高中数学-函数的概念教案

合集下载

高中数学第59课函数教案

高中数学第59课函数教案

高中数学第59课函数教案
一、教学目标
1. 了解函数的定义和性质。

2. 掌握函数与方程或不等式的联立解法。

3. 培养学生分析问题、解决问题的能力。

二、教学重点与难点
1. 函数的定义和性质。

2. 函数与方程或不等式的联立解法。

3. 函数的应用问题。

三、教学过程
1. 导入新知识:通过举例让学生认识函数的概念和定义。

2. 学习函数的性质:奇偶性、周期性、单调性等。

3. 学习函数与方程或不等式的联立解法:通过实例演练。

4. 完成相关练习题,巩固所学内容。

5. 总结本节课的重点内容,解答学生提出的问题。

四、教学资源
1. 教材《高中数学》。

2. 教具:PPT、黑板、彩色粉笔等。

五、教学评价
在课堂上通过提问、讨论、练习等形式进行评价,以检验学生是否掌握了函数的相关知识和解题方法。

六、作业布置
1. 完成课后练习题。

2. 预习下节课内容。

七、教学反思
本节课注重培养学生的解决问题能力,并通过实例让学生学会应用函数的解决方法。

在教学过程中,可以多采用启发式的教学方法,激发学生的学习兴趣,提高课堂效果。

数学教案高中函数

数学教案高中函数

数学教案高中函数
教学目标:
1. 熟练掌握高中函数的定义和基本性质;
2. 能够灵活运用函数的概念解决实际问题;
3. 培养学生的数学思维能力和解决问题的能力。

教学重点:
1. 函数的定义;
2. 函数的图像和性质;
3. 函数的运算。

教学难点:
1. 函数的复合运算;
2. 函数的图像的绘制。

教学准备:
1. 教师准备教学课件和教学用具;
2. 学生准备笔记本和铅笔。

教学过程:
第一步:引入问题
教师通过一个实际问题引入函数的概念,让学生了解函数的定义和意义。

第二步:讲解函数的定义和性质
教师简要介绍函数的定义和性质,包括定义域、值域、自变量和因变量等概念。

第三步:举例说明函数
教师通过一些例题让学生掌握函数的基本性质和运算规则。

第四步:绘制函数的图像
教师示范如何绘制函数的图像,并要求学生根据函数的公式自行绘制函数的图像。

第五步:巩固练习
教师出一些练习题让学生巩固所学的内容,提高解题能力。

第六步:课堂讨论
教师组织学生互相讨论解题方法和答案,促进学生思维的交流。

第七步:作业布置
教师布置相关作业,巩固所学知识。

教学反思:
通过这节课的教学,学生能够熟练掌握函数的基本概念和运算方法,提高数学解题能力和思维能力。

学生在课后应多做练习,巩固所学内容,提高数学学习的效果。

高中数学函数集体备课教案

高中数学函数集体备课教案

高中数学函数集体备课教案
课时安排:2课时
教学目标:
1. 了解函数的基本概念和性质;
2. 能够掌握函数的表示方法;
3. 掌握函数的运算规律;
4. 能够解决与函数相关的问题。

教学准备:
1. 教师准备:教案、教材、课件、教具等;
2. 学生准备:学习笔记、教材、书写工具等。

教学过程:
第一课时:
1. 引入:通过实例引导学生思考什么是函数;
2. 定义函数:向学生介绍函数的定义,包括定义域、值域、对应关系等;
3. 函数的表示方法:介绍函数的表示方法,包括公式、图像、表格等;
4. 函数的运算规律:讲解函数的四则运算规律,包括加法、减法、乘法、除法;
5. 练习:让学生完成几道与函数相关的练习题。

第二课时:
1. 函数的性质:讲解函数的奇偶性、单调性、周期性等性质;
2. 函数的图像:介绍函数的图像,包括平移、翻转等变换;
3. 特殊函数:讲解常见的函数形式,如一次函数、二次函数、指数函数等;
4. 应用:引导学生通过函数解决实际问题;
5. 总结复习:回顾本节课的重点知识点,做一次小结,并布置相关作业。

教学反思:
通过本节课的教学,学生应该能够对函数的基本概念和性质有一定了解,并能够熟练运用函数的表示方法和运算规律。

同时,通过应用题的训练,学生的解决问题的能力也将有所提高。

在未来的教学中,应该继续强调函数与实际问题的联系,引导学生将数学知识灵活应用于实际生活中。

高中数学函数概论教案模板

高中数学函数概论教案模板

高中数学函数概论教案模板
一、教学目标
1. 理解函数的概念及其特点;
2. 掌握函数的定义、性质和基本性质;
3. 熟练运用函数的相关知识解决实际问题。

二、教学内容及安排
1. 函数的概念
- 什么是函数?
- 函数的符号表示:y = f(x)、f: x → y
- 自变量和因变量的概念
2. 函数的性质
- 定义域和值域
- 函数的奇偶性
- 函数的增减性
3. 函数的基本性质
- 函数的连续性
- 函数的周期性
- 函数的单调性
4. 函数的运算
- 函数的相加、相减、相乘、相除
- 函数的复合
5. 实际问题的解决
- 利用函数解决实际问题
- 实际问题的函数建模
三、教学重点与难点
1. 函数的概念及其特点是本节课的重点,学生需要掌握清楚;
2. 函数的运算和实际问题的解决是本节课的难点,需要帮助学生理解和应用。

四、教学方法
1. 讲授与示范结合
2. 分组讨论与合作学习
3. 案例分析与实践应用
五、教学资源
1. 教材
2. 多媒体设备
六、教学评价
1. 课堂练习
2. 作业完成情况
3. 知识掌握程度
七、教学进度安排
第一课:函数的概念
第二课:函数的性质
第三课:函数的基本性质
第四课:函数的运算
第五课:实际问题的解决
八、教学反馈
1. 教师定期对学生学习情况进行诊断和反馈
2. 学生可以提出问题和建议,促进教学质量的提高。

以上为高中数学函数概论教案模板范本,可根据实际教学情况进行调整和修改。

高中数学8个基本函数教案

高中数学8个基本函数教案

高中数学8个基本函数教案一、函数的概念1.1 函数的定义- 什么是函数?函数是一个规则,它把一个集合的每个元素对应到另一个集合的唯一元素上。

- 如何表示函数?可以用f(x) = y表示函数,其中x为自变量,y为因变量。

1.2 函数的图像- 如何画出函数的图像?可以通过绘制函数的函数表格或者利用函数的特性来画出函数的图像。

二、常见函数2.1 平方函数- f(x) = x^2- 特点:单调递增,抛物线图像2.2 根号函数- f(x) = √x- 特点:非负数,开口向上的图像2.3 一次函数- f(x) = ax + b- 特点:斜率为常数,直线图像2.4 指数函数- f(x) = a^x- 特点:底数大于1时为增函数,底数小于1时为减函数2.5 对数函数- f(x) = loga(x)- 特点:定义域为正实数,值域为实数2.6 正弦函数- f(x) = sin(x)- 特点:周期为2π,振幅为12.7 余弦函数- f(x) = cos(x)- 特点:周期为2π,振幅为12.8 正切函数- f(x) = tan(x)- 特点:周期为π,无界区间三、函数的性质3.1 奇偶性- 奇函数:f(-x) = -f(x)- 偶函数:f(-x) = f(x)3.2 周期性- 周期函数:f(x+T) = f(x),其中T为周期3.3 单调性- 增函数:f'(x) > 0,减函数:f'(x) < 03.4 最值- 最小值:f(x) >= min,最大值:f(x) <= max 3.5 零点- 零点:f(x) = 0四、函数的运算4.1 四则运算- 加法:(f+g)(x) = f(x) + g(x)- 减法:(f-g)(x) = f(x) - g(x)- 乘法:(f*g)(x) = f(x) * g(x)- 除法:(f/g)(x) = f(x) / g(x)(g(x) ≠ 0)4.2 复合函数- 复合函数:(fog)(x) = f(g(x))四、实例分析5.1 题目一- 已知f(x) = x^2 - 2x + 1,求f(2)解:f(2) = 2^2 - 2*2 + 1 = 35.2 题目二- 已知f(x) = x^2,求f(3) - f(-3)解:f(3) = 3^2 = 9,f(-3) = (-3)^2 = 9,f(3) - f(-3) = 0六、练习题6.1 计算f(4)和f(-4),其中f(x) = 2x + 36.2 求函数f(x) = x^2 + 2x的最值6.3 求函数f(x) = sin(x)在区间[0, 2π]上的最小值以上为高中数学8个基本函数的教案范本,希望对您有所帮助。

高一数学(函数的概念)教学设计 教案

高一数学(函数的概念)教学设计 教案

1.2.1 函数的概念一、内容与解析函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.二、教学目标及解析1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性和重要性,激发学生学习的积极性.三、问题诊断分析教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.四、教学支持条件分析在本节课()的教学中,准备使用(),因为使用(),有利于().五、教学过程第一课时导入新课问题:已知函数1,0,Rx Qyx Q∈⎧=⎨∈⎩,请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.推进新课新知探究提出问题1.给出下列三种对应:(幻灯片)(1)一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.请回答:①该问题中的自变量与因变量分别是什么?它们的取值范围用集合如何表示?②请得出炮弹飞行1s,5s,10s,20s时距地面的高度③请用集合与对应的语言描述变量之间的依赖关系④用符号语言描述上述的依赖关系时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应f:t→h=130t-5t2,t∈A,h∈B.(2)近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1979~2001年的变化情况.图1-2-1-1请回答:①该问题中的自变量与因变量分别是什么?它们的取值范围用集合如何表示?②从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞的面积大约为1500万平方千米?③请用集合与对应的语言描述变量之间的依赖关系④用符号语言描述上述的依赖关系根据图1-2-1-1中的曲线,可知时间t的变化范围是数集A={t|1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:f:t→S,t∈A,S∈B.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y 随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化. “八五”计划以来我国城镇居民恩格尔系数变化情况时间 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 恩格尔系数y 53.852.950.149.949.948.646.444.541.939.237.9请回答:①恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?②用符号语言描述上述的依赖关系根据上表,可知时间t 的变化范围是数集A={t|1991≤t≤2001},恩格尔系数y 的变化范围是数集B={S|37.9≤S≤53.8}.则有对应: f:t→y,t∈A,y∈B.(2)以上三个实例有什么共同特点?(3)请用集合的观点给出函数的定义. 函数f:A→B 的值域为C,那么集合B=C 吗?初中函数定义:在某一变化过程中,有两个变量x ,y 。

高中数学教案《函数的概念及其表示》

高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。

o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。

o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。

2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。

o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。

o通过小组合作探究,培养学生的合作学习能力和问题解决能力。

3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。

o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。

o通过解决问题,培养学生的耐心、细致和严谨的科学态度。

二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。

●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。

●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。

2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。

●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。

●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。

3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。

●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。

高中数学试讲函数概念教案

高中数学试讲函数概念教案

高中数学试讲函数概念教案
教学内容:函数概念
教学目标:
1. 了解函数的定义以及函数的性质;
2. 能够通过实例理解函数的概念;
3. 能够应用函数的知识解决实际问题。

教学重点:
1. 函数的定义;
2. 函数的性质。

教学难点:
1. 函数的符号表示;
2. 函数的实际应用。

教学手段:课件、实例、互动问答
教学步骤:
第一步:引入
1. 通过一个实际问题引入函数的概念,例如“一家商店的销售额与月份的关系是什么?”;
2. 提问学生对函数的理解,引出函数的定义。

第二步:函数的定义
1. 介绍函数的定义:“如果对于每一个输入值,都有且只有一个对应的输出值,那么这个关系就是一个函数”;
2. 通过实例解释函数的概念,引导学生理解函数的含义;
3. 强调函数的符号表示,如f(x)表示函数。

第三步:函数的性质
1. 介绍函数的性质包括单调性、奇偶性、周期性等;
2. 通过实例让学生了解函数的不同性质,并能够判断一个函数的性质。

第四步:函数的应用
1. 通过实际问题引导学生应用函数的知识,如“某人每个月的工资是一笔固定的底薪加上销售提成,请用函数来表示他的月收入”;
2. 让学生自己动手解决一些实际问题,锻炼他们应用函数的能力。

第五步:总结
1. 总结本节课的内容,强调函数的概念及其应用;
2. 鼓励学生多多练习,提升对函数的理解和运用能力。

教学反馈:
1. 针对学生的反馈进行弥补和巩固;
2. 鼓励学生多多练习,加深对函数的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-函数的概念教案
教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画
函数概念中的作用;
(2)了解构成函数的要素;
(3)会求一些简单函数的定义域和值域;
(4)能够正确使用“区间”的符号表示某些函数的定义域;
教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;
教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;
教学过程:
一、引入课题
1.复习初中所学函数的概念,强调函数的模型化思想;
2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:
(1)炮弹的射高与时间的变化关系问题;
(2)南极臭氧空洞面积与时间的变化关系问题;
(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题
3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;
4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.
二、新课教学
(一)函数的有关概念
1.函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数(function).
记作:y=f(x),x∈A.
其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).注意:
○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:
定义域、对应关系和值域
3.区间的概念
(1)区间的分类:开区间、闭区间、半开半闭区间;
(2)无穷区间;
(3)区间的数轴表示.
4.一次函数、二次函数、反比例函数的定义域和值域讨论
(由学生完成,师生共同分析讲评)
(二)典型例题
1.求函数定义域
课本P19例1
解:(略)
说明:
○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;
○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;
○3函数的定义域、值域要写成集合或区间的形式.
巩固练习:课本P22第1题
2.判断两个函数是否为同一函数
课本P20例2
解:(略)
说明:
○1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
○2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

(三)课堂练习
求下列函数的定义域
(1)|
x |x 1)x (f -= (2)x 111
)x (f +=
(3)5x 4x )x (f 2+--=
(4)1
x x 4)x (f 2
--= (5)10x 6x )x (f 2+-=
(6)13x x 1)x (f -++
-= 三、 归纳小结,强化思想
从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

四、 作业布置
课本P 28 习题1.2(A 组) 第1—7题 (B 组)第1题。

相关文档
最新文档