十进制与二进制对照表

合集下载

二进制数转换为十进制数

二进制数转换为十进制数

二进制数和十进制数换算对照表
二进制
0 1 10
十进制
0 1 2
二进制
11 100 101
十进制
3 4 5
二进制
110 111 1000
十进制
6 7 8
二进制
1001 1010 1011
十进制
9 10 11
十进制数转二进制数 二进制数转十进制数
十进制数转换为二进制数
十进制整数转换成二进制整数采用 “除2取余,逆序排列”法。具体做法是: 用2去除十进制整数,可以得到一个商和 余数;再用2去除商,又会得到一个商和 余数,如此进行,直到商为0时为止,然 后把先得到的余数作为二进制数的低位 有效位,后得到的余数作为二进制数高 位有效位,依次排列起来。
制作人:罗

时间:2010年12月13日
大家都知道计算机中采用的二进制,但用计算 机解决实际问题时对数值的输入输出通常使用十 进制,这就有一个十进制向二进制转换或由二进 制向十进制转换的过程。也就是说,在使用计算 机进行数据处理时,首先必须把输入的十进制数 转换成计算机所能接受的二进制数;计算机在运 行结束后,再把二进制数转换成人们所习惯的十 进制数输出。这种将数由一种数制转换成另一种 数制称为数制间的转换。
= 1+0 +4 +0 +16
=21
2的n次幂对照表
210 29 28 27 26 25 24 23 22 21 20 1024 512 256 128 64 32 16 8 4 2 1
例3:将二进制数1 1 0 1 0 1 转换成十进制数 32+16+0 + 4 +0 +1
=53 (110101)2=(53)10

计算机进制换算

计算机进制换算

表1-1 几种常用进制之间的对照关系十进制二进制八进制十六进制0 0000 0 01 0001 1 12 0010 2 23 0011 3 34 0100 4 45 0101 5 56 0110 6 67 0111 7 78 1000 10 89 1001 11 910 1010 12 A11 1011 13 B12 1100 14 C13 1101 15 D14 1110 16 E15 1111 17 F1、将(1111101100.0001101)2转换成十六进制数。

0011 1110 1100 . 0001 1010↓↓↓↓↓↓3 E C . 1 A结果为:(1111101100.0001101)2=(3EC.1A)162、(1101100.111)2=1×26+1×25+1×23+1×22+1×2-1+1×2-2 +1×2-3=64+32+8+4+0.5+0.25+0.125=(108.875)103、十进制数215用二进制数表示是A)1100001B)1101001C)0011001D)11010111【答案】D【解析】十进制向二进制的转换前面已多次提到,这一点也是大纲要求重点掌握的。

采用"除二取余"法。

4、十六进制数34B对应的十进制数是A)1234B)843C)768D)333【答案】B【解析】十六进制数转换成十进制数的方法和二进制一样,都是按权展开。

5、二进制数0111110转换成十六进制数是A)3FB)DDC)4AD)3E【答案】D【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。

6、二进制数10100101011转换成十六进制数是A)52BB)D45DC)23CD)5E【答案】A【解析】二进制整数转换成十六进制整数的方法是:从个位数开始向左按每4位二进制数一组划分,不足4位的前面补0,然后各组代之以一位十六进制数字即可。

二进制ascii码对照表

二进制ascii码对照表

二进制ascii码对照表对照表如下:ASCII码(American Standard Code for Information Interchange,美国信息交换标准代码)是一种常见的字符编码系统,用于将字符和数字等信息转换为二进制形式。

ASCII码总共定义了128个字符,并将每个字符用一个7位的二进制数表示(即0-127范围内的值)。

下面是一个二进制ASCII码对照表,列出了每个字符对应的十进制、十六进制和二进制值。

十进制十六进制二进制字符0 00 0000000 NUL (Null)1 01 0000001 SOH (Start of Heading)2 02 0000010 STX (Start of Text)3 03 0000011 ETX (End of Text)4 04 0000100 EOT (End of Transmission)5 05 0000101 ENQ (Enquiry)6 06 0000110 ACK (Acknowledgment)7 07 0000111 BEL (Bell)8 08 0001000 BS (Backspace)9 09 0001001 TAB (Horizontal Tab)10 0A 0001010 LF (Line Feed)11 0B 0001011 VT (Vertical Tab)12 0C 0001100 FF (Form Feed)13 0D 0001101 CR (Carriage Return)14 0E 0001110 SO (Shift Out)15 0F 0001111 SI (Shift In)16 10 0010000 DLE (Data Link Escape)17 11 0010001 DC1 (Device Control 1)18 12 0010010 DC2 (Device Control 2)19 13 0010011 DC3 (Device Control 3)20 14 0010100 DC4 (Device Control 4)21 15 0010101 NAK (Negative Acknowledgment)22 16 0010110 SYN (Synchronous Idle)23 17 0010111 ETB (End of Transmission Block)24 18 0011000 CAN (Cancel)25 19 0011001 EM (End of Medium)26 1A 0011010 SUB (Substitute)27 1B 0011011 ESC (Escape)28 1C 0011100 FS (File Separator)29 1D 0011101 GS (Group Separator)30 1E 0011110 RS (Record Separator)31 1F 0011111 US (Unit Separator)32 20 0100000 Space33 21 0100001 !34 22 0100010 "35 23 0100011 #36 24 0100100 $37 25 0100101 %38 26 0100110 &39 27 0100111 '40 28 0101000 (41 29 0101001 )42 2A 0101010 *43 2B 0101011 +44 2C 0101100 ,45 2D 0101101 -46 2E 0101110 .47 2F 0101111 /48 30 0110000 049 31 0110001 150 32 0110010 251 33 0110011 352 34 0110100 453 35 0110101 554 36 0110110 655 37 0110111 756 38 0111000 857 39 0111001 958 3A 0111010 :59 3B 0111011 ;60 3C 0111100 <61 3D 0111101 =62 3E 0111110 >63 3F 0111111 ?64 40 1000000 @65 41 1000001 A66 42 1000010 B67 43 1000011 C68 44 1000100 D69 45 1000101 E70 46 1000110 F71 47 1000111 G72 48 1001000 H73 49 1001001 I74 4A 1001010 J75 4B 1001011 K76 4C 1001100 L77 4D 1001101 M80 50 1010000 P81 51 1010001 Q82 52 1010010 R83 53 1010011 S84 54 1010100 T85 55 1010101 U86 56 1010110 V87 57 1010111 W88 58 1011000 X89 59 1011001 Y90 5A 1011010 Z91 5B 1011011 [92 5C 1011100 \93 5D 1011101 ]94 5E 1011110 ^95 5F 1011111 _96 60 1100000 `97 61 1100001 a98 62 1100010 b99 63 1100011 c100 64 1100100 d101 65 1100101 e102 66 1100110 f103 67 1100111 g104 68 1101000 h105 69 1101001 i106 6A 1101010 j107 6B 1101011 k110 6E 1101110 n111 6F 1101111 o112 70 1110000 p113 71 1110001 q114 72 1110010 r115 73 1110011 s116 74 1110100 t117 75 1110101 u118 76 1110110 v119 77 1110111 w120 78 1111000 x121 79 1111001 y122 7A 1111010 z123 7B 1111011 {124 7C 1111100 |125 7D 1111101 }126 7E 1111110 ~127 7F 1111111 DEL (Delete)这只是一个基本的ASCII码对照表,其中包含了常见的可打印字符、控制字符和特殊字符。

二进制对照表

二进制对照表

二进制对照表
二进制对照表是把十进制数字转换成二进制数字的一种表格,它可以帮助我们更好地理解二进制的概念。

二进制对照表的每一行代表一个十进制数字,每一列代表一个二进制数字。

从左到右,每一列的数字都是2的幂次方,从右到左,每一列的数字都是2的幂次方的倒数。

例如,二进制对照表的第一行是:
十进制:0 二进制:0
这表示,十进制数字0对应的二进制数字是0,即2的0次方的倒数是0。

第二行是:
十进制:1 二进制:1
这表示,十进制数字1对应的二进制数字是1,即2的0次方是1。

以此类推,我们可以得出以下二进制对照表:
十进制:0 二进制:0
十进制:1 二进制:1
十进制:2 二进制:10
十进制:3 二进制:11
十进制:4 二进制:100
十进制:5 二进制:101
十进制:6 二进制:110
十进制:7 二进制:111
十进制:8 二进制:1000
十进制:9 二进制:1001
十进制:10 二进制:1010
以上就是二进制对照表的内容,它可以帮助我们更好地理解二进制的概念,并且可以帮助我们把十进制数字转换成二进制数字。

进制转换

进制转换

进制转换对照表(0~255) - 十进制,十六进制,八进制,二进制Dec Hex Oct Bin0 1 2 3 4 5 6 7 8 9101112131415 0123456789ABCDEF00000100200300400500600701001101201301401501601700000000000000010000001000000011000001000000010100000110000001110000100000001001000010100000101100001100000011010000111000001111Dec Hex Oct Bin16171819202122232425262728293031101112131415161718191A1B1C1D1E1F02002102202302402502602703003103203303403503603700010000000100010001001000010011000101000001010100010110000101110001100000011001000110100001101100011100000111010001111000011111Dec Hex Oct Bin32333435363738394041424344454647202122232425262728292A2B2C2D2E2F04004104204304404504604705005105205305405505605700100000001000010010001000100011001001000010010100100110001001110010100000101001001010100010101100101100001011010010111000101111Dec Hex Oct Bin48495051525354555657585960616263303132333435363738393A3B3C3D3E3F06006106206306406506606707007107207307407507607700110000001100010011001000110011001101000011010100110110001101110011100000111001001110100011101100111100001111010011111000111111Dec Hex Oct Bin64656667686970 4041424344454610010110210310410510601000000010000010100001001000011010001000100010101000110Dec Hex Oct Bin808182838485865051525354555612012112212312412512601010000010100010101001001010011010101000101010101010110Dec Hex Oct Bin969798991001011026061626364656614014114214314414514601100000011000010110001001100011011001000110010101100110Dec Hex Oct Bin1121131141151161171187071727374757616016116216316416516601110000011100010111001001110011011101000111010101110110717273747576777879 4748494A4B4C4D4E4F1071101111121131141151161170100011101001000010010010100101001001011010011000100110101001110010011118788899091929394955758595A5B5C5D5E5F1271301311321331341351361370101011101011000010110010101101001011011010111000101110101011110010111111031041051061071081091101116768696A6B6C6D6E6F1471501511521531541551561570110011101101000011010010110101001101011011011000110110101101110011011111191201211221231241251261277778797A7B7C7D7E7F167170171172173174175176177011101110111100001111001011110100111101101111100011111010111111001111111Dec Hex Oct Bin128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 808182838485868788898A8B8C8D8E8F20020120220320420520620721021121221321421521621710000000100000011000001010000011100001001000010110000110100001111000100010001001100010101000101110001100100011011000111010001111Dec Hex Oct Bin144145146147148149150151152153154155156157158159909192939495969798999A9B9C9D9E9F22022122222322422522622723023123223323423523623710010000100100011001001010010011100101001001010110010110100101111001100010011001100110101001101110011100100111011001111010011111Dec Hex Oct Bin160161162163164165166167168169170171172173174175A0A1A2A3A4A5A6A7A8A9AAABACADAEAF24024124224324424524624725025125225325425525625710100000101000011010001010100011101001001010010110100110101001111010100010101001101010101010101110101100101011011010111010101111Dec Hex Oct Bin176177178179180181182183184185186187188189190191B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF26026126226326426526626727027127227327427527627710110000101100011011001010110011101101001011010110110110101101111011100010111001101110101011101110111100101111011011111010111111Dec Hex Oct Bin Dec Hex Oct Bin Dec Hex Oct Bin Dec Hex Oct Bin192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF30030130230330430530630731031131231331431531631711000000110000011100001011000011110001001100010111000110110001111100100011001001110010101100101111001100110011011100111011001111208209210211212213214215216217218219220221222223D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF32032132232332432532632733033133233333433533633711010000110100011101001011010011110101001101010111010110110101111101100011011001110110101101101111011100110111011101111011011111224225226227228229230231232233234235236237238239E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF34034134234334434534634735035135235335435535635711100000111000011110001011100011111001001110010111100110111001111110100011101001111010101110101111101100111011011110111011101111240241242243244245246247248249250251252253254255F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF36036136236336436536636737037137237337437537637711110000111100011111001011110011111101001111010111110110111101111111100011111001111110101111101111111100111111011111111011111111一:简述:进位计数制:是人们利用符号来计数的方法。

计算机进制表

计算机进制表

计算机进制表一、进制的基本概念在计算机科学中,进制是一种表示数值的方式。

常见的进制有十进制、二进制、八进制和十六进制。

不同进制用于表示数字时,所使用的数字字符和规则也不同。

二、十进制十进制是我们最常用的进制系统,也是最容易理解的一种。

它由0到9这十个数字字符组成。

每一位的权值是10的幂次方,从右向左依次递增。

例如,数字256在十进制中表示为2*10^2 + 5*10^1 + 6*10^0。

三、二进制二进制是计算机系统中最基础的进制,由0和1两个数字字符组成。

每一位的权值是2的幂次方,从右向左依次递增。

二进制在计算机内部用于表示数字和存储数据。

四、八进制八进制是指基数为8的进制系统,由0到7这八个数字字符组成。

每一位的权值是8的幂次方,从右向左依次递增。

八进制在计算机领域应用较少,但在一些存储器设备和低级编程中仍然被使用。

五、十六进制十六进制是指基数为16的进制系统,由0到9和字母A到F这十六个字符组成。

每一位的权值是16的幂次方,从右向左依次递增。

十六进制常用于表示二进制数据和存储器地址。

六、进制转换在计算机领域,经常需要将数字在不同进制之间进行转换。

以下是一些常见的转换方法:1. 十进制转二进制:将十进制数除以2并取余,将余数从下往上排列,直到商为0为止,然后将排列的余数依次组成二进制数。

2. 二进制转十进制:将二进制数从右往左依次乘以2的幂次方,幂次方从0开始递增,然后将乘积相加得到十进制数。

3. 十进制转八进制:将十进制数除以8并取余,将余数从下往上排列,直到商为0为止,然后将排列的余数依次组成八进制数。

4. 八进制转十进制:将八进制数从右往左依次乘以8的幂次方,幂次方从0开始递增,然后将乘积相加得到十进制数。

5. 十进制转十六进制:将十进制数除以16并取余,将余数从下往上排列,余数为10时表示为字母A,依次类推,直到商为0为止,然后将排列的余数依次组成十六进制数。

6. 十六进制转十进制:将十六进制数从右往左依次乘以16的幂次方,幂次方从0开始递增,然后将乘积相加得到十进制数。

二、八、十、十六进制对照表

二、八、十、十六进制对照表

二、八、十、十六进制对照表进制转换是计算机科学中的一个重要课题,并且在数字逻辑和计算中发挥着重要作用。

在一种进制转换成另一种进制时,我们常常需要借助“进制表”来辅助计算。

在本文中,我们将对比分析二进制、八进制、十进制和十六进制之间的关系,并用表格的形式来展现它们的对照表。

下面就来一起认识一下吧!首先,让我们来了解一下什么是进制。

所谓进制,就是指一个计数系统里使用的基数或底数。

当我们把一个数表示成几个数之和的形式时,每一个数就叫做一个进制。

常见的进制有二进制、八进制、十进制和十六进制,分别使用0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F这15个数来表示。

其次,让我们看一下它们之间的转换。

要从十进制转换成其它进制,我们可以采用除法取余法,先除以2,然后除以8,再除以16,我们就可以得到每一位的余数,然后以进制表中对应的数字来表示。

同样的,我们可以用乘法取商法来从其它进制转换成十进制,先把每一位的数字乘以2,8,16,再把它们相加,就可以得到转换的结果。

最后,让我们来看看它们之间的对照表:二进制|八进制|十进制|十六进制------|------|------|------0|0|0|01|1|1|110|2|2|211|3|3|3100|4|4|4101|5|5|5110|6|6|6111|7|7|71000|10|8|81001|11|9|91010|12|10|A1011|13|11|B1100|14|12|C1101|15|13|D1110|16|14|E1111|17|15|F从上面的表格中,我们可以发现它们之间的关系,当我们从十进制转换成其它进制时,我们只需要从左到右逐位除以进制的底数,然后取余数;当我们从其它进制转换成十进制时,我们只需要从右到左把每一位乘以底数的幂,然后把它们相加即可。

以上就是二、八、十、十六进制之间的对照表,希望本文能够帮助大家熟悉这几种有关进制转换的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档