2018年高考秘籍-破解导数压轴题策略:3.导数不等式的证明-切线法

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

巧用“切线法”求解函数不等式

巧用“切线法”求解函数不等式

1,
: 0
设函数 h(x)=ax+1.易知函数 ^( )恒过定点 (0,1).通过
一 阶导可知 F(x)单调递增,通过二阶求导可知 F( )的图像
是 “向下凸”的.为满足 F(x)≥ 九( ),h(x)的斜率 的极 限状
态为 F(x1在 =0处的导数.
解 设 新 函 数 ) :
, 。 求 ,
A百 = (X, ),把 A西 绕其起 点沿 逆时针方 向旋转 0角得到 向 量 A户= (z COS0一Y sin0, sin0+YCOS ),叫做 把点 B 绕 点 A逆时针方 向旋转 角得到点 P.

所 以 f: = ~ z+1.


图 2
所 以 F(x)在 = 处取 到最小值,所 以 F( )≥ F( )= 0. 因为 F( )在 【0,+。。)上
所 以上面 的三个 表达式 成立.又 因为该切线单 调递增,所 以 是 “向下 凸”的,所 以 F(x)在 直 线 z的上 方,证 明过 程 可
求 fa+ 1)b的最大值.
G(x)= e ( 一 1)+ 1,求 导 可 得:G )= .可 知 o(x)在 [0,+o。)上单调递增,且有 o(x)≥ a(O)= 0.所
以 F (∞)≥ 去,即F(z)在 【0,+oo)上单调递增.所以当
a∈(一。。,0】时,结 论成 立.
分析 利用函数表达式的结构易得, )=e 一 +去 。. 当。∈(o, 1时,原命题等价于 e=-1≥ +1≥

(o< < 6).
a J-b
a — b 、
分 析 该 不等式 的证 明方法很多,这里应用 “切线法”来
证 明:
F( )= e2x(1一z),F ( )= e2=(1— 2 ).显然 可知 F(x)

2018年高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析已知函数2()(2)ln(1)2f x x ax x x =+++-(1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >;(2) 若0x =是()f x 的极大值点,求a .考点分析综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。

但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。

第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。

具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。

如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。

总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。

理解什么是函数的极值点是解决第2问的关键。

极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。

在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。

2018年高考数学大题答题技巧

2018年高考数学大题答题技巧

2018年高考数学大题答题技巧高考网为大家提供2018年高考数学大题答题技巧,更多高考资讯请关注我们网站的更新!2018年高考数学大题答题技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n 的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。

五、圆锥曲线问题1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3.战术上整体思路要保7分,争9分,想12分。

六招破解高考导数压轴题

六招破解高考导数压轴题

破解高考导数压轴题的常见策略纵观近十年高考数学课标全国卷,容易发现导数压轴题有如下特点:主要考查导数的几何意义,利用导 数研究函数的单调性、极值、最值,研究方程和不等式. 试题有一定的综合性,并与数学思想方法紧密结合, 对函数与方程的思想,分类与整合的思想等都进行深入的考查.下面介绍破解高考导数压轴题的六种策略.1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2018 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.2. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

3. 构造函数利用导数解决不等式问题是导数的一个非常重要的应用,其关键是根据不等式的结构特点,构造恰当的 辅助函数,进而通过研究函数的单调性和最值,最终解决问题.运用构造函数法来解题是培养学生创新意识的 手段之一.例3设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.4.合理放缩高考数学压轴题往往涉及函数不等式问题,由于高考命题基本上涉及超越函数,研究其单调区间时一般 涉及解超越不等式,难度非常高,往往陷入绝境.放缩法是解决函数不等式问题的一把利器,关键是如何合理 放缩.常见的一种放缩法是切线放缩法,曲线的切线为一次函数,高中阶段大部分函数的图像均在切线的同侧, 即除切点外,函数的图像在切线的上方或下方,利用这一特性,可以将参与函数放缩成一次函数.例 4设函数1(0ln x xbe f x ae x x -=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >.5.虚设零点导数在研究函数的单调性、极值和最值方面有着重要的应用,而这些问题都离不开一个基本点——导函 数的零点,因为导函数的零点既可能是原函数单调区间的分界点,也可能是原函数的极值点或最值点.可以说, 抓住了导函数的零点,就抓住了原函数的要点.在高考导数压轴题中,经常会遇到导函数具有零点但求解相对 比较复杂甚至无法求解的问题.此时,不必正面强求,只需要设出零点,充分利用其满足的关系式,谋求一种 整体的代换和过渡,再结合其他统计解决问题,这种方法即是“虚设零点”.例 5(Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域.6. 多次求导高中函数压轴题一般需要求导,利用导函数的正负来判断原函数的增减.有些试题,当你一次求导后发现 得出的结果还存在未知的东西,导函数的正负没有清晰得表现出来时,就可以考虑二次求导甚至三次求导, 这个时候要非常细心,观察全局,不然做到后边很容易出错.例 6设函数()1xf x e -=-. (Ⅰ)证明:当x >-1时,()1x f x x ≥+; (Ⅱ)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围. x x 2f (x)x 2-=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x-->()()g x ()h a ()h a教师版1. 分类讨论分类讨论是高考数学解答题压轴题的常用方法,纵观 2007-2017 年高考数学课标全国卷解答题压轴题, 几乎每一道都有用到分类讨论.高考要求考生理解什么样的问题需要分类讨论,为什么要分类,如何分类.例 1(2015 年高考数学全国乙卷(Ⅰ卷)理 21) 已知函数31()4f x x ax =++,()lng x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.解:(Ⅰ)2()3f x x a '=+,若x 轴为曲线()y f x =的切线,则切点0(,0)x 满足00()0,()0f x f x '==,也就是2030x a +=且300104x ax ++=,解得012x =,34a =-,因此,当34a =-时,x 轴为曲线()y f x =的切线; (Ⅱ)当1x >时,()ln 0g x x =-<,函数()()()(min{}),h x f x g x g x ≤=没有零点; 当1x =时,若54a ≥-,则5(1)04f a =+≥,min{,(1)(1)(1)}(1)0h fg g ===,故1x =是()h x 的零点;当01x <<时,()ln 0g x x =->,以下讨论()y f x =在区间(0,1)上的零点的个数. 对于2()3f x x a '=+,因为2033x <<,所以令()0f x '=可得23a x =-,那么 (i )当3a ≤-或0a ≥时,()f x '没有零点(()0f x '<或()0f x '>),()y f x =在区间(0,1)上是单调函数,且15(0),(1)44f f a ==+,所以当3a ≤-时,()y f x =在区间(0,1)上有一个零点;当0a ≥时,()y f x =在区间(0,1)上没有零点;(ii )当30a -<<时,()0f x '<(0x <<()0f x '>1x <<),所以x =14f =.显然,若0f >,即304a -<<时,()y f x =在区间(0,1)上没有零点;若0f =,即34a =-时,()y f x =在区间(0,1)上有1个零点;若0f <,即334a -<<-时,因为15(0),(1)44f f a ==+,所以若5344a -<<-,()y f x =在区间(0,1)上有2个零点;若534a -<≤-,()y f x =在区间(0,1)上有1个零点.综上,当34a >-或54a <-时,()h x 有1个零点;当34a =-或54a =-时,()h x 有2个零点;当5344a -<<-时,()h x 有3个零点. 3. 分离参数讨论含参数的方程或不等式解的问题时,进行分类讨论有时显得比较复杂.如果我们将含参数的方程经过 变形,将参数分离出来,使方程的一端化为只含参数的解析式,而另一端化为与参数方程无关的主变元函数, 通过函数的值域或单调性讨论原方程的解的情况,则往往显得非常简捷、有效.例 2(2013 年高考数学全国乙卷(Ⅰ卷)理 21)已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和曲线()y g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

26导数不等式 答案打印

26导数不等式 答案打印

导数应用--证明不等式1.【2018年高考全国Ⅲ卷文数】【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()e x ax a x f x -+-+'=,(0)2f '=.因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=.(2)当1a ≥时,21()e (1e)ex xf x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21e x g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增;所以()g x (1)=0g ≥-.因此()e 0f x +≥.2.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x .由题设知,f ′(2)=0,所以a =212e.从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1e x x --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0.因此,当1ea ≥时,()0f x ≥. 3.【解析】(1)()cos (sin sin 2)sin (sin sin 2)f x x x x x x x ''=+22sin cos sin 22sin cos2x x x x x =+2sin sin3x x =.当(0,)(,)33x π2π∈π时,()0f x '>;当(,)33x π2π∈时,()0f x '<. 所以()f x 在区间(0,),(,)33π2ππ单调递增,在区间(,)33π2π单调递减.(2)因为(0)()0f f =π=,由(1)知,()f x在区间[0,]π的最大值为()3fπ=,最小值为()3f 2π=()f x 是周期为π的周期函数,故|()|f x ≤. (3)由于32222(sin sin 2sin 2)nx x x 333|sin sin 2sin 2|n x x x =23312|sin ||sin sin 2sin 2sin 2||sin 2|n n nx x x x x x -=12|sin ||()(2)(2)||sin 2|n n x f x f x f x x -=1|()(2)(2)|n f x f x f x -≤,所以222233sin sin 2sin 2)4n nnn x xx ≤=.4【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0fx '=得,x =或x =.当2()a a x +∈+∞时,()0f x '<;当x∈时,()0fx '>.所以()f x 在)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >.由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--.5.【解析】(Ⅰ)函数f (x )的导函数1()f x x '=-,由12()()f x f x ''=得1211xx -=-,因为12x x ≠,所以12=.由基本不等式得=≥.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +==.设()ln g x x =,则1()4)g x '=,所以 所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0,f (n )–kn –a <)a n k n-≤)n k <0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点.由f (x )=kx +a 得ln x ak x -=.设l (n )ah xx x -=,则22ln )1)((12x ag x x x a x h '=+--+=,其中(n )l g x x -=.由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根.综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 6.【答案】.(Ⅰ)由已知,有()e (cos sin )xf 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+- ⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈⎪⎝⎭,且()()()22e cos e cos 2e n n y x n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<.所以,20022sin c s e o n n n x x x -πππ+-<-.。

2018年高考数学二轮复习第二部分高考22题各个击破专题二函数与导数2.4.2导数与不等式及参数范围课件文

2018年高考数学二轮复习第二部分高考22题各个击破专题二函数与导数2.4.2导数与不等式及参数范围课件文
解 (1)设切点为M(x0,f(x0)),直线的切线方程为y-f(x0)=k(x-x0),
∵f'(x)=a-������ ,∴k=f'(x0)=a-������ ,
0
1
1
即直线的切线方程为 y-ax0+ln x0= ������-
1 ������ 0
(x-x0),
又切线过原点O, 所以-ax0+ln x0=-ax0+1, 由ln x0=1,解得x0=e,所以切点的横坐标为e.
x>1 时,a≥ 即 h(x)��
恒成立,令 h(x)=
ln ������
������ 2 -������
.
又 x>1 时,ln x<x-1<x(x-1),
ln ������ ������ 2 -������
<1(x>1)恒成立,
综上所述a≥1.
-8-
解 (1)f(x)的定义域为(0,+∞). 1 当a=4时,f(x)=(x+1)ln x-4(x-1),f'(x)=ln x+ ������ -3,f'(1)=-2,f(1)=0.曲线 y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.
-4-
(2)当 x∈(1,+∞)时,f(x)>0 等价于 ln 设 g(x)=ln x则
1 g'(x)= − ������ (������+1)2 ������(������-1) , ������+1 2������ ������2 +2(1-������)������+1 ������(������+1)
2

2018年全国卷三文数导数题三种解法及找点分析

2018年全国卷三文数导数题三种解法及找点分析

2018年全国卷三文数导数题三种解法及找点分析
若您能认真读完,保证有所收获杨老师已经把各省高考刷完,有自己独特的研究心得。

杨老师文章链接:
一类条件型最值问题的再认识
切线放缩与目标意识
对一道函数不等式证明题的探索(七种武器)例谈对“取值范围”与“最值”的认识
例谈“架桥”意识
圆锥曲线中的方程联立与判别式
圆锥曲线的对称性在定点问题中的应用
微专题之《隐零点问题》
微专题之《如何攻克函数中的零点问题》
微专题之《浅谈双变量的解决策略》
微专题之《函数与导数中涉及“不等式恒成立,求参数取值范围问题”解题方法》
高三数学微专题之《函数图象的平移、伸缩变换》
微专题之《高考中小题解题常见策略与技巧》
微专题之浅谈《利用圆锥曲线的定义来解题》
微专题之《量词问题》
高三微专题之《一类函数图象上的特殊“点对” 》
高三微专题之《有关简单多面体的外接球》
微专题: 立体几何中的动态问题
五类模特四大名模秒杀抽象函数难题
高三数学复习微专题之《三次函数面面观》
高三数学微专题之《平面向量基本定理系数“等和线”的应用》高三微专题之《极化恒等式的迁移应用》
高三微专题之《立体动图轨迹——“击中要害、信手拈来”》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数中的不等式证明
【考点点睛】 放缩法证明不等式在历年高考数学中是永恒的话题,但它常考常新,学生却常考常怕。

不等式的应用体现了一定的综合性,灵活多样性,多出现在压轴题的位置。

数学的基本特点是应用的广泛性、理论的抽象性和逻辑的严谨性,而不等关系是深刻体现数学的基本特点。

尽管如此,只要我们深入去探索,总有方法规律可循,总会有“拨得云开见日出”的时刻! 放缩法的合理运用,往往能起到事半功倍的效果,有时能令人拍案叫绝;但其缺点也是显而易见,如果使用放缩法证题时没有注意放和缩的“度”,容易造成不能同向传递,即放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及,所以要熟练地驾驭它是件不容易的事。

命题角度1 构造函数
命题角度2 放缩法
命题角度3 切线法
命题角度4 二元或多元不等式的证明思路
命题角度5 函数凹凸性的应用
在求解过程中,力求“脑中有‘形’,心中有‘数’”.依托端点效应,缩小范围,借助数形结合,寻找临界.
命题角度3 切线法
【典例5】(2018届安徽省太和中学三模)已知函数()2
x f x e x =-. (1)求曲线()f x 在1x =处的切线方程;
(2)求证:当0x >时,()21ln 1x e e x x x
+--≥+.
【解析】(1)()2x f x e x =-,()2x f x e x '=-, 由题设得()()12,11f e f e '=-=-, ………﹝导数的几何意义的应用﹞ 所以曲线()f x 在1x =处的切线方程为()()211y e x e =--+-,即()21y e x =-+;
(2)令()()g x f x '=,则()2x
g x e '=-,
当ln 2x <时,()0g x '<,当ln 2x >时,()0g x '>,
所以函数()()g x f x '=在(),ln 2-∞上单调递减,在()ln 2,+∞上单调递增,
()()()min ln 2ln 222ln 20g x g f '===->,
所以函数()2x f x e x =-在()0,+∞上单调递增,
由于曲线()f x 在1x =处的切线方程为()21y e x =-+,()11f e =-,可猜测函数()f x 的图象恒在切线()21y e x =-+的上方. ………﹝多步设问,层层递进,上问结果,用于下问﹞
先证明当0x >时,()()21f x e x ≥-+.
设()()()()210h x f x e x x =--->,则()()()22,2x x
h x e x e h x e '''=---=-, 当ln 2x <时,()0h x ''<,当ln 2x >时,()0h x ''>,
所以()h x '在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,
由()()030,10,0ln 21h e h ''=->=<<,所以()ln 20h '<,
所以存在()00,ln 2x ∈,使得()00h x '=,
所以当()()00,1,x x ∈+∞时,()0h x '>,当()0,1x x ∈时,()0h x '<,
所以()h x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+∞上单调递增.
因为()()010h h ==,所以()0h x ≥,即()()21f x e x ≥-+,当且仅当1x =时取等号,
所以当0x >时,()2
21x e x e x -≥-+, ………﹝切线放缩法是一种崭新的放缩途径﹞ 变形可得()21x e e x x x
+--≥, 又由于ln 1x x ≥+,当且仅当1x =时取等号(证明略),……﹝灵活借助于ln 1x x ≥+放缩﹞
所以()21ln 1x e e x x x
+--≥+,当且仅当1x =时取等号. 【审题点津】切线放缩法值得认真探究,若第一小题是求曲线的切线方程,就要注意是否运用切线放缩法进行放缩解决问题.。

相关文档
最新文档