人教版八年级数学知识点
八年级人教版数学知识点
八年级人教版数学知识点初二数学知识点相似、全等三角形1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2、相似三角形判定定理1两角对应相等,两三角形相似(ASA)3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似4、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)5、判定定理3三边对应成比例,两三角形相似(SSS)6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似7、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比8、性质定理2相似三角形周长的比等于相似比9、性质定理3相似三角形面积的比等于相似比的平方10、边角边公理有两边和它们的夹角对应相等的两个三角形全等11、角边角公理有两角和它们的夹边对应相等的两个三角形全等12、推论有两角和其中一角的对边对应相等的两个三角形全等13、边边边公理有三边对应相等的两个三角形全等14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等15、全等三角形的对应边、对应角相等等腰、直角三角形1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论1等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论3等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论1三个角都相等的三角形是等边三角形7、推论2有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半初二数学知识点归纳定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
人教版初二数学知识点总结
人教版初二数学知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!人教版初二数学知识点总结知识是一座宝库,而实践就是开启宝库的钥匙。
人教版八年级上册数学的知识点
人教版八年级上册数学的知识点主要包括以下几个方面:
一、数的开方与实数
1. 数的开方:了解平方根、算术平方根的概念以及求一个数的平方根的估算方法。
2. 实数:认识实数的概念,实数与数轴上的点一一对应的关系,实数的分类(有理数和无理数)。
二、整式的乘除与因式分解
1. 整式的乘除:掌握单项式、多项式的乘法,幂的运算性质,整式的除法等。
2. 因式分解:理解因式分解的概念和方法,如提取公因式法、公式法等。
三、一元一次方程与不等式
1. 一元一次方程:掌握一元一次方程的解法,包括合并同类项、移项、系数化为1等步骤。
2. 不等式:了解不等式的基本性质,掌握一元一次不等式的解法。
四、图形和几何
1. 平面几何图形的初步认识:了解点、线、面、角等基本概念,掌握基本图形的性质和判定(如线段的中垂线、角的平分线等)。
2. 三角形:掌握三角形的分类(等腰、直角、不等边等),认识三角形的基本性质(如内角和定理等)。
3. 空间几何:了解几何图形的三维模型和计算,如长方体、圆柱、圆锥等的体积和表面积。
五、概率初步
1. 概率的基本概念:了解概率的定义和计算方法,如频率估计概率等。
2. 生活中的概率问题:通过实例了解概率在生活中的应用,如彩票中奖的概率等。
以上是八年级上册数学的一些主要知识点,通过学习这些内容,学生可以掌握基本的数学知识和技能,为后续的学习打下坚实的基础。
人教版小学八年级上册数学知识点总结
人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
人教版八年级数学上册知识点
人教版八年级数学上册知识点人教版八年级数学上册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正有理数、0和负有理数。
- 无理数:无限不循环小数称为无理数,如圆周率π。
2. 实数的运算- 加法、减法、乘法和除法的运算规则。
- 正数和负数的运算。
- 绝对值的概念及运算。
3. 估算和有效数字- 近似数的估算方法。
- 有效数字的计算和应用。
4. 实数的性质和比较大小- 实数的性质。
- 实数大小的比较方法。
二、代数表达式1. 代数式的概念- 单项式和多项式的定义。
- 同类项和合并同类项。
2. 代数式的运算- 整式的加减法。
- 乘法公式,包括平方差公式、完全平方公式等。
- 多项式的乘除法。
3. 因式分解- 提公因式法。
- 公式法。
- 十字相乘法。
三、方程与不等式1. 一元一次方程- 方程的建立和解法。
- 方程的解的检验。
2. 一元一次不等式- 不等式的概念和性质。
- 不等式的解集表示。
- 不等式的解法。
3. 二元一次方程组- 方程组的建立。
- 代入法和消元法解方程组。
四、几何1. 平行线与角- 平行线的判定和性质。
- 角的概念,包括同位角、内错角、同旁内角。
2. 三角形- 三角形的基本性质。
- 等腰三角形和等边三角形的性质。
- 三角形的内角和外角性质。
3. 四边形- 四边形的定义和分类。
- 矩形、菱形、正方形的性质。
4. 圆的基本性质- 圆的定义和圆心、半径、直径的概念。
- 弦、弧、切线的概念和性质。
五、统计与概率1. 统计- 数据的收集和整理。
- 频数和频率的概念。
- 统计图表的绘制,包括条形图、折线图和饼图。
2. 概率- 随机事件的概念。
- 概率的计算方法。
- 等可能事件的概率。
以上是人教版八年级数学上册的主要知识点概述。
在学习过程中,学生应该掌握每个知识点的定义、性质、公式和解题方法,以便能够熟练地解决相关问题。
教师和家长应鼓励学生通过练习题和实际应用来巩固和深化这些概念。
人教版八年级上册数学各单元知识点归纳总结
人教版八年级上册数学各单元知识点归纳总结人教版八年级上册数学共有6个单元,分别是:
1. 几何基础知识
- 直线、线段、射线的概念
- 角的概念及分类
- 平行线与垂直线的关系
- 圆的概念及要素
- 三角形的分类及特性
2. 一元一次方程与表示法
- 一元一次方程的概念与解法
- 方程的解集与解的判定
- 一元一次方程的应用
3. 几何图形的相似性
- 相似三角形的概念与判定
- 相似三角形的特点
- 相似三角形的性质与应用
4. 数据的描述与处理
- 平均数的概念与求解
- 中位数与众数的概念与求解
- 描述统计与图表分析
5. 线性方程的解与应用
- 二元一次方程组的概念与解法
- 解二元一次方程组的应用问题
6. 几何图形的性质
- 四边形的分类、性质与判定
- 多边形的分类、性质与判定
- 角平分线与垂直平分线的概念与性质
以上是八年级上册数学各单元的主要知识点,具体还需参考教材进行学习。
八年级数学人教版知识点总结
八年级数学人教版知识点总结八年级数学(人教版)知识点总结。
一、三角形。
1. 三角形的性质。
- 三角形内角和为180°。
- 三角形的外角等于与它不相邻的两个内角之和。
- 三角形三边关系:两边之和大于第三边,两边之差小于第三边。
2. 三角形的分类。
- 按角分类:锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
- 按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形,三边都相等)。
3. 等腰三角形与等边三角形。
- 等腰三角形的性质:两腰相等,两底角相等;三线合一(底边上的高、中线、顶角平分线重合)。
- 等腰三角形的判定:有两边相等的三角形是等腰三角形;有两角相等的三角形是等腰三角形。
- 等边三角形的性质:三边相等,三个角都是60°。
- 等边三角形的判定:三边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
4. 直角三角形。
- 直角三角形的性质:直角三角形两锐角互余;勾股定理a^2+b^2=c^2(a、b 为直角边,c为斜边);直角三角形斜边上的中线等于斜边的一半;30°角所对的直角边等于斜边的一半。
- 直角三角形的判定:有一个角是直角的三角形是直角三角形;勾股定理的逆定理,如果a^2+b^2=c^2,那么这个三角形是直角三角形。
二、全等三角形。
1. 全等三角形的概念。
- 能够完全重合的两个三角形叫做全等三角形,全等用符号“≌”表示。
2. 全等三角形的性质。
- 全等三角形的对应边相等,对应角相等。
3. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
人教版八年级上数学知识点总结
人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。
人教版八年级上册数学知识点汇总
第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。
o应用:用于直角三角形中的边长计算、证明等。
2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。
3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。
第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。
o无理数:无限不循环小数,如2、π等。
2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。
o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。
3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。
o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。
4.估算与开方o估算:对复杂小数进行近似计算。
o用计算机开平方或立方。
5.实数o实数是有理数和无理数的统称,可以在数轴上表示。
第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。
2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。
o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。
3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。
2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。
o当b = 0时,称为正比例函数y=kx。
3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。
o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。
人教版八年级数学上册知识点归纳
人教版八年级数学上册知识点归纳一、有理数1.有理数的含义有理数包括正、负整数和正、负分数,用于表示数量大小和大小比较。
2.有理数的比较大小有理数的大小比较需要转化为相同分母再进行比较,也可以通过数轴来比较。
3.有理数的加减乘除有理数的加减乘除运算需要注意符号和分数的约分。
二、代数式1.代数式的定义含有未知量和运算符号的式子称为代数式,通常用字母表示未知量。
2.代数式的化简代数式的化简需要运用因式分解、公因式提取等方法。
3.代数式的展开代数式的展开需要运用乘法公式、同底数幂规律等方法。
三、一次函数1.一次函数的定义一次函数是指函数的最高次数为1的函数,通常表示为y=kx+b。
2.一次函数图像的性质一次函数的图像是直线,可以通过截距和斜率来确定其位置和性质。
3.一次函数的应用利用一次函数可以解决很多线性方程和实际问题,如直线运动、比例关系等。
四、平方根1.平方根的定义对于正实数a,其平方根b满足b²=a,即b是a的正平方根。
2.平方根的性质平方根具有非负性、单调性、开方运算和分配律等性质。
3.平方根的应用平方根可以用于求解勾股定理、面积和体积等计算问题。
五、二次根式1.二次根式的定义含有形如a√b(a和b均为实数,且b>0)的式子称为二次根式。
2.二次根式的化简二次根式的化简需要运用有理化分母和分解质因数等方法。
3.二次根式的应用二次根式可以用于求解勾股定理、面积和体积等计算问题,也常见于三角函数的定义式中。
以上是人教版八年级数学上册的知识点归纳,涉及到有理数、代数式、一次函数、平方根和二次根式等内容,对学习和掌握初中数学知识有很大帮助。
人教版初中八年级数学知识点总结
人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
新人教版八年级数学全册知识点总结
新人教版八年级数学上册知识点总结第十一章 三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角. 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对 角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形. 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面, 13.公式与性质:⑴三角形的内角和:三角形的内角和为180° ⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和. 性质2:三角形的一个外角大于任何一个和它不相邻的内角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线. 第十二章 全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形. ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点. ⑷对应边:全等三角形中互相重合的边叫做对应边. ⑸对应角:全等三角形中互相重合的角叫做对应角. 2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等. 3.全等三角形的判定定理:⑴边边边(SSS ):三边对应相等的两个三角形全等.⑵边角边(SAS ):两边和它们的夹角对应相等的两个三角形全等. ⑶角边角(ASA ):两角和它们的夹边对应相等的两个三角形全等. ⑷角角边(AAS ):两角和其中一个角的对边对应相等的两个三角形全等. ⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形 全等. 4.角平分线: ⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上. 5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶 角、角平分线、中线、高、等腰三角形等所隐含的边角关系) ⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章 轴对称1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相 重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一 个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形. 2.基本性质: ⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一 对对应点所连线段的垂直平分线. ②对称的图形都全等. ⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -. ②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质: ①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质: ①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60° ③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条). 3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对 等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:⑴做已知直线的垂线: ⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯=⑵幂的乘方:()nm mn aa =⑶积的乘方:()nn nab a b = 2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式. ⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加. 3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:mnm na a a-÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加. ⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式. ⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式. 7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分 式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭8.整数指数幂: ⑴mnm na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数) ⑷mnm na a a-÷=(0a ≠,m n 、是正整数,m n >)⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1nn aa-=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).新人教版八年级数学下册知识点总结第16章 二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
人教版八年级全册数学知识点总结归纳
人教版八年级全册数学知识点总结归纳
以下是人教版八年级全册数学知识点的总结归纳:
1. 有理数:包括正数、负数、零和分数。
学生需要掌握有理数的加减乘除运算、比较大小以及在数轴上的表示和位置。
2. 代数式与等式:学生学习如何读写代数式,理解变量和常数的概念。
他们需要解一元一次方程和应用代数式和方程解决实际问题。
3. 几何基础知识:包括线段、射线、直线、角及其度量、三角形、四边形等几何概念。
学生需要掌握几何图形的命名、性质、分类以及几何变换等内容。
4. 相似与全等:学生学习相似和全等的概念,并能判断和构造相似图形和全等图形。
5. 数列与函数:学生了解数列的概念,学习数列的通项公式和求和公式。
他们还学习函数的概念、函数的表示和图像,并能进行函数的变换和运算。
6. 概率与统计:学生学习统计图表的制作和解读,掌握统计调查的基本方法和思想。
他们还需要了解概率的概念和计算方法,并应用概率解决问题。
7. 三角函数:学生学习正弦、余弦和正切的定义和性质,掌握三角函数的计算和应用,以及解三角形问题。
8. 平面向量:学生了解向量的概念和性质,学习向量的表示、运算和平移,并能利用向量解决几何问题。
9. 二次根式与函数:学生学习二次根式的概念、性质和计算,以及二次函数的概念、图像和性质。
他们需要了解二次函数的最值、零点、图像变换和应用。
以上是人教版八年级全册数学知识点的简要总结。
具体内容可能根据不同教材的编排有所变化。
建议学生根据教材的章节和知识点进行有针对性的学习和复习。
八年级上册数学知识点总结人教版
八年级上册数学知识点总结人教版八年级上册数学知识点总结(人教版)数学是一门基础学科,对于学生的学习能力和逻辑思维有着极大的影响。
在八年级上册数学教材中,包含了许多重要的数学知识点,下面将对其中的重点进行总结。
一、代数运算1. 整数运算:整数的加减乘除运算,主要包括整数加法、减法、乘法和除法的运算法则。
2. 小数运算:小数的加减乘除运算,要掌握小数的进位、退位和与整数的运算。
3. 代数式的加减运算:同类项的合并与系数的分配律,要掌握多项式的加减运算,如将同类项合并并进行运算。
4. 括号的运算:通过运用括号进行运算,要掌握括号的展开与因式分解。
二、图形与几何1. 平面图形:包括直线、线段、射线、角、三角形、四边形等常见平面图形,并要理解其性质和分类。
2. 长度、面积和体积:要掌握常见图形的长度计算、面积计算和体积计算方法,包括直角三角形、矩形、正方形等的周长、面积计算。
3. 相似三角形:了解相似三角形的定义,掌握相似三角形的判定方法和性质。
4. 坐标系与图形的位置关系:了解二维直角坐标系的建立和坐标点的表示,掌握图形在坐标系中的位置关系和平移、旋转、翻转等基本变换。
三、函数与方程1. 函数的概念:了解函数的定义、自变量、因变量和函数值的概念,能够根据给定函数的定义域和值域等信息,求解函数值。
2. 线性函数:了解线性函数的定义,能够根据函数的自变量和因变量之间的关系,确定线性函数的解析式。
3. 一元一次方程:掌握一元一次方程的解法,包括等式的简化、移项和消元法等。
4. 反比例函数:了解反比例函数的概念和性质,能够根据给定条件确定反比例函数的解析式。
四、统计与概率1. 数据的收集和整理:了解数据的收集、整理和表示方法,包括频数表、频率表、折线图、直方图等。
2. 统计指标:掌握常见的统计指标,如平均数、中位数、众数和极差等,能够进行数据的分析和比较。
3. 概率的概念:了解随机事件和概率的概念,能够计算简单事件的概率,并掌握事件的排列组合方法。
人教版八年级下册数学各单元知识点归纳总结
人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。
每章节都包括基本概念、计算方法和应用场景等内容。
阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。
人教版八年级数学知识点
八年级(上)全等三角形全等三角形形状、大小相同的图形放在一起可以完好重合的两个图形叫做全等形(congruent figures );可以完好重合的两个三角形叫做全等三角形(congruent triangles );把两个全等的三角形重合到一起,重合的极点叫做对应极点,重合的边叫做对应边,重合的角叫做对应角;全等三角形的性质:全等三角形对应边相等,对应角相等;三角形全等的判断三边对应相等的两个三角形全等;两边和它们的夹角对应相等的两个三角形全等;两角和它们的夹边对应相等的两个三角形相等;两个角和其中一个角的对边对应相等的两个三角形全等;斜边和一条直角边对应相等的两个直角三角形全等;角的均分线的性质角的均分线上的点获取角的两边的距离相等;角的内部到角的两边的距离相等的点在角的均分线上;轴对称轴对称若是一个图形沿一条直线折叠,直线两旁的部分可以互相重合,这个图形叫做轴对称图形(symmetric figure );这条直线就是它的对称轴(axis of symmetry );把一个图形沿着某一条直线折叠,若是它可以与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,就做对称点(symmetric points );经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直均分线(perpendicular bisector );轴对称的性质:若是两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直均分线;线段垂直均分线上的点与这条线段两个端点的距离相等;与一条直线段两个端点距离相等的点,在这条线段的垂直均分线上;作轴对称图形等腰三角形等腰三角形的性质:1、等腰三角形的两个底角相等(等边同等角);2、等腰三角形的顶角均分线、底边上的中线、底边上的高互相重合;等腰三角形的判断方法:若是一个三角形有两个角相等,那么这两个角所对的边也相等(等角同等边);等边三角形的三个角都相等,并且每个角都等于60°;三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形;在直角三角形中,若是有一个锐角等于30°,那么它所对应的直角边等于斜边的一半;实数平方根一般地,若是一个正数x 的平方等于a,即x2=a,那么这个正数x 叫做 a 的算术平方根(arithmetic square root );记√ a,读“根号a”,a叫做被开方数(r adicand); 0 的算术平方根是 0;一般地,若是一个数的平方等于a,那么这个数叫做 a 的平方根或二次根( square root );求一个数 a 的平方根的运算,叫做开平方(extraction of square root );正数的平方根有两个,它们互为相反数;0 的平方根是 0,负数没有平方根;立方根一般地,若是一个数的立方等于a,那么这个数叫做 a 的立方根或三次方根(cube root );求一个数的立方根的运算,叫做开立方(extraction of cube root);正数的立方根是正数,负数的立方根是负数,0 的立方根是 0;实数无量不循环小数又叫做无理数(irrational number );有理数:有限小数或无量循环小数;有理数和无理数统称实数(real number );一个正数的绝对值是它自己,一个负数的绝对值是它相反数,0 的绝对值是0;一次函数变量与函数在一个变化的过程中,数值发生变化的量为变量(variable ),数值向来不变的量为常量(constant );一般地,在一个变化过程中,若是有两个变量x 与 y,并且关于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么 x 是自变量(independent variable),y 是 x 的函数( function ),若是当 x=a 是 y=b,那么 b 叫做当自变量的值为 a 时的函数值;一般地,关于一个函数,若是把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像(graph);描点法画函数图像的一般步骤:1、列表, 2、描点, 3、连接;一次函数一般地,形如 y=kx( k 是常数, k≠ 0)的函数,叫做正比率函数(proportional function);其中 k 叫做比率系数;正比率函数的图象是一条经过原点的直线,当k>0 时,图象经过第三、一象限,从在向右上升,当k<0 时,图象经过第二、四象限,从左向右下降;一般地,形如y=kx+b(k、b 是常数, k≠ 0)的函数,叫做一次函数(linear function );当 k>0时, y 随 x 的增大而增大,当k<0 时, y 随 x 的增大而减少;用函数见解看方程(组)与不等式由于任何一元一次方程都可以转变为ax+b=0( a、 b 为常数, a≠ 0)的形式,因此解一元一次方程可以转变为:当某个一次函数的值为0 时,求相应的自变量的值,从图象上看,这相当于已知直线y=ax+b,确定它与x 轴交点的横坐标的值;由于任何一元一次不等式都可以转变为ax+b>0 或 ax+b<0(a、b 为常数, a≠ 0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于 0 时,求相应的自变量的取值范围;一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值时何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;课题学习选择方案整式的乘除与因式分解整式的乘法一般地,有 am× an=am+n( m、n 都是正整数),即同底数幂相乘,底数不变,指数相加;一般地,有( am) n=amn (m、 n 都是正整数),即幂的乘方,底数不变,指数相乘;一般地,有( ab) n =anbn( n 为正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式与单项式相乘,把它们的系数、相同字母分别相乘,关于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;乘法公式平方差公式( formula for the difference ):两个数的和与这两个数的差的积,等于这两个数的平方差;完好平方公式( formula for the square of the sum ):即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍;添括号法规:添括号时,若是括号前面是正号,括到括号里的各项都不变符号;若是括号前面是负号,括到括号里的各项都改变符号;整式的除法一般地,有 am/an=am-n (a≠ 0、m、 n 都是正整数,并且m>n),即同底数幂相除,底数不变,指数相减;规定:任何不等于0 的数的 0 次幂都等于1;单项式相除,把系数与同底数幂分别相除作为商的因式,关于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加;因式分解把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解(factoring ),也叫做把这个多项式分解因式;因式分解与整式乘法是相反方向的变形;多项式中各项都有一个公共的因式,这个因式叫做这个多项式各项的公因式(commonfactor );把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是这个多项式除以公因式的商,这种分解因式的方法叫做提公因式法;公式法平方差公式、完好平方式X2+(p+q)x+pq=(x+p)+(x+q)八年级(下)分式分式一般地,若是A、B 表示两个整式,并且 B 中含有字母,那么式子A/B 叫做分式( fraction );其中 A 叫分子, B 叫做分母,当B≠0 时,A/B 才有意义;分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变;利用分式的基本性质,是分子分母同乘合适的整式,不改变分式的值,把多个分式化成相同分母的分式,这样的分式变形叫做通分( changing fraction to a common denominator );利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分( reduction of a fraction );分式的运算乘法法规:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;除法法规:分式除以分式,把除式的分子、分母颠倒地址后,与被除式相乘;分式乘方要把分子、分母分别乘方;加减法法规:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;分式方程分母中含未知数的方程叫做分式方程(fraction equation );解分式方程详尽做法是“去分母”,即方程两边同乘最简公分母;一般地,去分母所得整式方程的解有可能使原方程中的分母为0,因此应以下检验:将整式方程的解代入最简公分母,若是最简公分母的值不为0,则整式的拯救是原分式方程的解,否则,这个解不是原分式方程的解;反比率函数反比率函数一般地,形如 y=k/x( k 为常数, k≠ 0)的函数称为反比率函数( inverse proportional function);其中 x 是自变量, y 是函数,自变量x 的取值范围是不等于0 的一的确数;反比率函数的图象属于双曲线(hyperbola );当 k>0 时,双曲线的两支分别位于第一、第三象限,在每个象限内y 值随 x 的增大而减小;当k<0 时,双曲线的两支分别位于第二、第三象限,在每个象限内y 值随 x 值的增大而增大;实责问题与反比率函数勾股定理勾股定理经过证明被确认正确的命题叫做定理(theorem );若是直角三角形的两直角边长分别为a, b,斜边为 c,那么 a2+b2=c2,;在中国称为勾股定理,在西方称为毕达哥拉斯定理;勾股定理的逆定理题设、结论正好相反的两个命题称为互抗命题;若是其中一个叫做原命题,那么其他一个叫做它的抗命题;勾股定理的逆定理:若是三角形的三边长a, b, c 满足 a2+b2=c2,,那么这个三角形是直角三角形;(运用三角形全等证明)若是一个定理的抗命题经过证明是正确的,它也是一个定理;四边形平行四边形有两组对边分别平行的四边形叫做平行四边形(parallelogram );平行四形的性:平行四形的相等;平行四形的角相等;平行四形的角互相均分;平行四的判判定理:两分相等的四形是平行四形;角互相均分的四形是平行四形;一平行且相等的四形是平行四形;接三角形两中点的段叫做三角形的中位;三角形的中位平行于三角形的第三,且等于第三的一半;特其他平行四形有一个角是直角的平行四形叫做矩形(rectangle);也就是方形;矩形的性:1、矩形的四个角都是直角,2、矩形的角相等;矩形的判判定理:1、角相等的平行四形是矩形, 2、有三个角是直角的四形是矩形;直角三角形斜上的中等于斜的一半;有一相等的平行四形叫做菱形(rhombus );菱形是称形,它的角所在的直就是它的称;菱形的性:1、菱形的四条都相等,2、菱形的两条角互相垂直,并且每一条角均分一角;菱形的判判定理: 1、角互相垂直的平行四形是菱形, 2、四都相等的四形是菱形;正方形( square)的四条都相等,四个角都是直角,所有正方形既是矩形又是菱形,它既有矩形的性,又有菱形的性;梯形一平行,另一不平行的四形叫做梯形(trapezium );两腰相等的梯形叫等腰梯形(isosceles trapezium );等腰梯形是称形,上下底的中点所在的直是称;等腰梯形的性: 1 、等腰梯形同一底上的两个角相等,2、等腰梯形的两条角相等;等腰梯形的判判定理:同一底上两个角相等的梯形是等腰梯形;有一个角是直角的梯形叫直角梯形;学重心平衡点段的重心就是段的中点;平行四形的重心是它的两条角的交点;三角形的三条中交于一点,一点就是三角形的重心;数据的解析数据的代表加平均数( weighted average ):若 n 个数 x1,x2,⋯, xn 的分 w1 ,w2,⋯, wn,( x1 w1+ x2 w2+ ⋯+xn wn) / ( w1+w2+ ⋯ +wn)叫做 n 个数的加平均数算数平均数;将一数据依照从小到大(或从大到小)的序排列,若是数据的个数是奇数,于中地址的数就是数据的中位数( median );若是数据的个数是偶数,中两个数据的平均数就是数据的中位数;一数据中出次数最多的数据就是数据的众数( mode);若是一数据中有两个数据的数一,都是最大,那么两个数据都是数据的众数;数据的波一数据中的最大数据与最小数据的差叫做数据的极差(range );反响数据的波范;有 n 个数,各数据与它的平均数的差的平方的和来衡量数据的波大小,并把它叫做数据的方差( variance);方差越大,数据的波越大,方差越小,数据的波越小;学体健康中的数据解析收集数据——整理数据——描述数据——解析数据——撰写告。
人教版八年级数学上册知识点总结和复习要点
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
八年级上册人教版数学知识点7篇
八年级上册人教版数学知识点7篇八年级上册人教版数学知识点11全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11推论1等腰三角形顶角的平分线平分底边并且垂直于底边12等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13推论3等边三角形的各角都相等,并且每一个角都等于60°14等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15推论1三个角都相等的三角形是等边三角形16推论2有一个角等于60°的等腰三角形是等边三角形17在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半18直角三角形斜边上的中线等于斜边上的一半19定理线段垂直平分线上的点和这条线段两个端点的距离相等20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学求定义域口诀求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次。
限制条件不唯一,不等式组求解集。
初中提高数学成绩诀窍很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。
人教版八年级上册数学各单元知识点归纳总结
人教版八年级上册数学各单元知识点归纳总结
第一章:三角形的初步知识
1. 三角形的基本性质:稳定性、内角和定理(三角形内角和为180度)。
2. 三角形的分类:等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
3. 三角形的边与角的关系:边长与角度的关系,如a:b:c=sinA:sinB:sinC。
第二章:全等三角形
1. 全等三角形的定义及性质。
2. 全等三角形的判定方法:SSS(三边全等)、SAS(两边及夹角全等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)、HL(直角边斜边公理)。
3. 全等三角形的证明方法。
第三章:轴对称与中心对称
1. 轴对称与中心对称的基本性质。
2. 轴对称与中心对称图形的识别与证明。
3. 图形变换的基本方法。
第四章:四边形
1. 四边形的性质:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等的基本性质。
2. 四边形的判定方法。
3. 四边形的面积计算。
第五章:一次函数
1. 函数的基本概念:自变量、因变量、常数。
2. 一次函数的定义及性质。
3. 一次函数的图象表示方法。
4. 一次函数的解析式及求法。
5. 一次函数的应用:求最值、求交点等。
第六章:一元一次不等式
1. 不等式的基本性质。
2. 一元一次不等式的解法:去分母、去括号、移项合并同类项等。
3. 一元一次不等式的应用:比较大小、求解最值等。
(完整版)人教版八年级数学上册知识点总结
(完整版)人教版八年级数学上册知识点总
结
人教版八年级数学上册知识点总结
本文档总结了人教版八年级数学上册的知识点,旨在帮助学生复和掌握这一学期的数学内容。
1. 数与式
- 自然数、整数、有理数、无理数的概念和区别
- 分数与小数的相互转化及其应用
- 相反数和绝对值的概念和计算方法
- 科学记数法和约数、倍数的概念
2. 代数初步
- 代数式的概念和基本性质
- 代数式的运算:加减乘除、合并同类项、提取公因式等
- 一元一次方程的解法和实际应用
- 描述和解决问题中的代数问题
3. 几何初步
- 点、线、面及其相互关系的认识
- 基本图形的性质和计算
- 三角形的分类及其性质
- 直角三角形的勾股定理和应用
4. 相似和全等
- 图形的相似性质和判定方法
- 相似三角形的性质和计算
- 全等图形的性质和判定方法
5. 平面直角坐标系
- 平面直角坐标系的建立和使用
- 点的坐标及其运算
- 点在平面直角坐标系中的位置关系和性质
6. 数据与概率
- 统计图表的表示和读取
- 中心倾向与离散程度的度量
- 概率的基本概念和计算方法
- 利用概率解决问题
以上是人教版八年级数学上册的知识点总结,希望对同学们的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级(上)全等三角形全等三角形形状、大小相同的图形放在一起能够完全重合的两个图形叫做全等形(congruent figures);能够完全重合的两个三角形叫做全等三角形(congruent triangles);把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角;全等三角形的性质:全等三角形对应边相等,对应角相等;三角形全等的判定三边对应相等的两个三角形全等;两边和它们的夹角对应相等的两个三角形全等;两角和它们的夹边对应相等的两个三角形相等;两个角和其中一个角的对边对应相等的两个三角形全等;斜边和一条直角边对应相等的两个直角三角形全等;角的平分线的性质角的平分线上的点得到角的两边的距离相等;角的内部到角的两边的距离相等的点在角的平分线上;轴对称轴对称如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形(symmetric figure);这条直线就是它的对称轴(axis of symmetry);把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,就做对称点(symmetric points);经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线(perpendicular bisector);轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;线段垂直平分线上的点与这条线段两个端点的距离相等;与一条直线段两个端点距离相等的点,在这条线段的垂直平分线上;作轴对称图形等腰三角形等腰三角形的性质:1、等腰三角形的两个底角相等(等边对等角);2、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);等边三角形的三个角都相等,并且每个角都等于60°;三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形;在直角三角形中,如果有一个锐角等于30°,那么它所对应的直角边等于斜边的一半;实数平方根一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根(arithmetic square root);记√a,读“根号a”,a叫做被开方数(radicand);0的算术平方根是0;一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次根(square root);求一个数a的平方根的运算,叫做开平方(extraction of square root);正数的平方根有两个,它们互为相反数;0的平方根是0,负数没有平方根;立方根一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root);求一个数的立方根的运算,叫做开立方(extraction of cube root);正数的立方根是正数,负数的立方根是负数,0的立方根是0;实数无限不循环小数又叫做无理数(irrational number);有理数:有限小数或无限循环小数;有理数和无理数统称实数(real number);一个正数的绝对值是它本身,一个负数的绝对值是它相反数,0的绝对值是0;一次函数变量与函数在一个变化的过程中,数值发生变化的量为变量(variable),数值始终不变的量为常量(constant);一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么x是自变量(independent variable),y是x的函数(function),如果当x=a是y=b,那么b叫做当自变量的值为a时的函数值;一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像(graph);描点法画函数图像的一般步骤:1、列表,2、描点,3、连接;一次函数一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function);其中k叫做比例系数;正比例函数的图象是一条经过原点的直线,当k>0时,图象经过第三、一象限,从在向右上升,当k<0时,图象经过第二、四象限,从左向右下降;一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数(linear function);当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减少;用函数观点看方程(组)与不等式由于任何一元一次方程都可以转化为ax+b=0(a、b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值,从图象上看,这相当于已知直线y=ax+b,确定它与x轴交点的横坐标的值;由于任何一元一次不等式都可以转化为ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求相应的自变量的取值范围;一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值时何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标;课题学习选择方案整式的乘除与因式分解整式的乘法一般地,有am×an=am+n(m、n都是正整数),即同底数幂相乘,底数不变,指数相加;一般地,有(am)n=amn(m、n都是正整数),即幂的乘方,底数不变,指数相乘;一般地,有(ab)n =anbn(n为正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;乘法公式平方差公式(formula for the difference):两个数的和与这两个数的差的积,等于这两个数的平方差;完全平方公式(formula for the square of the sum):即两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍;添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号;整式的除法一般地,有am/an=am-n(a≠0、m、n都是正整数,并且m>n),即同底数幂相除,底数不变,指数相减;规定:任何不等于0的数的0次幂都等于1;单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加;因式分解把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解(factoring),也叫做把这个多项式分解因式;因式分解与整式乘法是相反方向的变形;多项式中各项都有一个公共的因式,这个因式叫做这个多项式各项的公因式(common factor);把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是这个多项式除以公因式的商,这种分解因式的方法叫做提公因式法;公式法平方差公式、完全平方式X2+(p+q)x+pq=(x+p)+(x+q)八年级(下)分式分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction);其中A叫分子,B叫做分母,当B≠0时,A/B才有意义;分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变;利用分式的基本性质,是分子分母同乘适当的整式,不改变分式的值,把多个分式化成相同分母的分式,这样的分式变形叫做通分(changing fraction to a common denominator);利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分(reduction of a fraction);分式的运算乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘;分式乘方要把分子、分母分别乘方;加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;分式方程分母中含未知数的方程叫做分式方程(fraction equation);解分式方程具体做法是“去分母”,即方程两边同乘最简公分母;一般地,去分母所得整式方程的解有可能使原方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式的解救是原分式方程的解,否则,这个解不是原分式方程的解;反比例函数反比例函数一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function);其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数;反比例函数的图象属于双曲线(hyperbola);当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x的增大而减小;当k<0时,双曲线的两支分别位于第二、第三象限,在每个象限内y值随x值的增大而增大;实际问题与反比例函数勾股定理勾股定理经过证明被确认正确的命题叫做定理(theorem);如果直角三角形的两直角边长分别为a,b,斜边为c,那么a2+b2=c2,;在中国称为勾股定理,在西方称为毕达哥拉斯定理;勾股定理的逆定理题设、结论正好相反的两个命题称为互逆命题;如果其中一个叫做原命题,那么另外一个叫做它的逆命题;勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,,那么这个三角形是直角三角形;(运用三角形全等证明)如果一个定理的逆命题经过证明是正确的,它也是一个定理;四边形平行四边形有两组对边分别平行的四边形叫做平行四边形(parallelogram);平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分;平行四边的判定定理:两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;连接三角形两边中点的线段叫做三角形的中位线;三角形的中位线平行于三角形的第三边,且等于第三边的一半;特殊的平行四边形有一个角是直角的平行四边形叫做矩形(rectangle);也就是长方形;矩形的性质:1、矩形的四个角都是直角,2、矩形的对角线相等;矩形的判定定理:1、对角线相等的平行四边形是矩形,2、有三个角是直角的四边形是矩形;直角三角形斜边上的中线等于斜边的一半;有一组邻边相等的平行四边形叫做菱形(rhombus);菱形是轴对称图形,它的对角线所在的直线就是它的对称轴;菱形的性质:1、菱形的四条边都相等,2、菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的判定定理:1、对角线互相垂直的平行四边形是菱形,2、四边都相等的四边形是菱形;正方形(square)的四条边都相等,四个角都是直角,所有正方形既是矩形又是菱形,它既有矩形的性质,又有菱形的性质;梯形一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium);两腰相等的梯形叫等腰梯形(isosceles trapezium);等腰梯形是轴对称图形,上下底线的中点连线所在的直线是对称轴;等腰梯形的性质:1、等腰梯形同一底边上的两个角相等,2、等腰梯形的两条对角线相等;等腰梯形的判定定理:同一底上两个角相等的梯形是等腰梯形;有一个角是直角的梯形叫直角梯形;课题学习重心平衡点线段的重心就是线段的中点;平行四边形的重心是它的两条对角线的交点;三角形的三条中线交于一点,这一点就是三角形的重心;数据的分析数据的代表加权平均数(weighted average):若n个数x1,x2,…,xn的权分别为w1,w2,…,wn,则(x1 w1+ x2 w2+…+xn wn)/(w1+w2+…+wn)叫做这n个数的加权平均数算数平均数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中出现次数最多的数据就是这组数据的众数(mode);如果一组数据中有两个数据的频数一样,都是最大,那么这两个数据都是这组数据的众数;数据的波动一组数据中的最大数据与最小数据的差叫做这组数据的极差(range);反映数据的波动范围;设有n个数,各数据与它们的平均数的差的平方的和来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance);方差越大,数据的波动越大,方差越小,数据的波动越小;课题学习体质健康测试中的数据分析收集数据——整理数据——描述数据——分析数据——撰写调查报告。