数学建模与实验第三版 习题6.5-5

合集下载

数学模型第三版课后答案

数学模型第三版课后答案

《数学建模》习题解答第一章部分习题3(5). 决定十字路口黄灯亮的时间长度.4. 在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四角的连线呈正方形改为长方形,其余不变,试构造模型并求解.5. 模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少.6. 利用1.5节表1和表3给出的1790-2000年的美国实际人口资料建立下列模型: (1) 分段的指数增长模型. 将时间分为若干段,分别确定增长率r. (2) 阻滞增长模型. 换一种方法确定固有增长率r 和最大容量x m .7. 说明1.5节中Logistic 模型(9)可以表示为()()01t t r mex t x --+=,其中t 0是人口增长出现拐点的时刻,并说明t 0与r ,x m 的关系.8. 假定人口的增长服从这样的规律:时刻t 的人口为x (t),t 到t +△t 时间内人口的增量与x m -x (t)成正比(其中为x m 最大容量). 试建立模型并求解. 作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.9(3). 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同。

甲乙之间一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站。

问开往甲乙两站的电车经过丙站的时刻表是如何安排的。

参考答案3(5). 司机看到黄灯后停车要有一定的刹车距离1s ,设通过十字路口的距离为2s ,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线1s 之内的汽车能通过路口,即()vs s t 21+≈其中s 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.4. 相邻两椅脚与地面距离之和分别定义为()()θθg f 和,将椅子旋转ο180,其余作法与1.3节相同.5. 人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。

求函数yxe,,,3《数学建模与数学实验》补考试卷答案f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班2、本试卷共1页,附答题纸1页。

满分100分。

x=fmin(f1,-5,5)3、考查时间100分钟。

y=f1(x)4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分)x = 0.3517,y== -2.1728 123111,,,,,,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,,,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:,stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ;解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ;xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000;装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),x1<=15000;结果为_ (3)^4*(15241)__ ; endax4. 求,其命令格式为 syms x a; limit((1+a/x)^x,x,inf) ,结果为lim(1),max=55000 x1=10000 x2=30000 ,,xxexp(a) ; 四、本题15分(写出程序及结果)xx,31已知: x=1: 0.5 : 5, y=[ 3. 2, 6. 1, 7, 7. 3, 7. 6, 8,7.9,9, 10 ] dx5. 求积分的命令格式为syms x; int((x^3+x)/(x+1),x,0,1); ,x,10求4阶拟合多项式,并画图比较. ( vpa(ans,6)), 积分结果为 11/6-2*log(2) (化简为0.44704) ;clear all 5326. 求多项式的根,其命令格式为p=[5, 0,-8,12,0,-1]fxxxx()58121,,,,x=1: 0.5 : 5; y=[ 3.2,6.1,7,7.3,7.6,8,7.9,9,10];x=roots(p),结果为-1.7194 0.8317 + 0.8110i 0.8317 - 0.8110i 0.3230 -0.2669; p=polyfit(x,y,4);x1=1:0.1:5;y1=polyval(p,x1);7. 求解方程lnx+2x-1= 0的命令为 solve('log(x) +2*x - 1 = 0');vpa(ans) ,结果为 0.6874_; plot(x,y,'.b',x1,y1,'-r') ,n8. =(2*a+2)*(1/2/a^2/(a+1)-1/2/(a+1)) 。

第1讲 数学建模简介 数学建模与数学实验(第3版)课件+matlab(共16张PPT)

第1讲 数学建模简介 数学建模与数学实验(第3版)课件+matlab(共16张PPT)
测试分析方法:将研究对象视为一个“黑箱〞系统,内部(nèibù) 机理无法直接寻求,通过测量系统的输入输出数据,并以此为根底 运用统计分析方法,按照事先确定的准那么在某一类模型中选出一 个数据拟合得最好的模型. 测试分析方法也叫做系统辩识.
将这两种方法结合起来使用,即用机理分析方法建立模型的结 构,用系统测试方法来确定模型的参数,也是常用的建模方法.
9. 附录
第十五页,共16页。
实例
返回
谢 谢!
第十六页,共16页。
率为r,则预报公式为:
xkx01rk
预报正确的条件: 年增长率r保持不变.
第十一页,共16页。
人口模型
1. 指数增长模型(móxíng)〔马尔萨斯人口模型(móxíng) 〕:
英国人口学家马尔萨斯〔Malthus1766—1834〕于 1798年提出.
2. 阻滞(zǔ zhì)增长模型〔logistic模型〕
A 1994
B
逢山开路 锁具装箱
A
一个飞行管理问题
1995
B 天车与冶炼炉的作业调度
A 1996
B
节水洗衣机问题 最优捕鱼问题
第九页,共16页。
A 1997
B A 1998 B A 1999 B A 2000 B
零件的参数设计 最优截断切割问题 投资的收益和风险
灾情巡视路线 自动化车床管理
钻井布局 DNA 序列分类 钢管订购和运输
数学建模将各种知识综合应用于解决实际问题中建立数学模型的方法和步骤并没有一定的模式但一个理想的模型应能反映系统的全部重要特征模型的可靠性和模型的使用性建模的一般方法机理分析测试分析方法机理分析根据对现实对象特性的认识分析其因果关系找出反映内部机理的规律所建立的模型常有明确的物理或现实意义测试分析方法将研究对象视为一个黑箱系统内部机理无法直接寻求通过测量系统的输入输出数据并以此为基础运用统计分析方法按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型测试分析方法也叫做系统辩识将这两种方法结合起来使用即用机理分析方法建立模型的结构用系统测试方法来确定模型的参数也是常用的建模方法在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见右图符合实际不符合实际交付使用从而可产生经济社会效益实际问题抽象简化假设确定变量参数建立数学模型并数学数值地求解确定参数用实际问题的实测数据等来检验该数学模型建模过程示意图模型数学模型的分类按研究方法和对象的数学特征分初等模型几何模型优化模型微分方程模型图论模型逻辑模型稳定性模型扩散模型等按研究对象的实际领域或所属学科分人口模型交通模型环境模型生态模型生理模型城镇规划模型水资源模型污染模型经济模型社会模型等数学模型符号模型思维模型物理模型直观模型抽象模型具体模型图形模型数式模型ababab逢山开路锁具装箱一个飞行管理问题天车与冶炼炉的作业调度节水洗衣机问题最优捕鱼问题199419951996abababab零件的参数设计最优截断切割问题投资的收益和风险灾情巡视路线自动化车床管理钻井布局dna序列分类钢管订购和运输1997199819992000返回1

数学建模.参考资料

数学建模.参考资料

附录1 数学建模参考书籍一、竞赛参考书l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).2、大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育出版社(1993,1997,1998).3、数学建模教育与国际数学建横竞赛《工科数学》专辑,叶其孝主编,《工科数学》杂志社,1994).二、国内教材、丛书:1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).3、数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).5、数学模型,濮定国、田蔚文主编,东南大学出版社(1994).6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)7、数学模型,陈义华编著,重庆大学出版杜,(1995)8、数学模型建模分析,蔡常丰编著,科学出版社,(1995).9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).12、数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).13、数学模型方法,齐欢编著,华中理工大学出版社,(1996).14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学出版社,(1996).15、数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社.17、数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).18、数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).19、数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版杜,(1998).20、经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华编著,华南理工大学出版社,(1999).21、数学模型讲义,雷功炎编,北京大学出版社(1999).22、数学建模精品案例,朱道元编著,东南大学出版杜,(1999),23、问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).24、数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社, (1999).25、数学建模案例分析,白其岭主编,海洋出版杜,(2000年,北京).26、数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版杜,(2000).27、数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).三、国外参考书(中译本):1、数学模型引论, E.A。

数学建模与数学实验课后习题答案

数学建模与数学实验课后习题答案

P594•学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432 人住在C 宿舍。

学生要组织一个10人的委员会,使用Q 值法分配各 宿舍的委员数。

解:设P 表示人数,N 表示要分配的总席位数。

i 表示各个宿舍(分别取 A,B,C ), p i 表 示i 宿舍现有住宿人数, n i 表示i 宿舍分配到的委员席位。

首先,我们先按比例分配委员席位。

23710 A 宿舍为:n A ==2.365 1002 333"0 B 宿舍为:n B =3.323 1002 432X0 C 宿舍为:n C =4.3111002现已分完9人,剩1人用Q 值法分配。

经比较可得,最后一席位应分给 A 宿舍。

所以,总的席位分配应为: A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

QA23722 3= 9361.5 Q B33323 4 = 9240.7 Q C4322 4 5=9331.2商人们怎样安全过河傻麴删舫紬削< I 11山名畝臥蹄峨颂禮训鋤嫌邂 韻靖甘讹岸讎鞍輯毗匍趾曲展 縣確牡GH 錚俩軸飙奸比臥鋪謎 smm 彌鯉械即第紘麵觎岸締熾 x^M 曲颁M 删牘HX …佛讪卜过樹蘇 卜允棘髒合 岡仇卅毘冋如;冋冋1卯;砰=口 於广歎煙船上觸人敦% V O J U;xMmm朗“…他1曲策D 咿川| thPl,2卜允隸策集合 刼為和啊母紳轉 多步贱 就匚叫=1入“山使曲并按 腿翻律由汩3』和騒側),模型求解 -穷举法〜编程上机 ■图解法S={(x ?jOI x=o, j-0,1,2,3;X =3? J =0,1,2,3; X =»*=1,2}J规格化方法,易于推广考虑4名商人各带一随从的情况状态$=(xy¥)~ 16个格点 允许状态〜U )个。

点 , 允许决策〜移动1或2格; k 奇)左下移;&偶,右上移. 右,…,必I 给出安全渡河方案评注和思考[廿rfn片,rfl12 3xmm賤縣臓由上题可求:4个商人,4个随从安全过河的方案。

《数学建模与数学实验》(第三版)6.5习题作业2

《数学建模与数学实验》(第三版)6.5习题作业2

1.根据物理定律K K K R I V =,R I P 2=,建立如下模型:(1):目标函数为:∑==412k k k R IP 约束条件⎪⎪⎩⎪⎪⎨⎧===++=≤≤8,6,41023213214I I I I I I I I R I k k k 1)直接计算求解183214=++=I I I I()K K k K K K K R I I R I P ∑∑====41412min min=K k K V I∑=41min现在K V 一定,要想求P 的最小值,只需K I 最小即可。

又因为K I 已知,代入数据即可求解。

即218282624min 44332211⨯+⨯+⨯+⨯=+++=V I V I V I V I P2)有K I 已知及K V 的取值范围,可得K R 的取值范围。

min =I1^2*R1+I2^2*R2+I3^2*R3+I4^2*R4;I1=4;I2=6;I3=8;I4=18;R1>=1/2;R2>=1/3;R3>=1/4;R4>=1/9;R1<=5/2;R2<=5/3;R3<=5/4;R4<=5/9;EndGlobal optimal solution found.Objective value: 72.00000Total solver iterations: 0Variable Value Reduced Cost I1 4.000000 0.000000 R1 0.5000000 0.000000 I2 6.000000 0.000000 R2 0.3333333 0.000000 I3 8.000000 0.000000 R3 0.2500000 0.000000 I4 18.00000 0.000000 R4 0.1111111 0.000000Row Slack or Surplus Dual Price 1 72.00000 -1.000000 2 0.000000 -4.000122 3 0.000000 -4.000081 4 0.000000 -4.000061 5 0.000000 -4.000027 6 0.000000 -16.00000 7 0.000000 -36.00000 8 0.000000 -64.00000 9 0.000000 -324.0000 10 2.000000 0.000000 11 1.333333 0.000000 12 1.000000 0.000000 13 0.4444444 0.000000(2):目标函数:∑==412k k k R I P 约束条件为:⎪⎪⎩⎪⎪⎨⎧≤≤===≤≤++=628,6,4263213214k kk kI V V V V R V I I II1)183214=++=I I I I()K K k K KK K R I I R I P ∑∑====41412min min=K k K V I ∑=41min)min(44332211V I V I V I V I P +++=要使P 最小,取4V =0,则)min(332211V I V I V I P ++=现在K V 一定,要想求P 的最小值,只需K I 最小即可。

数学模型第三版课后习题答案

数学模型第三版课后习题答案
解:设 , , , , 的关系为 .其量纲表达式为
[ ]=LM0T-1,[ ]=L-3MT0,[ ]=MLT-2(LT-1L-1)-1L-2=MLL-2T-2T=L-1MT-1,[ ]=LM0T0,[ ]=LM0T-2
其中L,M,T是基本量纲.
量纲矩阵为
A=
齐次线性方程组Ay=0即
的基本解为
得到两个相互独立的无量纲量
16.雨滴的速度 与空气密度 、粘滞系数 和重力加速度 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度 的表达式.
解:设 , , , 的关系为 , , , =0.其量纲表达式为[ ]=LM0T-1,[ ]=L-3MT0,[ ]=MLT-2(LT-1L-1)-1L-2=MLL-2T-2T=L-1MT-1,[ ]=LM0T-2,其中L,M,T是基本量纲.
即 .由 ,得
,其中 是未定函数.
20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期.
解:设阻尼摆周期 ,摆长 ,质量 ,重力加速度 ,阻力系数 的关系为
其量纲表达式为:
,其中 , , 是基本量纲.
相轨线为
此相轨线比书图11中的轨线上移了 乙方取胜的条件为
第五章2(20XX年11月14日)
6.模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为 )和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.
解:设给药速率为
(1)快速静脉注射: 设给药量为 则
量纲矩阵为

数模第三版习题答案

数模第三版习题答案

《数学模型》作业解答第一章(2008年9月9日)4.在“椅子摆放问题”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余条件不变.试构造模型并求解.解:设椅子四脚连线呈长方形ABCD. AB 与CD 的对称轴为x 轴,用中心点的转角θ表示椅子的位置.将相邻两脚A 、B 与地面距离之和记为)(θf ;C 、D 与地面距离之和记为)(θg .并旋转0180.于是,设,0)0(,0)0(=g f 就得到()()0,0=ππf g .数学模型:设()()θθg f 、是[]π2,0上θ的非负连续函数.若[]πθ2,0∈∀,有()()0=θθg f ,且()()()()0,0,00,00==ππf g f g ,则[]πθ2,00∈∃,使()()000==θθg f .模型求解:令)()()(θθθg f h -= .就有,0)0( h 0)(0)()()( ππππg g f h -=-=.再由()()θθg f ,的连续性,得到()θh 是一个连续函数. 从而()θh 是[]π,0上的连续函数.由连续函数的介值定理:()πθ,00∈∃,使()00=θh .即()πθ,00∈∃,使()()000=-θθg f .又因为[]πθ2,0∈∀,有()()0=θθg f .故()()000==θθg f .8. 假定人口的增长服从这样的规律:时刻t 的人口为)(t x ,单位时间内人口的增量与)(t x x m -成正比(其中m x 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果比较.解:现考察某地区的人口数,记时刻t 的人口数为()t x (一般()t x 是很大的整数),且设()t x 为连续可微函数.又设()00|x t x t ==.任给时刻t 及时间增量t ∆,因为单位时间内人口增长量与)(t x x m -成正比, 假设其比例系数为常数r .则t 到t t ∆+内人口的增量为:()()()t t x x r t x t t x m ∆-=-∆+)(. 两边除以t ∆,并令0→∆t ,得到⎪⎩⎪⎨⎧=-=0)0()(x x x x r dtdxm 解为rt m m e x x x t x ---=)()(0如图实线所示,当t 充分大时 m x 它与Logistic 模型相近.0x t9.为了培养想象力、洞察力和判断力,考察对象时除了从正面分析外,还常常需要从侧面 或反面思考.试尽可能迅速回答下面问题:(1) 某甲早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿. 次日早8:00沿同一路径下山,下午5:00回到旅店.某乙说,甲必在两天中的同一时刻经 过路径中的同一地点.为什么?(2) 37支球队进行冠军争夺赛,每轮比赛中出场的每两支球队中的胜者及轮空者 进入下一轮,直至比赛结束.问共需进行多少场比赛,共需进行多少轮比赛.如果是n 支球队比赛呢?(3) 甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻 不一定相同.甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,仅约10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(4) 某人家住T 市在他乡工作,每天下班后乘火车于6:00抵达T 市车站,他的 妻子驾车准时到车站接他回家,一日他提前下班搭早一班火车于5:30抵T 市车站,随即步行回家,他的妻子象往常一样驾车前来,在半路上遇到他,即接他回家,此时发现比往常 提前了10分钟.问他步行了多长时间?(5) 一男孩和一女孩分别在离家2 km 和1 km 且方向相反的两所学校上学,每天 同时放学后分别以4 km/h 和2 km/h 的速度步行回家.一小狗以6 km/h 的速度由男孩处奔向女孩,又从女孩处奔向男孩,如此往返直至回到家中,问小狗奔波了多少路程?如果男孩和女孩上学时小狗也往返奔波在他们之间,问当他们到达学校时小狗在何处?解:(1)方法一:以时间t 为横坐标,以沿上山路径从山下旅店到山顶的行程x 为纵坐标, 第一天的行程)(t x 可用曲线(I )表示 ,第二天的行程)(t x 可用曲线(I I )表示,(I )(I I )是连续曲线必有交点),(000d t p ,两天都在0t 时刻经过0d 地点.方法二:设想有两个人, 一人上山,一人下山,同一天同 时出发,沿同一路径,必定相遇. 0d t早8 0t 晚5方法三:我们以山下旅店为始点记路程,设从山下旅店到山顶的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从山顶到山下旅店的路函数为)(t g ,并设山下旅店到山顶的距离为a (a >0).由题意知:,0)8(=f a f =)17(,a g =)8(,0)17(=g .令)()()(t g t f t h -=,则有0)8()8()8(<-=-=a g f h ,0)17()17()17(>=-=a g f h ,由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]17,8[0∈∃t ,使0)(0=t h ,即)()(00t g t f =.(2)36场比赛,因为除冠军队外,每队都负一场;6轮比赛,因为2队赛1轮,4队赛2轮,32队赛5轮. n 队需赛1-n 场,若k k n 221≤- ,则需赛k 轮.(3)不妨设从甲到乙经过丙站的时刻表是8:00,8:10,8:20,…… 那么从乙到甲经过丙站的时刻表应该是8:09,8:19,8:29……(4)步行了25分钟.设想他的妻子驾车遇到他后,先带他前往车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车多跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻应该是5:55.(5)放学时小狗奔跑了3 km .孩子上学到学校时小狗的位置不定(可在任何位置),因为设想放学时小狗在任何位置开始跑,都会与孩子同时到家.之所以出现位置不定的结果,是由于上学时小狗初始跑动的那一瞬间,方向无法确定.10*. 某人第一天上午9:00从甲地出发,于下午6:00到达乙地.第二天上午9:00他又从乙地出发按原路返回,下午6:00回到甲地.试说明途中存在一点,此人在两天中同一时间到达该处.若第二天此人是下午4:00回到甲地,结论将如何?答:(方法一)我们以甲地为始点记路程,设从甲地到乙地的路程函数为)(t f (即t 时刻走的路程为)(t f ),同样设从乙地到甲地的路函数为)(t g ,并设甲地到乙地的距离为a (a >0).由题意知:,0)9(=f a f =)18(,a g =)9(,0)18(=g . 令)()()(t g t f t h -=,则有0)9()9()9(<-=-=a g f h ,0)18()18()18(>=-=a g f h 由于)(t f ,)(t g 都是时间t 的连续函数,因此)(t h 也是时间t 的连续函数,由连续函数的介值定理,]18,9[0∈∃t ,使0)(0=t h ,即)()(00t g t f =. 若第二天此人是下午4:00回到甲地,则结论仍然正确,这是因为0)9()9()9(<-=-=a g f h ,0)16()16()16()16(>=-=f g f h .(方法二)此题可以不用建模的方法,而变换角度考虑:设想有两个人,一人从甲地到乙地,另一人从乙地到甲地,同一天同时出发,沿同一路径,必定相遇.若第二天此人是下午4:00回到甲地,则结论仍然正确.《数学模型》作业解答第二章(1)(2008年9月16日)1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法;(3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗?如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较.解:先考虑N=10的分配方案,,432 ,333 ,235321===p p p ∑==31.1000i ip方法一(按比例分配) ,35.23111==∑=i ipNp q ,33.33122==∑=i ipNp q 32.43133==∑=i ipNp q分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法)9个席位的分配结果(可用按比例分配)为:4 ,3 ,2321===n n n第10个席位:计算Q 值为,17.92043223521=⨯=Q ,75.92404333322=⨯=Q 2.93315443223=⨯=Q3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n方法三(d ’Hondt 方法)此方法的分配结果为:5 ,3 ,2321===n n n此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍).iin p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i ii n p尽量接近.再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下:2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本.考虑t 到t t ∆+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得⎰⎰+=ntdn wkn r k vdt 0)(2π)22 2n wk k(r n πvt +=∴ .2 22n vk w n v rk t ππ+=∴第二章(2)(2008年10月9日)15.速度为v 的风吹在迎风面积为s 的风车上,空气密度是ρ ,用量纲分析方法确定风车获得的功率P 与v 、S 、ρ的关系.解: 设P 、v 、S 、ρ的关系为0),,,(=ρs v P f , 其量纲表达式为: [P]=32-TML , [v ]=1-LT,[s ]=2L ,[ρ]=3-ML ,这里T M L ,,是基本量纲.量纲矩阵为:A=)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---ρ()()()()()()(001310013212s v P T M L齐次线性方程组为:⎪⎩⎪⎨⎧=--=+=-++030032221414321y y y y y y y y 它的基本解为)1,1,3,1(-=y 由量纲i P 定理得1131ρπs v P -=, 113ρλs v P =∴ , 其中λ是无量纲常数.16.雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,g 的关系为(f v ,ρ,μ,g )=0.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[g ]=LM 0T -2,其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()(210101101131g v T M L μρ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----- 齐次线性方程组Ay=0 ,即⎪⎩⎪⎨⎧==+=+02y -y - y -0y y 0y y -3y -y 431324321 的基本解为y=(-3 ,-1 ,1 ,1) 由量纲i P 定理 得g v μρπ13--=. 3ρμλgv =∴,其中λ是无量纲常数. 16*.雨滴的速度v 与空气密度ρ、粘滞系数μ、特征尺寸γ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在流体中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式.解:设v ,ρ,μ,γ,g 的关系为0),,,,(=g v f μργ.其量纲表达式为[v ]=LM 0T -1,[ρ]=L -3MT 0,[μ]=MLT -2(LT -1L -1)-1L -2=MLL -2T -2T=L -1MT -1,[γ]=LM 0T 0 ,[g ]=LM 0T -2其中L ,M ,T 是基本量纲. 量纲矩阵为A=)()()()()()()()(21010110011311g v T M L μργ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----齐次线性方程组Ay=0 即⎪⎩⎪⎨⎧=---=+=+--+020035414354321y y y y y y y y y y 的基本解为⎪⎩⎪⎨⎧---=--=)21,1,1,23,0()21,0,0,21,1(21y y得到两个相互独立的无量纲量⎩⎨⎧==-----2/112/322/12/11g g v μργπγπ 即 1212/12/31,--==πμργπγg g v . 由0),(21=Φππ , 得 )(121-=πϕπ ∴ )(12/12/3-=μργϕγυg g , 其中ϕ是未定函数.20.考察阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比.给出周期的表达式,然后讨论物理模拟的比例模型,即怎样由模型摆的周期计算原型摆的周期. 解:设阻尼摆周期t ,摆长l , 质量m ,重力加速度g ,阻力系数k 的关系为0),,,,(=k g m l t f其量纲表达式为:112120000000)(]][[][,][,][,][,][-----======LT MLT v f k T LM g MT L m T LM l T M L t 10-=MT L , 其中L ,M ,T 是基本量纲.量纲矩阵为A=)()()()()()()()(120011010001010k g m l t T M L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--齐次线性方程组⎪⎩⎪⎨⎧=--=+=+02005415342y y y y y y y 的基本解为⎪⎩⎪⎨⎧--=-=)1,21,1,21,0()0,21,0,21,1(21Y Y 得到两个相互独立的无量纲量∴g lt =1π, )(21πϕπ=, 2/12/12mgkl =π ∴)(2/12/1mg kl g l t ϕ=,其中ϕ是未定函数 . 考虑物理模拟的比例模型,设g 和k 不变,记模型和原型摆的周期、摆长、质量分别为t ,'t ;l ,'l ;m ,'m . 又)(2/12/1gm l k g l t '''='ϕ 当无量纲量l l m m '='时, 就有 ll l g g l t t '=⋅'='. 《数学模型》作业解答第三章1(2008年10月14日)1. 在3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.解:设购买单位重量货物的费用为k ,其它假设及符号约定同课本.01 对于不允许缺货模型,每天平均费用为:kr rTc T c T C ++=2)(212221r c Tc dT dC+-= 令0=dTdC, 解得 rc c T 21*2= ⎩⎨⎧==---22/112/112/12/1ππk g m l g tl由rT Q = , 得212c rc rT Q ==** 与不考虑购货费的结果比较,T、Q的最优结果没有变.02 对于允许缺货模型,每天平均费用为:⎥⎦⎤⎢⎣⎡+-++=kQ Q rT r c r Q c c TQ T C 23221)(221),(2223322221222T kQ rT Q c r c rT Q c T c T C--+--=∂∂Tk rT Q c c rT Qc Q C ++-=∂∂332 令⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00Q CTC, 得到驻点:⎪⎪⎩⎪⎪⎨⎧+-+-+=-+=**323222233232132233221)(22c c krc c c r k c c c c c r c Q c c k c c c rc c T与不考虑购货费的结果比较,T、Q的最优结果减少.2.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,r k >.在每个生产周期T内,开始的一段时间()00T t <<一边生产一边销售,后来的一段时间)(0T t T <<只销售不生产,画出贮存量)(t g 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期,讨论r k >>和r k ≈的情况.解:由题意可得贮存量)(t g 的图形如下:贮存费为 ∑⎰=→∆⋅-==∆ni Ti i t TT r k c dt t g c t g c 1022022)()()(limξ又 )()(00T T r T r k -=- ∴ T k r T =0 , ∴ 贮存费变为 kT T r k r c 2)(2⋅-= 于是不允许缺货的情况下,生产销售的总费用(单位时间内)为kTr k r c T c kT T r k r c T c T C 2)(2)()(21221-+=-+=k r k r c T c dT dC 2)(221-+-=. 0=dTdC令, 得)(221r k r c kc T -=*易得函数处在*T T C )(取得最小值,即最优周期为: )(221r k r c kc T -=*rc c ,Tr k 212≈>>*时当 . 相当于不考虑生产的情况. ∞→≈*,T r k 时当 . 此时产量与销量相抵消,无法形成贮存量.第三章2(2008年10月16日)3.在3.3节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.解:考虑灭火速度λ与火势b 有关,可知火势b 越大,灭火速度λ将减小,我们作如下假设: 1)(+=b kb λ, 分母∞→→+λ时是防止中的011b b 而加的. 总费用函数()xc b kx b x t c b kx b t c t c x C 3122121211)1()(2)1(2+--++--++=βββββββ最优解为 []k b k c b b b c kbc x ββ)1(2)1()1(223221+++++=5.在考虑最优价格问题时设销售期为T ,由于商品的损耗,成本q 随时间增长,设t q t q β+=0)(,为增长率β.又设单位时间的销售量为)(为价格p bp a x -=.今将销售期分为T t TTt <<<<220和两段,每段的价格固定,记作21,p p .求21,p p 的最优值,使销售期内的总利润最大.如果要求销售期T 内的总售量为0Q ,再求21,p p 的最优值. 解:按分段价格,单位时间内的销售量为⎪⎩⎪⎨⎧<<-<<-=T t T bp a T t bp a x 2,20,21又 t q t q β+=0)(.于是总利润为[][]⎰⎰--+--=22221121)()()()(),(TTT dt bp a t q p dt bp a t q p p p=22)(022)(20222011T Tt t q t p bp a T t t q t p bp a ⎥⎦⎤⎢⎣⎡---+⎥⎦⎤⎢⎣⎡---ββ=)8322)(()822)((20222011T t q T p bp a T T q T p bp a ββ---+--- )(2)822(12011bp a T T T q T p b p -+---=∂∂β )(2)8322(22022bp a TT t q T p b p -+---=∂∂β 0,021=∂∂=∂∂p p 令, 得到最优价格为: ⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=)43(21)4(210201T q b a b p T q b a b p ββ 在销售期T 内的总销量为⎰⎰+-=-+-=20221210)(2)()(T TT p p bTaT dt bp a dt bp a Q 于是得到如下极值问题:)8322)(()822)((),(max 2022201121T t q T p bp a T T q T p bp a p p ββ---+---=t s . 021)(2Q p p bTaT =+-利用拉格朗日乘数法,解得:⎪⎩⎪⎨⎧+-=--=880201TbT Q b a p T bT Q b a p ββ 即为21,p p 的最优值.第三章3(2008年10月21日)6. 某厂每天需要角钢100吨,不允许缺货.目前每30天定购一次,每次定购的费用为2500元.每天每吨角钢的贮存费为0.18元.假设当贮存量降到零时订货立即到达.问是否应改变订货策略?改变后能节约多少费用?解:已知:每天角钢的需要量r=100(吨);每次订货费1c =2500(元); 每天每吨角钢的贮存费2c =0.18(元).又现在的订货周期T 0=30(天) 根据不允许缺货的贮存模型:kr rT c T c T C ++=2121)( 得:k T TT C 10092500)(++=令0=dTdC, 解得:35092500*==T 由实际意义知:当350*=T (即订货周期为350)时,总费用将最小. 925002+-=TdT dC又k T C 10035095025003)(*+⨯+⨯==300+100k k T C 100309302500)(0+⨯+==353.33+100k )(0T C -)(*T C =(353.33+100k )-(300+100k )32=53.33.故应改变订货策略.改变后的订货策略(周期)为T *=350,能节约费用约53.33元.《数学模型》作业解答第四章(2008年10月28日)1. 某厂生产甲、乙两种产品,一件甲产品用A 原料1千克, B 原料5千克;一件乙产品用A 原料2千克,B 原料4千克.现有A 原料20千克, B 原料70千克.甲、乙产品每件售价分别为20元和30元.问如何安排生产使收入最大? 解:设安排生产甲产品x 件,乙产品y 件,相应的利润为S 则此问题的数学模型为:max S=20x+30ys.t. ⎪⎩⎪⎨⎧∈≥≤+≤+Z y x y x y x y x ,,0,7045202这是一个整线性规划问题,现用图解法进行求解可行域为:由直线1l :x+2y=20, 2l :5x+4y =702l以及x=0,y=0组成的凸四边形区域. 直线l :20x+30y=c 在可行域内 平行移动.易知:当l 过1l 与2l 的交点时, x S 取最大值. 由⎩⎨⎧=+=+7045202y x y x 解得⎩⎨⎧==510y x此时 max S =2053010⨯+⨯=350(元)2. 某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量以及可获利润如下表:.试问这两种货物各托运多少箱,使得所获利润最大,并求出最大利润.解:设甲货物、乙货物的托运箱数分别为1x ,2x ,所获利润为z .则问题的数学模型可表示为211020 max x x z +=⎪⎩⎪⎨⎧∈≥≤+≤+Z y x x x x x x x st ,,0,13522445212121这是一个整线性规划问题. 用图解法求解. 可行域为:由直线2445:211=+x x l1352:212=+x x l 及0,021==x x 组成直线 c x x l =+211020:在此凸四边形区域内平行移动.易知:当l 过l 1与l2的交点时,z 取最大值由⎩⎨⎧=+=+135224452121x x x x 解得 ⎩⎨⎧==1421x x90110420max =⨯+⨯=z .3.某微波炉生产企业计划在下季度生产甲、乙两种型号的微波炉.已知每台甲型、乙型微波炉的销售利润分别为3和2个单位.而生产一台甲型、乙型微波炉所耗原料分别为2和32ll1x1l2x个单位,所需工时分别为4和2个单位.若允许使用原料为100个单位,工时为120个单位,且甲型、乙型微波炉产量分别不低于6台和12台.试建立一个数学模型,确定生产甲型、乙型微波炉的台数,使获利润最大.并求出最大利润.解:设安排生产甲型微波炉x 件,乙型微波炉y 件,相应的利润为S. 则此问题的数学模型为:max S=3x +2ys.t. ⎪⎩⎪⎨⎧∈≥≥≤+≤+Z y x y x y x y x ,,12,61202410032这是一个整线性规划问题 用图解法进行求解可行域为:由直线1l :2x+3y=100, 2l :4x+2y =120 及x=6,y=12组成的凸四边形区域.直线l :3x+2y=c 在此凸四边形区域内平行移动. 易知:当l 过1l 与2l 的交点时, S 取最大值.由⎩⎨⎧=+=+1202410032y x y x 解得⎩⎨⎧==2020y x .max S =320220⨯+⨯=100.《数学模型》作业解答第五章1(2008年11月12日)1.对于5.1节传染病的SIR 模型,证明:(1)若处最大先增加,在则σσ1)(,10=s t i s ,然后减少并趋于零;)(t s 单调减少至.∞s(2).)()(,10∞s t s t i s 单调减少至单调减少并趋于零,则若σ解:传染病的SIR 模型(14)可写成⎪⎩⎪⎨⎧-=-=i s dtds s i dt diλσμ)1(.)(lim 0.(t) .)( .0,t 存在而单调减少知由∞∞→=∴≥-=s t s s t s dtdsi s dt ds λ.)(∞s t s 单调减少至故(1).s s(t) .s(t) .100≤∴单调减少由若σs;)(,0 .01,10单调增加时当t i dtdis s s ∴-σσ.)(,0.01,1单调减少时当t i dtdis s ∴-σσ .0)(lim.0)18(t ==∞→∞t i i 即式知又由书上 .)( .0,1m i t i dtdis 达到最大值时当∴==σ(2)().0 0.1-s,1,10 dtdit s s σσσ从而则若 ()().0.0lim ==∴∞∞→i t i t i t 即单调减少且4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.020k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即 第五章2(2008年11月14日)6. 模仿5.4节建立的二室模型来建立一室模型(只有中心室),在快速静脉注射、恒速静脉滴注(持续时间为τ)和口服或肌肉注射3种给药方式下求解血药浓度,并画出血药浓度曲线的图形.解: 设给药速率为(),0t f()()()()().,,0/t VC t x t f t kx t x k ==+则排除速率为常数(1)快速静脉注射: 设给药量为,0D 则()()().,0,0000t k e VDt C V D C t f -===解得 (2)恒速静脉滴注(持续时间为τ): 设滴注速率为()(),00,000==C k t f k ,则解得()()()()⎪⎩⎪⎨⎧-≤≤-=----τττ t e e Vkk t e Vkk t C t k kt kt,10 ,10(3) 口服或肌肉注射: ()(),解得)式节(见134.5010010tk eD k t f -=()()()⎪⎪⎩⎪⎪⎨⎧=≠--=---010101001 ,,01k k te VkD k k e e k k V D k t C kt t k kt 3种情况下的血药浓度曲线如下:第五章3(2008年11月18日)8. 在5.5节香烟过滤嘴模型中,(1) 设3.0,/50,08.0,02.0,20,80,80021=======a s mm b mm l mm l mg M νβ求./21Q Q Q 和(2) 若有一支不带过滤嘴的香烟,参数同上,比较全部吸完和只吸到1l 处的情况下,进入人体毒物量的区别.解)(857563.229102.07.050103.01508002.07.0502008.0/01/2毫克≈⎪⎪⎭⎫ ⎝⎛-⨯⨯⨯=⎪⎪⎭⎫ ⎝⎛-=⨯⨯-⨯---e e e eba v aw Q v bl a vl β()10/10==l M w 其中,()()97628571.0502002.008.0212===⨯----ee Q Q vl b β (2) 对于一支不带过滤嘴的香烟,全部吸完的毒物量为⎪⎪⎭⎫⎝⎛-=-vbla eb a v aw Q '103‘ 只吸到1l 处就扔掉的情况下的毒物量为⎪⎪⎭⎫ ⎝⎛-=--vbl a v ble e b a v aw Q 1'21'04 .256531719.1110096.0032.0012.004.0508002.03.0508002.05010002.03.05010002.043111'1'≈--=--=--=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=⨯⨯⨯⨯⨯⨯--e e e e e e e e e e e e e e e e Q Q v abl v bl v abl v bl v bl a v bl v bl a vbl 44.235,84.29543≈≈ QQ4.在5.3节正规战争模型(3)中,设乙方与甲方战斗有效系数之比为.4=ba初始兵力00y x 与相同.(1) 问乙方取胜时的剩余兵力是多少,乙方取胜的时间如何确定.(2) 若甲方在战斗开始后有后备部队以不变的速率r 增援,重新建立模型,讨论如何判断双方的胜负.解:用()()t y t x ,表示甲、乙交战双方时刻t 的士兵人数,则正规战争模型可近似表示为:()()()⎪⎪⎩⎪⎪⎨⎧==-=-=000,01 ,yy x x bx dtdyay dt dx现求(1)的解: (1)的系数矩阵为⎥⎦⎤⎢⎣⎡--=00b a Aab ab b aA E ±=∴=-==-1,22 .0λλλλλ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛-1212,21,对应的特征向量分别为λλ ()()()tab t ab eC e C t y t x -⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛∴1212121的通解为.再由初始条件,得()()2 220000 tab tab e y x ey x t x -⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=又由().1aybx dx dy =可得其解为 ()3 ,202022 bx ay k k bx ay -==-而(1) ()().231000202011y a b y a bx ay a k t y t x =-=-===时,当即乙方取胜时的剩余兵力数为.230y 又令().0222,01100001=-⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-=t ab t ab e y x e y x t x )得由(注意到000020022,1x y y x ey x t ab -+==得. .43ln ,3121bt et ab =∴=∴ (2) 若甲方在战斗开始后有后备部队以不变的速率r 增援.则()()⎪⎪⎩⎪⎪⎨⎧==-=+-=000,)0(4 yy x x bx dtdyr ay dt dx().,4rdy aydy bxdx bxray dy dx -=-+-=即得由 相轨线为,222k bx ry ay =-- .222220.02k a r bx a r y a bx ry ay k =--⎪⎭⎫ ⎝⎛---=或 此相轨线比书图11中的轨线上移了.a r 乙方取胜的条件为.,0222020a r x a b a r y k +⎪⎭⎫ ⎝⎛- 亦即《数学模型》作业解答第六章(2008年11月20日)1.在6.1节捕鱼模型中,如果渔场鱼量的自然增长仍服从Logistic 规律,而单位时间捕捞量为常数h .(1)分别就4/rN h >,4/rN h <,4/rN h =这3种情况讨论渔场鱼量方程的平衡点及其稳定状况.(2)如何获得最大持续产量,其结果与6.1节的产量模型有何不同.解:设时刻t 的渔场中鱼的数量为()t x ,则由题设条件知:()t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h Nxrx x F --=)1()( (1).讨论渔场鱼量的平衡点及其稳定性: 由()0=x F ,得0)1(=--h Nxrx . 即()102=+-h rx x Nr )4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNhN x -±=①当4/rN h >,0<∆,(1)无实根,此时无平衡点; ②当4/rN h =,0=∆,(1)有两个相等的实根,平衡点为20N x =. Nrxr N rx N x r x F 2)1()('-=--=,0)(0'=x F 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x F --= ,即0 dt dx .∴0x 不稳定; ③当4/rN h <,0>∆时,得到两个平衡点:2411N rNhN x --=, 2412N rNh N x -+=易知:21N x <, 22N x > ,0)(1'>x F ,0)(2'<x F ∴平衡点1x 不稳定,平衡点2x 稳定.(2)最大持续产量的数学模型为⎩⎨⎧=0)(..max x F t s h即 )1(max Nxrx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.这是与6.1节的产量模型不同之处.要获得最大持续产量,应使渔场鱼量2N x >,且尽量接近2N ,但不能等于2N . 2.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:()xNrx t x ln '=.其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为Ex h =.讨论渔场鱼量的平衡点及其稳定性,求最大持续产量m h 及获得最大产量的捕捞强度m E 和渔场鱼量水平*0x .解:()t x 变化规律的数学模型为()Ex xNrx dt t dx -=ln 记 Ex xNrx x F -=ln)( ① 令()0=x F ,得0ln =-Ex xNrx ∴r ENe x -=0,01=x .∴平衡点为1,0x x . 又 ()E r xNr x F --=ln',()()∞=<-=1'0',0x F r x F . ∴ 平衡点o x 是稳定的,而平衡点1x 不稳定.②最大持续产量的数学模型为:⎪⎩⎪⎨⎧≠=-=.0,0ln ..max x Ex x N rx t s Ex h Ex()x f由前面的结果可得 rE ENeh -=r Er Ee r EN Ne dE dh ---=,令.0=dEdh得最大产量的捕捞强度r E m =.从而得到最大持续产量e rN h m /=,此时渔场鱼量水平eNx =*0. 3.设某渔场鱼量)(t x (时刻t 渔场中鱼的数量)的自然增长规律为:)1()(Nxrx dt t dx -= 其中r 为固有增长率,`N 为环境容许的最大鱼量. 而单位时间捕捞量为常数h .10.求渔场鱼量的平衡点,并讨论其稳定性;20.试确定捕捞强度m E ,使渔场单位时间内具有最大持续产量m Q ,求此时渔场鱼量水平*0x . 解:10.)(t x 变化规律的数学模型为h Nxrx dt t dx --=)1()( 记h N x rx x f --=)1()(,令 0)1(=--h N x rx ,即02=+-h rx x Nr ----(1))4(42Nhr r N rh r -=-=∆ , (1)的解为:2412,1N rNh N x -±=① 当0 ∆时,(1)无实根,此时无平衡点; ② 当0=∆时,(1)有两个相等的实根,平衡点为20Nx =. Nrxr N rx N x r x f 2)1()('-=--= ,0)(0'=x f 不能断定其稳定性. 但0x x ∀ 及0x x 均有04)1()( rNN x rx x f --= ,即0 dt dx ∴0x 不稳定; ③ 当0 ∆时,得到两个平衡点:2411rNhN N x --=, 2412rNh N N x -+=易知 21N x, 22N x ∴0)('1 x f , 0)('2 x f ∴平衡点1x 不稳定 ,平衡点2x 稳定.20.最大持续产量的数学模型为: ⎩⎨⎧=0)(..max x f t s h即 )1(max Nx rx h -=, 易得 2*0N x = 此时 4rN h =,但2*0N x =这个平衡点不稳定.要获得最大持续产量,应使渔场鱼量2N x ,且尽量接近2N ,但不能等于2N.《数学模型》第七章作业(2008年12月4日)1.对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11kk k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.《数学模型》作业解答第七章(2008年12月4日)2. 对于7.1节蛛网模型讨论下列问题:(1)因为一个时段上市的商品不能立即售完,其数量也会影响到下一时段的价格,所以第1+k 时段的价格1+k y 由第1+k 和第k 时段的数量1+k x 和k x 决定,如果仍设1+k x 仍只取决于k y ,给出稳定平衡的条件,并与7.1节的结果进行比较.(2)若除了1+k y 由1+k x 和k x 决定之外,1+k x 也由前两个时段的价格k y 和1-k y 确定.试分析稳定平衡的条件是否还会放宽.解:(1)由题设条件可得需求函数、供应函数分别为:⎪⎩⎪⎨⎧=+=+++)()2(111k k k k k y h x x x f y 在),(000y x P 点附近用直线来近似曲线h f ,,得到⎪⎩⎪⎨⎧>-=->-+-=-+++)2( 0, )()1( 0),2(0010101 ββααy y x x x x x y y k k k k k 由(2)得 )3( )(0102 y y x x k k -=-++β (1)代入(3)得 )2(0102x x x x x kk k -+-=-++αβ 0012222 x x x x x k k k αβαβαβ+=++∴++对应齐次方程的特征方程为 02 2=++αβαβλλ特征根为48)(22,1αβαβαβλ-±-=当8≥αβ时,则有特征根在单位圆外,设8<αβ,则248)()4(2222,1αβαβαβαβλ=+-+= 212,1<⇔<∴αβλ 即平衡稳定的条件为2 <αβ与207P 的结果一致.(2)此时需求函数、供应函数在),(000y x P 处附近的直线近似表达式分别为:⎪⎩⎪⎨⎧>-+=->-+-=--+++)5( 0 , )2()4( 0),2(01010101ββααy y y x x x x x y y k k k k k k 由(5)得,)( ) y y y β(y )x (x k k k 62010203 -+-=-+++ 将(4)代入(6),得 ⎥⎦⎤⎢⎣⎡-+--+-=-++++)2()2()(20101203x x x x x x x x k k k k k ααβ 001234424 x x x x x x k k k k αβαβαβαβ+=+++∴+++对应齐次方程的特征方程为(7) 024 23 =+++αβαβλαβλλ 代数方程(7)无正实根,且42 ,αβαβ---, αβ不是(7)的根.设(7)的三个非零根分别为321,,λλλ,则⎪⎪⎪⎩⎪⎪⎪⎨⎧-==++-=++424321133221321αβλλλαβλλλλλλαβλλλ 对(7)作变换:,12αβμλ-= 则 ,03=++q p μμ其中 )6128(41 ),122(412233322αββαβαβααβ+-=-=q p 用卡丹公式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--+++-=+--+++-=+--+++-=33233223332233223323321)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2)3()2(2p q q w p q q w p q q w p q q w pq q p q q μμμ 其中,231i w +-=求出321,,μμμ,从而得到321,,λλλ,于是得到所有特征根1<λ的条件.2.已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x .试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)(k k x f y =和)2(11-++=k k k y y g x . 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)(00 ααx x y y k k --=- ----------------------(1)0,)2(0101 ββy y y x x k k k -+=--+ --------------------(2) 从上述两式中消去k y 可得,2,1,)1(22012=+=++++k x x x x k k k αβαβαβ, -----------(3) 上述(3)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程. 为了寻求0P 点稳定平衡条件,我们考虑(3)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为48)(22,1αβαβαβλ-±-=---------------(4) 当αβ 8时,显然有448)(22αβαβαβαβλ----= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.3. 已知某商品在k 时段的数量和价格分别为k x 和k y ,其中1个时段相当于商品的一个生产周期.设该商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+.试建立关于商品数量的差分方程模型,并讨论稳定平衡条件.解:已知商品的需求函数和供应函数分别为)2(11k k k x x f y +=++和)(1k k y g x =+. 设曲线f 和g 相交于点),(000y x P ,在点0P 附近可以用直线来近似表示曲线f 和g :0,)2(0101 ααx x x y y k k k -+-=-++ --------------------(1) 0,)(001 ββy y x x k k -=-+ --- ----------------(2)由(2)得 )(0102y y x x k k -=-++β --------------------(3)(1)代入(3),可得)2(0102x x x x x k k k -+-=-++αβ ∴ ,2,1,2220012=+=++++k x x x x x k k k αβαβαβ, --------------(4)上述(4)式是我们所建立的差分方程模型,且为二阶常系数线性非齐次差分方程.为了寻求0P 点稳定平衡条件,我们考虑(4)对应的齐次差分方程的特征方程:022=++αβαβλλ容易算出其特征根为 48)(22,1αβαβαβλ-±-= ---------------(4) 当αβ≥8时,显然有448)(22αβαβαβαβλ-≤---= -----------(5) 从而2λ 2,2λ在单位圆外.下面设8 αβ,由(5)式可以算出 22,1αβλ=要使特征根均在单位圆内,即 2,1λ1 ,必须 2 αβ.故0P 点稳定平衡条件为 2 αβ.。

《数学模型(第三版)》习题参考解答

《数学模型(第三版)》习题参考解答

《数学模型(第三版)》习题参考解答一、选择题(一)、单项选择1、数学教学就是数学活动的教学,就是师生之间、学生之间(3)的过程。

①交往互动②共同发展③交往互动与共同发展2、教师必须积极主动利用各种教学资源,创造性地采用教材,学会(2)。

①教教材②用教材教3、算法多样化属学生群体,(2)每名学生把各种算法都学会。

①要求②不要求4、新课程的核心理念就是(3)①联系生活学数学②培养学习数学的爱好③一切为了每一位学生的发展5、根据《数学课程标准》的理念,解决问题的教学必须横跨于数学课程的全部内容中,不再单独发生(3)的教学。

①概念②计算③应用题6、“三维目标”就是指科学知识与技能、(2)、情感态度与价值观。

①数学思考②过程与方法③解决问题7、《数学课程标准》中采用了“经历(体会)、体验(体会)、积极探索”等刻画数学活动水平的(1)的动词。

①过程性目标②知识技能目标8、创建蜕变记录就是学生积极开展(3)的一个关键方式,它能充分反映出来学生发展与进步的历程。

①自我评价②相互评价③多样评价9、学生的数学自学活动应就是一个生动活泼的、主动的和(2)的过程。

①单一②富有个性③被动10、“用数学”的含义就是(2)①用数学学习②用所学数学知识解决问题③了解生活数学11、以下现象中,(d)就是确认的。

a、后天下雪b、明天有人走路c、天天都有人出生d、地球天天都在转动1 2、《标准》精心安排了(b)个自学领域。

a)三个 b)四个 c)五个 d)不确定13、教师由“教书匠”转型为“教育家”的主要条件就是(d)a、坚持学习课程理论和教学理论b、认真备课,认真上课c、经常编写教育教学论文d、以研究者的眼光校对和分析教学理论与教学实践中的各种问题,对自身的行为进行反思14、崭新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分成(b)个阶段。

a)两个 b)三个 c)四个 d)五个15、以下观点不恰当的就是(d)a)《标准》并不规定内容的呈现顺序和形式b)《标准》倡导以“问题情境——创建模型——表述、应用领域与开拓”的基本模式呈现出科学知识内容c)《标准》努力体现义务教育的普及性、基础性和发展性d)年全国教育工作会议后,制定了中小学各学科的“教学大纲”,以逐步替代原来的“课程标(二)、多项选择1、义务教育阶段的数学课程应当注重彰显(acd),并使数学教育面向全体学生。

数学建模与数学实验答案

数学建模与数学实验答案

数学建模与数学实验答案【篇一:数学建模与数学实验报告】>指导教师__成绩____________组员1:班级:工管0803 姓名:何红强学号:20083416组员2:班级:工管0801姓名:陈振辉学号:20085291实验1.(1)绘制函数y?cos(tan(?x))的图像,将其程序及图形粘贴在此。

建立m文件fun1.m 解:x=linspace(0, pi,30);y=cos(tan(pi*x)); plot(x,y)x=linspace(0, pi,30); y=cos(tan(pi*x)); plot(x,y)(2)用surf,mesh命令绘制曲面z?2x?y,将其程序及图形粘贴在此。

(注:图形注意拖放,不要太大)(20分)建立m文件fun3.m 解:x=-3:0.1:3; y=1:0.1:5;[x,y]=meshgrid(x,y); z=2*x.^2+y.^2; mesh(x,y,z)2214实验2.1、某校60名学生的一次考试成绩如下:93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 551)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分)解:1)建立数据文件chengji.mat,和m文件tjl.m 代码:load chengji mean=mean(x) std=std(x)range=range(x)skewness=skewness(x) kurtosis=kurtosis(x) hist(x,10)运行得:mean =80.1000 std =9.7106 range =44skewness =-0.46822结论:从上图图形形态来看符合正态分布3)假设正态分布的参数为:mu=80sigma=10 检验:首先取出数据,用以下命令:load chengji.mat 然后用以下命令检验[h,sig,ci] = ztest(price1,80,10)返回:h =0 sig = 0.9383 ci =[77.5697 , 82.6303]检验结果: 1. 布尔变量h=0, 表示不拒绝零假设. 说明提出的假设均值80是合理的.2. sig-值为0.8668, 远超过0.5, 不能拒绝零假设3. 95%的置信区间为[77.5697 , 82.6303], 它完全包括80, 且精度很高.实验3. 在研究化学动力学反应过程中,建立了一个反应速度和反应物含量的数学模型,形式为x1x235y?1??2x1??3x2??4x3其中?1,?,?5是未知参数,x1,x2,x3是三种反应物(氢,n戊烷,异构戊烷)的含量,y是反应速度.今测得一组数据如表4,试由此确定参数?1,?,?5,并给出置信区间.?1,?,?5的参考值为(1,0.05, 0.02, 0.1, 2).(20分)序号 1 2 3 4 5 6 7 8 9 10 11 12 13反应速度y 8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13氢x1 470 285 470 470 470 100 100 470 100 100 100 285 2853n戊烷x2300 80 300 80 80 190 80 190 300 300 80 300 190异构戊烷x310 10 120 120 10 10 65 65 54 120 120 10 120解:先建立vol.m文件代码如下:function y=vol(beta,x)beta=[beta(1) beta(2) beta(3) beta(4)beta(5)];x1=x(:,1);x2=x(:,2);x3=x(:,3);y=(beta(1)*x2-x3./beta(5))./(1+beta(2)*x1+beta(3)*x2+beta(4)*x3);然后建立ll1.m文件代码如下:x=[470 285 470 470 470 100 100 470 100 100 100 285 285 300 80 300 80 80 190 80 190 300 300 80 300 190 10 10 120 120 10 10 65 65 54 120 120 10 120];y=[8.55 3.79 4.82 0.02 2.75 14.39 2.54 4.35 13.00 8.50 0.05 11.32 3.13]; beta0=[1 0.05 0.02 0.1 2];[beta,r,j]=nlinfit(x , y,vol,beta0); beta运行结果为:beta =1.2526 0.0628 0.0400 0.1124 1.1914实验4.某设备上安装有四只型号规格完全相同的电子管,已知电子管寿命为1000--2000小时之间的均匀分布。

《数学建模与实验》习题库a

《数学建模与实验》习题库a

Hyundai 车价$12,400 预付$500 月利率 6.5%直到 48 个月
你每个月为买车最多能付 475 美元。利用动力系统模型来决定你应该买哪家公司的车。
1.2 习题
1.从引进到 Tasmania 岛的新环境里的养群数量的增长得到下面的数据。

1814 1824 1834 1844 1854 1864
1810
7,240,000
1820
9,638,000
1830
12,866,000
1840
17,069,000
1850
23,192,000
1860
31,443,000
1870
38,558,000
1880
50,156,000
1890
62,948,000
1900
75,995,000
1910
91,972,000Leabharlann 数量 125275
830
1200 1750 1650
根据数据画图形,能看出某种趋势吗?画出 1814 年后数量变化对年份的图形。构建一个
能合理地近似描述你所观察到的变化的离散动力系统。
2.下列数据表示从 1790 年到 2000 年的美国人口数据
年份
人口
1790
3,929,000
1800
5,308,000
《数学建模与实验》习题库 a
感谢信息与计算科学 02 级的五位同学, 作为毕业设计英文翻译任务完成了此习题库的 构建工作, 他(她)们的工作分别为:
刘 静: 第 1, 4 章; 朱佳琦: 第 2, 3, 6 章; 李新颖: 第 5, 7 章; 朱晓强: 第 8, 9, 10 章; 甘永生: 第 11, 12 章.

数学模型(第三版)课后答案

数学模型(第三版)课后答案

T*
2c1 k
c2r ( k - r )
(3 分)
① 当 k r 时,得 k r k, 则T *
2c1k
2c1
c2 rk
c2 r
( 1 分)
② 当 k r 时,得 k r 0,则T *
2c1k c2r (k r )
(1 分)
八 、某公司有三个工厂生产某种商品并运往四个调拨站。工厂 1,2,3 每月分别生 产 12、 17、11 批商品,而每一个调拨站每月均需接受 10 批商品。各厂至各调拨站 的运输距离 (公里) 如下表所示。 已知每批商品的运费为 100 元加上每公里 0.50 元。 问应如何调运使总运费最少?
由( * )式可得 f l 2v2 4 l 2 v2
0, 为未定函数 1, 2 , 3 , 其中 4
(* ) 1 , 2, 3 , 为未定函数 。3 分)
六、 建立不允许缺货的存储模型:设生产能力无限,一次性的订货费为
c1 元,每天
每吨货物的储存费为 c2 元,每天货物的需要量为 r ,确定最佳订货周期 T* 和每次订
7
3+3+2+2+2
12
A7
4 13 16 10 19 7
2+2+2+2+2
10
(4 分)
从以上的表格可以看出各参赛队的每两场比赛之间的休息场次是比较均匀的。 (2 分)
三、 假设人口的增长服从这样的规律 : t 时刻的人口为 x(t) , t 时刻的单位时间的增量
与 xm x(t ) 成正比 ( 其中的 xm 为最大人口容量 ), 试建立模型求解并作出解的图形 .
3
xij 10, j 1,2,3,4

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。

试研究两变量(x,y)之间的关系。

其中:(秒)()。

要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

3、优化理论中的线性规划问题---生产安排。

数学建模方法与分析部分习题解答第三版

数学建模方法与分析部分习题解答第三版

数学建模方法与分析部分习题解答第三版P38题22(a)第一步:提出问题变量:x1=蓝鲸的数量x2=长须鲸的数量r1=蓝鲸种群的内禀增长率r2=长须鲸种群的内禀增长率K1=蓝鲸的最大可生存的种群数量K2=长须鲸的最大可生存的种群数量a1=竞争对蓝鲸的影响a2=竞争对长须鲸的影响t=时间(年)Q=鲸鱼总数假设: dx1dt=r1*x1(1-x1/K1)-a1*x1*x2 dx2dt=r2*x2(1-x2/K2)-a2*x1*x2x1>=0x2>=0dx1dt>=0dx2dt>=0Q=x1+x2目标:求在满足约束条件下Q的最大值第二步:建立模型五步法和有约束的最优化模型第三步:推导模型公式设目标函数为y=f(x1, x2)=x1+x2约束条件为dx1dt=r1*x1(1-x1/K1)-a1*x1*x2>=0dx2dt=r2*x2(1-x2/K2)-a2*x1*x2>=0x1>=0x2>=0即求解y满足以上条件的最大值第四部:求解模型由y=f(x1, x2)=x1+x2得▽f=(1, 1)由g1=0.05*x1*(1-x1/150000)-10^(-8)*x1*x2g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2得▽g1(x1, x2)=(1/20 - x2/100000000 - x1/1500000, -x1/100000000)▽g2(x1, x2)=(-x2/100000000, 2/25 - x2/2500000 - x1/100000000) 设λ1, λ2为拉格朗日乘子,则在极值点满足▽f=λ1*▽g1+λ2*▽g2带入解得Matlab求解clc;clear;syms x1x2w vg1=0.05*x1*(1-x1/150000)-10^(-8)*x1*x2g11=diff(g1,x1)g12=diff(g1,x2)g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2g21=diff(g2,x1)g22=diff(g2,x2)s=solve(w*g11+v*g21-1,w*g12+v*g22-1,g1,g2)λ1= -20.6522λ2= -12.3567x1=138210x2=393090因此y=f(x1, x2)=x1+x2=531300第五步:回答问题由五步法和有约束的最优化模型解得当满足种群数量是可行的可持续条件时,鲸鱼总数最大的种群数量为531300,此时蓝鲸数量为138210,长须鲸数量为393090.2(b)考虑最优种群数量x1, x2对内禀增长率r1的灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)此时g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -475/(500*r1 - 2)λ2=-(2000*r1 - 3)/(157*r1)x1=(6000000000*r1 - 24000000)/(40000*r1 - 3)x2=(157*********r1)/(40000*r1 - 3)则计算出dx1/dr1=6000000000/(40000*r1-3)-(40000*(6000000000*r1-24000000))/(40000 *r1 - 3)^2dx2/dr1=157********/(40000*r1-3)-(628000000000000*r1)/(40000*r1 - 3)^2 在点x1=138210, x2=393090, r1=0.05, 有S(x1, r1)=dx1/dr1*r1/x1=236210*0.05/138210=0.0855S(x2, r1)=dx1/dr1*r1/x2=11810*0.05/393090=- 0.00152 (c)考虑最优种群数量x1, x2对环境承受力K1, K2灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)此时g2=0.08*x2*(1-x2/400000)-10^(-8)*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -475/23λ2=-(20*K1 - 100000000)/(K1 - 8000000)x1= - (92000000*K1)/(K 1– 100000000)x2= (5000000*K1 - 40000000000000)/(K1 - 100000000)则计算出dx1/dK1=(92000000*k1)/(k1- 100000000)^2 - 92000000/(k1 - 100000000)dx2/dK1=5000000/(k1-100000000)-(5000000*k1 - 40000000000000)/(k 1- 100000000)^2在点x1=138210, x2=393090, K1=150000, 有S(x1, K1)= dx1/dK1*K1/x1= 0.9228*150000/138210=1.0015 S(x2, K1)= dx2/dK1*K1/x2= -0.0461*150000/393090= -0.01762(d)考虑最优种群数量x1, x2对竞争强度a灵敏性在模型中将此参量设为变量则有y=f(x1, x2)=x1+x2得▽f=(1, 1)由g2=0.08*x2*(1-x2/400000)-a*x1*x2▽f=λ1*▽g1+λ2*▽g2解得λ1= -(100000000*a - 20)/(8000000*a - 1)λ2= -(75000000*a - 25)/(3750000*a - 2)x1= (1200000000000*a - 150000)/(15000000000000*a^2 - 1) x2=(750000000000*a - 400000)/(15000000000000*a^2 - 1)则计算出dx1/da=1200000000000/(15000000000000*a^2-1)-(30000000000000*a *(1200000000000*a-150000))/(15000000000000*a^2 - 1)^2dx2/da=750000000000/(15000000000000*a^2-1)-(30000000000000*a* (750000000000*a - 400000))/(15000000000000*a^2 - 1)^2在点x1=138210, x2=393090, a=10^(-8), 有S(x1, a)=dx1/da*a/x1= -0.0840S(x2, a)=dx2/da*a/x2=-0.0161当出现某一种群灭绝时,a=0,此时以上解出的种群数量不是最优解,此时最优解为X1max=150000, X2max=400000。

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目与参考答案

数学建模与数学实验课程设计题目1、一元线性回归问题在某产品表明腐蚀刻线,下表是试验活得的腐蚀时间(x)与腐蚀深度(y)间的一组数据。

试研究两变量(x,y)之间的关系。

其中:(秒)()。

要求:1)画出散点图,并观察y与x的关系;=+,求出a与b的值;2)求y关于x的线性回归方程:y a bx3)对模型和回归系数进行检验;4)预测x=120时的y的置信水平为0.95的预测区间。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

2、 多元线性回归问题根据下述某猪场25头育肥猪4个胴体性状的数据资料,试进行瘦肉量y 对眼肌面积(x1)画出散点图y 与x1,y 与x2,y 与x3并观察y 与x1,x2, x3的关系;2)求y 关于x1,x2, x3的线性回归方程:0112233y a a x a x a x =+++-----(1),求出0123,,,a a a a 的值;3)对上述回归模型和回归系数进行检验;4)再分别求y 关于单个变量x1,x2, x3的线性回归方程:10111y a a x =+----(2),20222y a a x =+-----(3),30333y a a x =+--- --(4)求出ij a 的值;分别求y 关于两个变量x1,x2, x3的线性回归方程:10111122y a a x a x =++----(2’),20211222y a a x a x =++---(3’),30311322y a a x a x =++ --- --(4’)求出系数ij a 的值;并说明这六个回归方程对原来问题求解的优劣。

5)编程实现上述求解过程。

注:参考书目:1、《概率论与数理统计》,浙江大学编,高等教育出版社。

2、《数学实验》,萧树铁主编,高等教育出版社。

3、优化理论中的线性规划问题---生产安排。

内轮差

内轮差

机动车的内轮差摘要内轮差:车辆在转弯时,后轮并不是沿着前轮的轨迹行驶,会产生偏差,这种偏差叫“内轮差”;车身越长,形成的“内轮差”就越大。

由于内轮差的存在,车辆转弯时,前后车轮的运动轨迹不重合,因此会产生很多交通事故问题。

本文主要求解最大内轮差、分析内轮差的主要影响因素以及避免因内轮差造成交通事故的方法,防范内轮差事故,给司机和行人予以警示。

车辆转弯可以用物理学中的刚体的平动与转动形象而直观的解释,可以建立一个比较直观明了的几何模型图。

通过计算可知内轮差的大小与方向量的大小和车辆轴距的长短有关,为探求防范交通事故寻找到依据。

内容重述:车辆在转弯时,后轮不沿着前轮的轨迹行驶,产生偏差,这种偏差叫“内轮差”,车身越长,形成的“内轮差”就越大但是内轮差常被忽略,引发交通事故。

关键字:内轮差、钢体的平动与转动、轴距、轮距、最小转弯半径、最大内轮差问题分析:车辆行驶中是依靠前轮来改变方向的,一般在设计制造时,为了使机动车在转弯时每个车轮都不打滑,能够顺利地转弯,需要保证四个车轮在一组同心圆上转动,但是前后两只轮子并不是走在同一条轨迹上,而是有一定距离差别的。

避免内轮差事故的可行性方法,计算出各车型最大内轮差及内轮差影响因素,首先要明确主要因素,忽略次要因素,将参数假定为确定值,在分析影响内轮差的因素时,选取特殊状态进行研究,最后在解决避免内轮差事故的问题中,从外因和内因角度进行分析!模型假设:1,车轮为刚性材料,转弯时不发生形变。

2,车在转弯时,车匀速行驶,不发生侧翻和侧滑。

3,车的前(后)两轮距相等。

4,同种车型载重相同。

5.车辆的左转弯直径和右转弯直径相等符号说明:表一表二2 4.8 2.34 1.41 中型车1 6.73.6 1.80 2 6.3 3.11 1.62 大型车1 126.265 1.81 2 10.65.81.86模型建立与求解:1:内轮差就是机动车转弯时内前轮和内后轮轨迹所在圆弧半径的差。

《数学建模与数学实验》(第三版)6.5习题作业

《数学建模与数学实验》(第三版)6.5习题作业

1.电路问题一电路由三个电阻123R R R 、、并联,再与电阻4R 串联而成,记k R 上电流为k I ,电压为k V ,在下列情况下确定k R 使电路总功率最小(1,2,3,4)k =: 1)1234,6,8,2k I I I ===≤V ≤10; 2)1234,6,8,2k V V V I ===≤≤6;1)解:根据建立2;P I R U IR ==数学模型为:W=min 421k k k I R =∑123412346..82(1,...,4)kI I s t I I I I Ik I ⎧⎪=⎪=⎪⎪=⎨⎪=++⎪⎪=⎪⎩k k 10≤R ≤I用Lingo 求解:min =I1^2*R1+I1^2*R1+I2^2*R2 结果:+I3^2*R3+I4^2*R4;I1=4;I2=6;I3=8; I4=18; R1>1/2; R2>1/3; R3>1/4; R4>1/9; end2)解:根据建立2;P I R U IR ==数学模型为:W=min 421k k k I R =∑ 4123112233R =4/I ;..R =6/I ;R =8/I ;2I I I I s t I =++⎧⎪⎪⎪⎨⎪⎪⎪⎩k ≤≤6(k =1,...,4);用Lingo 求解:min =I1^2*R1+I2^2*R2+I3^2*R3 结果:+I4^2*R4;I4=I1+I2+I3;I1<6; I2<6;I3<6;I4<6; 《数学建模与数学实验》(第三版)6.5习题作业专业 班级 姓名 学号12340.50000.33330.25000.1111R R R R =⎧⎪=⎪⎨=⎪⎪=⎩ , 1234 4.00006.00008.000018.0000I I I I =⎧⎪=⎪⎨=⎪⎪=⎩ 80P = 112233440.5835976E+08 0.6854038E-07 0.1586609E+08 0.3781429E-06 1.3333 6.000000 0.4752196E+27 6.000000R I R I R I R I ==⎧⎧⎪⎪==⎪⎪⎨⎨==⎪⎪⎪⎪==⎩⎩0.1710790E+29P =R1=4/I1; R2=6/I2; R3=8/I3; end3.(设计最优化问题)要设计和发射一个带有X 射线望远镜和其他科学仪器的气球。

数学建模

数学建模

数学建模[填空题]1对于以下实验数据: x=(1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10 11) y=(4 4.6 8 8.4 9.28 9.5 9.7 9.86 10 10.2 10.32 10.30 10.24 10.18 10.00 9.40)给出拟合多项式,计算x=6.5,12处的值,并绘制相应曲线图。

参考答案:[填空题]2谈谈你对数学建模的认识,你认为数学建模过程中哪些步骤是关键的。

参考答案:[填空题]尾鱼苗,随着时间的增长,尾数将减少而每尾的质量将增3在鱼塘中投放n加。

(1)设尾数n(t)的(相对)减少率为常数;由于喂养引起的每尾鱼质量的增加率与鱼的表面积成正比,由于消耗引起的每尾鱼质量的减少率与质量本身成正比。

分别建立尾数与每尾鱼质量的微分方程,并求解。

(2)用控制网眼的办法不捕小鱼,到时刻T才开始捕捞,捕捞能力用尾数的相对减少量〡n′/n〡表示,记作E,即单位时间捕获量是En(t)问如何选择T和E,使从T开始的捕获量最大。

参考答案:[填空题]4奇数个席位的理事会由三派组成,议案表决实行过半数通过方案。

证明在任一派都不能操纵表决的条件下,三派占有的席位不论多少,他们在表决中的权重都是一样的。

参考答案:[填空题]5某电力公司经营两台发电站,发电站分别位于两个水库上。

已知发电站A可以将水库A的1×104m3的水转换为400千度电能,发电站B只能将1×104m3的水转换为200千度的电能。

发电站A,B每个月的最大发电能力分别是60000千度、35000千度。

每个月最多有50000千度电能够以200元/千度的价格售出,多余的电能只能够以140元/千度的价格售出。

水库A,B的其他有关数据如表。

(单位:104m3)。

请你为该电力公司制订本月和下月的生产经营计划。

(千度是非国际单位制单位,1千度=103KWh)参考答案:[填空题]6考虑阻尼摆的周期,即在单摆运动中考虑阻力,并设阻力与摆的速度成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢管下料问题
原题:
某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售。

从钢管厂进货得到的原材料钢管的长度都是1 850 mm ,现在一顾客需要15根290 mm 、28根315 mm 、21根350 mm 和455 mm 的钢管。

为了简化生产过程规定所使用的切割模式的种类不能超过四种,使用频率最高的一种切割模式按照一根钢管1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,并且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外,为了减少余料浪费。

每种切割模式下的余料浪费不能超过100 mm ,为了使总费用最少,应该如何下料? 符号说明
C 总加工费用
d= (290, 315, 350, 455) 表示4种产品的长度(mm )
n= (15, 28, 21, 30) 表示4种产品的需求量
r 1i , r 2i , r 3i , r 4i 第i 种切割模式下每根原材料生产4种产品的数量
xi 该模式共使用的次数
y i 表示第i 种切割模式的使用情况
(y i =1 表示使用了第i 种切割模式;y i =0 表示未使用第i 种切割模式)
模型的建立
(1)目标函数 (把总费用认定为切割次数与增加费用的和。


切割次数为xi 增加费用为 0.1*i
4
1(0.1)i i i C x i y ==+⨯⨯∑
(2)约束条件
(j=1 ,2 ,3 ,4) (i=1, 2, 3,4)

1产品数量的需求 41i j i
j i x r n =≥∑

2余料的限制 4
117501850i j ji j i y d r y =≤≤∑

3每根钢管最多生产5根产品 4
15i ji j i y r y =≤≤∑

4每种切割模式最多切割30根 4
130i i j i y x y =≤≤∑

5使用频率从高到低的排列 1i i y y +≤
1i i x x +≤
综上所诉建立模型为:
4
14141
4
1
4
1
min (0.1)
(j=1,2,3,4)17501850 (1,2,3,4)5 (1,2,3,4)..30 (
1,2,3,4)i i i i ji j i i j ji j i i ji j i i i j i C x i y x r n y d r y j y r y j s t y
x y j ======+⨯⨯≥≤≤=≤≤=≤≤=∑∑∑∑∑11 (1,2,3,4) (
1,2,3,4)0,1
i i i i i y y i x x i y ++⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪≤=⎪≤=⎪⎪=⎩ 模型的求解
4
141414141min (0.1)
(j=1,2,3,4)17501850 (1,2,3,4)5 (1,2,3,4)
..30 (1,2,3,4)i i i i ji j i i j ji j i i ji j i i i j i C x i y x r n y d r y j y r y j s t y x y j ======+⨯⨯≥≤≤=≤≤=≤≤=∑∑∑∑∑11 (1,2,3,4) (1,2,3,4)
0,1i i i i i y y i x x i y ++⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪≤=⎪≤=⎪⎪=⎩。

相关文档
最新文档