关于二次函数常见问题

合集下载

二次函数的性质精选题35道

二次函数的性质精选题35道

二次函数的性质精选题35道一.选择题(共10小题)1.对于二次函数y=﹣x2+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7)D.图象与x轴有两个交点2.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2B.或C.D.13.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤34.已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则△PMF周长的最小值是()A.3B.4C.5D.65.对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2C.对称轴是直线x=﹣1,最小值是2D.对称轴是直线x=﹣1,最大值是26.关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣37.二次函数y=ax2+bx+c(a≠0)的大致图象如图,与x轴交点为(﹣1,0)和(2,0),关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>08.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣29.抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)10.抛物线y=x2﹣6x+4的顶点坐标是()A.(3,5)B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)二.填空题(共18小题)11.二次函数y=x2﹣2x+3图象的顶点坐标为.12.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.13.如果函数y=b的图象与函数y=x2﹣3|x﹣1|﹣4x﹣3的图象恰有三个交点,则b的可能值是.14.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.15.已知函数y=的图象如图所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.16.对于实数p,q,且(p≠q),我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.17.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.18.已知函数y=﹣x2﹣2x,当时,函数值y随x的增大而增大.19.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A 作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.20.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.21.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,2).若抛物线y=﹣(x﹣h)2+k(h、k为常数)与线段AB交于C、D两点,且CD=AB,则k 的值为.22.抛物线y=3(x﹣1)2+8的顶点坐标为.23.二次函数y=x2+2x﹣4的图象的对称轴是,顶点坐标是.24.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2﹣4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0.其中,正确结论的有.25.已知二次函数y=ax2﹣bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是;若a+b的值为非零整数,则b的值为.26.已知抛物线y=+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为,P是抛物线y=+1上一个动点,则△PMF周长的最小值是.27.已知抛物线y=x2+mx+9的顶点在x轴上,则m的值为.28.抛物线y=x2﹣6x+1的顶点坐标是.三.解答题(共7小题)29.如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.30.在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.(1)求点C的坐标;(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.31.如图,已知抛物线y=x2﹣(k+1)x+1的顶点A在x轴的负半轴上,且与一次函数y=﹣x+1交于点B和点C.(1)求k的值;(2)求△ABC的面积.32.设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a =﹣c ,b =2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y =x 2+x +1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ,函数y 1+y 2恰是y 1﹣y 2的“反倍顶二次函数”,求n .33.在平面直角坐标系xOy 中,抛物线G :y =mx 2+2mx +m ﹣1(m ≠0)与y 轴交于点C ,抛物线G 的顶点为D ,直线:y =mx +m ﹣1(m ≠0).(1)当m =1时,画出直线和抛物线G ,并直接写出直线被抛物线G 截得的线段长.(2)随着m 取值的变化,判断点C ,D 是否都在直线上并说明理由.(3)若直线被抛物线G 截得的线段长不小于2,结合函数的图象,直接写出m 的取值范围.34.在平面直角坐标系xOy 中,抛物线y =ax 2+bx 经过点(3,3).(1)用含a 的式子表示b ;(2)直线y =x +4a +4与直线y =4交于点B ,求点B 的坐标(用含a 的式子表示);(3)在(2)的条件下,已知点A (1,4),若抛物线与线段AB 恰有一个公共点,直接写出a (a <0)的取值范围.35.小明根据学习函数的经验,对函数y =x 4﹣5x 2+4的图象与性质进行了探究. 下面是小明的探究过程,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表:x … ﹣2 ﹣10 1 2 …y … 4.3 3.2 0 ﹣﹣0 2.8 3.7 4 3.7 2.8 0 ﹣﹣m 3.2 4.3 …2.2 1.4 1.4 2.2其中m=;(2)如图,在平面直角坐标系xOy中,描出了以上表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(3)观察函数图象,写出一条该函数的性质;(4)进一步探究函数图象发现:①方程x4﹣5x2+4=0有个互不相等的实数根;②有两个点(x1,y1)和(x2,y2)在此函数图象上,当x2>x1>2时,比较y1和y2的大小关系为:y1y2(填“>”、“<”或“=”);③若关于x的方程x4﹣5x2+4=a有4个互不相等的实数根,则a的取值范围是.。

二次函数的特殊情况讨论与解答

二次函数的特殊情况讨论与解答

二次函数的特殊情况讨论与解答二次函数是一种重要的数学函数,在数学中有着广泛的应用。

在学习二次函数时,我们常常会遇到一些特殊情况,需要进行具体的讨论和解答。

本文将对二次函数的一些特殊情况进行分析与解答。

1. 零点问题二次函数的零点即函数的根,也就是使得函数取值为零的输入值。

通过求解二次方程 f(x) = ax^2 + bx + c = 0,我们可以确定二次函数的零点。

但是,有时候我们会遇到以下特殊情况:1.1 零点个数为0:当二次函数的判别式 b^2 - 4ac 小于0时,方程无实根,即该二次函数在实数范围内无零点。

1.2 零点个数为1:当二次函数的判别式 b^2 - 4ac 等于0时,方程有一个实根,即该二次函数与 x 轴相切于零点处。

1.3 零点个数为2:当二次函数的判别式 b^2 - 4ac 大于0时,方程有两个不相等的实根,即该二次函数与 x 轴交于两个不同的零点。

2. 凸凹性问题二次函数的凸凹性描述了函数图像开口的方向。

通过判断二次函数的二次项系数 a 的正负性,我们可以确定二次函数的凸凹性。

以下是几种常见情况:2.1 a > 0:当二次函数的二次项系数 a 大于0时,函数图像开口朝上,表示该二次函数是凹函数。

2.2 a < 0:当二次函数的二次项系数 a 小于0时,函数图像开口朝下,表示该二次函数是凸函数。

3. 对称轴问题二次函数的对称轴是函数图像的一个重要性质,它是图像左右对称的一条线。

通过求解二次函数的顶点坐标,我们可以确定二次函数的对称轴。

以下是计算对称轴的方法:3.1 对称轴的 x 坐标为顶点的横坐标:对于二次函数 f(x) = ax^2 + bx + c,其中顶点的横坐标为 x = -b/2a,即对称轴的 x 坐标为 -b/2a。

4. 特殊点问题除了零点和对称轴,二次函数还有其他一些重要的特殊点需要进行讨论。

4.1 顶点:二次函数的顶点是函数图像的最高或最低点,在代数上表示为 (h, k)。

二次函数存在性问题专题复习(全面典型含答案)

二次函数存在性问题专题复习(全面典型含答案)

中考数学专题复习——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来包括深圳在内各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

以下为几种典型的二次函数中出现的存在性问题,讲解后希望各位考生在以后的考试中如果遇到此类型时能够很顺畅的把过程写下来。

一、二次函数中相似三角形的存在性问题1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.(2011临沂13分)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3. (2011日照10分)如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX 错误!未找到引用源。

二次函数的常见问题

二次函数的常见问题

二次函数的常见问题二次函数是高中数学中常见的一种函数形式,它的图像呈现出抛物线的形状,具有很多特性和应用。

然而,在学习和使用二次函数的过程中,人们常常会遇到一些问题。

本文将探讨二次函数的常见问题,并给出解答和解决方法。

一、二次函数的基本形式和特点在介绍常见问题之前,首先需要了解二次函数的基本形式和特点。

二次函数的一般形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。

二次函数的图像通常为一个抛物线,开口的方向和抛物线的开口方向与a的正负有关。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(-b/2a, f(-b/2a)),是二次函数的最值点。

二次函数还可通过平移、缩放等变换获得不同的函数图像。

二、常见问题及解答问题一:如何求二次函数的解析式?解答:求解二次函数的解析式需要已知函数经过的点或给定其他的条件。

首先,利用已知条件列方程,然后使用解方程的方法求得系数a、b、c的值,最终得到二次函数的解析式。

问题二:如何确定二次函数的开口方向?解答:二次函数的开口方向由系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

问题三:如何求二次函数的顶点坐标及最值?解答:二次函数的顶点坐标可以通过对称轴的概念求解。

对称轴的横坐标为-x⁰/2a,带入函数表达式找到对应的函数值即可得到顶点坐标。

最值即为顶点的纵坐标。

问题四:如何根据函数图像确定二次函数的性质?解答:二次函数的图像可以反映出其诸多性质,如开口方向、顶点坐标、最值等。

通过观察图像的形状和位置,可以确定二次函数的性质。

问题五:如何判断给定的点是否在二次函数上?解答:将点的坐标代入二次函数的解析式,若等式成立,则给定的点在二次函数上。

问题六:如何求二次函数与坐标轴的交点?解答:对于二次函数与x轴的交点,即求解方程f(x) = 0;对于二次函数与y轴的交点,直接读取常数项即可。

二次函数易错题汇编及答案

二次函数易错题汇编及答案

二次函数易错题汇编及答案一、选择题1.若二次函数y=x2-2x+2在自变量x满足mwxwm+l时的最小值为6,则m的值为( )A.V15,-<'5,1+<5,1-V12B. —J5,+5 +1C. 1D. —5,1—\ 5【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.【详解】*/y=x2 - 2x+2=(x - 1) 2+1,・••抛物线开口向上,对称轴为x=1,当m>1时,可知当自变量x满足m<x<m+1时,y随x的增大而增大,.,.当x=m时,y有最小值,二m2 - 2m+2 = 6,解得m = 1+*.:5 或m = 1 - <5 (舍去),当m+1<1时,可知当自变量x满足m<x<m+1时,y随x的增大而减小,.,.当x=m+1时,y有最小值,/.(m+1) 2 - 2 (m+1) +2 = 6,解得m=。

5 (舍去)或m=- %:'5 ,综上可知m的值为1+ %区•或-、丐.故选B.【点睛】本题主要考查二次函数的性质,用m表示出其最小值是解题的关键.2.抛物线y = -x2+bx+3的对称轴为直线x = -1.若关于x的一元二次方程—x2+bx+3 - t=0 (t为实数)在-2<x<3的范围内有实数根,则t的取值范围是( )A. - 12<t<3B. - 12<t<4C. - 12<t<4D. - 12<t<3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y=—x2-2x+3,将一元二次方程一x2 + bx+3-t=0的实数根看做是y=—x2-2x+3与函数y=t的交点,再由-2<x<3确定y的取值范围即可求解.【详解】解:・・・y=—x2+bx+3的对称轴为直线x=-1,, b = -2,.*.y= —X2-2X+3,,一元二次方程一x2 + bx+3-t = 0的实数根可以看做是y=-X2-2X+3与函数y=t的交点,\•当x=-l 时,y=4;当x=3 时,y=-12,二函数y=—x2-2x+3 在-2Vx<3 的范围内一12<yW4,.,.-12<t<4,故选:C.【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.已知,二次函数y=ax2+bx+a2+b (aM)的图象为下列图象之一,则a的值为()A. -1B. 1C. -3D. -4【答案】A【解析】【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0, a2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛物线与x的交点坐标得到x2=-a,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1, 0)代入解析式得到a-b+a2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2, 0) 和(0,0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0, y=ax2+a2,其顶点坐标为(0,a2),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0, y=ax2+a2, a2=3,而当y=0时,x2=-a,所以-a=4, a=-4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=-1, y=0,则a-b+a2+b=0,所以a=-1;若二次函数的图形为第四个,令x=0, y=0,则a2+b=0①;令x=-2, y=0,则4a-2b+a2+b=0②,由①②得a=-2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a/0)的图象与系数的关系:a>0,开口向上;a<0,开口. ... ......................................... b 一,,,一、,b 4ac - b2, ........ ... ................. 向下;抛物线的对称轴为直线x=-;顶点坐标为(-,--------- );也考查了点在抛物线2a 2a 4a上则点的坐标满足抛物线的解析式.4.已知二次函数y=ax2+bx+c (。

二次函数经典30问

二次函数经典30问

一道二次函数题经典30问让你一次掌握二次函数所有题型二次函数压轴题的基本模型求解析式问题线段问题面积问题特殊图形问题相似三角形问题角度问题图形变换问题题目呈现问题01已知:抛物线与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.cbxxy++=2(1)求此抛物线的解析式及点D的坐标.y=x2+2x-3D(-1,-4)问题02(2)判断△ACD 的形状,并说明理由.2.gsp△ACD 是直角三角形问题03(3)求四边形ABCD 的面积.3.gsp问题04(4)在对称轴上找一点P ,使得△BCP 的周长最小,求出P点坐标及△BCP 的周长.4.gsp问题05(5)在对称轴上找一点P ,使得|PA-PC|最大,求点P 的坐标;5.gsp问题06(6)在直线AC 下方的抛物线上有一动点N ,过点N 的直线l //y 轴,交线段AC 于点M ,求线段MN 的最大值及此时点N 的坐标.6.gsp问题07(7)E 是y 轴上一动点,若BE=CE,求点E 的坐标.7.gsp问题08(8)抛物线上有一动点P ,过点P 的作PM ⊥x 轴于M ,交直线AC 于点N ,在线段PM 、MN 中,若其中一条线段是另一条线段的2倍,求点P 的坐标.8.gsp问题09(9)直线AC 下方的抛物线上有一动点P ,过点P 作PH ⊥AC 于H ,求线段PH 的最大值及此时点P 的坐标.9.gsp问题10(10)直线AC 下方的抛物线上有一动点P ,过点P 作PH ⊥AC 于H ,PG //y 轴交AC 于G ,以GH 、PH 为邻边作矩形PEGH,求矩形PEGH 周长的最小值.10.gsp问题11(11)在AC 下方的抛物线上是否存在一点N ,使得△CAN 的面积最大?若存在,请求出△CAN 的最大面积及点N 的坐标.11.gsp问题12(12)在AC 下方的抛物线上是否存在一点N ,使得四边形ABCN 的面积最大?若存在,请求出四边形ABCN 的最大面积12.gsp问题13(13)在y轴上是否存在一点E,使得△ADE是直角三角形?若存在,求出点E的坐标;若不存在,请说明理由;13.gsp问题14(14)在y轴上是否存在一点F,使得△ADF是等腰三角形?若存在,求出点F的坐标;若不存在,请说明理由.14.gsp问题15(15)抛物线上是否存在一点N (不与点C 重合),使得?若存在,求出点N 的坐标;若不存在,请说明理由;ABC ABN S S ∆∆=15.gs p题16若存在,求出点H 的坐标;若不存在,请说明理由;16.gsp题17若存在,求出点Q 的坐标;若不存在,请说明理由;17.gsp问题18(18)抛物线上是否存在一点E,使得BE平分△ABC的面积?若存在,求出点E的坐标;若不存在,请说明理由.18.gsp题19使AC平分△APM 的面积.18.gs p题20使AC 分△APM 的面积为2:1两部分.20.gsp问题21(21)在对称轴上有一点M,在抛物线上有一点N,若以A、B、M、N为顶点的四边形是平行四边形,求M、N的坐标;21.gsp问题22(22)作垂直于x 的直线x =-1, 交直线AC 于点M ,交抛物线于点N ,以A 、M 、N 、E 为顶点作平行四边形,求第四个顶点E 的坐标;22.gsp问题23(23)点E 是抛物线上一动点,点F 在抛物线的对称轴上,若以C 、D 、E 、F 为顶点的四边形是菱形,求点E 的坐标.23.gsp问题24(24)在抛物线上能不能找到一点P ,使得∠POC =∠PCO ?若能,求出点P 的坐标;若不能,请说明理由.24.gsp问题25(25)在线段AC上是否存在点M,使得△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由;25.gsp问题26(26)P 是抛物线上一个动点,作PH ⊥x 轴于H ,是否存在一点P ,使得△P AH 与△BOC 相似?若存在,求出点P的坐标,说明理由.26.gsp问题27(27)将△BOC 绕平面内一点顺时针旋转90°,得到△B'O'P', 若△B'O'P'恰好有两个点同时落在抛物线上,求点O'的横坐标.问题28(28)将AD 所在直线绕点A 逆时针旋转45°,所得直线与抛物线交于点M,求点M 的坐标.28.gsp问题29(29)过点B 的直线交直线AC 于点M , 当直线AC 与BM 的夹角等于∠ACB 的2倍时,直接写出点M 的坐标.29.gsp问题30(30)y 轴上是否存在一点N , 使得∠BCO +∠BNO =∠BAC?若存在,直接写出点N 的坐标.30.gsp特别提醒30.gsp。

中考数学二次函数知识点难题

中考数学二次函数知识点难题

中考数学二次函数知识点难题在中考数学中,二次函数一直是重点和难点,很多同学在面对二次函数相关的难题时常常感到头疼。

接下来,让我们一起深入探讨一些常见且具有挑战性的二次函数知识点难题。

一、二次函数的图像和性质二次函数的图像是一条抛物线,其一般式为 y = ax²+ bx + c(a ≠ 0)。

其中,a 决定了抛物线的开口方向和大小。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

对称轴的公式为 x = b / 2a。

顶点坐标为(b / 2a,(4ac b²) /4a)。

例如,给定一个二次函数 y = 2x² 4x 1,首先求出对称轴 x =(-4) /(2×2) = 1。

再将 x = 1 代入函数,求出顶点纵坐标为 2×1² 4×1 1 =-3,所以顶点坐标为(1, -3)。

对于这类问题,常常会要求我们根据给定的条件确定函数的图像特征,或者根据图像特征求出函数的表达式。

二、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c 与一元二次方程 ax²+ bx + c = 0 有着密切的联系。

当抛物线与 x 轴有两个交点时,对应的一元二次方程有两个不同的实数根;当抛物线与 x 轴有一个交点时,对应的一元二次方程有两个相同的实数根(即判别式Δ = b² 4ac = 0);当抛物线与 x 轴没有交点时,对应的一元二次方程没有实数根(即Δ < 0)。

例如,已知二次函数 y = x² 2x 3,令 y = 0,得到 x² 2x 3 = 0,因式分解为(x 3)(x + 1) = 0,解得 x₁= 3,x₂=-1,所以抛物线与 x 轴的交点为(3, 0) 和(-1, 0)。

这类问题可能会要求我们求出抛物线与 x 轴的交点坐标,或者根据交点情况判断方程根的情况。

二次函数最值问题(含答案)

二次函数最值问题(含答案)

二次函数最值问题一.选择题(共8小题)1.如果多项式P=a2+4a+2014,则P的最小值是()A.2010 B.2011 C.2012 D.20132.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.63.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有()A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣34.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.06.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或37.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为()A.B.2 C.D.8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()A.7 B.7.5 C.8 D.9二.填空题(共2小题)9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是.10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上,=6.当线段OM最长时,点M的坐标为.点M在x轴负半轴上,S△ABM三.解答题(共3小题)11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.12.已知关于x的函数y=kx2+(2k﹣1)x﹣2(k为常数).(1)试说明:不论k取什么值,此函数图象一定经过(﹣2,0);(2)在x>0时,若要使y随x的增大而减小,求k的取值范围;(3)试问该函数是否存在最小值﹣3?若存在,请求出此时k的值;若不存在,请说明理由.13.函数y=(m+2)是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时,当x为何值时,y 随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时,当x为何值时,y随x 的增大而减小.二次函数最值问题(含答案)一.选择题(共8小题)1.A;2.D;3.D;4.B;5.C;6.B;7.D;8.C;9.1;9;10.(﹣3,0);三.解答题(共3小题)11.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.12.解:(1)将x=﹣2代入,得y=k(﹣2)2+(2k﹣1)•(﹣2)﹣2=0,故不论k取何值,此函数图象一定经过点(﹣2,0).(2)①若k=0,此函数为一次函数y=﹣x﹣2,当x>0时,y随x的增大而减小,∴k=0符合题意.②若k≠0,此函数为二次函数,而图象一定经过(﹣2,0)、(0,﹣2)∴要使当x>0时,y随x的增大而减小,开口向下,须满足k<0即可.综上,k的取值范围是k≤0.(3)若k=0,此函数为一次函数y=﹣x﹣2,∵x的取值为全体实数,∴y无最小值,若k≠0,此函数为二次函数,若存在最小值为﹣3,则=﹣3,且k>0,解得:k=符合题意,∴当k=时,函数存在最小值﹣3.13.解:(1)根据题意得m+2≠0且m2+m﹣4=2,解得m1=2,m2=﹣3,所以满足条件的m值为2或﹣3;(2)当m+2>0时,抛物线有最低点,所以m=2,抛物线解析式为y=4x2,所以抛物线的最低点为(0,0),当x≥0时,y随x的增大而增大;(3)当m=﹣3时,抛物线开口向下,函数有最大值;抛物线解析式为y=﹣x2,所以二次函数的最大值是0,这时,当x≥0时,y随x的增大而减小.。

二次函数最值问题及解题技巧(个人整理)

二次函数最值问题及解题技巧(个人整理)

二次函数最值问题及解题技巧(个人整理)一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值规模判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可2、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)使用二次函数轴对称性及两点之间线段最短找到两条变革的边,并求其和的最小值3)周长最小值即为两条变革的边的和最小值加上不变的边长3、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)使用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值规模判断最值2、不划定规矩图形面积最值问题1)支解。

《二次函数》经典50题含解析

《二次函数》经典50题含解析

《二次函数》50题一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y3>y2>y13.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤26.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.27.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y28.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y29.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y012.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.413.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.1615.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.418.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.519.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣522.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<823.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.427.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣228.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.229.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为531.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.232.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.1133.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<334.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=235.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<036.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.740.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定44.若二次函数y=﹣x2+px+q的图象经过A(1+m,n)、B(0,y1)、C(3﹣m,n)、D(m2﹣2m+5,y2)、E(2m﹣m2﹣5,y3),则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y3<y1 45.设抛物线y=ax2+bx+c(ab≠0)的顶点为M,与y轴交于N点,连接直线MN,直线MN与坐标轴所围三角形的面积记为S.下面哪个选项的抛物线满足S=1.()A.y=﹣3(x﹣1)2+1B.y=2(x﹣0.5)(x+1.5)C.y=x+1D.y=(a2+1)x2﹣4x+2(a为任意常数)46.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个47.已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a+c=1;②b2﹣4ac≥0;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4 个B.3 个C.2 个D.1 个48.若二次函数y=|m|x2+nx+c的图象经过A(a,b)、B(0,y1)、C(5﹣a,b)、D(,y2)、E(3,y3),则y1、y2、y3的大小关系是()A.y2<y3<y1B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 49.如图,在平面直角坐标系中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.D.50.如图,抛物线y=x2﹣2x﹣3与y轴交于点A,与x轴的负半轴交于点B,点M是对称轴上的一个动点.连接AM,BM,当|AM﹣BM|最大时,点M的坐标是()A.(1,4)B.(1,2)C.(1,﹣2)D.(1,﹣6)参考答案与试题解析一.选择题(共50小题)1.在同一平面直角坐标系中,若抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,则抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是()A.(﹣2,8)B.(﹣2,10)C.(﹣2,12)D.(﹣2,14)【解答】解:∵抛物线W1:y=x2+(2m﹣1)x+2m﹣4与抛物线W2:y=x2﹣(3m+n)x+n关于直线x=﹣1对称,∴(﹣+)=﹣1,∴m+n=﹣5,∴抛物线W1上的点A(0,y)在抛物线W2上的对应点A′坐标是(﹣2,y),∴2m﹣4=4+2(3m+n)+n,∴4m+3n=﹣8,解得m=7,∴y=2m﹣4=10,∴在抛物线W2上的对应点A′坐标是(﹣2,10),故选:B.2.已知抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2D.y3>y2>y1【解答】解:抛物线y=ax2+bx﹣2(a>0)过A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3)四点,∴抛物线开口向上,对称轴为x==﹣1.∵|﹣1﹣(﹣2)|<|1+1|<|+1|∴y3>y2>y1,故选:D.3.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,OB=OC,对称轴为直线x=﹣2,则下列结论:①abc>0;②a﹣c>0;③ac+b =1;④﹣4﹣c是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根.其中正确的有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣2,∴b=4a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵点B到直线x=﹣2的距离大于2,∴点A到直线x=﹣2的距离大于2,即点A在(﹣4,0)的左侧,∴当x=﹣4时,y>0,即16a﹣4b+c>0,∴a﹣b+c>0,所以②正确;∵C(0,c),OB=OC,∴B(c,0),∴ac2+bc+c=0,即ac+b+1=0,所以③错误;∵点A与点B关于直线x=1对称,∴A(﹣4﹣c,0),∴﹣4﹣c是关于x的一元二次方程ax2+bx+c=0的一个根,所以④正确.故选:C.4.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc>0;②2a﹣b=0;③9a﹣3b+c=0;④若m>n>0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②∵对称轴为直线x=﹣1,即﹣=﹣1,解得b=2a,即2a﹣b=0,所以②正确;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;∵m>n>0,∴m﹣1>n﹣1>﹣1,由x>﹣1时,y随x的增大而减小知x=m﹣1时的函数值小于x=n﹣1时的函数值,所以④正确;故选:D.5.已知二次函数y=x2﹣2x+2(其中x是自变量),当0≤x≤a时,y的最大值为2,y的最小值为1.则a的值为()A.a=1 B.1≤a<2 C.1<a≤2 D.1≤a≤2【解答】解:∵二次函数y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的对称轴为x=1,顶点(1,1),∴当y=1时,x=1,当y=2时,x2﹣2x+2=2,x=0或2,∵当0≤x≤a时,y的最大值为2,y的最小值为1,∴1≤a≤2,故选:D.6.已知抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,则b的值为()A.﹣2 B.﹣1 C.1 D.2【解答】解:抛物线y=﹣x2+bx+4经过点(﹣3,m)和(5,m)两点,可知函数的对称轴x=1,∴﹣=1,∴b=2;故选:D.7.已知点(﹣1,y1),(,y2),(4,y3)都在抛物线y=﹣2x2+4x+c上,则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2【解答】解:∵抛物线y=﹣2x2+4x+c的对称轴为直线x=1,且抛物线的开口向下,∴离抛物线对称轴的水平距离越远,对应函数值越小,∵点(4,y3)离对称轴的距离最远,点(,y2)离对称轴的距离最近,∴y2>y1>y3,故选:C.8.已知点A(3,y1),B(5,y2),C(﹣4,y3)均在抛物线y=3x2﹣6x+m上,下列说法中正确的是()A.y3>y1>y2B.y1>y2>y3C.y1<y2<y3D.y1>y3>y2【解答】解:∵抛物线y=3x2﹣6x+m,∴抛物线的开口向上,对称轴是直线x=﹣=1,∴抛物线上的点离对称轴最远,对应的函数值就越大,∵点(﹣4,y3)离对称轴最远,点A(3,y1)离对称轴最近,∴y1<y2<y3.故选:C.9.将二次函数y=x2的图象先向左平移2个单位,再向上平移3个单位,得到的二次函数的表达式为()A.y=2x2+3 B.y=﹣2x2﹣3 C.y=(x﹣2)2﹣3 D.y=(x+2)2+3 【解答】解:依题意可知,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(﹣2,3),又因为平移不改变二次项系数,所以所得抛物线解析式为:y=(x+2)2+3.故选:D.10.在抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,则n的值为()A.B.C.1 D.【解答】解:抛物线y=2(x﹣1)2经过(m,n)和(m+3,n)两点,可知函数的对称轴x==1,∴m=﹣;将点(﹣,n)代入函数解析式,可得n=2(﹣﹣1)2=;故选:A.11.抛物线y=ax2+4x+c(a>0)经过点(x0,y0),且x0满足关于x的方程ax+2=0,则下列选项正确的是()A.对于任意实数x都有y≥y0B.对于任意实数x都有y≤y0C.对于任意实数x都有y>y0D.对于任意实数x都有y<y0【解答】解:∵x0满足关于x的方程ax+2=0,∴x0=﹣,∴点(x0,y0)是二次函数y=ax2+4x+c的顶点坐标.∵a>0,∴对于任意实数x都有y≥y0.故选:A.12.如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<0;②a+b=0;③b<a+c;④4c=4+a,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以①正确;∵抛物线的顶点坐标为(,1),∴抛物线得对称轴为直线x=﹣=,∴b=﹣a,即a+b=0,所以②正确;∵抛物线与x轴的负半轴的交点到原点的距离小于1,∴x=﹣1时,y<0,∴a﹣b+c<0,即b>a+c,所以③错误;∵抛物线的顶点的纵坐标为1,∴=1,把b=﹣a代入得4c﹣a=4,所以④正确.故选:C.13.已知抛物线y=ax2+bx+c(a>0)交x轴于点A(x1,0),B(x2,0),且x1<x2,点P (m,n)(n<0)在该抛物线上.下列四个判断:①b2﹣4ac≥0;②若a+c=b+3,则该抛物线一定经过点(1,3);③方程ax2+bx+c=n的解是x=m;④当m=时,△P AB的面积最大.其中判断一定正确.的序号是()A.①B.②C.③D.④【解答】解:∵抛物线与x轴交于点A(x1,0),B(x2,0),且x1<x2,∴△=b2﹣4ac>0,所以①错误;若a+c=b+3,即a﹣b+c=3,则该抛物线一定经过点(﹣1,3),所以②错误;当P(m,n)为抛物线的顶点时,方程ax2+bx+c=n的解是x=m;若P(m,n)不为抛物线的顶点,则方程ax2+bx+c=n有两个不相等的实数解,所以③错误;当P点为顶点时,△P AB的面积最大.此时x=﹣=m,∵x1、x2为方程ax2+bx+c=0的两不相等的实数解,∴x1+x2=﹣,∴m=,所以④正确.故选:D.14.定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的周长值与面积值相等,则这个点叫做和谐点,这个矩形叫做和谐矩形.已知点P(m,n)是抛物线y=x2+k上的和谐点,对应的和谐矩形的面积为16,则k的值为()A.﹣12 B.0 C.4 D.16【解答】解:∵点P(m,n)是抛物线y=x2+k上的点,∴n=m2+k,∴k=n﹣m2,∴点P(m,n)是和谐点,对应的和谐矩形的面积为16,∴2|m|+2|n|=|mn|=16,∴|m|=4,|n|=4,当n≥0时,k=n﹣m2=4﹣16=﹣12;当n<0时,k=n﹣m2=﹣4﹣16=﹣20.故选:A.15.如右图是二次函数y=ax2+bx+c(a≠0)图象的一部分,函数图象经过点(2,0),x=﹣1是对称轴,有下列结论:①2a﹣b=0;②9a﹣3b+c<0;③若(﹣2,y1),(,)是抛物线上两点,则y1<y2,④a﹣b+c=﹣9a;其中正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:∵抛物线的对称轴为直线x=﹣1,∴﹣=﹣1,∴b=2a,即2a﹣b=0,所以①正确;∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∴当x=﹣3时,y>0,即9a﹣3b+c>0,所以②错误;∵抛物线开口向下,点(﹣2,y1)到直线x=﹣1的距离比点(,)到直线x=﹣1的距离小,∴y1>y2,所以③错误;∵x=2,y=0,∴4a+2b+c=0,把b=2a代入得4a+4a+c=0,解得c=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,所以④正确.故选:B.16.直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2),关于这两个交点的说法正确的为()A.点A在第三象限,点B在第四象限B.点A在第四象限,点B在第三象限C.都在第三象限D.都在第四象限【解答】解:由抛物线y=﹣x2+3x﹣1可知抛物线开口向下,与y轴的交点为(0,﹣1),对称轴为直线x=﹣>0,∴抛物线对称轴在y轴的右侧,∴直线y=﹣与抛物线y=﹣x2+3x﹣1的两个交点为A(x1,y)和B(x2,y)(x1<x2)都在第四象限,故选:D.17.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<<,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.18.阅读材料:坐标平面内,对于抛物线y=ax2+bx(a≠0),我们把点(﹣)称为该抛物线的焦点,把y=﹣称为该抛物线的准线方程.例如,抛物线y=x2+2x 的焦点为(﹣1,﹣),准线方程是y=﹣.根据材料,现已知抛物线y=ax2+bx(a ≠0)焦点的纵坐标为3,准线方程为y=5,则关于二次函数y=ax2+bx的最值情况,下列说法中正确的是()A.最大值为4 B.最小值为4C.最大值为3.5 D.最小值为3.5【解答】解:根据题意得=3,﹣=5,解得a=﹣,b=2或b=﹣2,∴抛物线y=ax2+bx(a≠0)的解析式为y=﹣x2+2x或y=﹣x2﹣2x,∵y=﹣x2+2x=﹣(x﹣4)2+4,y=﹣x2﹣2x=﹣(x+4)2+4,∴二次函数y=ax2+bx有最大值4.故选:A.19.在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+2m,则m的值是()A.﹣B.﹣C.1 D.﹣或﹣【解答】解:∵一条抛物线的函数表达式为y=﹣x2+4x+2m,∴这条抛物线的顶点为(2,2m+4),∴关于x轴对称的抛物线的顶点(2,﹣2m﹣4),∵它们的顶点相距6个单位长度.∴|2m+4﹣(﹣2m﹣4)|=6,∴4m+8=±6,当4m+8=6时,m=﹣,当4m+8=﹣6时,m=﹣,∴m的值是﹣或﹣.故选:D.20.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.【解答】解:A、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b>0,所以函数y=ax2+bx+2b的图象开口向上,对称轴x<0,与y轴的交点位于直线的上方,由ax2+bx+2b=﹣ax+b整理得ax2+(a+b)x+b=0,由于△=(a+b)2﹣4ab=(a﹣b)2≥0,则两图象有交点,故A错误;B、一次函数的图象经过一、二、四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故B错误;C、一次函数的图象经过一、二、三象限,则﹣a>0,即a<0,b>0,所以函数y=ax2+bx+2b开口向下,对称轴x>0,故C错误;D、一次函数的图象经过二、三,四象限,则﹣a<0,即a>0,b<0,所以函数y=ax2+bx+2b开口向上,对称轴x>0,故D正确;故选:D.21.将抛物线y=﹣2x2﹣3向右平移2个单位长度,再向上平移1个单位长度,所得到的抛物线为()A.y=﹣2(x+2)2+2 B.y=﹣2(x﹣2)2﹣2C.y=﹣2(x+2)2﹣2 D.y=﹣2(x﹣2)2﹣5【解答】解:∵抛物线y=﹣2x2﹣3向右平移2个单位长度,∴平移后解析式为:y=﹣2(x﹣2)2﹣3,∴再向上平移1个单位长度所得的抛物线解析式为:y=﹣2(x﹣2)2﹣3+1.即y=﹣2(x﹣2)2﹣2;故选:B.22.抛物线y=x2+bx+3的对称轴为直线x=2.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在1<x<5的范围内只有一个实数根,则t的取值范围是()A.0≤t<8或t=﹣1 B.t≥0C.0<t<8 D.0≤t<8【解答】解:∵抛物线y=x2+bx+3的对称轴为直线x=2.∴﹣=2,解得:b=﹣4,∴y=x2﹣4x+3,∴一元二次方程x2+bx+3﹣t=0有实数根可以看做y=x2﹣4x+3与函数y=t只有一个交点,∵方程x2﹣4x+3﹣t=0(t为实数)在1<x<5的范围内只有一个实数根,当x=1时,y=0;当x=5时,y=8;当x=2时,y=﹣1;∴t的取值范围是0≤t<8或t=﹣1.故选:A.23.抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),将抛物线M绕点B 旋转180°,得到新的抛物线M',则M'的表达式为()A.y=x2+8x﹣12 B.y=x2+8x+12 C.y=x2﹣8x﹣12 D.y=x2﹣8x+12 【解答】解:∵抛物线M:y=﹣x2+4与x轴交于两点A、B(点A在点B的左侧),∴点A(﹣2,0),点B(2,0),该抛物线的顶点坐标为(0,4),∵将抛物线M绕点B旋转180°,得到新的抛物线M',∴新的抛物线M'的顶点坐标为(4,﹣4),点A关于点B的对称点为(6,0),∴新的抛物线M'的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,故选:D.24.如图,抛物线y=x2+2x﹣3与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB,BD与y轴相交于点E,过点E的直线FG平行于x轴,与抛物线交于F,G两点,则线段FG的长为()A.1+B.3 C.2D.2+【解答】解:∵抛物线y=x2+2x﹣3=(x+3)(x﹣1),∴令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则(x+3)(x﹣1)=0,∴x=﹣3或1,∴B(1,0),∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴对称轴为x=﹣1,∵CD∥AB,∴C、D两点关于x=﹣1对称,∴D(﹣2,﹣3),设BD的解析式为y=mx+n(m≠0),则,∴,∴BD的解析式为y=x﹣1,∴E(0,﹣1),令y=﹣1,则y=x2+2x﹣3=﹣1,解得,x=﹣1,∴F(﹣1﹣,﹣1),G(﹣1+,﹣1),∴FG=(﹣1+)﹣(﹣1﹣)=2,故选:C.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:(1)4a﹣2b+c<0;(2)方程ax2+bx+c=0两根都大于零;(3)y随x的增大而增大;(4)一次函数y=x+bc的图象一定不过第二象限;其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:(1)当x=﹣2时,y>0,∴4a﹣2b+c>0,故本说法错误;(2)方程ax2+bx+c=0两根分别为1,3,都大于0,故本说法正确;(3)当x>2时,y随x的增大而增大,故本说法错误;(4)由图象开口向上,a>0,与y轴交于正半轴,c>0,﹣=1>0,∴b<0,∴bc<0,∴一次函数y=x+bc的图象一定过第一、三、四象限,一定不过第二象限,故本说法正确;故选:B.26.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时,a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:C.27.设函数y=kx2+(4k+3)x+1(k<0),若当x<m时,y随着x的增大而增大,则m的值可以是()A.1 B.0 C.﹣1 D.﹣2【解答】解:∵k<0,∴函数y=kx2+(4k+3)x+1的图象在对称轴直线x=﹣的左侧,y随x的增大而增大.∵当x<m时,y随着x的增大而增大∴m≤﹣,而当k<0时,﹣=﹣2﹣>﹣2,所以m≤﹣2,故选:D.28.已知抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,x1、x2是关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的两根,则(x1+x2)的值为()A.0 B.﹣4 C.4 D.2【解答】解:∵抛物线y=ax2+bx+c经过点A(﹣5,0)、B(5,0)两点,∴抛物线的对称轴为直线x=0,即﹣=0,∴b=0,∴25a+c=0,∵a(x﹣2)2+c=2b﹣bx,a(x﹣2)2+c=0,∴a(x﹣2)2=25a,∴(x﹣2)2=25,解得x1=7,x2=﹣3,即关于x的一元二次方程a(x﹣2)2+c=2b﹣bx的解为x1=7,x2=﹣3.∴x1+x2=4.故选:C.29.对于二次函数y=ax2+(1﹣2a)x(a>0),下列说法错误的是()A.该二次函数图象的对称轴可以是y轴B.该二次函数图象的对称轴不可能是x=1C.当x>2时,y的值随x的增大而增大D.该二次函数图象的对称轴只能在y轴的右侧【解答】解:∵二次函数y=ax2+(1﹣2a)x(a>0),∴当a=时,该函数的对称轴是y轴,故选项A正确;该函数的对称轴为直线x=﹣=1﹣<1,当x>2时,y随x的增大而增大,故选项B、C正确;∵该函数的对称轴为x=1﹣<1,∴当a=时,x=﹣1,则此时对称轴在y轴左侧,故选项D错误;故选:D.30.关于二次函数y=2(x﹣2)2+5,下列说法错误的是()A.图象与y轴的交点坐标为(0,13)B.图象的对称轴在y轴的右侧C.当x>0时,y的值随x值的增大而增大D.当x=2时,函数有最小值为5【解答】解:A、y=2(x﹣2)2+5=2x2﹣8x+13,则图象与y轴的交点坐标为(0,13),原题说法正确,故此选项不合题意;B、对称轴为x=2,图象的在y轴的右侧,原题说法正确,故此选项不合题意;C、a=2,开口向上,对称轴为x=2,则当x>2时,y的值随x值的增大而增大,原题说法错误,故此选项符合题意;D、顶点坐标为(2,5),开口向上,则当x=2时,函数有最小值为5,原题说法正确,故此选项不合题意;故选:C.31.已知抛物线y=ax2﹣2ax+a2+1(a≠0).当x≥3时,y随x的增大而增大;当﹣2≤x≤0时,y的最大值为10.那么与抛物线y=ax2﹣2ax+a2+1关于y轴对称的抛物线在﹣2≤x ≤3内的函数最大值为()A.10 B.17 C.5 D.2【解答】解:∵抛物线y=ax2﹣2ax+a2+1(a≠0),∴对称轴为直线x=﹣=1,∵当x≥3时,y随x的增大而增大,∴a>0,且x≤1时,y随x的增大而减小,∵当﹣2≤x≤0时,y的最大值为10.,∴当x=﹣2时,y=a2+8a+1=10,∴a=1或a=﹣9(舍去),∴抛物线为y=x2﹣2x+2,∵y=x2﹣2x+2=(x﹣1)2+1,∴此抛物线关于y轴的对称的抛物线为y=(x+1)2+1,∴函数y=(x+1)2+1,∴抛物线y=(x+1)2+1在﹣2≤x≤3内,当x=3时取最大值,即y=17,故选:B.32.已知某二次函数的图象与x轴相交于A,B两点,若该二次函数图象的对称轴是直线x =3,且点A的坐标是(8,0),则AB的长为()A.5 B.8 C.10 D.11【解答】解:∵某二次函数的图象与x轴相交于A,B两点,该二次函数图象的对称轴是直线x=3,且点A的坐标是(8,0),∴点B的坐标为(﹣2,0),∴AB=8﹣(﹣2)=8+2=10,故选:C.33.已知抛物线y=ax2+bx+c的图象如图所示,图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,ax2+b|x|+c=k有四个不相等的实数根,则实数k满足()A.0<k<3 B.﹣3<k<0 C.﹣3<k<﹣1 D.1<k<3【解答】解:设y=ax2+b|x|+c,则函数y=ax2+b|x|+c的图象,如右图所示,∵抛物线y=ax2+bx+c的图象与y轴交于(0,﹣1),顶点纵坐标为﹣3,∴ax2+b|x|+c=k有四个不相等的实数根时,k满足﹣3<k<﹣1,故选:C.34.如图,Rt△ABC的三个顶点A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,若斜边上的高为h,则()A.h<1 B.h=1 C.1<h<2 D.h=2【解答】解:由题A,B,C均在抛物线y=x2上,并且斜边AB平行于x轴,知A、B两点关于y轴对称,记斜边AB交y轴于点D,可设A(﹣,b),B(,b),C(a,a2),D(0,b),则斜边上的高为h,故h=b﹣a2,∵△ABC是直角三角形,由其性质直角三角形斜边中线等于斜边一半,∴CD=,∴=,方程两边平方得b﹣a2=(a2﹣b)2,即h=(﹣h)2,因为h>0,所以h=1,是个定值.故选:B.35.函数y=|ax2+bx|(a<0)的图象如图所示,下列说法错误的是()A.5a+3b<1 B.4a+3b<2 C.2a+b<0 D.a+2b<0 【解答】解:由图象可知,函数函数y=ax2+bx图象的对称轴为直线x=﹣<1,∵a<0,∴2a+b<0,故C正确;∵当x=2时,函数y=ax2+bx中y<0,即4a+2b<0,当x=1时,y<1,即a+b<1∴5a+3b<1,故A正确;∵a+b<1,∴2a+2b<2∵2a+b<0,∴4a+3b<2故B正确;∵﹣>,a<0,∴b>﹣a,∴2b>﹣2a,∴a+2b>﹣a,∴a+2b>0,故D错误;故选:D.36.已知二次函数y=mx2+(1﹣m)x,它的图象可能是()A.B.C.D.【解答】解:∵二次函数y=mx2+(1﹣m)x,∴当x=0时,y=0,即该函数的图象过点(0,0),故选项A错误;该函数的顶点的横坐标为﹣=﹣,当m>0时,该函数图象开口向上,顶点的横坐标小于,故选项B正确,选项C错误;当m<0时,该函数图象开口向下,顶点的横坐标大于,故选项D错误;故选:B.37.小强从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条结论:你认为其中正确结论的个数有()(1)a<0;(2)b>0;(3)a﹣b+c>0;(4)2a+b<0.A.1个B.2个C.3个D.4个【解答】解:(1)如图,抛物线开口方向向下,则a<0,故结论正确;(2)如图,抛物线对称轴位于y轴右侧,则a、b异号,故b>0,故结论正确;(3)如图,当x=﹣1时,y<0,即a﹣b+c<0,故结论错误;(4)由抛物线的对称性质知,对称轴是直线x=﹣>0.结合a<0知,2a+b<0,故结论正确.综上所述,正确的结论有3个.故选:C.38.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.【解答】解:当a>0,b>0时,一次函数y=ax+b的图象在第一、二、三象限,二次函数y=ax2+bx的图象经过原点,顶点在y轴的左侧,故选项A、B错误;当a>0,b<0时,一次函数y=ax+b的图象在第一、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的右侧,函数图象开口向上,函数y=ax2+bx与y=ax+b 交点在x轴上,故选项C正确;当a<0,b<0时,一次函数y=ax+b的图象在第二、三、四象限,二次函数y=ax2+bx 的图象经过原点,顶点在y轴的左侧,函数图象开口向下,故选项D错误;故选:C.39.向上抛出的小球离地面的高度是其运动时间的二次函数,小甬相隔2秒依次抛出两个小球,假设两个小球出手时离地面高度相同,在各自抛出后1.2秒时达到相同的离地面最大高度.若第一个小球抛出后t秒时在空中与第二个小球离地面高度相同,则t=()A.2.2 B.2.5 C.2.6 D.2.7【解答】解:设各自抛出后1.2秒时到达相同的最大离地高度为h,这个最大高度为h,则小球的高度y=a(t﹣1.2)2+h,由题意a(t﹣1.2)2+h=a(t﹣2﹣1.2)2+h,解得t=2.2.故第一个小球抛出后2.2秒时在空中与第二个小球的离地高度相同.故选:A.40.对于二次函数y=kx2﹣(4k+1)x+3k+3.下列说法正确的是()①对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点;②该函数图象与x轴必有交点;③若k<0,当x≥2时,y随x的增大而减小;④若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=﹣1.A.①②③B.①②④C.②③④D.①③④【解答】解:∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x ﹣3),∴对于任何满足条件的k,该二次函数的图象都经过点(1,2)和(3,0)两点,故①正确;对于任何满足条件的k,该二次函数中当x=3时,y=0,即该函数图象与x轴必有交点,故②正确;∵二次函数y=kx2﹣(4k+1)x+3k+3的对称轴是直线x==2+,∴若k<0,则2+<2,该函数图象开口向下,∴若k<0,当x≥2时,y随x的增大而减小,故③正确;∵y=kx2﹣(4k+1)x+3k+3=[kx﹣(k+1)](x﹣3)=[k(x﹣1)﹣1](x﹣3),∴当y=0时,x1=+1,x2=3,∴若k为整数,且该二次函数的图象与x轴的两个交点都为整数点,那么k=±1,故④错误;故选:A.41.已知二次函数y=ax2+bx﹣c的图象的对称轴为直线x=1,开口向下,且与x轴的其中一个交点是(3,0).下列结论:①4a+2b﹣c>0;②a﹣b﹣c<0;③c=3a;④5a+b﹣2c>0.正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵(3,0)关于直线x=1的对称点坐标为(﹣1,0)∴抛物线与x轴的另一个交点为(﹣1,0),∵抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b﹣c=0,故②错误;∵﹣=1,∴b=﹣2a∴a+2a﹣c=0,∴c=3a,故③正确;∵b=﹣2a,c=3a,a<0,∴4a+2b﹣c=4a﹣4a﹣3a=﹣3a>0,即4a+2b﹣c>0,故①正确;∵4a+2b﹣c>0,a﹣b﹣c=0,两式相加:5a+b﹣2c>0,故④正确,故选:C.42.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(,0),与y轴的交点B在(0,0)和(0,﹣1)之间(不包括这两点),对称轴为直线x=.则下列结论:①x>3时,y<0;②4a+b<0;③﹣<a<0;④4ac+b2<4a.其中正确的是()A.②③④B.①②③C.①③④D.①②④【解答】解:由图象可知,抛物线开口向下,则a<0,∵对称轴为直线x=,∴x=0与x=3所对应的函数值相同,∵当x=0时y<0,∴x=3时y<0,∴x>3时,y<0,∴①正确;∵x==﹣,∴b=﹣3a,∴4a+b=4a﹣3a=a<0,∴②正确;∵抛物线经过点A(,0),∴a+b+c=0,∴c=a,∵B在(0,0)和(0,﹣1)之间,∴﹣1<c<0,∴﹣1<a<0,∴﹣<a<0,∴③正确;4ac+b2﹣4a=4a×a+(﹣3a)2﹣4a=5a2+9a2﹣4a=14a2﹣4a=2a(7a﹣2),∵a<0,∴2a(7a﹣2)>0,∴4ac+b2﹣4a>0,∴④不正确;故选:B.43.已知抛物线y=(x﹣m)(x﹣n),其中m<n,若a,b是方程(x﹣m)(x﹣n)﹣x=0的两根,且a<b,则当(a﹣m)(b﹣n)>0时,mn的值()A.小于零B.等于零C.大于零D.与零的大小关系无法确定【解答】解:y=(x﹣m)(x﹣n)与x轴的交点为(m,0),(n,0),由(x﹣m)(x﹣n)﹣x=0,则y=(x﹣m)(x﹣n)与y=x的两个交点为(a,a),(b,b),如图1:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴正半轴时,(m,0),(n,0)在(a,a),(b,b)点的下方,∴a<m<n<b,∴(a﹣m)(b﹣n)<0,不符合;如图2:当函数y=(x﹣m)(x﹣n)与x轴交点分别在x轴正半轴和负半轴时,此时m<a<n<b,∴(a﹣m)(b﹣n)>0,∴mn<0;如图3:当函数y=(x﹣m)(x﹣n)与x轴交点在x轴负半轴时,此时m<a<b<n,∴(a﹣m)(b﹣n)<0,不符合题意;综上所述:当(a﹣m)(b﹣n)>0时,mn<0,。

二次函数经典难题(含精解)

二次函数经典难题(含精解)

二次函数经典难题(含精解)一.选择题(共1小题)1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6二.填空题(共12小题)2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C1所对应的函数解析式是_________.3.抛物线关于原点对称的抛物线解析式为_________.4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是_________.5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为_________.6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_________.7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是_________.8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a=_________;若抛物线与x轴有两个交点,则a 的范围是_________.9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a=_________.10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是_________.11.若抛物线的顶点在x轴上方,则m的值是_________.12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C 也在该抛物线上,则a•c的值是_________.13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为_________.三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标_________;(2)阴影部分的面积S=_________;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式_________,伴随直线的解析式_________;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是_________;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.20.如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B 成中心对称时,求C3的解析式.23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S△APC:S△ACD=5:4的点P的坐标.24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0).(Ⅰ)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;(Ⅱ)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么范围内取值时,ON+BM的值为常数?当a在什么范围内取值时,ON﹣BM的值为常数?(Ⅲ)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.25.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.26.如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.27.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S△ABC的值.28.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.29.如果抛物线m的顶点在抛物线n上,同时抛物线n的顶点在抛物线m上,那么我们就称抛物线m 与n为交融抛物线.(1)已知抛物线a:y=x2﹣2x+1.判断下列抛物线b:y=x2﹣2x+2,c:y=﹣x2+4x﹣3与已知抛物线a是否为交融抛物线?并说明理由;(2)在直线y=2上有一动点P(t,2),将抛物线a:y=x2﹣2x+1绕点P(t,2)旋转180°得到抛物线l,若抛物线a与l为交融抛物线,求抛物线l的解析式;(3)M为抛物线a;y=x2﹣2x+1的顶点,Q为抛物线a的交融抛物线的顶点,是否存在以MQ为斜边的等腰直角三角形MQS,使其直角顶点S在y轴上?若存在,求出点S的坐标;若不存在,请说明理由;(4)通过以上问题的探究解决,相信你对交融抛物线的概念及性质有了一定的认识,请你提出一个有关交融抛物线的问题.30.如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=﹣x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值.(1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=)参考答案与试题解析一.选择题(共1小题)1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6考点:二次函数图象与几何变换.分析:根据题目意思,求出A和B的坐标,再求三角形的面积则可.解答:解:当x=0时,y=3,所以A的坐标是(0,3),y=x2﹣2x+3=(x﹣1)2+2,把它绕顶点P旋转180°得到一个新的抛物线是y=﹣(x﹣1)2+2=﹣x2+2x+1,x=0时,y=1,所以B的坐标是(0,1),P的坐标是(1,2),△PAB的面积=×2×(3﹣2)=1.故选A.点评:本题考查了抛物线与坐标轴交点的求法,和考查抛物线将一般式转化顶点式的能力,难度较大.二.填空题(共12小题)2.作抛物线C1关于x轴对称的抛物线C2,将抛物线C2向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C1所对应的函数解析式是y=﹣2(x﹣1)2+2.考点:二次函数图象与几何变换.专题:应用题.分析:根据题意易得抛物线C的顶点,进而可得到抛物线B的坐标,根据顶点式及平移前后二次项的系数不变可得抛物线B的解析式,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C1所对应的函数表达式.解答:解:根据题意易得抛物线C的顶点为(﹣1,﹣1),∵是向左平移2个单位,向上平移1个单位得到抛物线C的,∴抛物线B的坐标为(1,﹣2),可设抛物线B的坐标为y=2(x﹣h)2+k,代入得:y=2(x﹣1)2﹣2,易得抛物线A的二次项系数为﹣2,顶点坐标为(1,2),∴抛物线A的解析式为y=﹣2(x﹣1)2+2,故答案为y=﹣2(x﹣1)2+2.点评:本题主要考查了讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.3.抛物线关于原点对称的抛物线解析式为.考点:二次函数图象与几何变换.分析:根据关于原点对称的点的坐标特点进行解答即可.解答:解:∵关于原点对称的点的横纵坐标互为相反数,∴抛物线y=﹣x2+x+2关于原点对称的抛物线的解析式为:﹣y=﹣(﹣x)2+(﹣x)+2,即y=x2+x ﹣2.故答案为:y=x2+x﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知关于原点对称的点的坐标特点是解答此题的关键.4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是y=﹣x2﹣1.考点:二次函数图象与几何变换.分析:根据关于原点对称的两点的横坐标纵坐标都互为相反数求则可.解答:解:根据题意,﹣y=(﹣x)2+1,得到y=﹣x2﹣1.故旋转后的抛物线解析式是y=﹣x2﹣1.点评:考查根据二次函数的图象的变换求抛物线的解析式.5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD边长为10,则正方形EFGH的边长为5﹣5.考点:二次函数综合题.分析:首先建立平面坐标系:过点G作GM⊥x轴于点M,进而得出抛物线解析式,进而表示出G点坐标,再利用FG+MG=10,进而求出即可.解答:解:如图建立平面坐标系:过点G作GM⊥x轴于点M,设抛物线解析式为:y=ax2,∵正方形ABCD边长为10,∴B点坐标为:(5,﹣10),将B点代入y=ax2,则﹣10=25a,解得:a=﹣,设G点坐标为:(a,﹣a2),则GF=2a,∴MG=10﹣GF,即a2=10﹣2a,整理的:a2+5a﹣25=0,解得:a1=,a2=(不合题意舍去),∴正方形EFGH的边长FG=2a=5﹣5.故答案为:5﹣5.点评:此题主要考查了二次函数的综合应用以及一元二次方程的解法,根据正方形的性质以及抛物线上点的坐标性质得出等式是解题关键.6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为.考点:列表法与树状图法;抛物线与x轴的交点.分析:由系数a、b、c为绝对值不大于1的整数,可得系数a、b、c为:0,1,﹣1;然后根据题意画树状图,由树状图求得所有等可能的结果与该抛物线的“抛物线三角形”是等腰直角三角形的情况,再利用概率公式即可求得答案.解答:解:∵系数a、b、c为绝对值不大于1的整数,∴系数a、b、c为:0,1,﹣1;画树状图得:∵共有18种等可能的结果,该抛物线的“抛物线三角形”是等腰直角三角形的有:(1,0,﹣1),(﹣1,0,1),∴该抛物线的“抛物线三角形”是等腰直角三角形的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率与二次函数的性质.注意用到的知识点为:概率=所求情况数与总情况数之比.7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B(4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是﹣<a<0或0<a<.考点:二次函数的性质.专题:压轴题.分析:根据点A、B的坐标求出OA、OB的长,再求出△ACO和△CBO相似,根据相似三角形对应边成比例列式求出OC的长,再根据二次函数的对称性求出对称轴,设对称轴与直线BC相交于P,与x轴交于Q,利用∠ABC的正切值求出点P到x轴的距离PQ,设抛物线的交点式解析式y=a (x+1)(x﹣4),整理求出顶点坐标,再根据抛物线的顶点在△ABC的内部分两种情况列式求出a的取值范围即可.解答:解:∵点A(﹣1,0),B(4,0),∴OA=1,OB=4,易得△ACO∽△CBO,∴=,即=,解得OC=2,∵抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),∴对称轴为直线x==,设对称轴与直线BC相交于P,与x轴交于Q,则BQ=4﹣=2.5,tan∠ABC==,即=,解得PQ=,设抛物线的解析式为y=a(x+1)(x﹣4),则y=a(x2﹣3x﹣4)=a(x﹣)2﹣a,当点C在y轴正半轴时,0<﹣a<,解得﹣<a<0,当点C在y轴负半轴时,﹣<﹣a<0,解得0<a<,所以,a的取值范围是﹣<a<0或0<a<.故答案为:﹣<a<0或0<a<.点评:本题考查了二次函数的性质,相似三角形的判定与性质,把二次函数的解析式用交点式形式表示更加简便,注意要分点C在y正半轴和负半轴两种情况讨论.8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a=9;若抛物线与x轴有两个交点,则a的范围是a<9.考点:抛物线与x轴的交点.分析:顶点在x轴上即抛物线与x轴只有一个交点,则判别式等于0,若抛物线与x轴有两个交点,则△>0,据此即可求解.解答:解:△=36﹣4a,则定点在x轴上,则36﹣4a=0,解得:a=9;抛物线与x轴有两个交点,则36﹣4a>0,解得:a<9.故答案是:9;a<9.点评:本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,与x轴有一个交点;如果△<0,与x轴无交点.9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a=2.考点:待定系数法求二次函数解析式.专题:压轴题.分析:根据抛物线顶点的纵坐标等于2,列出方程,求出a的值,注意要有意义.解答:解:因为抛物线的顶点坐标为(﹣,)所以=2解得:a1=2,a2=﹣1又因为要有意义则a≥0所以a=2.点评:此题考查了学生的综合应用能力,解题时要注意别漏条件,特别是一些隐含条件,比如:中a≥0.10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是4.考点:二次函数的性质.分析:根据抛物线顶点的横坐标等于2,列出方程,求出a的值,注意要有意义.解答:解:因为抛物线的顶点坐标为(﹣,),所以﹣=2,解得:a1=4,a2=﹣4,又因为要有意义,则a≥0,所以a=4.故答案为4.点评:此题考查了学生的综合应用能力,解题时要注意别漏条件,特别是一些隐含条件,比如:中a≥0.11.若抛物线的顶点在x轴上方,则m的值是2.考点:二次函数的性质;二次函数的定义.专题:计算题.分析:先列出关于m的等式,再根据抛物线的顶点在x轴上方,求得m,所以只需令顶点纵坐标大于0即可.解答:∴m2﹣2=2,解得m=±2,∵抛物线的顶点在x轴上方.∴0﹣8(m+2)<0,∴m>﹣2,∴m=2.故答案为:2.点评:本题考查了二次函数的定义和性质,将函数与一元二次方程结合起来,有一定的综合性.12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C 也在该抛物线上,则a•c的值是﹣2.考点:二次函数的性质;正方形的性质.分析:抛物线y=ax2+c的顶点B点坐标为(0,c),由四边形ABCO是正方形,则C点坐标为标为(﹣,),代入抛物线即可解答.解答:解:∵抛物线y=ax2+c的顶点B点坐标为(0,c),四边形ABCO是正方形,∴∠COB=90°,CO=BC,∴△COB是等腰直角三角形,∴C点横纵坐标绝对值相等,且等于BO长度一半,∴C点坐标为(﹣,),将点C代入抛物线方程中得ac=﹣2.故答案为:﹣2点评:本题将几何图形与抛物线结合了起来,同学们要找出线段之间的关系,进而求得问题的答案.13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为10.考点:二次函数图象上点的坐标特征.专题:整体思想.分析:把点(2,5)代入抛物线求出2a+b的值,然后整体代入进行计算即可得解.解答:解:∵抛物线y=ax2+bx﹣1经过点(2,5),∴4a+2b﹣1=5,∴2a+b=3,∴6a+3b+1=3(2a+b)+1=3×3+1=10.故答案为:10.点评:本题考查了二次函数图象上点的坐标特征,把点的坐标代入函数解析式求出a、b的关系式是解题的关键,主要利用了整体思想.三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:利用关于x轴对称的点的坐标为横坐标不变,纵坐标互为相反数解答即可.解答:解:抛物线C2与抛物线C1关于x轴对称,横坐标不变,纵坐标互为相反数,即﹣y=2x2﹣4x+5,因此所求抛物线C2的解析式是y=﹣2x2+4x﹣5.点评:利用轴对称变换的特点可以解答.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:先求出抛物线C1的顶点坐标,再根据对称性求出抛物线C2的顶点坐标,然后根据旋转的性质写出抛物线C2的顶点式形式解析式,再把抛物线C1的顶点坐标代入进行即可得解.解答:解:∵y=(x+1)2﹣2的顶点坐标为(﹣1,﹣2),∴绕点P(t,2)旋转180゜得到抛物线C2的顶点坐标为(2t+1,6),∴抛物线C2的解析式为y=﹣(x﹣2t﹣1)2+6,∵抛物线C1的顶点在抛物线C2上,∴﹣(﹣1﹣2t﹣1)2+6=﹣2,解得t1=3,t2=﹣5,∴抛物线C2的解析式为y=﹣(x﹣7)2+6或y=﹣(x+9)2+6.点评:本题考查了二次函数图象与几何变换,难度较大,求出旋转后的抛物线C2的顶点坐标是解题的关键,也是本题的难点.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标(1,2);(2)阴影部分的面积S=2;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.考点:二次函数图象与几何变换.分析:直接应用二次函数的知识解决问题.解答:解:(1)读图找到最高点的坐标即可.故抛物线y2的顶点坐标为(1,2);(2分)(2)把阴影部分进行平移,可得到阴影部分的面积即为图中两个方格的面积=1×2=2;(6分)(3)由题意可得:抛物线y3的顶点与抛物线y2的顶点关于原点O成中心对称.所以抛物线y3的顶点坐标为(﹣1,﹣2),于是可设抛物线y3的解析式为:y=a(x+1)2﹣2.由对称性得a=1,所以y3=(x+1)2﹣2.(10分)点评:考查二次函数的相关知识,考查学生基础知识的同时还考查了识图能力.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式y=﹣2x2+1,伴随直线的解析式y=﹣2x+1;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是y=x2﹣2x﹣3;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)先根据抛物线的解析式求出其顶点P和抛物线与y轴的交点M的坐标.然后根据M的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将P点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.根据M,P两点的坐标即可求出直线PM的解析式;(2)由题意可知:伴随抛物线的顶点坐标是抛物线与y轴交点坐标,伴随抛物线与伴随直线的交点(与y轴交点除外)是抛物线的顶点,据此可求出抛物线的解析式;(3)方法同(1);(4)本题要考虑的a、b、c满足的条件有:抛物线和伴随抛物线都与x轴有两个交点,因此△>0,①由于抛物线L中,x2>x1>0,因此抛物线的对称轴x>0,两根的积大于0.②根据两抛物线的解析式分别求出AB、CD的长,根据AB=CD可得出另一个需满足的条件…③综合这三种情况即可得出所求的a、b、c需满足的条件.解答:解:(1)y=﹣2x2+1,y=﹣2x+1;(2)将y=﹣x2﹣3和y=﹣x﹣3组成方程组得,,解得,或.则原抛物线的顶点坐标为(1,﹣4),与y轴的交点坐标为(0,﹣3).设原函数解析式为y=n(x﹣1)2﹣4,将(0,﹣3)代入y=n(x﹣1)2﹣4得,﹣3=n(0﹣1)2解得,n=1,则原函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.(3)∵伴随抛物线的顶点是(0,c),∵设它的解析式为y=m(x﹣0)2+c(m≠0),∵此抛物线过P(﹣,),∴=m•(﹣)2+c,解得m=﹣a,∴伴随抛物线解析式为y=﹣ax2+c;设伴随直线解析式为y=kx+c(k≠0),P(﹣,)在此直线上,∴,∴k=,∴伴随直线解析式为y=x+c;(4)∵抛物线L与x轴有两交点,∴△1=b2﹣4ac>0,∴b2>4ac;∵x2>x1>0,∴x2+x1=﹣>0,x1•x2=>0,∴ab<0,ac>0.对于伴随抛物线有y=﹣ax2+c,有△2=0﹣(﹣4ac)=4ac>0,由﹣ax2+c=0,得x=±.∴C(﹣,0),D(,0),CD=2,又AB=x2﹣x1====,∵AB=CD,则有:2=,即b2=8ac,综合b2=8ac,b2﹣4ac>0,ab<0,ac>0可得a、b、c需满足的条件为:b2=8ac且ab<0(或b2=8ac且bc<0).点评:本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系.18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.考点:抛物线与x轴的交点;二次函数图象与几何变换.专题:计算题.分析:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据抛物线与x轴的交点的距离公式得到=2,解得m=3b﹣3a2,则平移所得抛物线的解析式为y=x2+2ax+4b﹣3a2;(2)先确定y=x2+2ax+b的顶点坐标为(﹣a,b﹣a2),由于通过(1)中所得抛物线与x轴的两个交点,则可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),然后把(﹣a,b﹣a2)代入可求出t=.解答:解:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据题意得=2,解得m=3b﹣3a2,所以平移所得抛物线的解析式为y=x2+2ax+b+3b﹣3a2=x2+2ax+4b﹣3a2;(2)y=x2+2ax+b=(x+a)2+b﹣a2,其顶点坐标为(﹣a,b﹣a2),∵新抛物线的表达式过抛物线y=x2+2ax+4b﹣3a2与x轴两交点,∴可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),把(﹣a,b﹣a2)代入得b﹣a2=t(a2﹣2a2+4b﹣3a2),解得t=,所以新抛物线的表达式过抛物线y=x2+ax+b﹣a2.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c (a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2﹣4ac决定抛物线与x轴的交点个数;△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.考点:二次函数综合题;点的坐标;待定系数法求二次函数解析式;旋转的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)先连接AB,根据A点是抛物线C的顶点,且C交x轴于O、B,得出AO=AB,再根据∠AOB=60°,得出△ABO是等边三角形,再过A作AE⊥x轴于E,在Rt△OAE中,求出OD、AE的值,即可求出顶点A的坐标,最后设抛物线C的解析式,求出a的值,从而得出抛物线C 的解析式;(2)先过A作AE⊥OB于E,根据题意得出OE=OB=2,再根据直线OA的解析式为y=x,得出AE=OE=2,求出点A的坐标,再将A、B、O的坐标代入y=ax2+bx+c(a<0)中,求出a的值,得出抛物线C的解析式,再根据抛物线C、C′关于原点对称,从而得出抛物线C′的解析式;(3)先作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由(2)知,抛物线C′的顶点为A′(﹣2,﹣2),得出A′B的中点M的坐标,再作MH⊥x轴于H,得出△MHN∽△BHM,则MH2=HN•HB,求出N点的坐标,再根据直线l过点M(1,﹣1)、N(,0),得出直线l的解析式,求出x的值,再根据抛物线C上存在两点使得PB=PA',从而得出P1,P2坐标,再根据抛物线C′上也存在两点使得PB=PA',得出P3,P4的坐标,即可求出答案.解答:解:(1)连接AB.∵A点是抛物线C的顶点,且抛物线C交x轴于O、B,∴AO=AB,又∵∠AOB=60°,∴△ABO是等边三角形,过A作AD⊥x轴于D,在Rt△OAD中,∴OD=2,AD=,∴顶点A的坐标为(2,)设抛物线C的解析式为(a≠0),将O(0,0)的坐标代入,求得:a=,∴抛物线C的解析式为.(2)过A作AE⊥OB于E,∵抛物线C:y=ax2+bx+c(a<0)过原点和B(4,0),顶点为A,∴OE=OB=2,∴AE=OE=2,∴点A的坐标为(2,2),将A、B、O的坐标代入y=ax2+bx+c(a<0)中,∴a=,∴抛物线C的解析式为,又∵抛物线C、C′关于原点对称,∴抛物线C′的解析式为;(3)作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由前可知,抛物线C′的顶点为A′(﹣2,﹣2),故A′B的中点M的坐标为(1,﹣1).作MH⊥x轴于H,∴△MHN∽△BHM,则MH2=HN•HB,即12=(1﹣n)(4﹣1),∴,即N点的坐标为(,0).∵直线l过点M(1,﹣1)、N(,0),∴直线l的解析式为y=﹣3x+2,,解得.∴在抛物线C上存在两点使得PB=PA',其坐标分别为P1(,),P2(,);解得,.∴在抛物线C′上也存在两点使得PB=PA',其坐标分别为P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).∴点P的坐标是:P1(,),P2(,),P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).点评:本题是二次函数的综合,其中涉及到的知识点有旋转的性质,点的坐标,待定系数法求二次函数等知识点,难度较大,综合性较强.20.(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.分析:根据抛物线的解析式,易求得C点的坐标,即可得到OC的长;可分别在Rt△OBC和Rt△OAC 中,通过解直角三角形求出OB、OA的长,即可得到A、B的坐标,进而可运用待定系数法求得抛物线和直线的解析式.解答:解:由题意得C(0,)在Rt△COB中,∵∠CBO=60°,∴OB=OC•cot60°=1∴B点的坐标是(1,0);(1分)在Rt△COA中,∵∠CAO=45°,∴OA=OC=∴A点坐标(,0)由抛物线过A、B两点,得解得∴抛物线解析式为y=x2﹣()x+(4分)设直线BC的解析式为y=mx+n,得n=,m=﹣∴直线BC解析式为y=﹣x+.(6分)点评:此题主要考查的是用待定系数法求一次函数及二次函数解析式的方法.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.。

二次函数易错题整理

二次函数易错题整理

二次函数错题整理1.已知某二次函数的图象如图所示,则这个二次函数的解析式为( )A .y =2(x +1)2+8B .y =18(x +1)2−8C .y =29(x −1)2+8D .y =2(x −1)2−82.已知抛物线y =ax 2+bx 经过点A(−3,−3),且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .y =−13x 2−2x B .y =−13x 2+2x C .y =13x 2−2x D .y =13x 2+2x3.如图,抛物线y=x 2+bx+c (b , c 为常数)经过点A (1,0),点B (0,3),点P 在该抛物线上,其横坐标为m ,若该抛物线在点P 左侧部分(包括点P)的最低点的纵坐标为2-m .则m 的值为( )A .m=3B .m= 3−√52C .m= 3±√52D .m=3或m= 3−√524.已知二次函数y=x 2+(m ﹣1)x+1,当x >1时,y 随x 的增大而增大,而m 的取值范围是( ) A .m=﹣1B .m=3C .m ≤﹣1D .m ≥﹣15.若抛物线y =x 2+bx+c 与x 轴只有一个公共点,且过点A (m ,n ),B (m ﹣4,n ),则n 的值为( ) A .0B .2C .4D .86. 已知二次函数y = ax ²+ (b+1)x + c 的图象如图所示,则二次函数 y =ax ² + bx + c 与正比例函数y= -x 的图象大致为( )7.已知抛物线y =ax²+ bx + c(a,b,c是常数, a ≠c),且a-b+c=0,a>0.下列四个结论,正确的有( )个.①抛物线与x轴一定有两个交点;②当x> -1时,y随x的增大而增大;③若a+b=0,则不等式ax²+bx+ c <0的解集是-1<x< 2;④一元二次方程a(x - 2)² + bx = 2b- c有一个根x= 1.A.1个B.2个C.3个D.4个8.若抛物线y=ax2+bx+c的顶点A在y轴上,且OA=3,且经过点B(1,0),则抛物线的函数关系式为 .x2的形状和开口方向相同的抛物线解析式为. 9.顶点为(3,1),形状与函数y=1210.设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为.11.已知二次函数y=x2+4x+c的图象与两坐标轴共有两个交点,则c= .12. 已知二次函数y = x²,当-1≤x≤2时,函数值y的取值范围是____.13. 已知函数y = x²+mx(m为常数)的图形经过点(-5,5).(1)m=____.(2)当-5≤x≤n时,y的最大值与最小值之和为2,则n的值_____.14. 已知点A(m,-2)在二次函数y=-2x²的图象上,则m=____.15. 二次函数y=ax2+bx+c与一次函数y2=mx +n的图象如图所示,则满足ax2+bx+c≥mx +n的x的取值范围是.16.如图:已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3)与x轴交于C、D两点,点P 是x轴上的一个动点.(1)求抛物线的解析式;(2)当PA+PB的值是最小时,求点P的坐标.17.一次足球训练中,小明从球门正前方8m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素)。

二次函数难题

二次函数难题

二次函数难题二次函数难题二次函数是高中数学中的重要内容,涉及到的知识点较多,难度也较大。

本文将从以下几个方面详细介绍二次函数的相关知识和解题方法。

一、基本概念1. 二次函数定义二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数。

2. 二次函数图像当a>0时,二次函数图像开口朝上;当a<0时,二次函数图像开口朝下。

对于任意的二次函数y=ax²+bx+c,其图像都可以通过平移、伸缩和翻转等变换得到。

3. 顶点坐标和轴对称对于任意的二次函数y=ax²+bx+c(a≠0),其顶点坐标为(-b/2a,-△/4a),其中△=b²-4ac为判别式。

此外,该二次函数的图像关于x=-b/2a这条直线对称。

4. 零点和因式分解对于任意的二次函数y=ax²+bx+c(a≠0),其零点可以通过求解方程ax²+bx+c=0得到。

此外,该二次函数还可以进行因式分解,即将其写成形如y=a(x-x₁)(x-x₂)的形式,其中x₁和x₂为该二次函数的两个零点。

二、解题方法1. 求解零点对于给定的二次函数,求其零点是解题的基本步骤。

一般来说,可以通过以下几种方法求解:(1)公式法:根据求根公式,将二次函数转化为一元二次方程,并求解出其根。

(2)配方法:将二次函数写成完全平方的形式,然后利用完全平方公式进行化简,最终得到一元二次方程,并求解出其根。

(3)图像法:通过观察二次函数的图像,确定其零点的位置。

2. 求顶点坐标和轴对称对于给定的二次函数,求其顶点坐标和轴对称是解题的重要步骤。

一般来说,可以通过以下几种方法求解:(1)公式法:利用顶点公式和轴对称公式,计算出该二次函数的顶点坐标和轴对称直线方程。

(2)配方法:将二次函数写成完全平方形式,并利用完全平方公式进行化简,最终得到一个与顶点有关的表达式。

3. 因式分解对于给定的二次函数,进行因式分解是解题的常见方法。

二次函数一题十问(含参考答案)

二次函数一题十问(含参考答案)

二次函数一题十问(参考答案)如图,y =ax 2+bx +c 的图像与x 轴交于A(-1,0)、B(3,0)两点,与y 轴交于点C(0,-3)1. 求这个二次函数的表达式;322--=x x y2. 线段和或差的极值;(1) 若点T 是抛物线对称轴上一动点,求△TAC 周长最小值和T 点坐标;(2) 若点M 是抛物线对称轴上一动点,求|MA -MC|的最大值和此时点M 的坐标;解:(1)∵点A(-1,0)关于对称轴x =1的对称点是点B(3,0)∴连接BC 交对称轴于点T ,这时TA+TC+AC=TB+TC+AC=BC+AC 最小最小值为AC+BC=2310+ 易求y BC =x —3,∴点T 的坐标为T(1,-2) (2)延长AC 交对称轴于点M ,这时|MA -MC|=AC 最大,最大值为10易求y AC =-3x —3,∴点M 的坐标为M(1,-6)3. 线段的极值;若点M 是线段OB 上一动点,过M 作x 轴的垂线,交BC 于P ,交抛物线于Q ,求PQ 的最大值。

解:设点M 的坐标为(t ,0),则P(t ,t -3)、Q(t ,t 2―2t ―3)∴PQ =(t -3)-(t 2―2t ―3)=-t 2+3t =49)23(2+--t 即PQ 的最大值为49 4. 面积的极值;若点P 是抛物线上B 、C 之间一动点,当点P 运动到什么位置时,△PBC 的面积最大?求此时点P 的坐标;解:过P 作PN ⊥x 轴,垂足为N ,交线段BC 于点M ,设P(t ,t 2―2t ―3),则N(t ,0)、M(t ,t -3)∴ON=t ,NB =3-t ,PM =(t -3)-(t 2―2t ―3)=-t 2+3t∴S △PBC =S △PMC +S △PMB =827)23(233)3(2121212122+--=⨯+-=⋅=⋅+⋅t t t OB PM NB PM ON PM ∴当点P 的坐标为(23,415-)时,△PBC 面积的最大值为827 5. 等腰三角形;若点N 是抛物线对称轴上一动点,且△NAC 是等腰三角形,求点N 的坐标;解:设点N 的坐标为(1,t ),则NA=24t +,NC=2)3(1++t ,AC=10①当AN=AC 时,即1042=+t ,解得t 1=6,t 1=6-②当CN=CA 时,即10)3(12=++t ,解得t 1=0,t 1=-6(舍去)③当NA=NC 时,即22)3(14++=+t t ,解得t =-1综上所述,当点N 的坐标为(1,6)、 (1,6-)、(1,0)、(1,-1)时,△NAC 是等腰三角形6. 直角三角形;若点N 是对称轴上一动点,且△NAC 是直角三角形,求点N 的坐标;解:设点N 的坐标为(1,t ),易求得y AC =-3x —3①当∠NAC=90°时,∵y AC ⊥y NA ,∴设y NA =b x +31,把点A(-1,0)代入得b=31,∴y NA =3131+x ,∴N 1(1,32) ②当∠NCA=90°时,∵y NC ⊥y NA ,∴设y NC =b x +31,把点C(0,-3)代入得b =-3,∴y NC =331-x ,∴N 2(1,38-) ③当∠ANC=90°时, 设对称轴交x 轴于点E ,过C 作CF ⊥对称轴于F ,则AE=2,FC=1,EN=-t ,FN=t +3易证△AEN ∽△NFC ,∴FC EN NF AE =,即132t t -=+,解得x 1=-1,x 2=-2∴N 3(1,-1)、N 4(1,-2) 综上所述,当点N 的坐标为(1,32)、(1,38-)、(1,-1)、(1,-2)时,△NAC 是直角三角形7. 相似三角形;若点H 是抛物线上一动点,HK ⊥x 轴于K ,若△HKB 与△AOC 相似,求点H 的坐标; 解:设H(t ,t 2―2t―3),则K(t ,0),HK =|t 2―2t―3|,BK =|t―3|∵△HKB 与△AOC 相似,且∠AOC=∠HKB=90°①当OC KB AO HK =时,即3|3|1|32|2-=--t t t ,解得t 1=32-, t 2=34-,t 3=3(舍去)②当AOKB OC HK =时,即1|3|3|32|2-=--t t t ,解得t 1=2,t 2=3(舍去),t 3=-4 综上所述,当H 的坐标为(32-,911-)、(34-,913)、(2,-3) 、(-4,21)时,△HKB 与△AOC 相似8. 特殊四边形;E 是x 轴上的点E ,在该抛物线上是否存在点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,求点F 的坐标;解:设E(t ,0),则AE=|t +1|,OC=3①当AE 为平行四边形的边时,过点C 作CF//x 轴,交抛物线于点F ,这时点F的坐标为(2,-3);当AE=CF ,即|t +1|=2时,ACFE 为平行四边形,点E 的坐标为(1,0)或(-3,0);②当AE 为平行四边形的对角线时,∵OC=3,∴过点(0,3)作x 轴的平行线交抛物线于F ,由x 2―2x ―3=3得:x 1=71+,x 2=71-,这时点F 的坐标为(71+,3)、(71-,3);过F 作FE//AC 交x 轴于E ,可得点E 的坐标分别为(,)、(,)综上所述,当点F 的坐标为(2,-3)、(2,-3)、(71+,3)、(71-,3), 点E 的坐标分别为(1,0)、(-1,0)、(736+,0)、(736-,0)时,以点A 、C 、E 、F 为顶点的四边形为平行四边形。

二次函数中的十二大存在性问题(学生版)

二次函数中的十二大存在性问题(学生版)

二次函数中的十二大存在性问题【题型1二次函数中等腰三角形的存在性问题】【题型2二次函数中直角三角形的存在性问题】【题型3二次函数中等腰直角三角形的存在性问题】【题型4二次函数中全等三角形的存在性问题】【题型5二次函数中平行四边形的存在性问题】【题型6二次函数中菱形的存在性问题】【题型7二次函数中矩形的存在性问题】【题型8二次函数中正方形的存在性问题】【题型9二次函数中面积问题的存在性问题】【题型10二次函数中线段问题的存在性问题】【题型11二次函数中角度问题的存在性问题】【题型12二次函数中最值问题的存在性问题】【题型1二次函数中等腰三角形的存在性问题】1(2023春·甘肃张掖·九年级校考期中)如图甲,直线y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究),并求出最大面积及E点的坐标.(3)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请求出所符合条件的点M的坐标;若不存在,请说明理由;1(2023春·广西贵港·九年级统考期末)如图,抛物线y=ax2+3x+c a≠0和与x轴交于点A-2,0点B,与y轴交于点C0,8,点P为直线BC上方抛物线上的动点,连接CP,PB,直线BC与抛物线的对称轴l交于点E.(1)求抛物线的解析式;(2)求△BCP的面积最大值;(3)点M是抛物线的对称轴l上一动点.是否存在点M,使得△BEM为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.2(2023春·山西晋城·九年级校考期末)如图1,抛物线y=ax2+bx+3与x轴交于A-1,0两,B4,0点,与y轴交于点C,顶点为D.点P是直线BC上方抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点Q.(1)求抛物线的表达式;(2)求线段PQ的最大值;(3)如图2,过点P作x轴的平行线交y轴于点M,连接QM.是否存在点P,使得△PQM为等腰三角形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.3(2023•沙坪坝区校级模拟)如图1,抛物线y=ax2+bx+2(a≠0)交x轴于点A(-1,0),点B(4,0),交y轴于点C.连接BC,过点A作AD∥BC交抛物线于点D(异于点A).(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上一动点,过点P作PE∥y轴,交AD于点E,过点E作EG⊥BC于点G,连接PG.求△PEG面积的最大值及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx+2(a≠0)水平向右平移32个单位,得到新抛物线y1,在y1的对称轴上确定一点M,使得△BDM是以BD为腰的等腰三角形,请写出所有符合条件的点M的坐标,并任选其中一个点的坐标,写出求解过程.【题型2二次函数中直角三角形的存在性问题】1(2023春·四川广安·九年级校考期中)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(-3,2),B(0,-2),其对称轴为直线x=52,C0,1 2为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.1(2023春·辽宁盘锦·九年级校考期中)如图,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.(1)求抛物线的解析式;(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的横坐标;(3)点P是对称轴上的一动点,是否存在某一点P使P、B、C为顶点的三角形是以BC为直角边的直角三角形?若存在,请直接写出所有符合条件的P点坐标;不存在,说明理由.2(2023春·广东梅州·九年级校考期中)已知二次函数y=x2+bx+c的图象经过A(-2,5),B(-1,0),与x轴交于点C.(1)求这个二次函数的解析式;(2)点P直线AC下方抛物线上的一动点,求△PAC面积的最大值;(3)在抛物线对称轴上是否存在点Q,使△ACQ是直角三角形?若存在,直接写出点Q的坐标,若不存在,请说明理由.3(2023春·甘肃金昌·九年级统考期中)平面直角坐标系中,抛物线y=a(x-1)2+92与x轴交于A,B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式,并直接写出点A,C的坐标;(2)在抛物线的对称轴上是否存在点P,使△BCP是直角三角形?若存在,请直接写出点P的坐标,若不存在,请说明理由;(3)如图,点M是直线BC上的一个动点,连接AM,OM,是否存在点M使AM+OM最小,若存在,请求出点M的坐标,若不存在,请说明理由;【题型3二次函数中等腰直角三角形的存在性问题】1(2023春·山西阳泉·九年级统考期末)综合与探究:在平面直角坐标系中,抛物线y=ax2+bx-2与x轴交于点A-1,0作平行于x轴的直线l,直线l与抛物线y,与y轴交于点C,过动点D0,m和点B4,0=ax2+bx-2相交于点E,F.(1)求抛物线的表达式;(2)求m的取值范围;(3)直线l上是否存在一点P,使得△BCP是以BC为直角边的等腰直角三角形?若存在,求m的值;若不存在,请说明理由.1(2023春·福建漳州·九年级校考期中)如图①,已知抛物线y=ax2+bx+3的图象经过点B1,0,与y 轴交于点A,其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的角平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连接PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2(2023春·湖南湘西·九年级统考期末)如图,在平面直角坐标系中,直线y =-x +3交x轴于点B ,交y 轴于点C ,直线AD 交x 轴于点A ,交y 轴于点D ,交直线BC 于点E -12,72,且CD =1.(1)求直线AD 解析式;(2)点P 从B 点出发沿线段BA 方向以1个单位/秒的速度向终点A 运动(点P 不与A ,B 两点重合),设点P 的运动时间为t ,则是否存在t ,使得△AEP 为等腰直角三角形?若存在,请求出t 的值,若不存在,请说明理由;(3)在(2)的条件下,点P 出发的同时,点Q 从C 点出发沿射线CO 方向运动,当点P 到达终点时,点Q 也停止运动,连接AQ ,PQ ,设△APQ 的面积为S ,S 与t 的函数关系式为S =32t 2-12t +2120≤t <1a t -1 t -7 1<t <7,其图象如图2所示,结合图1、图2的信息,请求出a 的值及当△APQ 的面积取得最大值时AQ 的长.3(2023春·北京通州·九年级统考期末)如图,抛物线y1=ax2-2x+c的图象与x轴交点为A和B,与y 轴交点为D0,3,与直线y2=-x-3交点为A和C.(1)求抛物线的解析式;(2)在直线y2=-x-3上是否存在一点M,使得△ABM是等腰直角三角形,如果存在,求出点M的坐标,如果不存在请说明理由.(3)若点E是x轴上一个动点,把点E向下平移4个单位长度得到点F,点F向右平移4个单位长度得到点G,点G向上平移4个单位长度得到点H,若四边形EFGH与抛物线有公共点,请直接写出点E的横坐标x E的取值范围.【题型4二次函数中全等三角形的存在性问题】1(2023·陕西咸阳·统考三模)如图,抛物线y=14x2-2x+3与x轴交于A、B两点,抛物线的顶点为C,对称轴为直线l,l交x轴于点D.(1)求点A、B、C的坐标;(2)点P是抛物线上的动点,过点P作PM⊥y轴于点M,点N在y轴上,且点N在点M上方,是否存在这样的点P、N,使得以点P、M、N为顶点的三角形与△BCD全等,若存在,请求出点P、N的坐标;若不存在,请说明理由.1(2023·甘肃陇南·统考一模)如图,抛物线y=x2+bx+c与x轴交于A-1,0,B两点,与y轴交于点C0,-3.(1)求抛物线的函数解析式;(2)已知点P m,n在抛物线上,当-1≤m<3时,直接写出n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D坐标为2,3,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.2(2023·陕西咸阳·统考三模)如图,抛物线y=14x2-2x+3与x轴交于A,B两点,抛物线的顶点为C,对称轴为直线l,l交x轴于点D.(1)求点A、B、C的坐标;(2)点P是抛物线上的动点,过点P作PM⊥y轴于点M,点N在y轴上,且点N在点M上方,是否存在这样的点P、N,使得以点P、M、N为顶点的三角形与△BCD全等,若存在,请求出点P、N的坐标;若不存在,请说明理由.3(2023·内蒙古通辽·统考中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+22=(2+1)2].【题型5二次函数中平行四边形的存在性问题】1(2023春·云南临沧·九年级统考期末)如图,抛物线y=ax2+bx-3与x轴交于A-1,0两点,、B3,0与y轴交于点C.(1)求抛物线的解析式;(2)若点D是抛物线上的一点,当△ABD的面积为10时,求点D的坐标;(3)点P是抛物线对称轴上的一点,在抛物线上是否存在一点Q,使得以B、C、P、Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.1(2023春·山东东营·九年级校考期末)如图,已知抛物线y=ax2+bx+3与x轴交于A-1,0、B3,0两点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)若点P为线段BC上的一动点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当△BCM的面积最大时,求点P的坐标;(3)在(2)的条件下,当△BCM的面积最大时,点D是抛物线的对称轴上的动点,在抛物线上是否存在点E,使得以A、P、D、E为顶点的四边形为平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.2(2023春·重庆梁平·九年级统考期末)如图1,在平面直角坐标系中,抛物线y=-2x2+4x+6与y轴交于点A,与x轴交于点E,B(E在B的左侧).(1)如图2,抛物线的顶点为点Q,求△BEQ的面积;(2)如图3,过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD 平行于y轴交AB于点D、交AC于点F,当点P在何位置时,PD+CF最大?求出最大值;(3)在(2)条件下,当PD+CF最大时,将抛物线y=-2x2+4x+6沿着射线AB平移,使得抛物线经过点C,此时得到新抛物y ,点N是原抛物线对称轴上一点,在新抛物线y 上是否存在一点M,使以点A,D,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的所有坐标,若不存在,请说明理由.3(2023春·重庆江北·九年级重庆十八中校考期末)如图1,抛物线y=ax2+bx+3a≠0与x轴正半轴交于点A,B,与y轴正半轴交于点C,且OC=OB=3OA,点D为抛物线的顶点.(1)求该抛物线的函数表达式;(2)点P为直线BC下方该抛物线上任意一点,点E为直线BC与该抛物线对称轴的交点,求△PBE面积的最大值;(3)如图2,将该抛物线沿射线CB的方向平移22个单位后得到新抛物线y ,新抛物线y 的顶点为D ,过(2)问中使得△PBE面积为最大时的点P作平行于y轴的直线交新抛物线y 于点M.在新抛物线y 的对称轴上是否存在点N,使得以点P,D ,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【题型6二次函数中菱形的存在性问题】1(2023春·重庆云阳·九年级校联考期中)如图1,抛物线y=ax2+bx+c(a≠0)与x轴相交于点A、B(点B在点A左侧),与y轴相交于点C(0,3).已知点A坐标为(1,0),△ABC面积为6.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上一动点,过点P作直线BC的垂线,垂足为点E,过点P作PF∥y轴交BC于点F,求△PEF周长的最大值及此时点P的坐标:(3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y ,平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.1(2023春·甘肃庆阳·九年级统考期末)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C0,-3,点P是直线BC下,点A在原点的左侧,点B的坐标为3,0方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO所在直线翻折,得到四边形POP C,那么是否存在点P,使四边形POP C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的面积.点,抛物线y=-x2+bx+c经过点B,且与x轴交于点C(2,0).(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点P在平面内,点Q在直线AB上,平面内是否存在点P使得以O,B,P,Q为顶点的四边形是菱形.若存在,求出点P的坐标;若不存在,请说明理由.点,抛物线y=-x2+bx+c经过点B,且与x轴交于点C(2,0).(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点P在平面内,点Q在直线AB上,平面内是否存在点P使得以O,B,P,Q为顶点的四边形是菱形.若存在,求出点P的坐标;若不存在,请说明理由.【题型7二次函数中矩形的存在性问题】1(2023春·浙江湖州·九年级统考期末)如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x-1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=13,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.1(2023·山东东营·东营市胜利第一初级中学校考三模)已知抛物线y=ax2+bx-4a≠0交x轴于点A4,0和点B-2,0,交y轴于点C.(1)求抛物线的解析式;(2)如图,点P是抛物线上位于直线AC下方的动点,过点P分别作x轴、y轴的平行线,交直线AC于点D,交x轴于点E,当PD+PE取最大值时,求点P的坐标及PD+PE最大值.(3)在抛物线上是否存在点M,对于平面内任意点N,使得以A、C、M、N为顶点且AC为一条边的四边形为矩形,若存在,请直接写出M、N的坐标,不存在,请说明理由.2(2023春·内蒙古通辽·九年级校考期中)如图,抛物线y=ax2+bx+3交x轴于A(3,0),B(-1,0)两点,交y轴于点C.(1)求抛物线的解析式和对称轴.SΔABC,求R的坐标.(2)若R为第一象限内抛物线上点,满足SΔRAC=12(3)若点P在抛物线的对称轴上,点Q是平面直角坐标系内的任意一点,是否存在点P使得A、C、P、Q为顶点的四边形是矩形,若存在,请直接写出所有符合条件的点P的坐标.3(2023春·广东江门·九年级校考期末)如图,在平面直角坐标系中,已知抛物线y=ax2+bx-2a≠0、B两点,交y轴于点C,其对称轴为x=1.5,交x轴于A-1,0(1)求该抛物线的函数解析式;(2)P为第四象限内抛物线上一点,连接PB,过点C作CQ∥BP交x轴于点Q,连接PQ,求△PBQ面积的最大值及此时点P的坐标.(3)在(2)的条件下,将抛物线y=ax2+bx-2a≠0向右平移经过点Q,得到新抛物线,点E在新抛物线的对称轴上,是否在平面内存在一点F,使得以A、P、E、F为顶点的四边形是矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.【题型8二次函数中正方形的存在性问题】1(2023·辽宁阜新·阜新实验中学校考一模)如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点P为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D为直线y=x上的动点,当点P在第四象限时,求四边形PBDC面积的最大值及此时点P的坐标;(3)已知点E为x轴上一动点,点Q为平面内任意一点,是否存在以点P,C,E,Q为顶点的四边形是以PC为对角线的正方形,若存在,请直接写出点Q的坐标,若不存在,请说明理由.1(2023·陕西西安·校考模拟预测)如图,已知拋物线y=-x2+2x+c与x轴交于点A3,0,B与y轴交于点C.(1)求c的值及该抛物线的对称轴;(2)若点D在直线AC上,点E是平面内一点.是否存在点E,使得以点A,B,D,E为顶点的四边形为正方形?若存在,请求出点E的坐标;若不存在,请说明理由.2(2023·山西晋中·山西省平遥中学校校考模拟预测)如图,二次函数y=-x2+2x+3的图象与x轴交于A,B两点(点A在点B左侧),与y轴交于点C.连接BC.点P是抛物线第一象限内的一个动点,设点P的横坐标为m,过点P作直线PD⊥x轴于点D.交BC于点E.过点P作BC的平行线,交y轴于点M.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)在点P的运动过程中,求使四边形CEPM为菱形时,m的值;(3)点N为平面内任意一点,在(2)的条件下,直线PM上是否存在点Q使得以P,E,Q,N为顶点的四边形是正方形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.3(2023·江西赣州·统考一模)已知二次函数C1:y=mx2-2mx+3(m≠0).(1)有关二次函数C1的图象与性质,下列结论中正确的有.(填序号)①二次函数C1的图象开口向上;②二次函数C1的图象的对称轴是直线x=1;③二次函数C1的图象经过定点(0,3)和(2,3);④函数值y随着x的增大而减小.(2)当m=1时,①抛物线C1的顶点坐标为;②将抛物线C1沿x轴翻折得到抛物线C2,则抛物线C2的表达式为;(3)设抛物线C1与y轴相交于点E,过点E作直线l∥x轴,与抛物线C1的另一交点为F,将抛物线C1沿直线l翻折,得到抛物线C3,抛物线C1,C3的顶点分别记为P,Q.是否存在实数m,使得以点E,F,P,Q为顶点的四边形为正方形?若存在,请求出m的值;若不存在,请说明理由.【题型9二次函数中面积问题的存在性问题】1(2023春·四川广安·九年级统考期末)如图1,抛物线y=ax2+bx+3经过A1,0两点,交y轴于,B3,0点C.(1)求抛物线的函数解析式.(2)在抛物线的对称轴上是否存在一点M,使得△ACM的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.S△BCA,请直接写出点P的横坐(3)如图2,连接BC,若在BC下方的抛物线上存在一点P,使得S△BCP=12标.1(2023春·江西九江·九年级校考期中)如图,已知二次函数L1:y=x2+bx+c与x轴交于A、B两点,A点坐标(-1,0),B点坐标(3,0),与y轴交于点C,直线L2:y=x+n经过点A.(1)求二次函数L1的表达式及顶点P的坐标;(2)二次函数L3与二次函数L1关于X轴对称,直线L2与二次函数L3相交于A、D两点.①直接写出二次函数L3的表达式;②求出D点的坐标;③在直线L2上半部分的二次函数L3上,是否存在一点M,使得△AMD的面积最大?若存在,请求出M坐标,并求出最大面积.2(2023春·山东东营·九年级东营市实验中学校考期中)如图,抛物线y=ax2+bx+c a≠0与y轴交于点C0,4.,点B4,0,与x轴交于A-2,0(1)求抛物线的解析式;(2)若点M是抛物线上的一动点,且在直线BC的上方,当S△MBC取得最大值时,求点M的坐标;(3)在抛物线上是否存在点P,使三角形ABP的面积为12?若存在,直接写出点P的坐标;若不存在,请说明理由.3(2023春·福建泉州·九年级统考期末)如图,在平面直角坐标系xOy中,顶点为E1,4的抛物线y= ax2+bx+c与x轴从左到右依次交于A,B两点,与y轴的交点为C0,3,P是抛物线对称轴右侧图象上的一点,且在x轴的上方.(1)求此抛物线的解析式;(2)若直线BP与抛物线对称轴交于点D,当BD-CD取得最大值时,求点P的坐标;(3)若直线BC与抛物线对称轴交于点F,连接PC,PE,PF,记△PCF,△PEF的面积分别为S1,S2,判断2S1+S2是否存在最大值.若存在,求出最大值;若不存在,请说明理由.【题型10二次函数中线段问题的存在性问题】1(2023春·内蒙古巴彦淖尔·九年级校考期中)如图1,抛物线y=ax2+bx+c a≠0与x轴交于A-8,0.点E是第二象限内抛物线上的一个动点,设点E的横坐标 两点,与y轴交于点D0,4,C2,0为n,过点E作直线EB⊥x轴于点B,作直线AD交EB于点F.(1)求该抛物线的解析式;(2)如图1,当△EFD是以FD为底边的等腰三角形时,求点E的坐标;(3)如图2,连接CD,过点E作直线l∥CD,交y轴于点H,连接BH.试探究:在点E运动的过程中,是否存在点E,使得FD=BH,若存在,请求出点E的坐标;若不存在,请说明理由.1(2023春·四川南充·九年级统考期中)如图,平面直角坐标系中的Rt△AOB和Rt△COD全等,直角边OB、OD在x轴上.已知点C的坐标为4,2,过A、C两点的直线分别交x轴、y轴于点E、F,抛物线y=ax2+bx+c经过O、A、C三点.(1)写出点A的坐标并求该抛物线的函数解析式;(2)点G为抛物线上位于线段OC所在可直线上方部分的一动点,求G到直线OC的最大距离和此时点G 的坐标;(3)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM的边AM与边BP相等?若存在,求出此时点P的坐标;若不存在,请说明理由.2(2023春·云南曲靖·九年级统考期末)已知抛物线y=x2+bx+c与x轴交于点A-1,0两,B3,0点,与y轴交于点C,连接BC.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使得B、C两点到直线AM的距离相等,如果存在,求出点M的坐标,如果不存在,请说明理由;(3)点P为x轴上一动点,以P为旋转中心,把线段BC逆时针旋转90°,得到线段GH,其中点B的对应点为点G,当抛物线的对称轴刚好经过GH中点时,求此时点P的坐标.3(2023春·安徽阜阳·九年级校考期末)如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=-2与x轴交于点C,直线y=-2x+1经过抛物线上一点B2,m,且与y轴.直线x=-2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)①判断△CBE的形状,并说明理由;②判断CD与BE的位置关系;(3)若P x,y是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.【题型11二次函数中角度问题的存在性问题】1(2023春·辽宁葫芦岛·九年级统考期末)如图,在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于A,B4,0在抛物线上,点P是抛物线上一动点.两点,与y轴交于点C,点D3,4(1)求该抛物线的解析式;(2)如图1,连接OD,若OP平分∠COD,求点P的坐标;(3)如图2,连接AC,BC,抛物线上是否存在点P,使∠CBP+∠ACO=45°?若存在,请直接写出点P的坐标;若不存在,请说明理由.1(2023春·内蒙古鄂尔多斯·九年级统考期末)如图,直线y=-x+3与x轴、y轴分别交于B、C两点,抛物线y=-x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在第四象限的抛物线上是否存在一点M,使△MBC的面积为27?若存在,求出M点坐标;若不存在,请说明理由.(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.2(2023春·江苏盐城·九年级统考期末)如图,抛物线y=12x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A-4,0,C0,-2.(1)求抛物线的函数表达式;(2)点E是线段AC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDAF的面积最大?求出四边形CDAF的最大面积及此时E点的坐标;(3)在y轴上是否存在点P,使得∠OAP+∠OAC=60°?若存在,请直接写出P点的坐标,若不存在,请说明理由.3(2023春·浙江湖州·九年级统考期末)如图,在平面直角坐标系中,直线y=12x-2与x轴交于点A,与y轴交于点C,抛物线y=12x2+bx+c经过A,C两点,与x轴的另一交点为点B,点P为抛物线上的一个动点.(1)求抛物线的函数表达式;(2)当△ACP的面积与△ABC的面积相等时,求点P的坐标;(3)是否存在点P,使得∠ACP=∠ABC-∠BAC,若存在,请直接写出点P的横坐标;若不存在,请说明理由.【题型12二次函数中最值问题的存在性问题】1(2023春·甘肃庆阳·九年级统考期中)如图,已知抛物线y=38x2-34x-3与x轴的交点为点A、D(点A在点D的右侧),与y轴的交点为点C.(1)直接写出A、D、C三点的坐标;(2)在抛物线的对称轴上找一点M,使得MD+MC的值最小,并求出点M的坐标;(3)设点C关于抛物线对称轴的对称点为点B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由.1(2023春·浙江宁波·九年级校考期中)对于给定的两个函数,任取自变量x 的一个值,当x <0时,它们对应的函数值互为相反数;当x ≥0时,它们对应的函数值相等,我们称这样的两个函数互为“伴随”函数.例如:一次函数y =x -3,它的“伴随”函数为y =-x +3x <0 x -3x ≥0 .(1)已知点M -2,1 在一次函数y =-mx +1的“伴随”函数的图象上,求m 的值.(2)已知二次函数y =-x 2+4x -12.①当点A a ,32 在这个函数的“伴随”函数的图象上时,求a 的值.②当-3≤x ≤3时,函数y =-x 2+4x -12的“伴随”函数是否存在最大值或最小值,若存在,请求出最大值或最小值;若不存在,请说明理由.。

二次函数经典50问

二次函数经典50问

二次函数经典知识点50问如图,抛物线y=x2+bx+c与X轴交于A、B两点,与y轴交于点C,OA= OC=3,顶点为D。

(1)求此抛物线的解析式(2)判断△ACD的形状,并说明理由。

(3)求四边形ABCD的面积。

(4)在对称轴上找到一点P,使△BCP的周长最小,求出点P的坐标及△BPC的周长(5)在直线AC下方的抛物线有一点N,过点N作直线l∥y轴,交AC于点M,当点N的坐标是多少时,线段MN的长度最大?最大值是多少?(6)在直线AC下方的抛物线上,是否存在一点N,使三角形CAN的面积最大?最大面积是多少?(7)在直线AC下方的抛物线上,是否存在一点N,使四边形ABCN的面积最大?最大面积是多少?(8)在y轴上是否存在一点E,使△ADE为直角三角形,若存在,求出点E的坐标,若不存在,请说明理由。

(9)在y轴上是否存在一点F使△ADF为等腰三角形?若存在,求出点F的坐标,若不存在,请说明理由。

(10)在抛物线上是否存在一点N,使S△ABN=S△ABC,若存在,求出点N坐标,若不存在,请说明理由。

(11)在抛物线上是否存在一点H,使S△BCH=S△ABC,若存在,求出点H坐标,若不存在,请说明理由。

(12)在抛物线上是否存在一点Q,使S△AOQ=S△COQ,若存在,求出点Q坐标,若不存在,请说明理由。

(13)在抛物线上是否存在一点E,使BE平分△ABC的面积,若存在,请求出点E的坐标,若不存在,请说明理由。

(14)在抛物线上找一点F,作FM⊥x轴,交AC于点H,使AC平分△AFM的面积?(15)在抛物线的对称轴上有一点K,在抛物线上有一点L,若使A、B、K、L为顶点的四边形是平行四边形,求出K、L两点的坐标。

(16)做垂直于X轴的直线X=-1,交直线AC于点M,交抛物线于点N,若以A、M、N、E为顶点的四边形是平行四边形,求出点E的坐标.(17)在抛物线上是否存在一点P,使∠POC=∠PCO?若存在,求出点P坐标,若不存在,请说明理由。

中考数学 二次函数存在性问题 及参考答案

中考数学 二次函数存在性问题 及参考答案

中考数学二次函数存在性问题及参考答案中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线 $y=x^2$ 向左平移1个单位,再向下平移4个单位,得到抛物线 $y=(x-h)^2+k$。

所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。

1)写出h、k的值;2)判断△ACD的形状,并说明理由;3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。

2.如图,已知抛物线经过A($-2,0$),B($-3,3$)及原点O,顶点为C。

1)求抛物线的解析式;2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;3)P是抛物线上的第一象限内的动点,过点P作PM⊥x 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。

二、二次函数中面积的存在性问题3.如图,抛物线 $y=ax^2+bx$ ($a>0$)与双曲线$y=\frac{k}{x}$ 相交于点A,B。

已知点B的坐标为($-2,-2$),点A在第一象限内,且 $\tan\angle AOX=4$。

过点A作直线AC∥x轴,交抛物线于另一点C。

1)求双曲线和抛物线的解析式;2)计算△ABC的面积;3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积。

若存在,请写出点D的坐标;若不存在,请说明理由。

4.如图,抛物线 $y=ax^2+c$ ($a>0$)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A($-2,0$),B($-1,-3$)。

1)求抛物线的解析式;2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;3)在第(2)问的结论下,抛物线上的点P使$\triangle PAD=4\triangle ABM$ 成立,求点P的坐标。

突破中学数学二次函数的八个难题

突破中学数学二次函数的八个难题

突破中学数学二次函数的八个难题第一难题:求二次函数的顶点坐标在解决二次函数的问题时,确定顶点是至关重要的一步。

顶点的坐标可以通过将二次函数标准形式转化为顶点形式来得到。

标准形式为y = ax^2 + bx + c,而顶点形式为y = a(x - h)^2 + k,其中(h, k)为顶点坐标。

为了确定顶点坐标,可使用以下公式:h = -b / (2a)k = c - b^2 / (4a)这样,我们就可以通过计算得到二次函数的顶点坐标。

第二难题:求二次函数与坐标轴的交点要求二次函数与x轴的交点,只需令y = 0,然后解方程。

同样地,要求二次函数与y轴的交点,只需令x = 0,再解方程。

通过解方程,我们可以找到二次函数与坐标轴的交点的坐标。

第三难题:求二次函数的对称轴对称轴是二次函数的一个重要概念。

对于二次函数y = ax^2 + bx + c,其对称轴方程为x = -b / (2a)。

我们可以通过计算得到对称轴方程,从而确定二次函数的对称轴。

第四难题:求二次函数的焦点坐标对于二次函数y = ax^2 + bx + c,其焦点坐标为[(h, k + 1 / (4a))],其中(h, k)为顶点坐标。

通过计算顶点坐标,我们可以得到二次函数的焦点坐标。

第五难题:求二次函数的图像方向图像方向用来描述二次函数的开口方向。

要确定二次函数的图像方向,需要根据a的值进行判断。

若a > 0,则图像开口向上;若a < 0,则图像开口向下。

第六难题:求二次函数的最值最值是指二次函数的最大值或最小值。

对于二次函数y = ax^2 + bx + c,最值的计算方法如下:最小值:当a > 0时,二次函数的最小值为顶点的y坐标;最大值:当a < 0时,二次函数的最大值为顶点的y坐标。

通过计算可以得到二次函数的最值。

第七难题:求二次函数与直线的交点要求二次函数与直线的交点坐标,需要将直线方程代入二次函数方程,并解方程得到交点坐标。

二次函数选择题多结论问题(带答案)

二次函数选择题多结论问题(带答案)

二次函数选择题多结论问题1.抛物线2(0)y ax bx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②22(4)(2)a c b +<;③若1(x ,1)y 和2(x ,2)y 是抛物线上的两点,则当12|1||1|x x +>+时,12y y <;④抛物线的顶点坐标为(1,)m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( ) A .4B .3C .2D .11T 4T2.已知抛物线2(0)y ax bx c a =++>,且12a b c ++=-,32a b c -+=-.判断下列结论:①0abc <;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当23x 时,3y a =最小;⑤该抛物线与直线y x c =-有两个交点,其中正确结论的个数( ) A .2B .3C .4D .53.二次函数2(y ax bx c a =++、b 、c 是常数,且0)a ≠的自变量x 与函数值y 的部分对应值如下表:且当32x =时,对应的函数值0y <.有以下结论: ①0abc >;②203m n +<-;③关于x 的方程20ax bx c ++=的负实数根在12-和0之间;④11(1,)P t y -和22(1,)P t y +在该二次函数的图象上,则当实数13t >时,12y y >. 其中正确的结论是( ) A .①②B .②③C .③④D .②③④4.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,对称轴为直线12x =,且经过点(2,0).下列说法:①0abc <;②20b c -+=;③420a b c ++<;④若1(2-,1)y ,5(2,2)y 是抛物线上的两点,则12y y <;⑤1()4b c m am b c+>++(其中1)2m ≠.正确的结论有( )A .2个B .3个C .4个D .5个5.如图,二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为(1,0),对称轴为直线1x =-,结合图象给出下列结论: ①0a b c ++=; ②20a b c -+<;③关于x 的一元二次方程20(0)ax bx c a ++=≠的两根分别为3-和1; ④若点1(4,)y -,2(2,)y -,3(3,)y 均在二次函数图象上,则123y y y <<; ⑤()(a b m am b m -<+为任意实数). 其中正确的结论有( ) A .1个B .2个C .3个D .4个5T 6T6.二次函数2(0)y ax bx c a =++≠的图象的一部分如图所示.已知图象经过点(1,0)-,其对称轴为直线1x =. ①0abc <; ②420a b c ++<; ③80a c +<;④若抛物线经过点(3,)n -,则关于x 的一元二次方程20(0)ax bx c n a ++-=≠的两根分别为3-,5. 上述结论中正确结论的个数为( ) A .1个B .2个C .3个D .4个7.抛物线2(y ax bx c a =++,b ,c 为常数)开口向下且过点(1,0)A ,(B m ,0)(21)m -<<-,下列结论:①20b c +>;②20a c +<;③(1)0a m b c +-+>;④若方程()(1)10a x m x ---=有两个不相等的实数根,则244ac b a -<.其中正确结论的个数是( ) A .4B .3C .2D .18.如图,已知抛物线2(y ax bx c a =++,b ,c 为常数,0)a ≠经过点(2,0),且对称轴为直线12x =,有下列结论:①0abc >;②0a b +>;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过(2c a,0);⑤2440am bm b +-.其中正确结论有( ) A .1个B .2个C .3个D .4个8T 10T9.已知抛物线2(y ax bx c a =++,b ,c 是常数,0)a ≠经过点(1,1)--,(0,1),当2x =-时,与其对应的函数值1y >.有下列结论: ①0abc >;②关于x 的方程230ax bx c ++-=有两个不等的实数根; ③7a b c ++>.其中,正确结论的个数是( ) A .0B .1C .2D .310.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列5个结论: ①0abc >; ②24b ac <; ③23c b <;④()(1)a b m am b m +>+≠;⑤若方程2||1ax bx c ++=有四个根,则这四个根的和为2. 其中正确的结论有( )A .2个B .3个C .4个D .5个11.已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为(1,0)A 和(3,0)B ,点11(P x ,1)y ,22(P x ,2)y 是抛物线上不同于A ,B 的两个点,记△1P AB 的面积为1S ,△2P AB 的面积为2S ,有下列结论:①当122x x >+时,12S S >;②当122x x <-时,12S S <;③当12|2||2|1x x ->->时,12S S >;④当12|2||2|1x x ->+>时,12S S <.其中正确结论的个数是( ) A .1B .2C .3D .412.如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA OC =.则下列结论:①0abc <;②2404b ac a ->:③10ac b -+=;④c OA OB a ⋅=:⑤1OB a=-,其中正确结论的个数是( )A .4B .3C .2D .112T 13T 14T 15T13.二次函数2(0)y ax bx c a =++≠的大致图象如图所示,已知顶点坐标为(2,9)a --.有下列结论:①0abc <;②420a b c ++>;③50a b c -+=;④若方程(5)(1)1a x x +-=-有两个根1x 和2x ,且12x x <,则1251x x -<<<.其中正确结论的个数为( ) A .1B .2C .3D .414.如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=,其中正确结论有( )个. A .0B .1C .2D .315.如图,抛物线2(0)y ax bx c a =++≠顶点坐标为(2,)a --,对于下列结论:①0abc <;②0a b c ++>;③3c a =;④若方程220ax bx c ++-=没有实数根,则20a -<<.其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个16.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与x 轴的两个交点是A ,B ,其中点A 的坐标为(3,0),则下列结论:①0abc >;②240b ac -;③点B 的坐标是(1,0)-;④点1(C x ,12)(y D x ,2)y 是抛物线上的两点,若12x x <,则12y y <,其中正确结论的个数是( ) A .1个B .2个C .3个D .4个16T 17T 18T 19T17.如图是二次函数2y ax bx c =++图象的一部分,图象过点(5,0)A -,对称轴为直线2x =-,给出四个结论:①0abc >;②420a b c -+>;③若1(3,)B y -与2(4,)C y -是抛物线上两点,则21y y <;④50a c +=.其中,正确结论的个数是( ) A .1B .2C .3D .418.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为2194y x x =-+:②若点(1,)B n -在这个二次函数图象上,则n m >;③该二次函数图象与x 轴的另一个交点为(4,0)-;④当0 5.5x <<时,8m y <<.所有正确结论的序号是( ) A .①③B .①④C .②③D .②④19.二次函数2y ax bx c =++的部分图象如图所示,对称轴是直线 1.5x =-,与x 轴的一个交点在(4,0)-和(3,0)-之间,有以下结论:①0abc >;②240b ac ->;③30a b -=;④430b c +<.其中正确结论的个数是( ) A .1B .2C .3D .420.抛物线2(y ax bx c a =++,b ,c 为常数,0)a ≠与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴的正半轴交于点C ,顶点为D .有下列结论:①20a b +=;②430c b ->;③当ABC ∆是等腰三角形时,a 的值有2个;④当BCD ∆是直角三角形时,a =. 其中,正确结论的个数是( ) A .0B .1C .2D .321.抛物线2y ax bx c =++的顶点为(1,2)D -,与x 轴的一个交点A 在点(3,0)-和(2,0)-之间,其部分图象如图,则以下结论:①0abc >;②0a b c ++<;③2c a -=;④方程220ax bx c ++-=有两个相等的实数根;⑤10ac b -+>.其中正确结论的个数为( )A .2个B .3个C .4个D .5个21T 22T 23T 24T 22.如图,抛物线2y ax bx c =++与x 轴正半轴交于A ,B 两点,其中点B 的坐标为 (4,0),抛物线与y 轴负半轴交于点C ,有下列结论:①0abc >;②40a b +<;③若1(1,)M y 与2(2,)N y 是抛物线上两点,则12y y >;④若3AB ,则430b c +>. 其中,正确的结论是( ) A .①②B .③④C .①④D .②③23.如图是抛物线2(0)y ax bx c a =++≠的部分图象,其顶点坐标为(1,)n ,且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①0abc <;②30a b +>;③420a b c -+>;④24()b a c n =-;⑤一元二次方程21ax bx c n ++=+有两个互异实根. 其中正确结论的个数是( ) A .2个B .3个C .4个D .5个24.抛物线2(0)y ax bx c a =++≠与x 轴交于点(3,0)-,其对称轴是12x =-,结合图象分析下列结论:①0abc >;②0a b c ++>;③0a b +=;④20a c +>;⑤一元二次方程20ax bx c ++=的两根分别为13x =-,22x =;⑥2404ac b a->;⑦若两点1(2,)y -,2(3,)y 在二次函数图象上,则12y y >;其中正确的结论有( ) A .3个 B .4个 C .5个 D .6个25.我们定义一种新函数:形如22||(0,40)y ax bx c a b ac =++≠->的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数2|23|y x x =--的图象(如图所示),并写出下列四个结论:其中正确结论的个数是( )①图象具有对称性,对称轴是直线1x =;②当11x -<<或3x >时,函数值随x 值的增大而增大;③当1x =-或3x =时,函数的最小值是0;④当1x =时,函数的最大值是4. A .4B .3C .2D .125T 26T 28T26.如图,抛物线2y ax bx c =++的顶点坐标为(1,)n .下列结论:①0abc <;②80a c +<;③关于x 的一元二次方程21ax bx c n ++=-有两个不相等实数根;④抛物线上有两点1(P x ,1)y 和2(Q x ,2)y ,若121x x <<,且122x x +>,则12y y >.其中正确的结论共有( ) A .1个B .2个C .3个D .4个27.关于二次函数245(0)y ax ax a =--≠的三个结论:①图象与y 轴的交点为(0,5)-;②对任意实数m ,都有12x m =+与22x m =-对应的函数值相等;③若34x ,对应的y 的整数值有4个,则413a -<-或413a <.其中,正确结论的个数是( ) A .0B .1C .2D .328.如图,二次函数的图象经过点,,其对称轴为直线.下面是5个结论:①;②;③;④;⑤.其中正确的结论有A .4个B .3个C .2个D .1个29.函数,,为常数,的图象与轴交于点,顶点坐标为,其中.有下列结论:①;②函数在和处的函数值相等;③点,,,在函数的图象上,若,则.其中,正确结论的个数是A .0B .1C .2D .32(0)y ax bx c a =++≠1(2-0)1x =0abc <240a b c -+=20a b +>230c b -<2a b am bm ++()2(y ax bx c a =++b c 0)a ≠x (2,0)(1,)n -0n >0abc >2y ax bx c =++1x =2x =-1(M x 1)y 2(N x 2)y 2y ax bx c =++1231x x -<<<12y y >()30.已知抛物线与轴有两个交点,,,.现有如下结论:①此抛物线过定点;②若抛物线开口向下,则的取值范围是;③若时,有,,则的取值范围是.其中正确结论的个数是A .0B .1C .2D .32(1)22y m x mx m =+-+-x 1(x 0)2(x 0)(1,1)-m 21m -<<-1m >-121x -<<-212x <<m 2194m -<<()【详解】①抛物线图象开口向上, 0a ∴>,对称轴在直线y 轴左侧, a ∴,b 同号,0b >,抛物线与y 轴交点在x 轴下方, 0c ∴<,0abc ∴<,故①正确.②22(4)(2)(42)(42)a c b a c b a c b +-=+++-,当2x =时242ax bx c a c b ++=++,由图象可得420a c b ++>,由图象知,当2x =-时,242ax bx c a c b ++=+-,由图象可得420a c b +-<,22(4)(2)0a c b ∴+-<,即22(4)(2)a c b +<, 故②正确.③11|1||(1)|x x +=--,22|1||(1)|x x +=--, 12|1||1|x x +>+,∴点1(x ,1)y 到对称轴的距离大于点2(x ,2)y 到对称轴的距离,12|y y ∴>,故③错误.④抛物线的顶点坐标为(1,)m -,y m ∴,2ax bx c m ∴++,21ax bx c m ∴++=-无实数根.故④正确,综上所述,①②④正确.【详解】12a b c ++=-,32a b c -+=-,∴两式相减得12b =,两式相加得1c a =--, 0c ∴<,0a >,0b >,0c <, 0abc ∴<,故①正确;12222102a b c a a a ∴++=+⨯--=>,故②正确;当1x =时,则12y a b c =++=-,当1x =-时,则有32y a b c =-+=-,∴当0y =时,则方程20ax bx c ++=的两个根一个小于1-,一个根大于1,∴抛物线与x 轴必有一个交点,故③正确;由题意知抛物线的对称轴为直线1024b x a a=-=-<, ∴当23x 时,y 随x 的增大而增大,∴当2x =时,有最小值,即为424113y a b c a a a =++=+--=,故④正确;联立抛物线2y ax bx c =++及直线y x c =-可得:2x c ax bx c -=++,整理得:21202ax x c -+=,∴△1804ac =->, ∴该抛物线与直线y x c =-有两个交点,故⑤正确; ∴正确的个数有5个.3.【答案】B【详解】将(0,2),(1,2)代入2y ax bx c =++得: 22ca b c =⎧⎨=++⎩,解得2b a c =-⎧⎨=⎩, ∴二次函数为:22y ax ax =-+,当32x =时,对应的函数值0y <, ∴932042a a -+<, 83a ∴<-, 83a ∴->,即83b >, 0a ∴<,0b >,0c >,0abc ∴<,故①不正确;1x =-时y m =,2x =时y n =,222m a a a ∴=++=+,42222n a a a =-+=+,44m n a ∴+=+, 83a <-, 203m n ∴+<-,故②正确; 抛物线过(0,2),(1,2),∴抛物线对称轴为12x =, 又当32x =时,对应的函数值0y <, ∴根据对称性:当12x =-时,对应的函数值0y <, 而0x =时20y =>,∴抛物线与x 轴负半轴交点横坐标在12-和0之间, ∴关于x 的方程20ax bx c ++=的负实数根在12-和0之间,故③正确; 11(1,)P t y -和22(1,)P t y +在该二次函数的图象上,21(1)(1)2y a t a t ∴=---+,22(1)(1)2y a t a t =+-++,若12y y >,则22(1)(1)2(1)(1)2a t a t a t a t ---+>+-++,即22(1)(1)(1)(1)a t a t a t a t --->+-+,0a <,22(1)(1)(1)(1)t t t t ∴---<+-+, 解得12t >,故④不正确. 4.【答案】B 【详解】抛物线开口向下,且交y 轴于正半轴,0a ∴<,0c >, 对称轴122b x a =-=,即b a =-, 0b ∴>,0abc ∴<,故①正确;二次函数2(0)y ax bx c a =++≠的图象过点(2,0),042a b c ∴=++,故③不正确;又可知b a =-,042b b c ∴=-++,即20b c -+=,故②正确; 抛物线开口向下,对称轴是直线12x =,且11()122--=,51222-=, 12y y ∴>,故选④不正确; 抛物线开口向下,对称轴是12x =,∴当12x =时,抛物线y 取得最大值2111()224max y a b c b c =++=+, 当x m =时,2()m y am bm c m am b c =++=++,且12m ≠, max m y y ∴>,故⑤正确,综上,结论①②⑤正确.5.【答案】C 【详解】①二次函数2(0)y ax bx c a =++≠图象的一部分与x 轴的一个交点坐标为(1,0), 0a b c ∴++=,故①正确; ②抛物线的对称轴为直线12b x a=-=-, 2b a ∴=,抛物线开口向上,与y 轴交于负半轴,0a ∴>,0c <,230a b c c a ∴-+=-<,故②正确;③由对称得:抛物线与x 轴的另一交点为(3,0)-,∴关于x 的一元二次方程20(0)ax bx c a ++=≠的两根分别为3-和1,故③正确; ④对称轴为直线1x =-,且开口向上,∴离对称轴越近,y 值越小,|41|3-+=,||21|1-+=,|31|4+=,点1(4,)y -,2(2,)y -,3(3,)y 均在二次函数图象上,213y y y ∴<<,故④不正确;⑤1x =-时,y 有最小值,2(a b c am bm c m ∴-+++为任意实数),()a b m am b ∴-+,故⑤不正确.所以正确的结论有①②③,共3个.6.【答案】C 【详解】抛物线的开口向下,0a ∴<.抛物线与y 轴的正半轴相交,0c ∴>.抛物线的对称轴为直线1x =,12ba ∴-=,2b a ∴=-,0b >.抛物线经过点(1,0)-,0a b c ∴-+=.①0a <,0b >,0c >,0abc ∴<.故①正确;②2b a =-,4242(2)440a b c a a c a a c c ∴++=+⨯-+=-+=>.故②错误;③0a b c -+=,(2)0a a c ∴--+=,即30a c +=.83550a c a c a a ∴+=++=<.故③正确; ④抛物线经过点(3,)n -,其对称轴为直线1x =,∴根据对称性,抛物线必经过点(5,)n ,∴当y n =时,3x =-或5.2(0)y ax bx c a =++≠,∴当2(0)ax bx c n a ++=≠时,3x =-或5.即关于x 的一元二次方程20(0)ax bx c n a ++-=≠的两根分别为3-,5.故④正确;综上,正确的结论有:①③④.7.【答案】A【详解】根据题意得0a b c ++=,b ac ∴=--,当2x =-时,有420a b c -+<,42()0a a c c ∴---+<,20a c ∴+<,∴②正确,由20a c +<,得20a c -->,2()0a c c ∴--+>,20b c ∴+>,∴①正确,若(1)0a m b c +-+>,则a b c am -+>-,取1x =-,则0y a b c =-+>,又0a <,0m <,即(1)0a m b c +-+>成立,∴③正确,若方程()(1)10a x m x ---=有两个不相等的实数根,即()(1)1a x m x --=有两个不相等的实数根,∴顶点的纵坐标2414ac b a->, 244ac b a ∴-<,∴④正确.8.【答案】D 【详解】①抛物线的对称轴为直线12x =,即对称轴在y 轴的右侧, 0ab ∴<,抛物线与y 轴交在负半轴上,0c ∴<,0abc ∴>,故①正确; ②抛物线的对称轴为直线12x =, 122b a ∴-=, 22b a ∴-=,0a b ∴+=,故②不正确; ③抛物线2(y ax bx c a =++,b ,c 为常数,0)a ≠经过点(2,0),420a b c ∴++=,故③正确;④由对称得:抛物线与x 轴另一交点为(1,0)-,420a b a b c +=⎧⎨++=⎩, 2c a ∴=-, ∴12c a=-, ∴当0a ≠,无论b ,c 取何值,抛物线一定经过(2c a ,0), 故④正确;⑤b a =-,22224444(441)(21)am bm b am am a a m m a m ∴+-=-+=-+=-,0a >,2(21)0a m ∴-,即2440am bm b +-,故⑤正确;本题正确的有:①③④⑤,共4个.9.【答案】D 【详解】①抛物线2(y ax bx c a =++,b ,c 是常数,0)a ≠经过点(1,1)--,(0,1), 1c ∴=,1a b c -+=-,2a b ∴=-,当2x =-时,与其对应的函数值1y >.4211a b ∴-+>,4(2)211b b ∴--+>,解得:4b >,20a b ∴=->,,0abc ∴>,故①正确;②2a b =-,1c =,2(2)130b x bx ∴-++-=,即2(2)20b x bx ∴-+-=,∴△224(2)(2)816(8)16b b b b b b =-⨯-⨯-=+-=+-,4b >,∴△0>,∴关于x 的方程230ax bx c ++-=有两个不等的实数根,故②正确;③2a b =-,1c =,2121a b c b b b ∴++=-++=-,4b >,217b ∴->,7a b c ∴++>.故③正确.10.【答案】A【详解】①二次函数图象性质知,开口向下,则0a <.再结合对称轴02b a->,得0b >.据二次函数图象与y 轴正半轴相交得0c >.0abc ∴<. ①错.②二次函数图象与x 轴交于不同两点,则240b ac ->.24b ac ∴>.②错. ③12b a-=, 2b a ∴=-.又当1x =-时,0y <.即0a b c -+<.2220a b c ∴-+<.320b c ∴-+<.23c b <.∴③正确.④1x =时函数有最大值,∴当1x =时的y 值大于当(1)x m m =≠时的y 值,即()a b c m am b c ++>++()(1)a b m am b m ∴+>+≠成立,∴④正确.⑤将x 轴下方二次函数图象翻折到x 轴上方,则与直线1y =有四个交点即可.由二次函数图象的轴对称性知:关于对称轴对称的两个根的和为2,四个根的和为4.故⑤错. 综上:③④正确.11.【答案】A【详解】方法一:不妨假设0a >.①如图1中,1P ,2P 满足122x x >+,12//PP AB ,12S S ∴=,故①错误.②当12x =-,21x =-,满足122x x <-,则12S S >,故②错误,③12|2||2|1x x ->->,1P ∴,2P 在x 轴的上方,且1P 离x 轴的距离比2P 离x 轴的距离大, 12S S ∴>,故③正确,④如图2中,1P ,2P 满足12|2||2|1x x ->+>,但是12S S =,故④错误.故选:A . 方法二:解:抛物线y =ax 2+bx +c 与x 轴的交点为A (1,0)和B (3,0), ∴该抛物线对称轴为x 2=,当x 1>x 22+时与当x 122x <-时无法确定P 1(x 1,y 1),P 2(x 2,y 2)在抛物线上的对应位置, 故①和②都不正确;当|x 12||->x 22|1->时,P 1(x 1,y 1)比P 2(x 2,y 2)离对称轴更远,且同在x 轴上方或者下方, |∴y 1||>y 2|,∴S 1>S 2,故③正确;当|x 12||->x 22|1+>时,即在x 轴上x 1到2的距离比x 2到2-的距离大,且都大于1, 可知在x 轴上x 1到2的距离大于1,x 2到2-的距离大于1,但x 2到2的距离不能确定, 所以无法比较P 1(x 1,y 1)比P 2(x 2,y 2)谁离对称轴更远,故无法比较面积,故④错误;12.【答案】B 【详解】抛物线开口向下,0a ∴<,抛物线的对称轴在y 轴的右侧,0b ∴>,抛物线与y 轴的交点在x 轴上方,0c ∴>,0abc ∴<,所以①正确;抛物线与x 轴有2个交点,∴△240b ac =->,而0a <, ∴2404b ac a-<,所以②错误; (0,)C c ,OA OC =,(,0)A c ∴-,把(,0)A c -代入2y ax bx c =++得20ac bc c -+=, 10ac b ∴-+=,所以③正确;设1(A x ,0),2(B x ,0),二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A ,B 两点, 1x ∴和2x 是方程20(0)ax bx c a ++=≠的两根,12c x x a∴⋅=, 0a <,0c >,c OA OB a∴⋅=-,所以④错; OA c =,1OB a∴=-,故⑤正确. 13.【答案】C 【详解】抛物线的顶点坐标为(2,9)a --, 22(2)945y a x a ax ax a ∴=+-=+-,抛物线的开口向上,0a ∴>,40b a ∴=>,50c a =-<,0abc ∴<,所以①正确;当0y =时,2450ax ax a +-=,解得15x =-,21x =, ∴抛物线与x 轴的交点坐标为(5,0)-,(1,0), 2x =时,0y >,420a b c ∴++>,所以②正确;55454a b c a a a a -+=--=-,而0a >,50a b c ∴-+<,所以③错误;方程(5)(1)1a x x +-=-有两个根1x 和2x , ∴抛物线(5)(1)y a x x =+-与直线1y =-有两个交点,交点的横坐标分别为1x 和2x , 1251x x ∴-<<<,所以④正确;综上:正确的个数为3个.14.【答案】C【详解】由图象知和x 轴有两个交点, ∴△240b ac =->,24b ac ∴>,故①正确;由图象知,图象与y 轴交点在x 轴的上方,且二次函数图象对称轴为1x =, 0c ∴>,12b a-=,0a <, 0b ∴>,即0bc >,20a b +=,∴②不正确,③正确;由图象知,当1x =时22110y ax bx c a b c a b c =++=⨯+⨯+=++>, ∴④不正确,综合上述:正确的个数是2.15.【答案】C【详解】抛物线开口向下,则0a <,对称轴202b x a =-=-<,因此a 、b 同号,所以0b <, 抛物线与y 轴的交点在负半轴,因此0c <, 0abc ∴<,因此①正确;当1x =时,0y a b c =++<,因此②不正确;抛物线过(2,)a --点,因此42a b c a -+=-,即520a b c -+=, 对称轴为22b x a =-=-,即4b a =, 所以580a a c -+=,即3c a =,因此③正确;方程220ax bx c ++-=没有实数根,即抛物线与直线2y =没有交点, 此时顶点的纵坐标2a -<,又0a <,20a ∴-<<,因此④正确;综上所述,正确的有①③④,共3个.16.【答案】B【详解】由图象可知:0a >,0b <,0c <, 0abc ∴>,故①正确;抛物线与x 轴交于两点,240b ac ∴->,故②错误;抛物线的对称轴为直线1x =,与x 轴的两个交点是A ,B ,点A 的坐标为(3,0), ∴点B 的坐标是(1,0)-,故③正确; 点1(C x ,12)(y D x ,2)y 是抛物线上的两点,∴当121x x <<时,12y y >,当121x x <<时,12y y <,故④错误;17.【答案】D【详解】由图象可知:开口向下,故0a <, 抛物线与y 轴交点在x 轴上方,故0c >, 对称轴02bx a =-<,0b ∴<,0abc ∴>,故①正确;由图象可知,2x =-时,0y >,420a b c ∴-+>,故②正确;当2x <-时,此时y 随x 的增大而增大,34->-,21y y ∴<,故③正确;对称轴为2x =-,22ba ∴-=-,4b a ∴=,点(5,0)A -关于对称轴的对称点是(1,0), 0a b c ∴++=,40a a c ∴++=,即50a c +=,故④正确;18.【答案】C【详解】①由图象顶点(2,9)可得2(2)9y a x =-+, 将(8,0)代入2(2)9y a x =-+得0369a =+, 解得14a =-, 2211(2)9844y x y x x ∴=--+==-++, 故①错误.② 5.522(1)->--,点A 距离对称轴距离大于点B 距离对称轴距离, m n ∴<,故②正确. ③图象对称轴为直线2x =,且抛物线与x 轴一个交点为(8,0), ∴图象与x 轴的另一交点横坐标为2284⨯-=-, 故③正确.④由图象可得当0x =时8y =, 5.5x =时y m =,2x =时9y =, 0 5.5x ∴<<时,9m y <.故④错误.19.【答案】D 【详解】抛物线开口向下,0a ∴<, 抛物线的对称轴为直线 1.52b x a=-=-, 30b a ∴=<,30a b ∴-=,所以③正确;抛物线交y 的正半轴,0c ∴>,0abc ∴>,所以①正确;抛物线与x 轴有两个交点,240b ac ∴->,所以②正确;由图象可知,1x =时0y <,且3b a =, 即14033a b c b b c b c ++=++=+<, 即430b c +<,故④正确;20.【答案】D 【详解】二次函数2y ax bx c =++的图象与x 轴交于(1,0)A -,(3,0)B 两点,∴对称轴为直线12b x a =-=, 2b a ∴=-,20a b ∴+=,故①正确;抛物线2y ax bx c =++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴的正半轴交于点C , 0a ∴<,当1x =-时,0y a b c =-+=,20a a c ∴++=,3c a ∴=-,4312660c b a a a ∴-=-+=->,故②正确; 二次函数223y ax ax a =--,(0)a <, ∴点(0,3)C a -,当BC AB =时,4,a ∴=,当AC BA =时,4=a ∴=, ∴当ABC ∆是等腰三角形时,a 的值有2个,故③正确; 二次函数2223(1)4y ax ax a a x a =--=--, ∴顶点(1,4)D a -,22416BD a ∴=+,2299BC a =+,221CD a =+, 若90BDC ∠=︒,可得222BC BD CD =+, 222994161a a a ∴+=+++,a ∴=, 若90DCB ∠=︒,可得222BD CD BC =+, 222416991a a a ∴+=+++,1a ∴=-,∴当BCD ∆是直角三角形时,1a =-或,故④错误.21.【答案】D 【详解】抛物线开口向下,0a ∴<,对称轴在y 轴左侧,0b ∴<,对称轴为1x =-,抛物线与x 轴的一个交点A 在点(3,0)-和(2,0)-之间,∴与x 轴的另一个交点在点(0,0)和(1,0)之间, ∴抛物线和y 轴正半轴相交,1x =时,0y <, 0c ∴>,0a b c ++<,0abc ∴>,故①②正确; 抛物线的对称轴为直线12b x a =-=-, 2b a ∴=,1x =-时,2y =,即2a b c -+=,22a a c ∴-+=,即2c a -=,所以③正确; 当1x =-时,二次函数有最大值为2, 即只有1x =-时,22ax bx c ++=, ∴方程220ax bx c ++-=有两个相等的实数根,故④正确; 2c a -=,2c a ∴=+,2b a =,21(2)2110ac b a a a a ∴-+=+-+=+>,故⑤正确;22.【答案】C【详解】根据题意抛物线开口向下,且与x 轴交于正半轴两点,与y 轴负半轴交于点C , 0a ∴<,0b >,0c <,0abc ∴>,故①正确; 根据抛物线的对称性可知:242b a <-<, 48a b a ∴-<<-,40a b ∴+>, 故②不正确;0a <,22ba <-,∴当2x <时,y 随x 的增大而增大, 12y y ∴<,故③不正确;若3AB ,则点A 的横坐标大于0且小于等于1, ∴当1x =时,0y a b c =++, 当4x =时,1640y a b c =++=,即416b ca +=-,∴4016b cb c +-++,整理得450b c +, 432b c c ∴+-,430b c ∴+>,故④正确,23.【答案】A 【详解】图象开口向下, 0a ∴<,取0x =,得0y c =>, 又对称轴为12ba -=,20b a ∴=->,0abc ∴<,∴①正确,3320a b a a a +=-=<,∴②错误,由抛物线的对称性得:2x =-时,420y a b c =-+<, ∴③错误,由图象得244ac b n a-=, 即24()b a c n =-,∴④正确,2y ax bx c =++的最大值为n , ∴一元二次方程21ax bx c n ++=+无解, ∴⑤错误,正确的为①④,24.【答案】D 【详解】抛物线开口向下,对称轴在y 轴左侧,抛物线与y 轴交点在y 轴正半轴, 0a ∴<,0b <,0c >,0abc ∴>,①正确,满足题意.抛物线与x 轴一个交点为(3,0)-,对称轴为直线12x =-, ∴抛物线与x 轴另外一交点坐标为(2,0), 1x ∴=时0y >,0a b c ∴++>,②正确,满足题意. 122b a -=-, a b ∴=,0a b +<,③错误,不满足题意. 20ac a b c ∴+=++>,④正确,满足题意. 抛物线与x 轴交点为(3,0)-,(2,0), 20ax bx c ∴++=的两根分别为13x =-,22x =,⑤正确,满足题意. 抛物线顶点在x 轴上方,∴2404ac b a->,⑥正确,满足题意. 322-<-<,10y ∴>,32>,20y ∴<,12y y ∴>,⑦正确,满足题意.综上所述,①②④⑤⑥⑦满足题意.25.【答案】B 【详解】观察图象可知,图象具有对称性,对称轴是直线12b x a=-=,故①正确; 令2|23|0x x --=可得2230x x --=,(1)(3)0x x ∴+-=,11x ∴=-,23x =,(1,0)∴-和(3,0)是函数图象与x 轴的交点坐标,又对称轴是直线1x =,∴当11x -<<或3x >时,函数值y 随x 值的增大而增大,故②正确;由图象可知(1,0)-和(3,0)是函数图象的最低点,则当1x =-或3x =时,函数最小值是0,故③正确;由图象可知,当1x <-时,函数值随x 的减小而增大,当3x >时,函数值随x 的增大而增大,均存在大于顶点坐标的函数值,故当1x =时的函数值4并非最大值,故④错误.综上,只有④错误.26.【答案】D 【详解】抛物线开口向下,0a ∴<,顶点坐标(1,)n ,∴对称轴为直线1x =,12b a ∴-=,20b a ∴=->,0c >,0abc ∴<,故①正确;点(1,0)A -关于直线1x =的对称点为(3,0),930a b c ∴++=,2b a =-,30a c ∴+=,850a c a ∴+=<,故②正确,顶点坐标(1,)n∴抛物线2x bx c n ++=有唯一的解,当1y n =-时,与抛物线有两个交点,故③正确,121x x <<,且122x x +>,21|1||1|x x ∴->-抛物线关于1x =对称,1x <时,y 随x 的增大而增大,1x >时,y 随x 的增大而减小,12y y ∴>,故④正确,综上所述,结论正确的是①②③④共4个.27.【答案】 【详解】二次函数245y ax ax =--,当0x =时,5y =-,∴图象与y 轴的交点为(0,5)-,故①正确; 该函数的对称轴是直线422a x a-=-=,故对任意实数m ,都有12x m =+与22x m =-对应的函数值相等,故②正确; 当3x =时,912535y a a a =--=--,当4x =时,161655y a a =--=-,∴当0a >时,355a y ---,若,对应的的整数值有4个,,D 34x y 543553a ∴--<----解得,; 当时,,若,对应的的整数值有4个,,解得,; 由上可得,若,对应的的整数值有4个,则或,故③正确; 28.【答案】【详解】①由图象可知,,,,,故①错误;②图象经过点,,代入到解析式中得: ,两边同时乘以4,得:, 故②正确;③对称轴为直线,即, ,,故③错误;④由②③得:,,则, 故,故④错误; ⑤当时,函数取得最小值,即,故⑤正确; 综上,一共2个正确.29.【答案】413a <0a <535y a ---34x y 533554a ∴-+--<-+413a -<-34x y 413a -<-413a <C 0a >0b <0c <0abc ∴>1(2-0)11042a b c -+=240a b c -+=1x =12b a-=2b a ∴=-20b a +=240a b c -+=2b a =-54a c =-57236022a a cb a -=-+=>1x =2()a bc am bm c m am b c ++++=++C【详解】依照题意,画出图形如下:函数的图象与轴交于点,顶点坐标为,其中.,,对称轴为直线, ,,故①正确,对称轴为直线,与的函数值是相等的,故②错误;观察图象可知:横坐标距离对称轴越近,函数值越大,距离对称轴越远,函数值越小.,,点距离对称轴的距离小于2,点距离对称轴的距离大于2,,故③正确.30.【答案】【详解】①当时,,故正确;②该函数图象开口向下,且与轴有两个交点,故,△,解得:,故正确;③由知,当和函数值异号,当时,,当时,,故,故的取值范围是,故正确.2(0)y ax bx c a =++≠x (2,0)(1,)n -0n >0a ∴<0c >12b x a=-=-20b a ∴=<0abc ∴>1x =-1x ∴=3x =-131x -<<21x >M ∴N 12y y ∴>D 1x =2(1)221y m x mx m =+-+-=-x 10m +<2(2)4(1)(2)0m m m =--+->21m -<<-121x -<<-2x =-1x =-2x =-92y m =+1x =-41y m =-(92)(41)0m m +-<m 2194m -<<。

二次函数解答题通关100题(含答案)

二次函数解答题通关100题(含答案)

10. 如图 1, ht∥ 㤵 , 设线段 (其中 R
th 与
的长为 , ,
th 沿 㤵 方向运动,开始时点 th 与 R h, h R
㤵 均为等腰直角三角形,其中 h t 瞨 㤵 瞨 与点 重合,当点
,点
㤵 重叠部分的面积为 , 关于
和点 㤵 重合时运动停止,
的函数图象如图 2 所示
在线段 㤵 上,
时,函数的解析式不同).
(1)填空:h 的值为 (2)求 关于
; 的取值范围.
的函数关系式,并写出
11. 如图 1,点 接 ,过点
和点 㤵 重合时运动停止,设线段 所示(其中 , <
是线段 㤵 的中点,以线段 㤵 为边作矩形 㤵 作 的垂线,交射线 于点 ,点 的长为 ,
,点
从点
的面积为 , 关于
出发,沿 㤵 方向运动,当点
第 1页(共 169 页)来自 QQ 群初中数学解题研究会 450116225
来自 QQ 群初中数学解题研究会 450116225
4. 如图,直线
上异于 , 的动点,过点

与抛物线
作 㤵

t
相交于
轴于点 ,交抛物线于点 㤵.
t‴ 和
th ,点
是线段
(1)求抛物线的解析式; (2)是否存在这样的 请说明理由. 点,使线段 㤵 的长有最大值,若存在,求出这个最大值;若不存在,
元,乙商
件.经调查,甲、乙两种商品零售单
件.为了提高销售量,小明决定把甲、乙两 (元)之间的函数关系式:
种商品的零售单价都降价 瞨 , 瞨
( 1 )直接写出甲、乙两种商品每周的销售量
甲 乙
. (元)与降价 (元)之间的函数关系 定为多少元时,才能使小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关于“二次函数y=ax^2 bx c的图象”的常见问题】常见问题1:什么是二次函数?它的图象是什么?问题:什么是二次函数?它的图象是什么?解答:答:y=ax2+bx+c(a、b,c是常数,a≠O)是二次函数,它的图象是抛物线.常见问题2:抛物线y=ax2+bx+c的对称轴与顶点坐标是什么?问题:抛物线y=ax2+bx+c的对称轴与顶点坐标是什么?解答:答:抛物线y=ax2+bx+c的对称轴是X=- ,顶点坐标是(- ,).常见问题3:二次函数y=ax^2+bx+c的图象问题:(1)顶点为(-1,3),且经过点(1,-5),求抛物线解析式;(2)对称轴为x=2,并且经过点M(-1,0)和N(3,16),求抛物线解析式.解答:笨解:(1)抛物线y=ax2+bx+c的顶点为(- , ),所以有 - =-1, =3,又抛物线经过点(1,-5),把点(1,-5)代入解析式得-5=a+b+c,从而可得方程组- =-1=3-5=a+b+c解得 a=-2b=-4c=1∴y=-2x2-4x+1(2)由题意得方程组- =2 0=a-b+c 16=9a+3b+c解得 a=-2 b=8 c=10∴y=-2x2+8x+10巧解:(1)∵抛物线y=ax2+bx+c的顶点为(-1,3),∴抛物线可写成y=a(x+1)2+3形式,又由于它过点(1,-5),所以-5=a(1+1)2+3,得a=-2,∴y=-2(x+1)2+3=-2x2-4x+1.(2)∵函数图像关于直线x=2对称,且图像经过M(-1,0)点,则由对称性,图像必过(5,0)点,抛物线可写成y=a(x+1)(x-5)的形式,又过点N(3,16),∴16=a(3+1)(3-5),∴a=-2,∴y=-2(x+1)(x-5)=-2x2+8x+10.注求二次函数解析式的问题可根据题设的不同说法,选择简单、合理的求法.常见问题4:二次函数y=ax^2+bx+c的图象问题:已知抛物线y=x2+bx+c的对称轴在y轴的右侧,且抛物线与y轴交于Q(0,-3),与x轴的交点为A、B,顶点为P,ΔPAB的面积为8,求其解析式.解答:分析由已知抛物线与y轴交于Q(0,-3),可知c=-3.要求其解析式,关键就是求b的值.∵S PAB=|AB|·h,这里h是抛物线顶点纵坐标的绝对值.即h=||=||,|AB|==,∴可得到关于b的方程,解方程即可求出b的值.解将(0,-3)代入y=ax2+bx+c,得c=-3.∵|AB|=|x2-x1|===,顶点P的纵坐标为=,∴由三角形面积公式得·||=8.∴ ·(b2+12)=64.设=m,则b2+12=m2,m·m2=64,m3=64,m=4.∴ =4,b2=4,b=±2.∵b与a异号,∵a=1>0,∴b<0,∴b=-2.∴抛物线的解析式为y=x2-2x-3.常见问题5:二次函数y=ax^2+bx+c的图象问题:图13-16如图13-16,已知抛物线y=-x2-(m-4)x+3(m-1)与x轴交于A,B两点,与y轴交于C点.(1)求m的取值范围;(2)若m<0,直线y=kx-1经过点A,与y轴交于点D,且AD·BD=5 ,求抛物线的解析式.(3)若A点在B点的左边,在第一象限内(2)中所得的抛物线上是否存在一点P,使直线PA平分ΔACD的面积?若存在,求出P点的坐标;若不存在.请说明理由.解答:分析本题是二次函数、一次函数、及几何图形面积的综合问题,(3)是探索性问题.探索存在型问题的一般思路是:先对结论作出假设,然后由此出发,进行计算、推理,再对得出的结果进行分析、检验,判断是否与题设、公理相符,若无矛盾,说明假设正确,由此得出符合条件的数学对象的存在;否则,说明不存在.解 (1)因为抛物线y=-x2-(m-4)x+3(m-1)与x轴有两个交点,∴Δ>0;又由图像可知对称轴x=- >0;抛物线在y轴上的截距c<0,即m满足解得m的取值范围是m<1且m≠-2.(2)易求出抛物线与x轴的两交点的坐标为(1-m,0),(3,0),又D(0,1),由勾股定理可知AD、BD的长为, .∵AD·BD=5∴ , =5 ,得m1=-1,m3=3.∵m<0,故取m=-1.∴抛物线解析式为y=-x2+5x-6.(3)假设在第一象限内,抛物线上存在点P使直线PA平分ΔACD的面积,则直线PA必过DC中点M.由D(0,-1),C(0,-6)可知M点坐标为(0, ),又由A(2,0),B(3,0)知,过A、M两点的直线PA的解析式为y=x- .由y=x- ,y=-x2+5x-6得x1=2, y1=0, x2=, y2=- .∴点P的坐标为(2,0),或( ,- ).由于这两点均不在第一象限,故在第一象限内抛物线上不存在点P,使PA平分ΔACD的面积.常见问题6:二次函数y=ax^2+bx+c的图象问题:函数y=ax2+bx+c和y=ax+b在同一坐标系中正确的示意图(图13-20)是( )图13-20解答:分析:本题主要考查函数图象与性质的关系。

B中,直线y=ax+b经过第一、二、三象限,a>0,b>0;而抛物线开口向下,a<0,与前者矛盾.同理,可排除结论C.D中,直线y=ax+b经过第二、三、四、象限,a<0,b<0;抛物线开口向下,a<0,但抛物线y=ax2+bx+c的顶点在第一象限,->0,则b>0与b>0矛盾,故结论D也不成立.A中直线y=ax+b经过第一、二、三、象限,a>0,b>0;抛物线y=ax2+bx+c开口向上,a>0,又其顶点在第二象限,- <0,得b<0,故选A.解选A.注此类题的实质是根据图像位置,确定系数的符号,关键是掌握不同位置的抛物线的特点。

常见问题7:二次函数y=ax^2+bx+c的图象问题:图13-21如图13-21,函数y=(k-2)x2- x+(k-5)的图像与x轴只有一个交点,则交点的横坐标x0是 .解答:分析本题考查二次函数与一元二次方程之间的关系,关键在建立抛物线与x轴交点个数与Δ间关系以及抛物线与x轴交点横坐标与相应一元二次方程根之间的关系.解∵抛物线y=(k-2)x2- x+(k-5)与x轴只有个交点,∴(- )2-4(k-2)(k-5)=0.整理得4k2-28k+33=0,k1=,k2=.当k=时,k-2>0,抛物线开口向上不符合题意.舍去.当k=时,k-2<0,适合题意.∴k=.把k=代入(k-2)x2- x+(k-5)=0,得x2+2 x+7=0,(x+ )2=0,x1=x2=- .即交点的横坐标x0是- .注解答本题要注意其中的隐含条件k-2≠0,即k≠2的情形,并要结合题中给出的图形对求得的值进行必要的取舍.常见问题8:二次函数y=ax^2+bx+c的图象问题:已知关于x的函数y=(m+6)x2+2(m-1)x+m+1的图像与x轴总有交点.(1)求m的取值范围;(2)当函数的图像与x轴两交点横坐标的倒数和等于-4时,求m的值.解答:分析本题考查二次函数与一元二次方程间的联系,重在把二次函数问题转化为一元二次方程知识,借助根的判别式和根与系数关系求解.解 (1)当m+6=0时,函数y=(m+6)x2+2(m-1)x+m+1=-14x-5与x轴有交点.当m+6≠0时,Δ=4(m-1)2-4(m+6)(m+1)=-14m-5≥0,解得m≤- .即当m≤- 且m≠-6时,抛物线与x轴有交点.综合m+6=0且m+6≠0两种情况可知,当m≤- 时,此函数的图像与x轴有交点.(2)设x1,x2是方程(m+6)x2+2(m-1)x+m+1=0的两根,则x1+x2=- ,x1x2=,∵ + =-4,即=-4,∴- =-4,解得m=-3.且当m=-3时,m+6≠0,Δ>0,符合题意.∴m的值是-3.注解答本题有以下两点要特别注意:(1)中m的值不确定,故应考虑m+6=0时的情况.当x+6=0,即x=-6时,y==-14x-5与x轴有一个交点;当m+6≠0时,函数是二次函数,其图像与x轴有交点,可能有一个交点,也可能有两个交点,∴Δ≥0,故原解法不严谨导致错误.(2)中函数是二次函数,解题时应考虑隐含条件m+6≠0或Δ>0.常见问题9:二次函数y=ax^2+bx+c的图象问题:图13-22如图13-22,ΔABC中,BC=4,∠B=45°,AB=3 ,M、N分别为AB,AC上的点,MN∥BC,设MN=x,ΔMNC的面积为S.(1)求出S与x之间的函数关系式并写出自变量x的取值范围;(2)是否存在平行线段MN,使ΔMNC的面积等于2,若存在,求出MN的长;若不存在,请说明理由.分析本题是建立在几何量间的函数关系式,题中有平行线和三角形面积的题设,故应联想相似三角形性质,在建立了几何量间关系式后,根据已知条件,可转化为一元二次方程知识求解.解答:解 (1)过A做AD⊥BC于D,在RtΔABD中,AB=3 ,∠B=45°,∴AD=3 ·sin45°=3 × =3.设ΔMNC的MN边上的高为h,∵MN∥BC,MN=x,BC=4,∴ =,解得h=∴S=MN·h=·x· =- x2+ x.自变量x的取值范围是0<x<4.(2)若存在平行线段MN,使SΔMNC=2,则方程- x2+ x=2有实数解,而此时Δ<0,与方程有实数解矛盾.∴不存在符合要求的平行线段MN.注:本例应用相似三角形对应高线之比等于相似比的性质建立函数关系式.解这类问题的基本方法是:首先根据已知条件和有关图形的度量性质(如三角形内角和定理及其推论、勾股定理、多边形的内角和定理及其推论、平行线分线段成比例定理及其推论、三角形和梯形中位线定理、相交弦定理及其推论、切割线定理其及推论、几何图形的面积公式和几何图形的面积关系等)确定函数和自变量之间的等量关系,然后再经过适当的恒等变形,即可得到几何元素间的函数关系式.常见问题10:二次函数y=ax^2+bx+c的图象问题:图13-23例5 有一个抛物的立交拱桥,这个桥拱的最大高度为16m,跨度为40m,现把它的图形放在坐标系里(如图13-23所示).若在离跨度中心M点5m处垂直竖立一铁柱支撑拱顶,这铁柱应取多长?解答:分析:抛物线的一般形式是y=ax2+bx+c,由已知A、B及顶点的坐标,可列出三个方程,进而求出三个特定系数,得抛物线的解析式.将铁柱竖直处的横坐标代入抛物线的解析式,即可得铁柱的长度.解设抛物线的解析式为y=ax2+bx+c,由已知,抛物线过A(0,0),B(40,0),C(20,16)三点,得1600a+40b+c=0,400a+20b+c=16.解这个方程组,得a=- ,b=,c=0.∴抛物线为y=- x2+ x.在距离M点5m处有两点,它们的横坐标是x1=15或x2=25.∴y1=( )·152+ ·15=15.y2=( )·252+ ·25=15.∴铁柱应取15m长.注:1.此题关键是求出抛物线的解析式,实质是已知一个二次函数图像上三个点的坐标,用待定系数法求出这个函数的解析式,也可利用顶点式y=a(x-20)2+16,由(0,0)在抛物线上,求出a,进而得出抛物线的解析式.2.要注意把实际问题抽象成数学问题.如把桥拱的最大高度抽象为抛物线顶点的纵坐标,把铁柱长度抽象为抛物线上横坐标为15或25的点的纵坐标等等.3.如果以跨度中心M点为原点建立直角坐标系,也可用同样的思路方法解决这一实际问题.学习好资料欢迎下载。

相关文档
最新文档