(完整word版)运筹学课后习题解答_1.(DOC)
(完整版)运筹学》习题答案运筹学答案
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
(完整版)运筹学》习题答案运筹学答案
《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。
CA.降低的B.不增不减的C.增加的D.难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。
DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。
CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。
DA.最短路线—定通过A点B.最短路线一定通过B点C.最短路线一定通过C点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈C.存在三个圈D.不含圈11.网络图关键线路的长度( )工程完工期。
CA.大于B.小于C.等于D.不一定等于12.在计算最大流量时,我们选中的每一条路线( )。
CA.一定是一条最短的路线B.一定不是一条最短的路线C.是使某一条支线流量饱和的路线D.是任一条支路流量都不饱和的路线13.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法14.为了在各住宅之间安装一个供水管道.若要求用材料最省,则应使用( )。
运筹学习题答案(1)
第一章 线性规划及单纯形法(作业)1.4 分别用图解法和单纯型法求解下列线性规划问题,并对照指出单纯形表中的各基可行解对应图解法中可行域的哪一顶点。
(1)Max z=2x 1+x 2St.⎪⎩⎪⎨⎧≥≤+≤+0,24261553212121x x x x x x 解:①图解法:由作图知,目标函数等值线越往右上移动,目标函数越大,故c 点为对应的最优解,最优解为直线⎩⎨⎧=+=+242615532121x x x x 的交点,解之得X=(15/4,3/4)T 。
Max z =33/4. ② 单纯形法:将上述问题化成标准形式有: Max z=2x 1+x 2+0x 3+0x 4St. ⎪⎩⎪⎨⎧≥≤++≤++0,,,242615535421421321x x x x x x x x x x其约束条件系数矩阵增广矩阵为:P 1 P 2 P 3 P 4⎥⎦⎤⎢⎣⎡241026150153 P 3,P 4为单位矩阵,构成一个基,对应变量向,x 3,x 4为基变量,令非基变量x 1,x 2为零,找到T 优解,代入目标函数得Max z=33/4.1.7 分别用单纯形法中的大M 法和两阶段法求解下列线性规划问题,并指出属哪一类。
(3)Min z=4x 1+x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 解:这种情况化为标准形式: Max z '=-4x 1-x 2⎪⎪⎩⎪⎪⎨⎧=≥=++=-+=+)4,3,2,1(0426343342132121j xj x x x x x x x x 添加人工变量y1,y2Max z '=-4x 1-x 2+0x 3+0x 4-My 1-My 2⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x(2) 两阶段法: Min ω=y 1+y 2St.⎪⎪⎩⎪⎪⎨⎧≥=≥=++=+-+=++0,).4,3,2,1(04263433214112321121y y j xj x x x y x x x y x x第二阶段,将表中y 1,y 2去掉,目标函数回归到Max z '=-4x 1-x 2+0x 3+0x 4第二章 线性规划的对偶理论与灵敏度分析(作业)2.7给出线性规划问题:Max z=2x 1+4x 2+x 3+x 4⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤++)4,3,2,1(096628332143221421j x x x x x x x x x x x x j要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。
运筹学基础及应用课后习题答案(第一二章习题解答)
运筹学基础及应用课后习题答案(第一二章习题解答)第一章:线性规划一、选择题1. 线性规划问题中,目标函数可以是()A. 最大化B. 最小化C. A和B都对D. A和B都不对答案:C解析:线性规划问题中,目标函数可以是最大化也可以是最小化,关键在于问题的实际背景。
2. 在线性规划问题中,约束条件通常表示为()A. 等式B. 不等式C. A和B都对D. A和B都不对答案:C解析:线性规划问题中的约束条件通常包括等式和不等式两种形式。
二、填空题1. 线性规划问题的基本假设是______。
答案:线性性2. 线性规划问题中,若决策变量个数和约束条件个数相等,则该问题称为______。
答案:标准型线性规划问题三、计算题1. 求解以下线性规划问题:Maximize Z = 2x + 3ySubject to:x + 2y ≤ 83x + 4y ≤ 12x, y ≥ 0答案:最优解为 x = 4, y = 2,最大值为 Z = 14。
解析:画出约束条件的图形,找到可行域,再求目标函数的最大值。
具体步骤如下:1) 将约束条件化为等式,画出直线;2) 找到可行域的顶点;3) 将顶点代入目标函数,求解最大值。
第二章:非线性规划一、选择题1. 以下哪个方法适用于求解非线性规划问题()A. 单纯形法B. 拉格朗日乘数法C. 柯西-拉格朗日乘数法D. A和B都对答案:B解析:非线性规划问题通常采用拉格朗日乘数法求解,单纯形法适用于线性规划问题。
2. 非线性规划问题中,以下哪个条件不是K-T条件的必要条件()A. 梯度条件B. 正则性条件C. 互补松弛条件D. 目标函数为凸函数答案:D解析:K-T条件包括梯度条件、正则性条件和互补松弛条件,与目标函数是否为凸函数无关。
二、填空题1. 非线性规划问题中,若目标函数和约束条件都是凸函数,则该问题称为______。
答案:凸非线性规划问题2. 非线性规划问题中,K-T条件是求解______的必要条件。
运筹学课后习题解答_1.(DOC)
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题min z=2x1 3x2a4x1 6x2 6 )2x2 4 st.. 4x1x1, x2 0解:由图 1 可知,该问题的可行域为凸集 MABCN,且可知线段 BA上的点都为最优解,即该问题有无量多最优解,这时的最优值为3z min =23 0 3 2P47 1.3 用图解法和纯真形法求解线性规划问题max z=10x1 5x 2a )3x1 4x2 95x1 2x2 8st..x1, x2 0解:由图 1 可知,该问题的可行域为凸集OABCO,且可知 B 点为最优值点,3x1 4x2x1 1 T 9 3,即最优解为x*1,3即2x2 8x2 2 5x1 2这时的最优值为 z max =10 1 5 3 35 2 2纯真形法:原问题化成标准型为max z=10x15x23x1 4 x2x39st.. 5x12x2x48x1 , x2 , x3 ,x4 010 5 0 0c jC B X B b x1 x2 x3 x49 3 4 1 0x38 [5] 2 0 1x410 5 0 0C j Z j21/5 0 [14/5] 1 -3/5 x38/5 1 2/5 0 1/5 10x10 1 0 -2C j Z j53/2 0 1 5/14 -3/14 x21 1 0 -1/7 2/7 10x10 0 -5/14 -25/14C j Z j1,3 T1015335因此有 x*, zmax2 2 2P78 2.4 已知线性规划问题:max z 2 x1 4x2 x3 x4x1 3x2 x4 82x1 x2 6x2 x3 x4 6x1 x2 x3 9x1 , x2 , x3,x4 0求: (1) 写出其对偶问题;(2)已知原问题最优解为X* (2,2,4,0) ,试依据对偶理论,直接求出对偶问题的最优解。
解:( 1)该线性规划问题的对偶问题为:min w 8 y1 6 y2 6 y3 9 y4y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1y1 y3 1y1, y2 , y3 ,y4 0(2)由原问题最优解为X* ( 2,2,4,0) ,依据互补废弛性得:y1 2 y2 y4 23y1 y2 y3 y4 4y3 y4 1把 X * (2,2,4,0) 代入原线性规划问题的拘束中得第四个拘束取严格不等号,即 2 2 4 8 9 y4 0y1 2 y2 2进而有3y1 y2 y3 4y3 1得 y 4 , y2 3, y31, y 01 5 5 4( 4,3,1,0)T,最优值为w min16因此对偶问题的最优解为y*5 5P79 2.7考虑以下线性规划问题:min z 60x140x280x33x12x2x3 24x1x23x3 42x12x22x3 3x1, x2 , x30( 1)写出其对偶问题;( 2)用对偶纯真形法求解原问题;解:( 1)该线性规划问题的对偶问题为:max w 2y1 4 y23y33y1 4 y2 2 y3602 y1 y22y340y13y22y380y1, y2 , y30(2)在原问题加入三个废弛变量x4 , x5 , x6把该线性规划问题化为标准型:max z 60x1 40x2 80x33x1 2x2 x3 x4 24x1 x2 3x3 x5 42 x1 2x2 2x3 x6 3x j 0, j 1, ,6c j-60 -40 -80 0 0 0 C B X B b x1 x2 x3 x4 x5 x6x4-2 -3 -2 -1 1 0 0x5-4 [-4] -1 -3 0 1 0x6-3 -2 -2 -2 0 0 1 C j Z j-60 -40 -80 0 0 0x41 0 -5/4 5/4 1 -1/12 080x11 1 1/4 3/4 0 -1/4 0x6-1 0 [-3/2] -1/2 0 -1/2 1C j Zj0 -25 -35 0 -15 0x411/6 0 0 5/3 1 1/3 -5/680x15/6 1 0 2/3 0 -1/3 1/640x22/3 0 1 1/3 0 1/3 -2/3C j Zj0 0 -80/3 0 -20/3 -50/3x* ( 5 , 2 ,0) T , z max 60 5 40 2 80 0 2306 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、资料等相关数据见下表。
运筹学课后习题解答-1.
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
运筹学课后习题答案
6
5
6
3
σ34=15+50=1;至此;六个闭回路全部计算完 ;σ11=4;σ14=2;σ22=0;σ31=2;σ32=2;σ34=1;即全部检验数σ均 大于或等于0 即用上述三种方法计算中;用沃格尔法计算所
得结果z*=35为最优解
2024/1/10
16
表329
销地 B1
B2
B3
B4
产量
产地
A1
3
7
22
4
A3 销量
4
33
3
3
B3
6 3 28 2
B4 B5 产量
1 4 30
5
⑤
2
0
2②
15 0
6⑧
2
3
③
④
⑦
⑥
①
x11=1;x14=1;x15=3;x21=2;x32=3;x33=2;x34=1;总费用=1×3 +1×4+3×0+2×2+3×3+2×8+1×5=41
2024/1/10
18
②西北角法求解:
3 2 运输问题的基可行解应满足什么条件 试判断形表 326和表327中给出的调运方案是否作为表上作业法迭 代时的基可行解 为什么
2024/1/10
1
表326
销地 B1
B2
B3
B4
产量
产地
A1
0
A2
A3
5
销量
5
15
15
15
10
25
5
15
15
10
解:表326产地个数m=3;销地个数n=4;m+n1=3+41=6个;而 表326中非零个数的分量为5个≠6个;所以表326不可作为表上 作业法时的基可行解
(完整word版)运筹学课后习题答案林齐宁版本北邮出版社
No .1 线性规划1、某织带厂生产A 、B 两种纱线和C 、D 两种纱带,纱带由专门纱线加工而成。
这四种产品的产值、成本、加工工时等资料列表如下: 产品 项目ABCD单位产值 (元) 168 140 1050 406 单位成本 (元) 42 28 350 140 单位纺纱用时 (h) 3 2 10 4 单位织带用时 (h)20.5工厂有供纺纱的总工时7200h ,织带的总工时1200h 。
(1) 列出线性规划模型,以便确定产品的数量使总利润最大;(2) 如果组织这次生产具有一次性的投入20万元,模型有什么变化?对模型的解是否有影响? 解:(1)设A 的产量为x 1,B 的产量为x 2,C 的产量为x 3,D 的产量为x 4,则有线性规划模型如下:max f (x )=(16842)x 1 +(14028)x 2 +(1050350)x 3 +(406140)x 4=126 x 1 +112 x 2 +700 x 3 +266 x 4s.t. ⎪⎩⎪⎨⎧=≥≤+≤+++4,3,2,1 ,012005.02 720041023434321i x x x x x x x i(2)如果组织这次生产有一次性的投入20万元,由于与产品的生产量无关,故上述模型只需要在目标函数中减去一个常数20万,因此可知对模型的解没有影响。
2、将下列线性规划化为极大化的标准形式解:将约束条件中的第一行的右端项变为正值,并添加松弛变量x 4,在第二行添加人工变量x 5,将第三行约束的绝对值号打开,变为两个不等式,分别添加松弛变量x 6, x 7,并令x x x 333='-'',则有max[f (x )]= {2 x 13 x 2 5('-''x x 33)+0 x 4M x 5+0 x 6 +0 x 7}s.t. 0,,,,,,,13 55719 13 55719 16 9976 5 7654332173321633215332143321≥'''=+''+'-+-=+''-'+-=+''+'-+-=+''-'+--⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x x x x x x x x x x x x x x x x x x x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧±≥≤+-=-+--≥-+++=不限321321321321321 ,0,13|5719|169765 ..532)(m in x x x x x x x x x x x x t s x x x x f3、用单纯形法解下面的线性规划⎪⎪⎩⎪⎪⎨⎧≥≤++-≤++-≤-+++= ,0,,4205.021********* ..352)(max 321321321321321x x x x x x x x x x x x t s x x x x f 解:在约束行1,2,3分别添加x 4, x 5, x 6松弛变量,有初始基础可行解和单纯形法迭代步骤如下:C j1 12 z jC j2 1/3 1/6 11/6 1/6 z j5/6 5/6 C j3/5 1/1011/107/20z j11/20 C jz j11/ 29/811/8答:最优解为x1 =244.375, x2 =0, x3 =123.125, 剩余变量x6 =847.1875;最优解的目标函数值为858.125。
(完整word版)运筹学(胡运权)第五版课后答案,运筹作业
47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。
1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。
000000虿X113.0000000。
000000螇X210。
0000002800。
000000莃X318。
0000000.000000肁X410.0000001100。
000000莈X120.0000001700.000000袆X220.0000001700。
000000螄X320.0000000。
000000蕿X130.000000400.000000膇X230。
0000001500。
000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。
000000—2800。
000000羆3)2.0000000.000000羆4)0。
000000—2800.000000节5)0。
000000-1700.000000蝿NO。
ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
【优质】运筹学第三版课后习题答案-推荐word版 (13页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==运筹学第三版课后习题答案篇一:运筹学第3版熊伟编著习题答案运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章多属性决策品P343 第13章博弈论P371 全书420页第1章线性规划1.1 工厂每月生产A、B、C三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.310和130.试建立该问题的数学模型,使每月利润最大.【解】设x1、x2、x3分别为产品A、B、C的产量,则数学模型为maxZ?10x1?14x2?12x3?1.5x1?1.2x2?4x3?2500?3x?1.6x?1.2x?140023?1? ?150?x1?250??260?x2?310?120?x3?130???x1,x2,x3?01.2 建筑公司需要用5m长的塑钢材料制作A、B两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:问怎样下料使得(1)用料最少;(2)余料最少.【解设xj(j=1,2,…,10)为第j种方案使用原材料的根数,则(1)用料最少数学模型为minZ??xjj?110?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200 ??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,10(2)余料最少数学模型为minZ?0.5x2?0.5x3?x4?x5?x6?x8?0.5x10?2x1?x2?x3?x4?800??x2?2x5?x6?x7?1200??x3?x6?2x8?x9?600?x?2x?2x?3x?9007910?4??xj?0,j?1,2,?,101.3某企业需要制定1~6月份产品A的生产与销售计划。
运筹学第三版课后习题答案
运筹学第三版课后习题答案运筹学是一门研究如何在有限资源下做出最优决策的学科。
它涉及到数学、统计学、经济学等多个学科的知识,可以应用于各个领域,如物流管理、生产调度、供应链优化等。
而《运筹学》第三版是一本经典的教材,它系统地介绍了运筹学的基本概念、方法和应用。
本文将针对该教材的课后习题进行解答,帮助读者更好地理解和掌握运筹学的知识。
第一章:线性规划1. 习题1.1:求解线性规划问题的常用方法有哪些?答:求解线性规划问题的常用方法包括单纯形法、对偶理论、整数规划等。
其中,单纯形法是最常用的方法,它通过迭代寻找目标函数值最小(或最大)的解。
2. 习题1.2:什么是线性规划的对偶问题?如何求解线性规划的对偶问题?答:线性规划的对偶问题是指通过原始问题的约束条件构造一个新的问题,该问题的目标是最大化(或最小化)原始问题的目标函数值。
求解线性规划的对偶问题可以使用对偶理论,通过将原始问题转化为对偶问题的等价形式,再利用对偶问题的特性进行求解。
第二章:整数规划1. 习题2.1:什么是整数规划问题?与线性规划问题有何不同?答:整数规划问题是指决策变量的取值必须为整数的线性规划问题。
与线性规划问题相比,整数规划问题的解空间更为有限,求解难度更大。
整数规划问题在实际应用中常常涉及到资源的离散分配、路径选择等问题。
2. 习题2.2:列举几个整数规划问题的应用场景。
答:整数规划问题的应用场景包括生产调度、物流路径优化、设备配置等。
例如,在生产调度中,需要确定每个生产批次的数量和时间,以最大化产能利用率和最小化生产成本。
第三章:动态规划1. 习题3.1:什么是动态规划?它的基本思想是什么?答:动态规划是一种通过将问题划分为多个子问题,并保存子问题的解来求解原问题的方法。
其基本思想是利用子问题的解构建全局最优解,从而避免重复计算和提高求解效率。
2. 习题3.2:动态规划在哪些问题中有应用?答:动态规划在最短路径问题、背包问题、序列比对等问题中有广泛的应用。
【参考实用】运筹学课后习题答案.doc
第一章线性规划1、由图可得:最优解为2、用图解法求解线性规划:Min z=2R1+R2⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+-1058244212121xxxxxx解:由图可得:最优解R=1.6,R=6.43用图解法求解线性规划:MaR z=5R1+6R2⎪⎩⎪⎨⎧≥≤+-≥-,23222212121xxxxxx解:由图可得:最优解MaR z=5R1+6R2, MaR z= +4用图解法求解线性规划:MaRz = 2R1 +R2⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤,5242261552121211xxxxxxx由图可得:最大值⎪⎩⎪⎨⎧==+35121xxx,所以⎪⎩⎪⎨⎧==2321xxmaR Z = 8.1212125.max23284164120,1,2maxZ.jZ x xx xxxx j=+⎧+≤⎪≤⎪⎨≤⎪⎪≥=⎩如图所示,在(4,2)这一点达到最大值为26将线性规划模型化成标准形式:Min z=R1-2R2+3R3⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤++无约束321321321321,0,052327x x x x x x x x x x x x解:令Z ’=-Z,引进松弛变量R 4≥0,引入剩余变量R 5≥0,并令R 3=R 3’-R 3’’,其中R 3’≥0,R 3’’≥0MaR z ’=-R 1+2R 2-3R 3’+3R 3’’⎪⎪⎩⎪⎪⎨⎧≥≥≥≥≥≥-=++-=--+-=+-++0,0,0'',0',0,05232'''7'''5433213215332143321x x x x x x x x x x x x x x x x x x x7将线性规划模型化为标准形式Min Z =R 1+2R 2+3R 3⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++无约束,321321321321,00632442392-x x x x x x x x x x x x解:令Z’ = -z ,引进松弛变量R 4≥0,引进剩余变量R 5≥0,得到一下等价的标准形式。
运筹学课后习题及答案
运筹学课后习题及答案在运筹学这门课程中,课后习题是帮助学生巩固理论知识和提高解决实际问题能力的重要环节。
以下是一些典型的运筹学课后习题及答案,供学生参考和练习。
习题1:线性规划问题问题描述:一个工厂需要生产两种产品A和B,每种产品都需要使用机器1和机器2。
产品A每单位需要机器1工作3小时,机器2工作2小时;产品B每单位需要机器1工作2小时,机器2工作4小时。
机器1每天最多工作24小时,机器2每天最多工作20小时。
如果产品A每单位的利润是500元,产品B每单位的利润是600元。
假设工厂希望最大化利润,问应该生产多少单位的产品A和B?解答:首先,设产品A的产量为x,产品B的产量为y。
根据题目条件,我们可以得到以下两个约束条件:\[ 3x + 2y \leq 24 \]\[ 2x + 4y \leq 20 \]目标函数是利润最大化,即:\[ \text{Maximize} \ P = 500x + 600y \]通过图解法或单纯形法,我们可以得到最优解为x=4,y=3。
此时,利润最大化为\( P = 500 \times 4 + 600 \times 3 = 3800 \)元。
习题2:网络流问题问题描述:一个供水系统由多个泵站和水库组成,需要确保每个水库都有足够的水量供应。
已知每个泵站的供水能力以及每个水库的需求量。
如何分配泵站的供水量,以满足所有水库的需求?解答:首先,需要构建一个网络流图,其中节点代表泵站和水库,边代表供水路径。
每条边的容量表示泵站的供水能力,每条边的流量表示实际供水量。
目标是找到满足以下条件的网络流:- 每个泵站的总流出量等于其供水能力。
- 每个水库的总流入量等于其需求量。
- 网络中没有负流量。
使用最大流算法,如Ford-Fulkerson算法或Edmonds-Karp算法,可以找到满足上述条件的最大网络流。
习题3:整数规划问题问题描述:一个公司需要决定是否投资于三个不同的项目,每个项目都需要一定的资金和人力资源。
《运筹学》课后答案
1.1 (1)无界解;(2)无解;(3)唯一最优解(15,8);(4)无界解1.2 (1)令z z -=',444x x x ''-'=,则该问题的标准形式为 65443210055243max x x x x x x x z ++''+'-+-=' ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥'''=-''+'-++-=+''-'+-+=''-'+-+-0,,,,,,2321422224654432164432154432144321x x x x x x x x x x x x x x x x x x x x x x x x (2)令z z -=',11x x -=',333x x x ''-'=,则该问题的标准形式为 4332103322max x x x x x z +''+'-+'=' ⎪⎪⎩⎪⎪⎨⎧≥''''=+''+'-+'=''-'++'0,,,,62443321433213321x x x x x x x x x x x x x x 1.4 (1)顶点:O (0,0);A (0,2.25);B (1,1.5);C (1.6,0)有唯一最优解(1,1.5),此时z=17.5;(2)顶点:A (0,0);B (0,3);C (3.75,0.75);D (4,0) 有唯一最优解(3.75,0.75),此时z=8.251.51.6 由L 和分别解出其下界和上界214max :x x z L +=' 2163max :x x z L +='⎪⎪⎩⎪⎪⎨⎧≥≤+≤+0,1065853212121x x x x x x ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+-0,1442122212121x x x x x x 由L '解出下界5/32___*=z ,由L ''解出上界21___*=z1.7 (1)有无界解;(2)有唯一最优解T x )0,0,3,0,2(*=;(3)有唯一最优解T x )0,1,5/9,5/2(*=;(4)1.8 0,2/3,5,5,0,1,3,2,2,4,2,3=-=======-====l k j i h g f e d c b a 1.9 证明:设)2()1()1(X X X αα-+=为)1(X和)2(X连线上任一点由已知,)2()2()1()1(CX z z CX===则])1([)2()1(X X C CX αα-+=)1()2()2()2()2()1(z z CX CX CX CX ===-+=αα1.10 证明:*0CX CX≥ ,0)(0*≤-∴X X C (1)又0***X C X C ≥,有0)(0**≥-X X C (2))1()2(-得0))((0**≥--X X C C1.11 (1)先列出两个新的约束β99333)(431+=-+'x x x i β3333)(32+-=+-'x x ii以1x ,2x 为基列出初始单纯形表如下:(2)0=β时,43≤≤α时,最优基不变(3)3=α时,11≤≤-β时,最优基不变1.12 (1)*X 仍为最优解(2)除C 为常数向量外,一般*X 不再是问题的最优解 (3)最优解变为*X λ,目标函数值不变1.13 设选择五种饲料的公斤数分别为54321,,,,x x x x x ,则543218.03.04.07.02.0min x x x x x z ++++= ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥++++≥++++≥++++0,,,,1008.022.00.15.0305.022.05.07001862354325432154321543211x x x x x x x x x x x x x x x x x x x x 1.14 设654321,,,,,x x x x x x 分别代表于早上6:00,10:00,…,早上2:00开始上班的护士数,则654321min x x x x x x z +++++=⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥≥+≥+≥+≥+≥+≥+0,,30205060706061655443322116x x x x x x x x x x x x x x 1.15 用i =1,2,3分别代表商品A ,B ,C ,j =1,2,3分别代表前、中、后舱,ij x 为装于j 舱位的i 种商品的数量,目标函数为总运费收入最大,约束条件需分别考虑舱位载重限制,舱位容量限制,商品数量限制及各舱位载重的平衡限制。
运筹学基础课后习题答案.doc
运筹学基础课后习题答案[2002年版新教材]第一章导论 P51.、区别决策中的定性分析和定量分析,试举例。
定性——经验或单凭个人的判断就可解决时,定性方法定量——对需要解决的问题没有经验时;或者是如此重要而复杂,以致需要全面分析(如果涉及到大量的金钱或复杂的变量组)时,或者发生的问题可能是重复的和简单的,用计量过程可以节约企业的领导时间时,对这类情况就要使用这种方法。
举例:免了吧。
2、. 构成运筹学的科学方法论的六个步骤是哪些?.观察待决策问题所处的环境;.分析和定义待决策的问题;.拟定模型;.选择输入资料;.提出解并验证它的合理性(注意敏感度试验);.实施最优解;3、.运筹学定义:利用计划方法和有关许多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据第二章作业预测P251、. 为了对商品的价格作出较正确的预测,为什么必须做到定量与定性预测的结合?即使在定量预测法诸如加权移动平均数法、指数平滑预测法中,关于权数以及平滑系数的确定,是否也带有定性的成分?答:(1)定量预测常常为决策提供了坚实的基础,使决策者能够做到心中有数。
但单靠定量预测有时会导致偏差,因为市场千变万化,影响价格的因素很多,有些因素难以预料。
调查研究也会有相对局限性,原始数据不一定充分,所用的模型也往往过于简化,所以还需要定性预测,在缺少数据或社会经济环境发生剧烈变化时,就只能用定性预测了。
(2)加权移动平均数法中权数的确定有定性的成分;指数平滑预测中的平滑系数的确定有定性的成分。
2.、某地区积累了5 个年度的大米销售量的实际值(见下表),试用指数平滑法,取平滑系数α= 0.9,预测第6年度的大米销售量(第一个年度的预测值,根据专家估计为4181.9千公斤)年度 1 2 3 4 5大米销售量实际值(千公斤)5202 5079 3937 4453 3979 。
答:F6=a*x5+a(1-a)*x4+a(1-a)~2*x3+a(1-a)~3*x2+a(1-a)~4*F1F6=0.9*3979+0.9*0.1*4453+0.9*0.01*3937+0.9*0.001*5079+0.9*0.0001*4181.9F6=3581.1+400.77+35.433+4.5711+0.3764F6=4022.33 、某地区积累了11个年度纺织品销售额与职工工资总额的数据,列入下列表中(表略),计算:(1)回归参数a,b(2)写出一元线性回归方程。
(完整word版)运筹学习题及答案
34。某个常数bi波动时,最优表中引起变化的有(A)
A.B-1bB。 C.B-1D.B-1N
35.某个常数bi波动时,最优表中引起变化的有(C)
A. 检验数 B。CBB-1C。CBB-1b D。系数矩阵
36.任意一个容量的网络中,从起点到终点的最大流的流量等于分离起点和终点的任一割集的容量.(B)A.正确B。错误C.不一定D。无法判断
9.对偶单纯形法迭代中的主元素一定是负元素( )A
A。正确B.错误C。不一定D。无法判断
10。对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正( )B
A。换出变量B.换入变量C.非基变量D。基变量
11.对 问题的标准型: ,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值 必为()B
A.换出变量B.换入变量C。非基变量D。基变量
29。可行解是满足约束条件和非负条件的决策变量的一组取值.( )A
A。正确B。错误C。不一定D。无法判断
30。 连通图G有n个点,其部分树是T,则有(C)
A。T有n个点n条边 B.T的长度等于G的每条边的长度之和
C.T有n个点n-1条边 D。T有n-1个点n条边
47.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)
A。非线性问题的线性化技巧B.静态问题的动态处理
C.引入虚拟产地或者销地D。引入人工变量
48.为什么单纯形法迭代的每一个解都是可行解?因为遵循了下列规则 (A)
A。按最小比值规则选择出基变量 B。先进基后出基规则
C。标准型要求变量非负规则 D。按检验数最大的变量进基规则
运筹学课后习题答案word精品
1、一洛+4x2兰24% +x2工85兰捲<10X2 一0解:由图可得:最优解x=1.6,y=6.4第一章线性规划由图可得:最优解为2、用图解法求解线性规划:Min z=2x i +X22为一x 2色2 « -2x 1 +3x 2 兰 2 x i , x 2 > 0解:2XI -X 2=O由图可得:最优解 Max z=5x 1+6x 2, Max z= +::Max z=5x1+6x2Z =5X :+6X 2-XI +3X 2=2Maxz = 2x 1 +X2'5x1 兰15』6x i + 2x2 2 <24X\+x2 <5x ,x2>0X"i + x2 = 5 X"i = 3 由图可得:最大值」1 2, 所以」1a = 3 、x2=2 max Z = 8.5. maxZ = 2\ 3x 2 % +2x 2 兰 8 4x ^16 4x 2 胡2 X j _0,j =1,2X j +x 2 +x 3 兰7 』X i -X 2 +X 3 3 2_3片 +x 2 +2x 3 = -5 x^ 0, X 20, X 3无约束解:令 Z' =-Z,引进松弛变量 X 4 _ 0,弓I 入剩余变量 X 5 _ 0,并令 X 3=X 3 ' -x 3'X 3' _0,x 3''- 0Max z ' =-x i +2x 2-3x 3' +3x 3''捲 +x 2 +x 3'—x 3'' +& =7 』X 1 _X 2 +X 3'—X 3''_X s =2 一3为 +X 2 +2x 3 = -5* Z0,x 2 »0,x 3它0,x 3'它0,x 4 AO, x 5 王0i-2x 2+3x 3,其中2.6将线性规划模型化成标准形式:Min z=x-2% + x 2 + x 3 兰 9 』—3为 +x 2 +2x 3 K4 4X i —2x ? —3X 3 = —6 X i <0, X 2 KO, X 3无约束-解:令Z ' = -z ,引进松弛变量X 4亠0,引进剩余变量X 5亠0,得到一下等价的标准形式。
运筹学课后习题解答_1.(DOC)
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min 3z=23032⨯+⨯=P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学部分课后习题解答P47 1.1 用图解法求解线性规划问题a)12121212min z=23466 ..424,0x xx xs t x xx x++≥⎧⎪+≥⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集MABCN,且可知线段BA上的点都为最优解,即该问题有无穷多最优解,这时的最优值为min3z=23032⨯+⨯= P47 1.3 用图解法和单纯形法求解线性规划问题a)12121212max z=10x5x349 ..528,0x xs t x xx x++≤⎧⎪+≤⎨⎪≥⎩解:由图1可知,该问题的可行域为凸集OABCO,且可知B点为最优值点,即112122134935282xx xx x x=⎧+=⎧⎪⇒⎨⎨+==⎩⎪⎩,即最优解为*31,2Tx⎛⎫= ⎪⎝⎭这时的最优值为max335z=101522⨯+⨯=单纯形法: 原问题化成标准型为121231241234max z=10x 5x 349..528,,,0x x x s t x x x x x x x +++=⎧⎪++=⎨⎪≥⎩ j c →105B CB X b 1x2x3x4x0 3x 9 3 4 1 0 04x8[5] 2 0 1 j j C Z -105 0 0 0 3x 21/5 0 [14/5] 1 -3/5 101x8/51 2/5 0 1/5 j j C Z -1 0 -2 5 2x 3/2 0 1 5/14 -3/14 101x11 0 -1/72/7j j C Z --5/14 -25/14所以有*max 33351,,1015222Tx z ⎛⎫==⨯+⨯= ⎪⎝⎭P78 2.4 已知线性规划问题:1234124122341231234max24382669,,,0z x x x x x x x x x x x x x x x x x x x =+++++≤⎧⎪+≤⎪⎪++≤⎨⎪++≤⎪≥⎪⎩求: (1) 写出其对偶问题;(2)已知原问题最优解为)0,4,2,2(*=X ,试根据对偶理论,直接求出对偶问题的最优解。
解:(1)该线性规划问题的对偶问题为:1234124123434131234min8669223411,,,0w y y y y y y y y y y y y y y y y y y y =+++++≥⎧⎪+++≥⎪⎪+≥⎨⎪+≥⎪≥⎪⎩(2)由原问题最优解为)0,4,2,2(*=X ,根据互补松弛性得:12412343422341y y y y y y y y y ++=⎧⎪+++=⎨⎪+=⎩把)0,4,2,2(*=X 代入原线性规划问题的约束中得第四个约束取严格不等号,即4224890y ++=<⇒=从而有12123322341y y y y y y +=⎧⎪++=⎨⎪=⎩得123443,,1,055y y y y ====所以对偶问题的最优解为*43(,,1,0)55T y =,最优值为min 16w =P79 2.7 考虑如下线性规划问题:123123123123123min 6040803224342223,,0z x x x x x x x x x x x x x x x =++++≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩(1)写出其对偶问题;(2)用对偶单纯形法求解原问题; 解:(1)该线性规划问题的对偶问题为:123123123123123max 2433426022403280,,0w y y y y y y y y y y y y y y y =++++≤⎧⎪++≤⎪⎨++≤⎪⎪≥⎩(2)在原问题加入三个松弛变量456,,x x x 把该线性规划问题化为标准型:123123412351236max 60408032243422230,1,,6j z x x x x x x x x x x x x x x x x j =------+=-⎧⎪---+=-⎪⎨---+=-⎪⎪≥=⎩L*max (,,0),604080063633T x z ==⨯+⨯+⨯=P81 2.12 某厂生产A 、B 、C 三种产品,其所需劳动力、材料等有关数据见下表。
要求:(a )确定获利最大的产品生产计划;(b )产品A 的利润在什么范围内变动时,上述最优计划不变;(c )如果设计一种新产品D ,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该种产品是否值得生产? (d ) 如果劳动力数量不增,材料不足时可从市场购买,每单位0.4 元。
问该厂要不要购进原材料扩大生产,以购多少为宜。
解:由已知可得,设j x 表示第j 种产品,从而模型为:123123123123max 3463545..34530,,0z x x x x x x s t x x x x x x =++++≤⎧⎪++≤⎨⎪≥⎩a) 用单纯形法求解上述模型为:得到最优解为*(5,0,3)T x =;最优值为max 354327z =⨯+⨯=b )设产品A 的利润为3λ+,则上述模型中目标函数1x 的系数用3λ+替代并求解得:要最优计划不变,要求有如下的不等式方程组成立20310533053λλλ⎧-+≤⎪⎪⎪--≤⎨⎪⎪-+≤⎪⎩解得:3955λ-≤≤ 从而产品A 的利润变化范围为:393,355⎡⎤-+⎢⎥⎣⎦,即242,455⎡⎤⎢⎥⎣⎦C )设产品D 用6x 表示,从已知可得16661/5B c c B P σ-=-='1661128334122555P B P -⎡⎤-⎡⎤⎢⎥⎡⎤⎢⎥===⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦把6x 加入上述模型中求解得:从而得最优解*(0,0,5,0,0,5/2)T x =;最优值为max 45327.5272z =⨯+⨯=> 所以产品D 值得生产。
d )P101 3.1已知运输问题的产销量与单位运价如下表所示,用表上作业法求各题的最优解及最小运费。
表3-35B1 B2 B3 B4 产量A1A2A31012227142091611201815255销量 5 15 15 10解:由已知和最小元素法可得初始方案为B1 B2 B3 B4 产量A1A2A3 5150 151015255销量 5 15 15 10检验:B1 B2 B3 B4 产量A1A2A3 5150 15 1015255销量 5 15 15 10检验:产地销地产地销地产地销地B1 B2 B3 B4 产量A1A2A3 5510 151015255销量 5 15 15 10检验:从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:min25257109151110180335z=⨯+⨯+⨯+⨯+⨯+⨯=表B1 B2 B3 B4 产量A1A2A386549314427372526销量10 10 20 15解:因为34115855i ji ja b===>=∑∑,即产大于销,所以需添加一个假想的销地,销量为3,构成产销平衡问题,其对应各销地的单位运费都为0。
产地销地产地销地A1A2A386549314427372526销量10 10 20 15 3由上表和最小元素法可得初始方案为B1 B2 B3 B4 B5 产量A1A2A391 1071315372526销量10 10 20 15 3检验:从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:min69513101741331503193z=⨯+⨯+⨯+⨯+⨯+⨯+⨯=表3-37B1 B2 B3 B4 B5 产量A1A2A38566M3389746578203030销量25 25 20 10 20解:因为351180100i ji ja b===<=∑∑,即销大于产,所以需添加一个假想的产地,产量为20,构成产销平衡问题,其对应各销地的单位运费都为0。
产地产地销地产地销地A1A2 A3 A4 8 5 6 0 6 M 3 0 3 8 9 0 7 4 6 0 5 7 8 0 20 30 30 20 销量2525201020由上表和最小元素法可得初始方案为 B1 B2 B3 B4 B5 产量 A1A2 A3 A4 5 20 25 20 0 10 15 5 20 30 30 20 销量2525201020检验:B1 B2 B3 B4 B5 产量 A1 A2 A3 A420 5 25 20 0 10 5 15 20 30 30 20 销量 25 25201020产地 产地 销地产地销地B1 B2 B3 B4 B5 产量A1A2A3A4205 2520102020303020销量25 25 20 10 20从上表可以看出所有的检验数都大于零,即为最优方案最小运费为:min320520410653258002000305 z=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯= P127 4.8 用割平面法求解整数规划问题。
a)12121212max7936735,0,z x xx xx xx x=+-+≤⎧⎪+≤⎨⎪≥⎩且为整数解:该问题的松弛问题为:产地销地12121212max 7936735,0z x x x x x x x x =+-+≤⎧⎪+≤⎨⎪≥⎩割平面1为:234(31/2)(07/22)(01/22)x x x +=++++3421713022222x x x ⇒--=-≤34571122222x x x ⇒+-=割平面2为:145(44/7)(01/7)(16/7)x x x +=+++-+451541640x x x x ⇒--=--≤456164x x x ⇒+-= ()*4,3Tx =,最优值为max 749355z =⨯+⨯=P144 5.3 用图解分析法求目标规划模型c )解:由下图可知,满足目标函数的满意解为图中的A 点。
x 1 + x 2 + d 1- - d 1+= 40x 1 + x 2 + d 2- - d 2+= 40+10=50 x 1 + d 3- - d 3+= 24 x 2 + d 4- - d 4+= 30min Z = P 1 d 1-+ P 2 d 2++ P 3(2d 3- +1d 4-)s.t.x 1 、x 2 、d 1+、d 1-、d 2+、d 2- 、d 3+、d 3- 、d 4+、d 4- ≥ 0P170 6.4 求下图中的最小树解:避圈法为:得到最小树为:P171 6.7 用标号法求下图中点1v到各点的最短路。
解:如下图所示:P 173 6.14 用Ford-Fulkerson 的标号算法求下图中所示各容量网络中从sv 到tv 的最大流,并标出其最小割集。
图中各弧旁数字为容量ij c ,括弧中为流量ij f .B)解:对上有向图进行2F 标号得到由于所有点都被标号了,即可以找到增广链,所以流量还可以调整,调整量为1,得由图可知,标号中断,所以已经是最大流了,最大流量等于最小割的容量,最小割为与直线KK 相交的弧的集合,即为{}3451223(,),(,),(,),(,),(,),(,)s s s t t v v v v v v v v v v v v所以从s v 到t v 的最大流为:*12532114stf =+++++=C)解:对上有向图进行2F 标号得到由于所有点都被标号了,即可以找到增广链,所以流量还可以调整,调整量为1,得由图可知,标号中断,所以已经是最大流了,最大流量等于最小割的容量,最小割为与直线KK 相交的弧的集合,即为{}1325(,),(,),(,)s s v v v v v v ,所以从s v 到t v 的最大流为:*53513st f =++=P193 7.1 根据下表给定的条件,绘制PERT网络图。