:如图,AB=AC , BD AC , CE AB ,垂足分别为 D 、E , BD 、CE 相交于点F 。

求证:BE =CD .C14在厶ABC 中,ACB 90 , AC BC ,直线MN 经过点C ,且AD MN 于D ,BE MN 于E •⑴ 当直线MN 绕点C 旋转到图1的位置时, 求证: ① ADC 也 CEB :②DE AD BE ;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,15 如图所示,已知 AE! AB, AF 丄 AC, AE=AB AF=AC 求证:(1) EC=BF ( 2) EC 丄BF请给出证明;若不成立,说明理由B C16.如图,已知AC // BD , EA、EB分别平分/ CAB和/ DBA , CD过点E,贝U AB与AC+BD 相等吗?请说明理由17.如图9所示,△ ABC是等腰直角三角形,/ ACB = 90°, AD是BC边上的中线,过C 作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC = Z BDE .图9全等三角形证明经典(答案)1. 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52 证明:连接BF 和EF。

全等三角形专题培优(带答案)(精选.)

全等三角形专题培优(带答案)(精选.)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题.:如图,当时,求的度数;:如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结.当________时,;请添加一个条件:________,使得为等边三角形;①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,,求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图).请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题:如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题,每小题 10 分,共 70 分)21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么?答案1.B2.D3.D4.A5.B6.D7.D8.A9.B10.B11.[ “”, “” ][ “” ]12.[ “” ]13.[ “” ]14.[ “或” ]15.[ “” ]16.[ “;” ][ "添加一个条件,可得为等边三角形;故答案为:;①∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴;②成立,理由如下;∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴." ]17.[ “” ]18.[ “” ]19.[ "解:是等腰三角形,在与中,,∴,∴,,∵,∴,∴,∴是等腰三角形;" ][ "的长为,∵中,,,∴,∵平分,∴,在边上取点,使,连接,则,∴,∴,∴,在边上取点,使,连接,则,∴,,∵,∴,∴,∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;若点在延长线上,为中点,且,则中的结论不成立,正确结论为:.证明:如图,延长交的延长线于点,则,∵,∴,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴.24.解:∵直线与轴、轴分别交于、两点,∴,,∵直线与直线关于轴对称,∴∴直线的解析式为:;如图..∵直线与直线关于轴对称,∴,∵与为象限平分线的平行线,∴与为等腰直角三角形,∴,∵,∴∴∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,,又∵,∴,则,∴∴∴∴∴.25.证明:连接,∵,∴,∵,∴,∴,∵,,∴,在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.最新文件仅供参考已改成word文本。

全等三角形专题培优(带答案)

全等三角形专题培优(带答案)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得第1页,共7页第2页,共7页………外………○……………………○……………………○※※请※※不※※答※※题※………内………○……………………○……………………○到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题. :如图,当时,求的度数; :如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结. 当________时,;请添加一个条件:________,使得为等边三角形; ①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,, 求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图). 请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题: 如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.第3页,共7页第4页,共7页26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么? 答案 1.B 2.D 3.D 4.A 5.B 6.D 7.D 8.A 9.B 10.B11.[ “”, “” ][ “” ] 12.[ “” ] 13.[ “” ] 14.[ “或” ]15.[ “” ] 16.[ “;” ][ "添加一个条件,可得为等边三角形; 故答案为:;①∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴;②成立,理由如下; ∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴." ] 17.[ “” ] 18.[ “” ]19.[ "解:是等腰三角形, 在与中,, ∴, ∴,, ∵, ∴, ∴,∴是等腰三角形;" ][ "的长为, ∵中,,, ∴, ∵平分, ∴,在边上取点,使,连接, 则,∴, ∴, ∴,在边上取点,使,连接, 则, ∴,, ∵, ∴, ∴, ∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;第5页,共7页第6页,共7页…○…………装订…………○…※※请※※不※※内※※答※※题※※…○…………装订…………○…若点在延长线上,为中点,且,则中的结论不成立,正确结论为:. 证明:如图,延长交的延长线于点,则,∵, ∴, ∴, 又∵, ∴, ∴,,又∵为的中点, ∴, ∴, ∴, ∵, ∴.24.解:∵直线与轴、轴分别交于、两点, ∴,,∵直线与直线关于轴对称, ∴∴直线的解析式为:;如图..∵直线与直线关于轴对称, ∴,∵与为象限平分线的平行线, ∴与为等腰直角三角形, ∴, ∵, ∴ ∴ ∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,, 又∵, ∴, 则, ∴ ∴ ∴ ∴ ∴.25.证明:连接, ∵, ∴, ∵, ∴, ∴, ∵,, ∴, 在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.第7页,共7页。

全等三角形培优专题训练

全等三角形培优专题训练

探索三角形全等1、一长方形纸片沿对角线剪开,得到两三角形纸片,再将这两纸片摆成如以下图形式,使点B 、F 、C 、D 在同一条直线上.⑴求证:AB ⊥ED ;⑵假设PB =BC ,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC 中,AC =BC ,∠ACB =90°,AD 平分∠BAC ,BE ⊥AD 交AC 的延长线于F ,E 为垂足,那么结论:①AD =BF ;②CF =CD ;③AC +CD =AB ;④BE =CF ;⑤BF =2BE.其中正确的选项是〔 〕3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线M、N上,且OE=OF.⑴图中共有几对全等三角形,请把它们都写下来;⑵求证:∠MAE=∠NCF全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.试判断AP与AQ的关系,并证明.2、如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,求证:BE⊥ACB3、如图,在△ABC中,AB=AC,AD=AE,∠BAC=∠DAC=90°.⑴当点D在AC上时,如图①,线段BD,CE有怎样的数量和位置关系"证明你猜测的结论.⑵将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°) ,如图②,线段BD、CE有怎样的数量关系和位置关系?问明理由.4、在△ABC中,AB=AC,点D是直线BC上一点〔不与B、C重合〕,以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.⑴如图①,当点D在线段BC上时,假设∠BAC=90°,那么∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②B①①b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=ABA2、AB =DE ,BC =EF ,∠B =∠E ,AF =CD 求证:AC ∥DF3、如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA =OC ,EA =EC.∠A =∠C 吗?点O 在∠AEC 的平分线上吗?辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对BE全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=ACBB3、在△ABC 中,D 是边BC 上的一点,且CD =AB ,∠BAD =∠BDA ,AE 是△ABD 的中线.求证∶AC =2AE4、△ABC 中,D 为BC 的中点,DE ⊥DF 交AB ,AC 于点E ,F.求证:BE +CF >EF辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余局部与另一条相等. 补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等.B1、AC ∥BD ,EA ,EB 分别平分∠CAB 和∠DBA ,点E在CD 上.求证:AB =AC +BD2、在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =½〔AB +AD 〕.求证∶∠B +∠D =180°ABD3、如图,△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC 于F.求证:∠ADB=∠CDF4、如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证∶AC+CD=AB12、如图,AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.B辅助线作法之利用特殊条件构造全等三角形2、如图,在△ABC 中,AC =½AB ,AD 平分∠BAC ,且AD =BD求证:CD ⊥AC全等三角形在动态几何中的运用1、如图,△ABC 的边BC 在直线l 上,AC ⊥BC ,且AC =BC.△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF =FP.⑴在图①中,请你通过观察、测量、猜测并写出AB 与AP 所满足的数量关系和位置关系; ⑵将△EFP 沿直线l 向左平移到图②的位置时,EP 交AC 于点Q,连接AP,BQ.猜测并写出BQ 与AP 所满足的数量关系和位置关系,并证明你的猜测;⑶将△EFP 沿直线l 向左平移到图③的位置时,EP 的延长线交AC 的延长线于点Q,连接AP,BQ.你认为⑵中所猜测的BQ 与AP 的数量关系和位置关系还成立吗"假设成立,给出证明;假设不成立,请说明理由.B探究角平分线1、如图,△ABC 的外角∠ACD 的平分线CP 与角∠ABC 的平分线BP 相交于点P ,假设∠BPC =40°,那么∠CAP =_____________.2、如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC.求证:AM 平分∠DAB3、如图,在△ABC 中,∠BAC =90°,AB =AC,BE 平分∠ABC,CE ⊥BE.求证:CE =12BD4、如图,在△ABC 中,AD 平分∠BAC ,BD =CD 求证:∠B =∠CBB5、如图,在Rt △ABC 中,∠C =90°,AC =BC ,AD 是∠BAC 的平分线,交BC 于D ,DE ⊥AB 于E ,假设AB =10cm ,那么△DBE 的周长是多少?6、AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,那么△EDF 的面积为多少?7、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:BE =CFB8、在△ABC 中,AD 是∠BAC 的平分线,E 、F 分别为AB 、AC 上的点,且∠EDF +∠BAF =180°⑴求证:DE =DF⑵如果把最后一个条件改为AE >AF ,且∠AED +∠AFD =180°,那么结论还成立吗?9、如图,AB =AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 与CF 交于点D求证:点D 在∠BAC 的平分线上.10、如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,以下结论正确的选项是( )A.AB-AD>CB-CDB.AB-AD=CB-CDC.AB-AD<CB-CDD.AB-CD与CB-CD的大小关系不确定11、如图,△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、如图,△ABC,P为角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

人教版八年级数学上册《全等三角形》培优专题训练(含答案)

《全等三角形》培优专题训练1 全等三角形的概念两个能够完全重合的三角形叫做全等三角形.把两个全等三角形重合在一起,重合的角叫做对应角,重合的边叫做对应边.全等三角形的对应角相等,对应边相等. 经典例题如图所示,ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =.求DFE ∠的度数与EC 的长.解题策略在ABC ∆中,+180A B ACB ∠∠+∠=︒ (三角形内角和为180°).因为30A ∠=︒,50B ∠=︒(已知),所以1803050100ACB ∠=︒-︒-︒=︒ 因为ABC DEF ∆≅∆ (已知),所以ACB DFE ∠=∠(全等三角形对应角相等) BC EF =(全等三角形对应边相等), 因此100DFE ∠=︒,所以2EC EF FC BC FC BF =-=-== 画龙点睛1. 在解答与全等三角形有关的问题时,要充分利用全等三角形的定义所得到的对应边相等、对应角相等的结论.2. 在本题中求EC 的长时,不能直接求,可将之转化为两条线段的差,这也是将来求线段长的一种常用的转化方法.举一反三1. 如图,若ABC ADE ∆≅∆,则这对全等三角形的对应边是 ;对应角是 .2. 如图,若ABD ACD ∆≅∆,试说明AD 与BC 的位置关系.3. 如图所示,斜折一页书的一角,使点A 落在同一页书内'A 处,DE 为折痕,作DF平分'A DB ∠,试猜想FDE ∠等于多少度,并说明理由.融会贯通4. 如图,ABE ∆和ACD ∆是ABC ∆分别沿着AB 、AC 边翻折180°形成的,若θ∠的度数50°,则BAC ∠的度数是 .2 三角形全等的判定判断两个三角形全等,并非需要证明两个三角形的三条边以及三个角均对应相等,而只需满足全等三角形的判定定理就可以了. 经典例题已知:如图,AO 平分EAD ∠和EOD ∠,求证:(1)AOE AOD ∆≅∆;(2) BOE COD ∆≅∆.解题策略证明:(1)因为AO 平分EAD ∠和EOD ∠,所以OAD OAE ∠=∠,AOE AOD ∠=∠,又因为AO AO =,所以AOE AOD ∆≅∆ ( ASA).(2)由AOE AOD ∆≅∆,得OE OD =,且AEO ADO ∠=∠.又180BEO AEO ∠=︒-∠,180CDO ADO ∠=︒-∠,所以B E O C D O ∠=∠.在AOE ∆和AOD ∆中,因为B E O C D O ∠=∠,OE OD =,BOE COD ∠=∠,所以B O E C O D ∆≅∆(ASA). 画龙点睛1. 判定两个三角形全等,往往需要三个条件,根据题目已知的条件可以得到两个条件(要注意公共角及公共边),这时.设法证明所缺的条件也成立就是证题的关键了. 2. 要证明两条线段或者两个角相等,常用的方法是证明它们是一对全等三角形的对应边或者对应角.举一反三1. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是( ).(A) CB CD = (B)BAC DAC ∠=∠ (C)BCA DCA ∠=∠ (D)90B D ∠=∠=︒2. 如图所示,点D 、C 在BF 上,//AB EF ,A E ∠=∠,BC DF =.求证AB EF =.3. 如图,AB 交CD 于点O ,AD 、CB 的延长线相交于点E ,且OA OC =,EA EC =,你能证明A C ∠=∠吗?点O 在AEC ∠的平分线上吗?融会贯通4. 如图所示,已知BD 、CE 分别是ABC ∆的边AC 和AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =;(2)AP AQ ⊥.3 全等三角形的应用全等三角形的判定和性质被广泛地应用于几何证明题中。

全等三角形证明题培优(38题)(方法)

全等三角形证明题培优(38题)(方法)

全等三角形证明题(经典38题)(方法)1.(方法:巧做辅助线)如图,在△ABC中,∠B=2∠C,AD⊥BC于D,求证:CD=BD+AB.2.(方法:巧做辅助线)如图所示,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。

3.(方法:巧做辅助线)如图,已知AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.4.图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.5.(方法:巧做辅助线)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。

求证:(1)AE=BF;(2)AE⊥BF。

6.(方法:巧做辅助线)如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连D E交BC于F,过点E作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.7.(方法:火眼金睛找条件)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:(1)CD=2AM,(2)AM⊥CD.8.(方法:火眼金睛找条件)已知:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形9.(方法:火眼金睛找条件)如图,在△ABC中,AD平分∠BAC,E为BC的中点,过点E 作EF∥AD交AB于点G,交CA的延长线于点F.求证:BG=CF.FDE CBA(2)10.(方法:巧做辅助线)如图,AB=AE,∠ABC=∠AED,BC=ED,点F 是CD 的中点, 求证:AF ⊥CD.11.(方法:巧做辅助线)如图,在正方形ABCD 中,M 、N 分别是BC 、CD 上的点,∠MAN=45°. 求证:MB+ND=MN .12.(方法:巧做辅助线)已知:如图,ABCD 是正方形,∠FAD=∠FAE .求证:BE+DF=AE .13.(方法:火眼金睛找条件)如图E 为正方形ABCD 边BC 的中点,F 为DC 的中点,BF 与AE 有何关系?请解释你的结论。

全等三角形经典培优题型(含标准答案)

全等三角形经典培优题型(含标准答案)

三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

已知:AB=CD ,∠A=∠D ,求证:∠B=∠C78.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABCDBA BC DEF 2 1ADBCA B CD ABACDF2 1 E9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F点在AM 上,BE∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。

求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

全等三角形大题专练(培优强化40题)

全等三角形大题专练(培优强化40题)

专题-2022-2023学年八年级数学上学期复习备考高分秘籍【苏科版】专题2.1全等三角形大题专练(培优强化40题)一.解答题(共40小题)1.(2021秋•六合区期中)如图,在△ABC和△DEF中,∠C、∠F都是锐角且∠C>∠B,∠F>∠E,AB=DE,AC=DF,∠C=∠F,△ABC≌△DEF吗?说明理由.2.(2021秋•高淳区期中)如图,AB=CD,∠B=∠C,点F、E在BC上,BF=CE.求证:AE=DF.3.(2021秋•溧水区期中)如图,已知AB=AD,∠B=∠D,∠BAD=∠CAE,点E在BC 上.(1)求证:AE=AC;(2)若∠B=20°,∠C=65°,求∠DFA的度数.4.(2021秋•江宁区期中)如图,AB=AC,点D在AB上,点E在AC上,∠B=∠C.求证:BE=CD.5.(2021秋•江宁区期中)如图,点B、C、E、F在同一条直线上,AF、DE相交于点G,∠B=∠C=∠AGD=90°,BF=CD.求证:AF=DE.6.(2021秋•玄武区期中)如图,点C、E在BF上,AC=DF,∠A=∠D,AB∥DE.求证:BE=CF.7.(2020秋•鼓楼区校级期中)如图,点B、D、C在一条直线上,AB=AD,AC=AE,∠BAD=∠EAC.(1)求证:BC=DE;(2)若∠B=70°,求∠EDC.8.(2021秋•鼓楼区期中)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线,求证:AB=DC.9.(2021秋•南京期中)已知:如图,AB∥ED,AB=DE,点F,点C在AD上,AF=DC.(1)求证:△ABC≌△DEF;(2)求证:BC∥EF.10.(2021秋•镇江期中)已知:如图,C是AE的中点,AB∥CD,且AB=CD.求证:△ABC≌△CDE.11.(2021秋•徐州期中)如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠CAD=50°,求∠B的度数;(2)如图,若点E在边AC上,过点E作EF∥AB交AD的延长线于点F,求证:AE=EF.12.(2022春•清江浦区校级期中)工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C的射线OC便是∠AOB的平分线.(1)求证:OC平分∠AOB;(2)继续测量得∠AMC=50°,∠MCN=30°,求∠AOB的度数.13.(2020春•江阴市期中)如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.14.(2021秋•盐都区期中)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.15.(2018秋•锡山区校级期中)如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.16.(2021秋•海安市期中)如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.17.(2022•姑苏区校级二模)已知:如图,AC=BD,AD=BC,AD,BC相交于点O,过点O作OE⊥AB,垂足为E.求证:(1)△ABC≌△BAD.(2)AE=BE.18.(2022春•泗阳县期末)如图,AB=AE,AC=DE,AB∥DE.(1)求证:AD=BC;(2)若∠DAB=70°,AE平分∠DAB,求∠B的度数.19.(2022春•泰兴市期末)已知,如图,点A、B、C、D在同一直线上,AC=DB,BE∥CF.从①BE=CF;②AE∥DF;③AE=DF中选择一个作为条件,使得△ABE≌△DCF 成立.请写出你选择的条件,并证明.你选择的条件是 (填序号).20.(2022春•海陵区期末)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,BC、DE交于O,BC=ED.(1)求证:∠B=∠E;(2)求证:OE=OB.21.(2022春•建邺区校级期末)已知:如图,AD、BF相交于O点,OA=OD,AB∥DF,点E、C在BF上,BE=CF.(1)求证:△ABO≌△DFO;(2)判断线段AC、DE的关系,并说明理由.22.(2022春•相城区期末)如图,在四边形ABCD中,AB∥CD,AD∥BC,E,F是对角线AC上两点,且AE=CF,连接BE,DF.(1)求证:△ABC≌△CDA;(2)若∠AEB=85°,求∠AFD的度数.23.(2022•丰县二模)如图,点F是△ABC的边AC的中点,点D在AB上,连接DF并延长至点E,DF=EF,连接CE.(1)求证:△ADF≌△CEF;(2)若DE∥BC,DE=4,求BC的长.24.(2022•工业园区模拟)已知:如图,AB=AC,AD=AE,∠BAE=∠CAD.求证:∠D =∠E.25.(2022•江阴市模拟)如图,在△ABC中,O为BC中点,BD∥AC,直线OD交AC于点E.(1)求证:△BDO≌△CEO;(2)若AC=6,BD=4,求AE的长.26.(2022•宜兴市校级二模)已知:如图,在△ABC中,D是BC边中点,CE⊥AD于点E,BF⊥AD于点F.(1)求证:△BDF≌△CDE;(2)若AD=5,CE=2,求△ABC的面积.27.(2022春•亭湖区校级期末)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG.(1)求证:∠ABE=∠ACG;(2)试判:AG与AD的关系?并说明理由.28.(2022•南通模拟)如图,在△ABC中,AB=AC,AD⊥BD,AE⊥EC,垂足分别为D,E,BD,CE相交于点O,且∠BAE=∠CAD.(1)求证:△ABD≌△ACE;(2)若∠BOC=140°,求∠OBC的度数.29.(2021秋•鼓楼区校级期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAD =∠CAE.求证:∠ABD=∠ACE.30.(2021秋•溧阳市期末)如图,点A、D、B、E在一条直线上,AC=DF,BC=EF,∠C =∠F.求证:(1)△ABC≌△DEF;(2)AD=BE,BC∥EF.31.(2021秋•如皋市期末)如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.(1)求证CD=EC;(2)连接DE,若∠DCE=60°,DC=4,求DE的长.32.(2022•宿城区校级开学)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ABD≌△BAC;(2)若∠ABC=35°,求∠CAO的度数.33.(2021秋•盱眙县期末)如图,已知AD∥BC,AD=CB,AE=FC.(1)求证:∠D=∠B;(2)若∠A=20°,∠D=110°,求∠BEC的度数.34.(2021秋•大丰区期末)如图,在△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌△DCE;(2)当∠AEB=68°,求∠EBC的度数.35.(2021秋•句容市期末)如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E.(1)求证:△ABC≌△DEB;(2)若BE=9,AC=4,则CD= .36.(2021秋•江阴市期末)如图,点A、D、B、E在一条直线上AC=EF,AD=BE,BC=DF,BC与DF交于点O.(1)求证:△ABC≌△EDF;(2)若∠A=60°,∠F=65°,求∠ABC的度数.37.(2021秋•新吴区期末)如图,在△ABD和△ACD中,AB=AC,BD=CD.(1)求证:△ABD≌△ACD;(2)过点D作DE∥AC交AB于点E,求证:AE=DE.38.(2021秋•崇川区期末)如图,点A,F,C,D在同一条直线上,AF=DC,AB=DE,∠A=∠D,BC与EF交于点H.求证:(1)△ABC≌△DEF;(2)FH=CH.39.(2021秋•江都区期末)如图,已知点A、E、F、C在同一直线上,AD∥BC,AE=CF,AD=CB.(1)求证:△ADF≌△CBE;(2)判断BE与DF的位置关系,并说明理由.40.(2021秋•滨湖区期末)已知:如图,ED⊥AB,FC⊥AB,垂足分别为D、C,AE∥BF,且AE=BF.求证:(1)△ADE≌△BCF;(2)AC=BD.。

全等三角形经典培优题型(含答案)

全等三角形经典培优题型(含答案)

全等三角形经典培优题型(含答案)1.已知三角形ABC中,AB=4,AC=2,D是BC的中点,AD是整数,求AD的长度。

解:由题意可得AD=AB-DB,又BD=DC=AC/2=1,故AB=AD+DB=AD+1,代入AB=4得AD=3.2.已知四边形BCDE中,BC=DE,∠B=∠E,∠C=∠D,F是CD的中点,证明∠1=∠2.解:由于BC=DE,且∠B=∠E,所以△BCE≌△EDC,从而∠1=∠BCE=∠EDC=∠2.3.已知四边形ABCD中,∠1=∠2,CD=DE,EF//AB,证明EF=AC。

解:由于EF//AB,所以△EFC∼△ABC,从而EF/AC=FC/BC,而CD=DE,所以FC=CD,代入得EF/AC=CD/BC,又由于∠1=∠2,所以△BCD∼△ECD,从而CD/BC=ED/AC,代入得EF/AC=ED/AC,即EF=AC。

4.已知三角形ABC中,AD平分∠BAC,AC=AB+BD,证明∠B=2∠C。

解:由于AD平分∠BAC,所以∠BAD=∠CAD,从而∠B=∠BAD+∠ABD=∠CAD+∠ACD,又由于AC=AB+BD,所以BD=AC-AB,代入得∠B=∠CAD+∠ACD=∠CAD+∠ABC,又由于∠CAD=∠CAB,所以∠B=∠CAB+∠ABC=2∠C。

5.已知三角形ABC中,AC平分∠BAD,CE⊥AB,∠B+∠D=180°,证明AE=AD+BE。

解:由于AC平分∠BAD,所以∠CAD=∠CAB,从而△ABE∼△DCE,所以AE/AD=BE/CD,又由于∠B+∠D=180°,所以CD=AB,代入得AE/AD=BE/AB,即AE=AD·(BE/AB),又由于CE⊥AB,所以△CEB为直角三角形,从而BE/AB=CE/AC,代入得AE=AD·(CE/AC),又由于AC平分∠BAD,所以△ACD∼△ABC,从而CE/AC=CD/AB,代入得AE=AD·(CD/AB),又由于CD=AB-BD,所以AE=AD·((AB-BD)/AB),即AE=AD+BE·(AB/AD-1),又由于AB>AD,所以AB/AD-1<AB/AD,从而AE<AD+BE·(AB/AD),即AE<AD+BE。

全等三角形证明题专练(培优)

全等三角形证明题专练(培优)

1.(★★★)已知:BD CE 、是ABC ∆的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =,求证:⑴AP AQ =;⑵AP AQ ⊥.PDQCBEA2.(★★★)如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,求证:AC BE =.FEDC BA3.(★★★★)已知AD 为ABC ∆的中线,ADB ∠,ADC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.FE AB D C4.(★★)如图,已知AB =DC ,AD =BC ,O 是BD 中点,过O 点的直线分别交DA 、BC 的延长线于E ,F . 求证:∠E =∠F5.(★★)如图,ABC ∆中,AB AC =,90BAC ∠=︒,D 是BC 中点,ED FD ⊥,ED 与AB 交于E ,FD 与AC 交于F .求证:BE AF =,AE CF =.ABCDE F6.(★★★)如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFA CD E B7.(★★★)如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBA8.(★★★)如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA9.(★★★)已知:如图,点C为线段AB上一点,ACM∆、CBN∆是等边三角形.(1)求证:AN BM=.(2)求证:CD=CE (3) 求证:CF平分∠MCN (4)求证:DE∥AB10.(★★★)等边ABD∆和等边CBD∆的边长均为1,E是BE AD⊥上异于A D、的任意一点,F是CD上一点,满足1AE CF+=,当E F、移动时,试判断BEF∆的形状.DFECBA11.(★★★★)如图,在ABC∆中,BE是∠ABC的平分线,AD BE⊥,垂足为D。

三角形全等培优证明题100题(有答案)

三角形全等培优证明题100题(有答案)

全等三角形证明题专项练习(100题)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.52.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.53.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.54.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.55.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.56.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.57.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.58.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.59.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.60.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.61.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.62.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.63.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.64.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.65.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.66.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.67.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.68.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.69.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.70.如图,AB=AC,AD=AE.求证:∠B=∠C.71.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.72.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.73.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:74.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)75.如图,已知AB=DC,AC=DB.求证:∠1=∠2.76.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.77.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.78.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.79.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.80.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.81.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.82.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?83.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.84.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.85.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.86.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.87.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.88.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.89.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.90.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.91.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,(1)求CF的长。

《全等三角形》培优题型全集

《全等三角形》培优题型全集

《全等三角形》培优题型全集题型一:倍长中线(线段)造全等1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BFC2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______.DCBA3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1<AB<29 B 、4<AB<24C 、5<AB<19D 、9<AB<194、已知:AD 、AE 分别是△ABC 和△ABD 的中线,且BA=BD , 求证:AE=21AC CE5、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ABFDEC题型二:截长补短1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。

求证:BC =AB +CD 。

2、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2, 求证:AB=AC+CD.3、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数DCBA4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB ADCB A 12题型三:角平分线上的点向角两边引垂线段1、如图,在四边形ABCD中,BC>BA,AD=CD,求证:∠BAD+∠C=180°DCBA2、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E ,AD+AB=2AE,则∠B与∠ADC互补,为什么?3、如图,△ABD和△ACD,BD=CD,∠ABD=∠ACD,求证AD平分∠BAC.4、已知,AB>AD,∠1=∠2,CD=BC。

全等三角形经典题型汇集(培优专练)

全等三角形经典题型汇集(培优专练)

4.如图 1.△ABC 中,AG⊥BC 于点 G,以 A 为直角顶点,分别以 AB、AC 为直角边,向△ABC 作等腰 Rt△ABE 和等腰 Rt△ACF,过点 E,F 作射线 GA 的垂线,垂足分别为 P,Q.
范围是
.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把
分散的已知条件和所求证的结论集合到同一个三角形中.
(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF 是 ACD 的边 CD 上中线.求证:BE=2AF.
(灵活运用)如图③,在△ABC 中,∠C=90°,D 为 AB 的中点,DE⊥DF,DE 交 AC 于点 E,DF 交 AB 于点 F,连接 EF,试判断以线段 AE、BF、EF 为边的三角形形状,并证明你的结论.
2.如图,四边形 ABCD 、 DEFG 都是正方形,连接 AE 、 CG .求证: AE CG .
G
F
A
B
D
E
C
3.如图,△ACB 和△ECD 中,∠ACB=∠ECD=a,且 AC=BC,EC=DC,AE、BD 交于 P 点,连 CP (1)求证:△ACE≌△BCD(2)求∠APC 的度数(用含 a 的式子表示)
2.阅读下面材料:
数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点 E 在 AC 上,BE 交 AD 于点 F,AE=EF.求 证:AC=BF. 经过讨论,同学们得到以下两种思路:
思路一如图①,添加辅助线后依据 SAS 可证得△ADC≌△GDB,再利用 AE =EF 可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.
4.如图所示, BCD 和 BCE 中, BDC BEC 90 , O 为 BC 的中点, BD , CE 交于 A , BAC 120 ,求证: DE OE .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(2)如图 2,当点 E,F 分别在 CB,DC 的延长线上,CF=2 时,求△CEF 的周长;
拓展提升:
如图 3,在 Rt△ABC 中,∠ACB=90°,CA=CB,过点 B 作 BD⊥BC,连接 AD,在 BC 的延长线上取一 点 E,使∠EDA=30°,连接 AE,当 BD=2,∠EAD=45°时,请直接写出线段 CE 的长度.
7.阅读下面材料:
小炎遇到这样一个问题:如图 1,点 E、F 分别在正方形 ABCD 的边 BC,CD 上,∠EAF=45°,连结 EF,则 EF=BE+DF, 试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将 这些分散的线段相对集中.她先后尝试了翻折、旋转、平 移的方法,最后发现线段 AB,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着 点 A 逆时针旋转 90°得到△ADG,再利用全等的知识解决了这个问题(如图 2).
2.阅读下面材料:
数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点 E 在 AC 上,BE 交 AD 于点 F,AE=EF.求 证:AC=BF. 经过讨论,同学们得到以下两种思路:
思路一如图①,添加辅助线后依据 SAS 可证得△ADC≌△GDB,再利用 AE =EF 可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.
3.如图,分别以 ABC 的边向外作正方形 ABFG 和 ACDE,连接 EG,若 O 为 EG 的中点,
求证:(1) AO 1 BC ;(2) AO BC . 2
4.如图所示,已知 ⶠࢼ 中, 平分 ⶠ ࢼ, 、 分别在 ⶠ 、 上.
ࢼ,
ࢼ.求证: ∥ ⶠ.
5.如图所示, ⶠ ࢼ
, 是 ⶠ 的中点, ⶠ ࢼ,
模型二、半角模型
1.如图,在四边形 ABCD 中,AB=AD,∠B=∠D=90°,E、F 分别是边 BC、CD 上的点,且∠EAF= 1 ∠BAD.求 2
证:EF=BE+FD.
2.在正方形 ABCD 中,AB=4,∠EAF 的两边分别交射线 CB,DC 于点 E,F,∠EAF=45°.
(1)如图 1,当点 E,F 分别在线段 BC,CD 上时,△CEF 的周长是
,求证
ࢼ.
6.如图,在 ABC 中, BAC BCA , AD 是边 BC 上的中线,延长 BC 至 E ,使 BC EC ,求证: AE 2AD .
模型二 直角三角形斜边上的中线 1.如图所示,在 ABC 中, BD AC 于 D , CE AB 于 E ,点 M , N 分别是 BC , DE 的中点,求 证: MN DE .
4.如图,四边形 ABCD 是正方形,点 E 是边 BC 的中点,∠AEF=90°,且 EF 交正方形外角平分线 CF 于 点 F.
(1)求证:AE=EF; (2)如图 2,若把条件“点 E 是边 BC 的中点”改为“点 E 是边 BC 上的任意一点”,其余条件不变,(1)中 的结论是否仍然成立? ;(填“成立”或“不成立”); (3)如图 3,若把条件“点 E 是边 BC 的中点”改为“点 E 是边 BC 延长线上的一点”,其余条件仍不变,那 么结论 AE=EF 是否成立呢?若成立请证明,若不成立说明理由.
全等三角形经典题型汇集
第一讲 全等三角形与中点问题
模型一 倍长中线
1.问题情境)学习《探索全等三角形条件》后,老师提出了如下问题:如图①,△ABC 中,若 AB=12,
AC=8,求 BC 边上的中线 AD 的取值范围.同学通过合作交流,得到了如下的解决方法:延长 AD 到 E,
使 DE=AD,连接 BE.根据 SAS 可证得到△ADC≌△EDB,从而根据“三角形的三边关系”可求得 AD 的取值
2.如图所示,四边形 ACBD 中,ADB ACB 90 ,DBC 60 ,点 E 是 AB 的中点,求 DCE
的度数.
3.如图所示,ABC 中,AB AC,BAC 90, D 为 BC 的中点,G 为 AC 上一点,AE BG 于点 E , 连结 DE .求证: BE AE 2DE .
参考小炎同学思考问题的方法,解决下列问题:
(1)如图 3,四边形 ABCD 中,AB=AD,∠BAD=90°点 E,F 分别在边 BC,CD 上,∠EAF=45°.若∠B,∠D
都不是直角,则当∠B 与∠D 满足_
关系时,仍有 EF=BE+DF;
(2)如图 4,在△ABC 中,∠BAC=90°,AB=AC,点 D、E 均在边 BC 上,且∠DAE=45°,若 BD=1, EC=2, 求 DE 的长.
4.如图 1.△ABC 中,AG⊥BC 于点 G,以 A 为直角顶点,分别以 AB、AC 为直角边,向△ABC 作等腰 Rt△ABE 和等腰 Rt△ACF,过点 E,F 作射线 GA 的垂线,垂足分别为 P,Q.

FD
之间的数量关系还成立吗,若成立,请完成证明,若
不成立,请说明理由.(可借鉴第(1)问的解题经验)
第三讲 全等三角形与旋转问题
1.已知:如图,点 C 为线段 AB 上一点, ACM 、 CBN 是等边三角形.(1)求证: AN BM .
(2)求证:CD=CE (3) 求证:CF 平分∠MCN (4) 求证:DE∥AB
4.已知 ABC ,以 AC 为边在 ABC 外作等腰 ACD ,其中 AC AD .
(1)如图 1,若 AB 为边在 ABC 外作 △ABE , AB AE , DAC EAB 60 ,求 BFC 的度数; (2)如图 2, ABC , ACD , BC 6 , BD 8 .
思路二如图②,添加辅助线后并利用 AE=EF 可证得∠G=∠BFG=∠AFE=∠FAE,再依据 AAS 可以进 一步证得△ADC≌△GDB,从而证明结论.
完成下面问题:
(1)①思路一的辅助线的作法是:
;②思路二的辅助线的作法是:

(2)请你给出一种不同于以上两种思路的证明方法(要求:只写出辅助线的作法,并画出相应的图形,不 需要写出证明过程).
(1)如图 1,求证 BD=AE; (2)如图 2,点 H 为 BC 中点,分别连接 EH,DH,求∠EDH 的度数; (3)如图 3,在(2)的条件下,点 M 为 CH 上的一点,连接 EM,点 F 为 EM 的中点,连接 FH,过点 D 作 DG⊥FH,交 FH 的延长线于点 G,若 GH:FH=6:5,△FHM 的面积为 30,∠EHB=∠BHG,求线段 EH 的长.
(3)求证: DP PQ ;
(变式探究)
若点 Q 的运动速度为 x cm / s ,是否存在实数 x ,使得 ADP 与 BPQ 全等?若存在,请直接写出相应的 x 的值;若不存在,请说明理由.
3.已知 Rt△ABC 中,∠BAC=90°,AB=AC,点 E 为△ABC 内一点,连接 AE,CE,CE⊥AE,过点 B 作 BD⊥AE, 交 AE 的延长线于 D.
2.如图,四边形 ABCD 、 DEFG 都是正方形,连接 AE 、 CG .求证: AE CG .
G
F
A
B
D
E
C
3.如图,△ACB 和△ECD 中,∠ACB=∠ECD=a,且 AC=BC,EC=DC,AE、BD 交于 P 点,连 CP (1)求证:△ACE≌△BCD(2)求∠APC 的度数(用含 a 的式子表示)
2.如图,正方形 ABCD 的对角线相交于点 O.点 E 是线段 DO 上一点,连接 CE.点 F 是∠OCE 的平分 线上一点,且 BF⊥CF 与 CO 相交于点 M,点 G 是线段 CE 上一点,且 CO=CG. (1)若 OF=4,求 FG 的长;(2)求证:BF=OG+CF.
3.如图,在四边形 ABCD 中, E 是边 CD 的中点, AE 是 BAD 的平分线, AD∥BC . 求证: AB AD BC
范围是
.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把
分散的已知条件和所求证的结论集合到同一个三角形中.
(直接运用)如图②,AB⊥AC,AD⊥AE,AB=AC,AD=AE,AF 是 ACD 的边 CD 上中线.求证:BE=2AF.
(灵活运用)如图③,在△ABC 中,∠C=90°,D 为 AB 的中点,DE⊥DF,DE 交 AC 于点 E,DF 交 AB 于点 F,连接 EF,试判断以线段 AE、BF、EF 为边的三角形形状,并证明你的结论.
2.如图 1,在长方形 ABCD 中, AB 4cm , BC 3cm ,点 P 在线段 AB 上以1cm / s 的速度由 A 向终
点 B 运动,同时,点 Q 在线段 BC 上由点 B 向终点 C 运动,它们运动的时间为 t s .
(解决问题)
若点 Q 的运动速度与点 P 的运动速度相等,当 t 1时,回答下面的问题: (1) AP _________ cm ; (2)此时 ADP 与 BPQ 是否全等,请说明理由;
4.如图所示, BCD 和 BCE 中, BDC BEC 90 , O 为 BC 的中点, BD , CE 交于 A , BAC 120 ,求证: DE OE .
第二讲 全等三角形中的截长补短
模型一、截长补短
1.已知:如图,ABCD 是正方形,∠FAD=∠FAE. 求证:BE+DF=AE.
(2)如图②,当点 在线段 ⶠࢼ 的延长线上时,其他条件不变,请直接写出 ࢼ ,ⶠࢼ,ࢼ 三条线段之间的 关系.
(3)如图③,当点 在线段 ⶠࢼ 的反向延长线上,且点 , 分别在直线 ⶠࢼ 的两侧时,其他条件不变, 请直接写出 ࢼ ,ⶠࢼ,ࢼ 三条线段之间的关系.
6..已知 ABC 中, AB AC . (1)如图 1,在 ADE 中,若 AD AE ,且 DAE BAC ,求证: CD BE ; (2)如图 2,在 ADE 中,若 DAE = BAC = 60 ,且 CD 垂直平分 AE , AD 3 ,CD 4 ,求 BD 的长;(3)如图 3,在 ADE 中,当 BD 垂直平分 AE 于 H ,且 BAC 2ADB 时,试探究 CD2 ,BD2 , AH 2 之间的数量关系,并证明.
相关文档
最新文档