基因组学—人类基因组测序的意义

基因组学—人类基因组测序的意义
基因组学—人类基因组测序的意义

基因测序与精准医疗

生技131 李璐130303110

人类基因组计划(HGP)是美国科学家于1985年在能源部(DOE)的一次会议上讨论酝酿,诺贝尔奖获得者Renato Dulbecco于1986年在《自然》杂志上发表的一篇短文中率先提出的。美国于1990年正式启动HGP,计划于15年内提供30亿美元的资助,在2005年完成人类基因组全部序列的测定。欧共体、日本等发达国家和巴西、印度、中国等发展中大国也相继提出了各自的基因组研究计划。2000年春天即获得了人类基因组序列的工作草图,而最终完成序列图可望在2001年实现。同时,功能基因组学的研究已经全面展开,将极大地推动生命科学、医学、生物技术和制药工业的进步.所谓“精准医疗”,就是应用现代遗传技术、分子影像技术、生物信息技术等,结合患者生活环境和临床数据,实现精准的疾病分析和诊断,制定个性化的疾病预防和诊疗方案。要实现普及化的精准医疗,必须以人类基因组计划相结合。

HGP的直接始动因素是解决包括肿瘤在内的人类疾病的分子遗传学问题,6000多种单基因遗传病和大面积危害人类健康的多基因遗传病的致病基因和相关基因可期望通过基因组测序筛选和定位,从而在疾病发生的源头,基因层面做出治疗的方案。疾病基因的定位、克隆和鉴定,是HGP各种竞争中居于核心的部分。随着基因组序列的解读和疾病基因的发现,科学家可以依据已知的基因序列和功能找出控制某种疾病的基因,并针对相应的靶位进行药物筛选,有望找到治疗心脑血管疾病、糖尿病、癌症等目前人类主要疾病的基因药物。

其次,人类基因组的研究也将促进个人医疗的革命性发展。基因组测序技术普及,基因芯片成为我们每个人的另一张“身份证”,医生可根据各人不同的基因序列特征进行有效指导,对病人的缺陷基因进行纠偏、补救,就可以最大限度地防病于未然。开启个人医疗的精准治疗时代。那时,人类的健模式将有看病治病转变为“预防”、“预测”的积极模式。

未来人类基因组计划的重要贡献将会体现在精准治疗这一医学领域,通过基因组测序,功能基因组学,生物信息学等技术我们将能揭示基因与每个人息息相关的生老病死的分子机制,从而达到预防和治疗疾病的目的。

人类基因组计划.doc

【篇一】人类基因组计划随着人类基因组计划的完成 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测 序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范

DNA测序常见问题及分析

DNA测序过程可能遇到的问题及分析 对于一些生物测序公司(如Invitrogen等),我们的菌液或质粒经过PCR和酶切鉴定都没问题,但几天后的测序结果却无法另人满意。 为什么呢? PCR产物直接进行测序,在PCR产物长度以后将无反应信号,机器将产生许多N值。这是由于Taq酶能够在PCR反应的末端非特异性地加上一个A碱基,我们所用的T载体克隆PCR产物就是应用该原理,通常PCR产物结束的位点,PCR产物测序一般末端的一个碱基为A(绿峰),也就是双脱氧核甘酸ddNTP终止反应的位置之前的A,A后的信号会迅速减弱。 N值情况一般是由于有未去除的染料单体造成的干扰峰。该干扰峰和正常序列峰重叠在一起,有时机器377以下的测序仪无法正确判断出为何碱基。有时,在序列的起始端的小片段容易丢失,导致起始区信号过低,机器有时也无法正确判读。在序列的3’端易产生N值。一个测序反应一般可以读出900bp以上的碱基(ABI3730可以达到1200bp),但是,只有一般600bp以前的碱基是可靠的,理想条件下,多至700bp的碱基都是可以用的。一般在650bp以后的序列,由于测序毛细管胶的分辩率问题,会有许多碱基分不开,就会产生N值。测序模板本身含杂合序列,该情况主要发生在PCR产物直接测序,由于PCR产物本身有突变或含等位基因,会造成在某些位置上有重叠峰,产生N值。这种情况很容易判断,那就是整个序列信号都非常好,只有在个别位置有明显的重叠峰,视杂合度不同N值也不同。 测序列是从引物3’末端后第一个碱基开始的,所以就看不到引物序列。有两种方法可以得到引物序列。1.对于较短的PCR产物 (<600bp),可以用另一端的引物进行测序,从另一端测序可以一直测通,可以在序列的末端得到该引物的反向互补序列。对于较长的序列,一个测序反应测不通,就只能将PCR产物片段克隆到载体中,用载体上的通用引物(T7/SP6)进行测序。载体上的通用引物与所插入序列间

人类基因组计划及其意义

人类基因组计划及其意义 摘要:人类基因组计划意义深远,对人类健康、中医药、当代科学研究方法、甚至是商 业等都有影响。 关键词:人类基因组计划意义 人类从古至今都想揭开生命的奥秘,都想了解人类自身,探究人的生老病死是怎么一回事。于是人人心中都有一个疑问:到底什么是生命?但是由于当时知识与技术的限制,人类的疑问得不到科学合理的解释。美国东部时间2000年6月26日,国际人类基因组计划(Human Genome Project ,HGP)的美、英、法、德、日、中6国协作组向世界联合宣布:人类生命蓝图人类基因组“工作框架图”已经完成。它的问世标志着人类在研究自身规律的过程中迈出了至关重要的一步,也预示着人类在探索生命奥秘的历史进程中翻开了新的篇章。 什么是人类基因组计划? 生物学的原理告诉我们,基因是染色体上的DNA双螺旋链的一段,它由四种碱基通过不同的排列组合而成,并在特定的条件下表达遗传信息和表现特定功能,是生物性状遗传的基本功能单位。基因组指合成具有生物功能的蛋白质多肽链或RNA所必须的全部DNA序列。1985年美国科学家诺贝尔奖获得者杜伯克首先提出了人类基因组计划,目的在于通过国际间的合作,识别人类DNA中所有的十万个以上的基因,测定人类DNA的30亿个碱基对顺序,以建立详细的人类基因组遗传图和物理图,解读人类基因组中所有的基因,最终解读人类生、老、病、死的遗传信息,使得人类第一次在分子水平上全面认识自我。 人类基因组计划的意义 首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。在不远的将来,根据每个人DNA序列的差异,可了解不同个体对疾病的抵抗力,依照每个人的“基因特点”对症下药,这便是21世纪的医学——个体化医学。更重要的是,通过基因治疗,不但可预防当事人日后发生疾病,还可预防其后代发生同样的疾病。 第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。同时,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。对进化的研究,不再建立在假说的基础上,利用比较基因组学,通过研究古代DNA,可揭示生命进化的奥秘以及古今生物的联系,帮助人们更好地认识人类在自然界中的地位。 人类基因组计划带来的革命 1.基因治疗 人类基因组计划将为基因治疗技术的发展提供基础性的支持,对特异致病基因的研究,无疑会给基因治疗技术针对性地指明方向,加速这一技术的发展。基因治疗就是利用基因工程的手段,通过向人体导入功能基因,修补、改变相应的缺陷基因,以对相关疾病进行治疗和预防。对基因治疗的临床研究早在十年前就开始了,90年美国研究人员对一个4岁的小女孩施行了基因治疗,使她的病情大大好转。十年来,基因治疗技术在实验过程中取得了不少的成果,载体的改进和靶细胞的选择使基因治疗技术的效果也不断提高。 2.基因工程药物研究

《人类基因组计划及其意义》活动单及答案

《人类基因组计划及其意义》活动单 第1课时共1课时 活动目标: ⒈捕捉文章中的关键信息,对说明对象形成综合理解。 ⒉把握本文总分结构对于表达说明对象与文章内容的意义。 ⒊领会本文为了更好地说明事理所运用的各种说明方法及其效果。 活动方案 一、课前活动 1.作者简介 杨焕明,1952年生于浙江。1978年毕业于杭州大学1988年获丹麦哥本哈根大学博士学位。后为法国INSERE-CRNS马塞免疫中心博士后;1989年~1992年为美国哈佛大学医学院博士后;1992年~1994年美国加州大学洛杉矶分校(UCLA)博士后。现为博士生导师。现为北京华大基因研究中心暨中国科学院基因组信息中心主任,为争取和主持完成中国参与人类基因组序列的测定定下汗马功劳。国际“人类基因组计划”中国协调人。2003年被《科学美国人》杂志评为年度领袖人物。 2、背景介绍 人类基因组计划最早在1985年由诺贝尔奖获得者、美国的杜尔贝克提出。1990年10月,国际人类基因组计划正式启动。中国于1999年9月获准加入人类基因组计划并承担了l%的测序任务。本文作者杨焕明教授为争取和主持完成中国参与人类基因组1%序列的测定立下汗马功劳。在这篇文章中,作者对这一计划尤其是实施这一计划的意义作了详细的说明。3、给下列加点的字注音 核苷.()酸辜.()负胰.()岛疟.()疾滥.()用衍.()生免疫.()解.读()押解.()解.数() 二、课堂活动: 1、整体感知:通读全文,给文章划分层次。并思考文章这样安排结构有什么好处? 第一部分(第—段): 第二部分(第—段): 第三部分(第—段): 第一层(第—段): 第二层(第—段): 2、结合文章的具体内容,分析文章运用了哪些说明万法、有什么作用。

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

(整理)人类基因组计划.

人类基因组计划 HGP(Human Genome Projects) 1、HGP简介 ?人类基因组计划是由美国科学家于1985年率先提出、于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。 ?诺贝尔奖获得者Renato Dulbecco于1986年发表短文 《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。 ?文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA 的详细知识而得到巨大推动。” 什么是基因组(Genome) ?基因组就是一个物种中所有基因的整体组成 ?人类基因组有两层意义: ——遗传信息 ——遗传物质 ?从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。 人类染色体 HGP的诞生 ?1984年12月Utah州的Alta,White R受美国能源部的委托,主持召开了一个小型会议,讨论DNA重组技术的发展及测定人类整个基因组的DNA序列的意义。 ?1985年6月,在美国加州举行了一次会议,美国能源部提出了“人类基因组计划”的初步草案。?1986年6月,在新墨西哥州讨论了这一计划的可行性。随后美国能源部宣布实施这一草案。?1987年初,美国能源部与国家医学研究院(NIH)为“人类基因组计划”下拨了启动经费约550万美元,1987年总额近1.66亿美元。同时,美国开始筹建人类基因组计划实验室。 ?1989年美国成立“国家人类基因组研究中心”。诺贝尔奖金获得者J.Waston出任第一任主任。?1990年,历经5年辩论之后,美国国会批准美国的“人类基因组计划”于10月1日正式启动。美国的人类基因组计划总体规划是:拟在15年内至少投入30亿美元,进行对人类全基因组的分析。 HGP诞生过程中的质疑 ?计划的必要性问题 ?计划的现实性问题 ?科学研究领域的选择问题 ?为什么不选择基因组小的或有经济意义的生物 ?认为?°制图?±是在沙漠里建公路,?°测序?±是把?°垃圾?±分类,选择?°模式动物?±是拼凑?°诺亚方舟?±。

《人类基因组计划及其意义》学案

《人类基因组计划及其意义》导学学案 编写:段素娟 诵读经典 鹊桥仙(北宋)秦观 纤云弄巧,飞星传恨,银汉迢迢暗度。金风玉露一相逢,便胜却、人间无数。 柔情似水,佳期如梦,忍顾鹊桥归路。两情若是久长时,又岂在、朝朝暮暮。 注释:1、金风:秋风。秋,在五行中属金。 2、玉露:晶莹如玉的露珠,指秋露。 3、忍顾:不忍心回头看。 4、朝朝暮暮:日日夜夜。这里指日夜相聚。 赏析:这是一首咏七夕的词,借牛郎织女悲欢离合的故事,讴歌了真挚、细腻、纯洁、坚贞的爱情。词中明写天上双星,暗写人间情侣;其抒情,以乐景写哀,以哀景写乐,倍增其哀乐,读来荡气回肠,感人肺腑。结句“两情若是久长时,又岂在朝朝暮暮”最有境界,这两句既指牛郎、织女的爱情模式的特点,又表述了作者的爱情观,是高度凝练的名言佳句。这首词因而也就具有了跨时代、跨国度的审美价值和艺术品位。 课标点击 1.了解人类基因组计划的基本情况和意义,把握科学的时代前沿性。 2.学习作者在这篇报告中的科学态度与人文关怀融为一体的精神。 相关链接 人类基因组“中国卷”大事记 ?1995年,杨焕明等人呼吁参与国际人类基因组计划。 ?1998年6月,中国科学院遗传所人类基因组中心挂牌成立。 ?1999年4月,遗传所人类基因组中心开始进行人类基因组测序,在中国实现零的突破。 ?1999年9月1日,杨焕明在第五次伦敦国际人类基因组战略讨论会上介绍情况。

?2000年6月26日,包括中国在内的六国科学家共同宣布,人类有史以来第一个基因组“工作框架图”绘制完成,这是人类历史上值得“载入史册的一天。”?2001年4月1日,随着运算速度超千亿次的曙光3000超级计算机正式落户杭州华大基因研究中心,从而标志着一个完整的世界级基因组信息学中心在我国诞生。 ?2001年8月26日,人类基因组计划中国部分测序项目汇报及联合验收会在京召开,标志人类基因组“中国卷”通过国家验收。 一、积累整合 1.给下列词语中加点的字注音。 疟.疾解.读 痢.疾押解. 2.掌握以下词语的辨析。 ①成分:事物构成的部分和要素。如:化学成分、句子成分。 成份:人的出身及经历、职业等。如:地主成份。 ②致病:使得病。如:查明致病原因。 治病:治疗疾病。如:治病救人。 ③估计:可以是对事物发展的时间、可能性、作用的推测,也可以是对事物的质量、数量等的推测。 估量:多用于对事物的轻重、大小、强弱、数量等方面的推测。 二、理解感悟 作者是从那些方面来阐述人类基因组计划对生命科学研究与生物产业发展的巨大导向性意义的? 三、品味鉴赏 品味本文作为一篇学术报告,试简析其写作的方法特色。

人类基因组计划

人类基因组计划 一、什么是基因和基因组 1、基因:DNA分子上具有特定遗传效应的一段特定的核苷酸序列。遗传效应:有蛋白质产物或RNA产物或对其它基因起调节效应的功能。 2、基因组:是一个单倍体染色体组中所包含的全部遗传物质。有核基因组和线拉体基因组之分。 二、人类基因组结构 人类基因组结构庞大、复杂:基因组DNA总长度为3×109bp,3-4万个基因分布在24条染色体上,非编码区远远多于编码区,占90%以上,结构基因占3%,以单拷贝形式存在。 1、DNA序列中的组成结构可分为3种类型: (1)单一序列(非重复序列、单拷贝序列)占60-65%,绝大多数为蛋白质编码的结构基因 (2)中度重复序列:占20-30%,拷贝数为104-105 ,包括组蛋白基因、免疫球蛋白基因及RNA基因,绝大多数中度重复序列为不编码序列,成为间隔区,如人类Alu序列家族由300bp的短序列构成,重复达30万-50万拷贝,占基因组3-6%。 (3)高度重复序列:又称为卫星DNA 通常是小于10bp的短小序列组成基本单元,重复达105以上,占基因组的10%,不能转录,组成异染色质。 2、结构基因 (1)概念:为蛋白质编码的基因叫-。其DNA序列大多数是不连续的,编码序列之中往往还插入有非编码序列。 (2)结构: 内含子:非编码的序列叫—。 外显子:编码序列的片段叫—。 一个结构基因常常是由多个内含子和多个外显子相间排列组成的。图4-2,n个内含子嵌合排列在n+1外显子之间,故有内外之分。 (3)功能:内含子的长度比外显子的大好几倍,一起转录成RNA以后,必须经过剪接加工过程,将内含子部分切除,使外显子连接起来,才能形成成熟的mRNA,成为翻译蛋白质的模板。内含子,含而不显的片段对基因的表达有重要的调控作用。图4-3。 3、多基因家族和基因簇: (1)多基因家族:真核生物的基因组中有许多来源相同、结构相似、功能相关的基因,这样的一组基因称为基因家族 如血红蛋白基因家族。(指进化过程中由某一个祖先基因经过多次重复和变异所产生的一大类群序列相似、功能相似的基因群。) a、有的集中在一条染色体上共同发挥作用,合成某些蛋白质,如组蛋白基因家族中的5种组蛋白基因集中在7号染色体的长臂上的。 b、有的多基因家族成员是分散存在于几条染色体上,如人的rRNA基因家族成员分别位于13、14、15、 21、22,5条染色体的短臂的核仁组织区中。 每个区中包含几十个rRNA基因单位,大量转录18S rRNA、 28S rRNA、 5.8S rRNA。 假基因:是基因组中因突变而失活的基因,它和同一家族中的活跃基因在结构上和DNA序列上有相似性,但是没有蛋白质产物。(在多基因家族中,有少数成员不产生有功能的蛋白质,这样的基因叫—。假基因与正常基因从序列上看是同源的,但是在进化过程中发生突变丧失了功能活性。) (2)基因簇或超基因:同一基因家族中,一些结构和功能更为相似的基因彼此靠近成串地排列在一起,形成一个基因簇。如人类类α珠蛋白基因族、类β珠蛋白基因族。 在人类基因组中,有中等重复序列构成的大的基因群,包含有几百个功能相关的基因,紧密成簇状排列,称为超基因。如人类组织相容性抗原复合体HLA,及免疫球蛋白的重链和轻链基因。

人类基因组计划及其意义 同步练习

人类基因组计划及其意义同步练习 1.下面是语段空白处的句子,怎样排列它们的顺序才合理() ……虽然地球上的水非常丰富,但是,。,,它们才是被人类直接利用的水资源。 ①淡水大约只占3%②只有极少部分存在于大气、河流、湖泊以及地表浅层③海洋水约占地球全部水量的97%④这大约3%的淡水绝大部分又分布在南极、北极和人迹罕至的高山地区 A、①③②④ B、①④③② C、③②①④ D、③①④② (二)阅读下面一段文字 基因工程(节选) 所谓基因工程是指在其因水平上的操作,并改变生物遗传性状的技术。具体地说,按照人们的需要用类似工程设计的方法将不同生物的基因(目的基因)进行分离、剪切、拼接等操作,并通过分子载体(如质粒、人噬菌、SV40及其它病毒)转入适宜的受体细胞中而获得复制和表达的一种分子生物技术。由该技术构建的且具有新遗传性状的生物称之为“基因工程生物”,一般简称为“工程生物”。1973年基因工程的诞生,标志着新的生物革命的开始。这一年,美国斯坦福大学分子生物学家S?柯恩第一个建成“基因工程菌”,并创立基因工程模式,科学界把这一年定为基因工程元年,而S?柯恩成为基因工程发展史上第一位创始人。然而,基因工程的诞生不是偶然的,1953年,美国生物学家沃森和物理学家克拉克,在前人发现生物遗传物质DNA(脱氧核糖核酸,或者说基因)的基础上,发现了DNA的双螺旋结构,最终揭示了生物遗传之谜;60年代确定遗传信息传递方式以及“工程酶”与分子载体研究取得一系列成就有关系。这些成就为基因工程诞生做了理论和技术方面的充分准备。以基因工程诞生为标志,20多年来,生物技术飞速发展,通过“工程微生物”生产的新药有胰岛素、荷尔蒙、干扰素、乙肝疫苗等等;还有转基因动物生产医药品和优质营养品以及基因农作物抗各种病虫害等等。1990年开始实施、至今已取得重大进展并正在加紧进行的“人体基因组计划”,将为人类创造奇迹。这一计划一旦完成,人体基因组图谱绘制出来,图解整个人体10万种基因,并了解其功能,这将成为遗传病诊治或基因治疗以及寻找医治癌症、艾滋病等药物的指南。我国参与了“人类基因组计划”的进程,如制订了水稻基因组计划;人体基因计划项目在我国南方、北方均已启动,发现了一些新基因及其功能,研究工作取得可喜进展。 2.对“基因工程”理解正确的一项是() A、基因工程是一种改变生物遗传性状的技术。 B、基因工程是按照工程设计的方法,将生物的基因分解后获得一种新分子的生物技术。 C、基因工程是将不同生物的基因进行操作,然后将它转入受体细胞,从而获得一种新的遗传性状的生物技术。 D、基因工程是将不同生物的基因转入受体细胞后,所获得的一种新的遗传性状的分子生物。 3.基因工程的诞生经历了三个阶段,这三个阶段突出的成就是: 50年代成就是: 60年代成就是: 70年代成就是: 4.划线句子是一个长句,这个长句是阐述的主要意思是() A、这个计划将成为指南。 B、这个计划一旦完成,将成为指南。 C、人体基因组图谱图解人体基因将成为指南。 D、人体基因组将成为指南。

全基因组从头测序(de novo测序)

全基因组从头测序(de novo测序) https://www.360docs.net/doc/634468928.html,/view/351686f19e3143323968936a.html 从头测序即de novo 测序,不需要任何参考序列资料即可对某个物种进行测序,用生物信息学分析方法进行拼接、组装,从而获得该物种的基因组序列图谱。利用全基因组从头测序技术,可以获得动物、植物、细菌、真菌的全基因组序列,从而推进该物种的研究。一个物种基因组序列图谱的完成,意味着这个物种学科和产业的新开端!这也将带动这个物种下游一系列研究的开展。全基因组序列图谱完成后,可以构建该物种的基因组数据库,为该物种的后基因组学研究搭建一个高效的平台;为后续的基因挖掘、功能验证提供DNA序列信息。华大科技利用新一代高通量测序技术,可以高效、低成本地完成所有物种的基因组序列图谱。包括研究内容、案例、技术流程、技术参数等,摘自深圳华大科技网站 https://www.360docs.net/doc/634468928.html,/service-solutions/ngs/genomics/de-novo-sequencing/ 技术优势: 高通量测序:效率高,成本低;高深度测序:准确率高;全球领先的基因组组装软件:采用华大基因研究院自主研发的SOAPdenovo软件;经验丰富:华大科技已经成功完成上百个物种的全基因组从头测序。 研究内容: 基因组组装■K-mer分析以及基因组大小估计;■基因组杂合模拟(出现杂合时使用); ■初步组装;■GC-Depth分布分析;■测序深 度分析。基因组注释■Repeat注释; ■基因预测;■基因功能注释;■ ncRNA 注释。动植物进化分析■基因家族鉴定(动物TreeFam;植物OrthoMCL);■物种系统发育树构建; ■物种分歧时间估算(需要标定时间信息);■基因组共线性分析; ■全基因组复制分析(动物WGAC;植物WGD)。微生物高级分析 ■基因组圈图;■共线性分析;■基因家族分析; ■CRISPR预测;■基因岛预测(毒力岛); ■前噬菌体预测;■分泌蛋白预测。 熊猫基因组图谱Nature. 2010.463:311-317. 案例描述 大熊猫有21对染色体,基因组大小2.4 Gb,重复序列含量36%,基因2万多个。熊猫基因组图谱是世界上第一个完全采用新一代测序技术完成的基因组图谱,样品取自北京奥运会吉祥物大熊猫“晶晶”。部分研究成果测序分析结果表明,大熊猫不喜欢吃肉主要是因为T1R1基因失活,无法感觉到肉的鲜味。大熊猫基因组仍然具备很高的杂合率,从而推断具有较高的遗传多态性,不会濒于灭绝。研究人员全面掌握了大熊猫的基因资源,对其在分子水平上的保护具有重要意义。 黄瓜基因组图谱黄三文, 李瑞强, 王俊等. Nature Genetics. 2009. 案例描述国际黄瓜基因组计划是由中国农业科学院蔬菜花卉研究所于2007年初发起并组织,并由深圳华大基因研究院承担基因组测序和组装等技术工作。部分研究成果黄瓜基因组是世界上第一个蔬菜作物的基因组图谱。该项目首次将传

人类基因组计划论文

人类基因组计划的重要性 “以破解人类遗传和生老病死之谜,解决人类健康问题为目的的人类基因组计划,对人类自身的生存和发展具有重要的意义。其旨在通过测定人类基因组DNA约3×109对核苷酸的序列,探寻所有人类基因并确定它们在染色体上的位置,明确所有基因的结构和功能,解读人类的全部遗传信息,使得人类第一次在分子水平上全面认识自我。” 基因作为掌控人类自身性状、特征和遗传的根本因子,以其简单的双螺旋结构、复杂的排列方式,使全世界范围内的每一个人类都有着相同的本质和不同的特质。基因的轰动范围极为广泛,我们身上的每一处体态特征几乎都由基因所决定,大到一个人的身高、外貌,小到一颗牙形的状,甚至是一根头发的直径都与基因有着密不可分的联系。众所周知,基因由五种碱基对以庞大的数量按一定顺序排列组合而成,其本质是核糖核苷酸和脱氧核糖核苷酸。在一个活跃的细胞内,特定的基因通过解旋、转录、翻译等一系列过程,来实现RN A、蛋白质等相应物质的合成,这些数以万计的不同形态不同功能的RN A、蛋白质在细胞内外发挥出他们自身的作用,从而达到控制人类机体、完善结构功能、协调组织器官运作的神奇效果。 由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。 人类基因组计划便应运而生了。该计划是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波1罗计划并称为三大科学计划。 “HDP(人类基因组计划)的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。”

专题一 人类基因组计划及其意义

开卷有益 你能活多少岁?你想活多少岁?长寿是人类梦寐以求的,但是疾病等因素一直困扰着我们,癌症、糖尿病等大多是基因病。如果能攻克人类基因的奥秘,活到一百五十岁并不是异想天开。我们也能够在超市买到抗感冒的苹果、防肝炎的梨,能吃到治疗艾滋病的大米。如果能攻克人类基因的奥秘,我们的生活将发生翻天覆地的变化,我国正是人类基因组计划的成员国之一,承担着百分之一的任务,而这正是本文作者杨焕明博士争取而来的。今天我们就随他走进基因世界,去领略基因世界的多姿多彩! 话题链接——科学与生活 1.教材赏悟 全文通过介绍人类基因组计划的科学地位及六大导向性的意义,阐明了该计划是人类科学史上的重大工程,可以奠定揭开生命最终奥秘的基础,反映了当前领先于科技前沿的基因组研究的重大突破和广阔前景,体现了人文关怀性和科学严谨性,并呼吁人们要加强国际性合作,走良性发展的科研之路。 2.名句赏记 ◆科学家的成果是全人类的财产,而科学是最无私的领域。——高尔基 ◆数理科学是大自然的语言。——伽利略 ◆科学是我心中的温暖和愉快,你使我无所畏惧,视死如归。入狱者虽难得重见天日,你却能把锁链和铁窗粉碎。——布鲁诺 ◆科学是人类智慧的结晶和硕果……展望科学的未来,人类将高举科学的火炬登上宇宙的天堂。——霍金 ◆科学是人们生活中最重要、最美好和最需要的东西。——契诃夫 ◆没有科学和艺术,就没有人和人的生活。——列夫·托尔斯泰 ◆科学是我们时代的神经系统。——高尔基 ◆科学的真正的、合法的目标说来不外是这样:把新的发现和新的力量惠赠给人类生活。——培根

◆科学、科学知识总是假设的:它是猜想的知识。科学的方法是批评的方法: 寻求和消灭错误并服务于真理的方法。——卡尔·波普尔 ◆科学本身就有诗意。——斯宾塞 3.典例赏析 揭开遗传奥秘 原文:1832年的一天,奥地利西里西亚地区一个名叫海因赞多夫的小村庄,10岁的约翰正忙着帮助父亲嫁接果树。父亲酷爱园艺,是果树栽培嫁接方面的行家,左邻右舍的农民经常来向他请教。约翰从小就在父亲影响下学会了干各种农活,并且对果树嫁接产生了浓厚的兴趣。 一次小约翰问父亲:“爸爸,一枝小小的良种接穗,尽管全部养料都由劣种砧木供给,为什么仍能长成粗大的枝干和香甜的果实?” “孩子,我也不知道为什么!但事实的确如此。比养料力量更大是树木的本性,就是人们称为‘遗传’的那种性质吧!”父亲根据自己掌握的知识回答了约翰的问题。 小约翰默默地听着听着,陷入了沉思:“树木的本性”“遗传”,那是怎么一回事呢?他不断地喃喃自语。 童年的嫁接经验和学校里组织的生物活动,这些生物学的遗传现象在约翰幼小的心灵里扎下了深深的根基,这对他成为举世闻名、发现遗传规律的伟大的生物学家影响极大,他就是发现遗传三大定律的孟德尔。 悟语:伟大的发现常产生于我们普通的生活中,但是如果没有刨根究底的精神,如果没有持之以恒的坚持,没有把好奇心继续到底的决心,这伟大的发现还会是平常的生活现象。 4.时文赏读

人类基因组计划的成果

类基因组计划的成果(一) 谁来当“亚当”---人类基因组多样性与个体医学已在进行的人类基因组计划,可以说是“代表性个体”人类基因组计划。在美国,现在用于用于绘制人类DNA序列的DNA 来自于几个“无名氏”的男性。这在当时还曾有过争论,谁可以做“亚当”?这个问题也重要也不重要。人类的所有个体、所有的人,在遗传上都是平等的。所有的人类基因组不管是在基因组中的位置,即基因位点,还是每一个基因的结构都是很相似的,绝对不存在好坏优劣之分。不管从哪一个人身上分离到的一个位点上的DNA片段,可以用于任何种族任何个体的这一位点的研究,这一位点致病等位基因的鉴定,将来可能的基因诊断与基因治疗。因此,我们说人类只有一个基因组,不存在黄种人基因组、白种人的基因组之分。一个基因被鉴定、分离了,进而被专利,就是全人类的这一基因组被专利了,我们不能说你专利的是白种人的基因,我们再来专利一个黄种人或中国人的基因。但人与人是不同的,这就是人类在“同一性”的前提下的“多样性”,多样性体现在每个人身上,称为“基因多样性”或“个体特异性”,一般每个人之间5%位点的等位基因不同有0.1%的序列不同。体现在黄种人棗白种人这一人种族差异上,可称为“种族多样性”,体现在民族(遗传上称为“族群”)上,称为“族群多样性”。将来的某一天,如果需要每一个人的全基因的全核苷酸序列也许能不费多少钱就测定了,并且记录在一个光盘上,要诊断疾病就方便啦。医生先把这个光盘装进计算机,检查几个有关的“候选基因”,看看要注意什么,譬如说,某种药物,有人用灵验,有人不灵验,这就是个体差异。这一差异很多是基因决定的,也就是“多样性”决定的,这对医生诊病很有帮助。当然,也许不需要了解一个人的整个基因组棗大家都大同小异,而把重要区域、重要基因、重要位点的“多样性”较高的区域搞清就行了。“全基因组”信息非同小可,表达了每一个人有关生、老、病、死的重要信息,它是一个人全部隐私中的最重要的隐私,可不是一个人一般生理指标,如身高、体重、胸围、血型等等,因此,它的使用可得慎之又慎。

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

DNA测序结果分析比对(实例)

DNA测序结果分析比对(实例) 关键词:dna测序结果2013-08-22 11:59来源:互联网点击次数:14423 从测序公司得到的一份DNA测序结果通常包含.seq格式的测序结果序列文本和.ab1格式的测序图两个文件,下面是一份测序结果的实例: CYP3A4-E1-1-1(E1B).ab1 CYP3A4-E1-1-1(E1B).seq .seq文件可以用系统自带的记事本程序打开,.ab1文件需要用专门的软件打开。软件名称:Chromas 软件Chromas下载 .seq文件打开后如下图: .ab1文件打开后如下图: 通常一份测序结果图由红、黑、绿和蓝色测序峰组成,代表不同的碱基序列。测序图的两端(下图原图的后半段被剪切掉了)大约50个碱

基的测序图部分通常杂质的干扰较大,无法判读,这是正常现象。这也提醒我们在做引物设计时,要避免将所研究的位点离PCR序列的两端太近(通常要大于50个碱基距离),以免测序后难以分析比对。 我的课题是研究基因多态性的,因此下面要介绍的内容也主要以判读测序图中的等位基因突变位点为主。 实际上,要在一份测序图中找到真正确实的等位基因多态位点并不是一件容易的事情。一般认为等位基因位点假如在测序图上出现像套叠的两个峰,就是杂合子位点。实际比对后才知道,情况并非那么简单,下面测序图中标出的两个套峰均不是杂合子位点,如图并说明如下:

说明: 第一组套峰,两峰的轴线并不在同一位置,左侧的T峰是干扰峰;第二组套峰,虽两峰轴线位置相同,但两峰的位置太靠近了,不是杂合子峰,蓝色的C峰是干扰峰通常的杂合子峰由一高一略低的两个轴线相同的峰组成,此处的序列被机器误判为“C”,实际的序列应为“A”,通常一个高大碱基峰的前面 1~2个位点很容易产生一个相同碱基的干扰峰,峰的高度大约是高大碱基峰的1/2,离得越近受干扰越大。 一个摸索出来的规律是:主峰通常在干扰峰的右侧,干扰峰并不一定比主峰低。最关键的一点是一定要拿疑似为杂合子峰的测序图位点与测序结果的文本序列和基因库中的比对结果相比较;一个位点的多个样本相比较;你得出的该位点的突变率与权威文献或数据库中的突变率相比较。 通常,对于一个疑似突变位点来说,即使是国际上权威组织大样本的测序结果中都没有报道的话,那么单纯通过测序结果就判定它是突变点,是并不严谨的,因一份 PCR产物中各个碱基的实际含量并不相同,很难避免不产生误差的。对于一个未知突变位点的发现,通常还需要用到更精确的酶切技术。 (责任编辑:大汉昆仑王)

人类基因组计划的历史背景

人类基因组计划的历史背景 问题的提出 尽管生物机体的尺寸有限,但并未能为研究工作带来任何容易之处。人们经过了不懈的努力,渴望解开生命之谜这个多年的愿望并未向前推进多少,谜仍是个谜!以往研究的艰履或失败教训使人们头脑开始清醒地认识到,任何仅依靠单一学科如细胞学、发青学、肿瘤学、人类遗传学或分子生物学的独自努力都无济于事,都太局限了,难以完成人类对自身的认识和保护。美国曾投巨资但基本上以失败告吹了的肿瘤十年计划也说明了这个问题。所以,要知道某事物的局部作用机制最好先知道全局的看法逐渐主导了人们的认识(Dulbecco R,1986)。在绕了一大段弯路后,人们回过头来决定开始进行人的所有基因即基因组的研究,全面探讨这个“摸得到,猜不透',的人体奥秘,由此形成了基因组学(genomics)和人类基因组计划(Human Genome Project,HGP),其最终目的是对生命进行系统地和科学地解码,以此达到了解和认识生命的起源,种间和个体间存在差异的起因,疾病产生的机制以及长寿与衰老等生命现象(Under ES,1996)。人类基因组计划以前的遗传学或称基因学(genetics)偏重于单个基因的研究,而人类基因组计划则是把目光投向整个基因组的所有基因,从整体水平去考虑基因的存在、基因的结构与功能、基因之间的相互关系等。随着数理化、信息和材料等学科的渗透以及具有时代特征的工业化技术管理模式的引进,HGP真正成为了生命科学领域的第一项大科学工程,其规模和意义远远超过阿波罗(Apollo)登月计划和曼哈顿(Manhatton)原子弹计划口HGP的正式启动也就标志着解码生命的真正开始也就很自然地成为人们关注的焦点。 历史的回顾 对人类基因组的研究在70年代已具有一定的雏形,在80年代在许多国家已形成一定规模,并在以下的几个事件的影响下形成了投资额最多、最具规模的美国人类基因组计划。 1984年在Utah州的Aita,White R和MendelSOIlhn M受美国能源部(DOE)的委托主持召开了一个小型专业会议讨论测定人类整个基因组的DNA序列的意义和前景(Cook-y明n则,1989)。1985年5月在加州antaCruz由美国能说部的SindeimerRL主持的议上提出了测定人类基因组全序列的动议,由此形成了美国能源部的“人类基因组计划”草案。1986年3月,在新墨西哥州的Santa Fe 讨论了这一计划的可行性,随后美国能源部宣布实施这一草案。1986年著名遗传学家McK1Mick V 提出从整个基因组的层次研究遗传的科学称“基因组学"。1986年3月7日,诺贝尔奖获得者Dulbecco R在Science杂志上发表的一篇有关开展人类基因组计划的短文。1986年6月在美国冷泉港,另两位诺贝尔奖获得者GIbedW及Berg P主持了有关“人类基因组计划”的专家会议。1987年初,美国能源部与国家健康研究院(NIH)为“人类基因组计划"下拨了启动经费约550万美元(1987年全年1.66亿美元),并开始筹建人类基因组计划实验室。1988年2月,国家科学研究委员会(NRC)的专家撰写了“人类基因组的作图与测序(mapping andsequencing the human genome)”的报告,全面地介绍了有关这项史无前例的、看起来似“胆大妄为',计划的内容(Nati?ml Research Council,1988)。同年,美国成立了“国家人类基因组研究中心",由因提出DNA 分子双螺旋模型的贡献而获诺贝尔奖的沃森(Watson J)出任第一任主任。 Duibeeco短文的功绩 Dulbecco R于1986年在Science杂志上发表的题为“癌症研究的转折点——人类基因组的全序列分析”的短文,回顾了70年代以来癌症研究的进展,使人们认识到包括癌症在内的人类疾病的发

人类基因组计划及其意义一概

人类基因组计划及其意义 一、概述人类基因组计划 首先我们看一下百度词条上对于人类基因组计划的解释 人类基因组计划 定义:于20世纪80年代提出,由美、英、日、中、德、法等国参加并于2001年完成的针对人体23对染色体全部DNA的碱基对序列进行排序,对大约25 000个基因进行染色体定位,构建人类基因组遗传图谱和物理图谱的国际合作研究计划。 研究内容 HGP 的主要任务是人类的DNA 测序,同时绘制人类基因图谱(遗传图谱、物理图谱、序列图谱和基因图谱),此外还有测序技术、人类基因组序列变异、功能基因组技术、比较基因组学、社会、法律、伦理研究、生物信息学和计算生物学、教育培训等内容。 遗传图谱 遗传图谱是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。遗传图谱的建立为基因识别和完成基因定位创造了条件。意义:6000 多个遗传标记,能够把人的基因组分成6000 多个区域,可把某一致病基因定位于一定的已知区域,再对基因进行分离和研究。能够提高寻找基因和基因分析的效率,对于疾病而言,找基因和分析基因是个关键。 物理图谱 物理图谱是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA 分子进行测定而绘制的,主要使用限制性内切酶水解DNA片段,再通过酶切片段在DNA链上的定位将DNA链上的限制性内切酶酶切片段排列起来从而把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来所形成的图谱。DNA物理图谱是DNA分子结构的特征之一。由于首先要解决限制性内切酶在DNA 片段中所处的位置关系才能绘制出物理图谱,所以,在绘制DNA物理图谱的同时也要进行DNA序列的分析。DNA测序从物理图谱制作开始,它是测序工作的第一步。 序列图谱 随着遗传图谱和物理图谱的完成,测序就成为最重要的的工作。DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。 通过测序得到基因组的序列图谱。目前普遍使用的DNA测序技术主要有:逐个克隆法、全基因组鸟枪法等方法。 基因图谱 基因图谱是在识别基因组外显子的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。在人类基因组中鉴别全部基因的位置、结构与功能,最主要的方法是通过基因的表达产物mRNA 反追到染色体的位置。 主要用途 对医学的贡献 基因诊断、基因治疗和基于基因组知识的治疗、基于基因组信息的疾病预防、疾病易感基因的识别、风险人群生活方式、环境因子的干预。 对制药的贡献 筛选药物的靶点:与组合化学和天然化合物分离技术结合,建立高通量的受体、酶结合试验以知识为基础的药物设计:基因蛋白产物的高级结构分析、预测、模拟—药物作用“口袋”。 生物技术贡献 对基因工程药物、诊断和研究试剂产业,胚胎和成年期干细胞、克隆技术、器官再造等都有贡献。 人类基因组计划的意义 人类基因组计划对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨

相关文档
最新文档