热处理的新工艺

合集下载

热处理压淬工艺

热处理压淬工艺

热处理压淬工艺热处理压淬工艺是一种常用的金属材料加工技术,它能够通过控制材料的组织和性能来提高其强度、硬度、耐磨性等特性。

下面将详细介绍热处理压淬工艺的相关内容。

一、热处理压淬工艺的基本原理热处理压淬工艺是将金属材料加热到一定温度,然后迅速冷却,使其经历固溶、相变和析出等过程,从而改变其组织和性能。

其中,固溶是指将材料中的合金元素溶解在基体中,相变是指合金元素在固溶过程中发生化学反应,形成新的晶体结构,析出则是指固溶后合金元素从基体中析出形成新的相。

二、热处理压淬工艺的步骤1. 加热:将待处理的金属材料放入加热炉中进行加热。

根据不同材料和要求,加热温度也会有所不同。

2. 保温:经过一定时间后,让材料保持在高温下进行均匀加热。

此时,合金元素开始溶解在基体中。

3. 冷却:将材料迅速放入冷却介质中进行冷却。

常用的冷却介质有水、油、盐水等。

通过快速冷却,使合金元素无法从基体中析出,从而形成新的晶体结构。

4. 淬火:经过冷却后,材料表面会形成一层硬化层,而内部仍然处于高温状态。

此时需要进行淬火处理,即将材料再次加热到一定温度,并迅速冷却。

这样可以使整个材料都达到同样的硬度和强度。

5. 回火:淬火后的材料可能会出现脆性和变形等问题,需要进行回火处理。

回火是指将材料加热至较低温度下保持一段时间,以减轻淬火带来的脆性和变形。

三、热处理压淬工艺的应用热处理压淬工艺广泛应用于制造行业中的各种金属制品,如汽车零部件、机械零件、航空航天部件等。

通过控制不同的加热温度和冷却介质等参数可以获得不同的材料性能,从而满足不同的使用要求。

总之,热处理压淬工艺是一种重要的金属材料加工技术,它可以改变材料的组织和性能,提高其强度、硬度、耐磨性等特性。

在实际应用中,需要根据具体情况选择合适的加热温度和冷却介质,并结合其他加工工艺进行综合应用。

热处理的方法

热处理的方法

热处理的方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的方法。

在工业生产中,热处理被广泛应用于各种金属制品的生产加工过程中,以提高其硬度、强度、耐磨性和耐腐蚀性能。

下面将介绍几种常见的热处理方法。

1. 淬火。

淬火是指将金属材料加热至临界温度以上,然后迅速冷却至室温以下的一种热处理方法。

通过淬火处理,可以使金属材料获得高硬度和强度。

淬火的方法包括水淬、油淬和盐水淬等,不同的淬火介质会对材料的性能产生不同的影响。

2. 回火。

回火是指在淬火后,将金属材料重新加热至较低的温度,然后保温一段时间后再冷却的一种热处理方法。

回火可以消除淬火过程中产生的内部应力,提高材料的韧性和塑性,同时降低其硬度和脆性。

3. 淬火回火。

淬火回火是将淬火和回火两种热处理方法结合起来进行的一种复合热处理工艺。

通过淬火回火处理,可以在保证金属材料硬度和强度的同时,提高其韧性和塑性,以满足不同工件的使用要求。

4. 固溶处理。

固溶处理是将合金加热至固溶温度以上,然后在一定温度下保温一段时间,最后迅速冷却的一种热处理方法。

固溶处理可以溶解合金中的固溶体,改善合金的塑性和加工性能,同时提高其耐腐蚀性能。

5. 淬火回火处理。

淬火回火处理是将淬火和回火两种热处理方法结合起来进行的一种复合热处理工艺。

通过淬火回火处理,可以在保证金属材料硬度和强度的同时,提高其韧性和塑性,以满足不同工件的使用要求。

总结。

热处理是一种重要的金属材料加工工艺,通过改变金属的组织结构和性能,可以使材料达到理想的使用要求。

不同的热处理方法可以使金属材料获得不同的性能,因此在实际生产中,需要根据具体工件的要求选择合适的热处理工艺,以确保产品质量和性能。

通过本文的介绍,相信大家对热处理的方法有了更深入的了解,希望能够在实际生产中加以应用,为提高产品质量和性能提供有力支持。

42CrMo钢板热处理工艺(最新版)

42CrMo钢板热处理工艺(最新版)
42CrMo钢板的热处理工 艺
供 应 窄 带 钢 行 业 热 处 理 设 备
一般机械钢零件生产的工艺路线: 毛坯生产 机械加工 机械精加工 使用 × 毛坯生产 预备热处理 机械加工 最终热处理 机械精加工 √
预备热处理 : 退火; 正火
最终热处理 : 淬火; 回火
Therefore, 热处理是一种非常重要的加工方法,极大部 分机械零件都必须经过热处理!
4.渗碳工艺-组织-性能关系 加热温度,保温时间→渗碳层厚度
(1)直接淬火 (如图a、b曲线) 奥氏体晶粒大,42CrMo钢板 马氏体粗,残余A
多,耐磨性低,变形大。 只适用于本质细晶钢或耐磨性要求低和承载低的零件。
(2)一次淬火 (如图c曲线)
心部要求高 AC3以上 表面要求高,AC1以上30-500 ℃
2.淬硬性:钢在淬火后获得硬度的能力,取决于M 中C%, C%↑→淬硬性↑
3.影响淬透性的因素 ——VK,C曲线
影响C曲线的因素
C%
奥氏体化温度 合金元素 未溶第二相
亚共析钢 C%↑→淬透性↑, 过共析钢C%↑→淬透性↓ T↑t↑→淬透性↑ 除Co%以外,C曲线右移,↑淬透性 ↓淬透性
4.42CrMo钢板厂家淬透性的应用
1.淬火温度的决定
亚共析钢 共析钢
过共析钢
பைடு நூலகம்
Ac3+30-50度
Ac1+30-50度 Ac1+30-50度 A、 保留一定的Cem→HRC↑,耐磨性↑ B、 A中C%↓→M中C%↓→M脆性↓ C、 A中C%↓→M过饱和度↓→残余A↓
淬火温度过高→A粗大→M粗大→力学性能↓, 淬火温度过高→A粗大→M粗大→淬火应力↑→变形,开裂↑
(3)改善切削加工性能(低碳钢)

201热处理工艺

201热处理工艺

201热处理工艺201热处理工艺是一种常见的热处理方法,它通过对金属材料进行加热和冷却的过程,改变其组织和性能,以达到所需的性能要求。

本文将从热处理的基本原理、常见的热处理工艺以及热处理工艺的应用等几个方面来介绍201热处理工艺。

一、热处理的基本原理热处理是利用金属材料的固溶度、扩散性和相变等特性,在一定温度范围内进行加热和冷却处理,使材料的组织和性能发生变化。

其基本原理是通过加热将金属材料的晶体结构进行改变,然后通过冷却固定新的组织结构,从而达到改变材料性能的目的。

二、常见的热处理工艺1. 固溶处理:固溶处理是将合金材料加热至固溶温度,使固体溶解成固溶体,然后通过快速冷却固定固溶体的结构。

这种方法可以提高合金的强度和硬度,同时改善其塑性和韧性。

2. 时效处理:时效处理是在固溶处理后,将材料在较低温度下保持一段时间,使固溶体中的溶质元素析出,形成细小的析出相。

这种方法可以进一步提高材料的强度和硬度,同时保持较好的塑性和韧性。

3. 淬火处理:淬火是将材料加热至临界温度,然后迅速冷却至室温。

这种方法可以使材料产生强烈的变形和应力,从而改变其组织和性能。

淬火可以增加材料的硬度和强度,但会降低其塑性和韧性。

4. 回火处理:回火是将淬火处理后的材料加热至较低温度,然后保持一段时间后冷却。

这种方法可以缓解淬火产生的应力和变形,同时提高材料的韧性和塑性,降低其硬度和强度。

三、热处理工艺的应用热处理工艺广泛应用于各种金属材料的制造和加工过程中。

其中,201热处理工艺主要应用于不锈钢材料的加工中。

不锈钢具有较好的耐腐蚀性和机械性能,在许多领域得到广泛应用。

而201不锈钢是一种含有高锰奥氏体结构的不锈钢,通过适当的热处理工艺可以改善其机械性能和耐腐蚀性。

201热处理工艺的主要步骤包括固溶处理、时效处理和回火处理。

首先,将201不锈钢材料加热至固溶温度,使其固体溶解成固溶体。

然后,在适当的温度下保持一段时间,使溶质元素均匀分布,并形成细小的析出相。

热处理压淬工艺

热处理压淬工艺

热处理压淬工艺
热处理压淬工艺是一种重要的金属材料加工方法,通过在高温下加热金属工件,然后迅速进行冷却,以改变金属的组织结构和性能。

这种工艺在工业生产中被广泛应用,可以提高材料的硬度、强度和耐磨性,同时也可以改善材料的塑性和韧性。

热处理压淬工艺的基本原理是利用金属在高温下的晶格结构发生变化的特性,通过控制加热和冷却的速度,使金属的晶粒细化,消除内部应力,提高材料的机械性能。

在热处理过程中,需要控制加热温度、保温时间和冷却速度等参数,以确保获得所需的组织结构和性能。

热处理压淬工艺通常分为几个步骤:首先是加热阶段,将金属工件加热到一定温度,使其达到均匀的晶粒结构;接着是保温阶段,使金属工件在一定温度下保持一段时间,使晶粒得以长大和重新排列;最后是冷却阶段,通过快速冷却使晶粒再次细化,从而获得更好的机械性能。

热处理压淬工艺在金属材料加工中起着至关重要的作用。

通过热处理,可以改善金属的硬度、强度和耐磨性,延长材料的使用寿命,提高产品的质量和性能。

在汽车、航空航天、船舶、机械制造等领域,热处理压淬工艺被广泛应用,为各种工业产品的生产提供了关键支持。

除了提高金属材料的性能外,热处理压淬工艺还可以改善材料的加工性能。

通过控制热处理参数,可以调整材料的塑性和韧性,使其更容易进行成形和加工。

这对于一些复杂形状的零部件的制造非常重要,可以减少加工难度,提高生产效率。

总的来说,热处理压淬工艺是一种重要的金属材料加工方法,通过控制加热和冷却的过程,可以改变材料的组织结构和性能,提高材料的硬度、强度和耐磨性,同时也可以改善材料的塑性和韧性,提高材料的加工性能。

在工业生产中,热处理压淬工艺被广泛应用,为各种工业产品的生产提供了重要支持。

热处理生产工艺

热处理生产工艺

热处理生产工艺
热处理生产工艺是指在金属材料的加工过程中,利用加热和冷却的手段,使材料的组织结构和性能发生改变的工艺。

热处理工艺广泛应用于各个行业,包括汽车、航空航天、机械制造等领域。

下面将介绍几种常见的热处理生产工艺。

1. 灭火与淬火:灭火是指将经过热加工的材料迅速冷却,以改善材料的硬度和强度。

常见的灭火方法包括水淬、油淬和气体淬。

淬火是指将材料加热到适当温度后迅速冷却,在冷却过程中形成硬化组织。

2. 回火:回火是指在淬火后,将材料重新加热到适当温度,并保持一段时间,然后缓冷至室温。

回火能够减轻材料内部应力,提高材料的韧性和耐脆性,改善材料的可加工性。

3. 规范化:规范化是指将材料加热至适当温度,保持一段时间后,空气冷却。

规范化能够改善材料的均匀性、可加工性和机械性能。

4. 淬火回火:淬火回火是将材料先进行淬火处理,然后进行回火处理。

淬火能够提高材料的硬度和强度,回火则能够增加材料的韧性和耐脆性。

淬火回火工艺常用于高强度、高硬度材料的制备。

5. 固溶处理:固溶处理是指将材料加热至溶解温度,保持一段时间后迅速冷却。

固溶处理能够改善材料的均匀性和强度,常用于铝合金等材料的加工。

6. 等温淬火:等温淬火是指将材料加热至适当温度后保持一段时间,然后进行快速冷却。

等温淬火能够制备出具有高强度和优良韧性的材料。

总的来说,热处理生产工艺在金属材料的加工中起着至关重要的作用。

通过合理选择和控制热处理工艺,可以改善材料的组织结构和性能,提高材料的硬度、强度、韧性和可加工性,满足不同行业对材料性能的需求。

热处理常用的新工艺有

热处理常用的新工艺有

热处理常用的新工艺有热处理是一种通过加热和冷却金属材料来改变其结构和性能的工艺。

随着科技的进步和工艺的发展,热处理工艺也在不断创新和改进。

目前常用的新工艺有以下几种:1. 超声波热处理技术超声波热处理是一种利用超声波在金属材料表面产生细微振动,从而在金属表面产生局部热量的新工艺。

通过超声波的作用,可以减小金属材料的晶粒尺寸,提高材料的硬度和强度,减小组织中的缺陷,提高金属材料的疲劳寿命和耐磨性能。

超声波热处理技术在航空航天、汽车制造、金属加工等领域具有广泛的应用前景。

2. 等离子体增强热处理技术等离子体是一种带电粒子的高能态气体,可以产生高温和高能量的环境。

等离子体增强热处理技术是利用等离子体的高温和高能量特性,对金属材料进行热处理和表面改性的新工艺。

通过等离子体的作用,可以提高金属材料的表面硬度和耐腐蚀性能,增强金属材料的表面附着力和润湿性,提高金属材料的表面光泽度和光洁度。

等离子体增强热处理技术在电子、光学、医疗器械等领域具有重要的应用价值。

3. 激光热处理技术激光热处理是一种利用激光束对金属材料进行快速加热和冷却的新工艺。

通过激光束的高能量和高密度特性,可以实现对金属材料表面的精密加热和局部热处理,从而实现对金属材料的精密控制和精细调节。

激光热处理技术可以实现对金属材料表面的深部加工和微观组织的精细调控,提高金属材料的表面质量和精度,减小金属材料的加工变形和残余应力,提高金属材料的工作性能和使用寿命。

激光热处理技术在航空航天、汽车制造、精密加工等领域具有广泛的应用前景。

4. 电流脉冲热处理技术电流脉冲热处理是一种利用电流脉冲对金属材料进行瞬时加热和冷却的新工艺。

通过电流脉冲的作用,可以在金属表面产生瞬时高温和高能量,从而实现对金属材料的快速热处理和表面改性。

电流脉冲热处理技术可以实现对金属材料的精密加热和快速冷却,减小金属材料的热影响区和深度,控制金属材料的局部组织和性能,提高金属材料的表面硬度和耐磨性能,改善金属材料的加工性能和使用寿命。

热处理节能新工艺

热处理节能新工艺

热处理节能新工艺01采用高效节能的热处理工艺1)如果把渗碳温度从930℃提高到1050℃,可以减少40%的工艺周期,例如在真空炉中低压渗碳工艺,在1050℃进行渗碳。

2)用氮碳共渗等代替渗氮和碳氮共渗,可把工艺温度从850~930℃降到550~580℃;代替一般气体渗氮,可把渗氮时间从30~70h减少到2~3h。

3)以碳氮共渗代替薄层渗碳。

处理温度可以由930℃降至850℃;当渗层深度在1mm以下时,碳氮共渗比渗碳时间能缩短30%;并由于加热温度低、时间短,因此工件淬火后变形小。

4)乙炔低压渗碳技术,渗碳速度快,节能;原料气消耗低,排放小,可实现高温渗碳,达到缩短工艺周期,节能的目的。

02缩短加热时间工艺1)零保温淬火按传统热处理工艺,保温时间≥总加热时间的1/2或1/3。

对于达到薄件尺寸的碳素钢和低合金结构钢,加热温度在Ac1或Ac3以上时可采用零保温淬火工艺。

实践证明,35Cr、45Cr和42CrMo等调质钢采用零保温淬火工艺,均能达到装机服役条件。

与传统的保温淬火工艺相比,省去了工件透烧和奥氏体均匀化所需要的时间,可降低20%~30%能耗。

例如,某传动轴材料45钢,传统热处理工艺为:840℃×60min淬火,600℃×120min回火,硬度215~245HBW。

在试验的基础上,确定该传动轴采用(870±10)℃×0min淬火及(680±10)℃×0min回火的“零保温”调质工艺。

经检验,淬火后得到细小的板条状马氏体组织,回火后显微组织为细的回火索氏体,硬度215~235HBW,完全满足其技术要求,使用效果良好。

2)不均匀奥氏体加热淬火。

钢件加热到奥氏体状态,使碳化物充分溶解奥氏体达到均匀化需要较长时间,但奥氏体未达到均匀化即实行淬火并不影响其淬火、回火后的性能。

03采用表面、局部加热替代整体加热方法表面加热淬火方法是以感应、火焰、激光等加热工件表面,然后靠喷液、浸液、自冷方式使钢件淬硬。

四大热处理工艺

四大热处理工艺

四大热处理工艺
热处理工艺是一种通过改变材料的物理结构、化学成分和性质来改善其性能的技术。

在热处理工艺中,有四项主要的工艺,分别是退火、淬火、回火以及表面处理。

这四种热处理工艺都具有不同的特点和应用范围,并被广泛应用于现代工业生产中。

1. 退火工艺
退火工艺是将金属材料加热到一定温度,然后缓慢冷却至室温的工艺。

此工艺可以减少材料中的残余应力和提高硬度,改善材料的延展性和韧性,提高材料的加工性能,适用于铸造、锻造和变形加工等多种材料加工领域。

退火的最佳温度和持续时间会因材料不同而异。

2. 淬火工艺
淬火是将金属材料加热到一定温度后,通过迅速冷却来改变材料的组织结构和性质的工艺。

此工艺可以提高材料的硬度、强度和耐磨性,适用于制造各种机械零部件、工具等。

淬火温度、冷却速度和时间会对最终的材料性能产生显著的影响。

3. 回火工艺
回火工艺是在淬火后,将已经变硬的材料重新加热到一定温度,然后缓慢冷却的工艺。

此工艺可以减轻材料的脆性,并使其具有较好的延展性和韧性,适用于制造各种高强度零部件,如弹簧、轴承、齿轮等。

回火的最佳温度、时间和冷却速度也会因材料不同而异。

4. 表面处理工艺
表面处理工艺是将材料表面进行改性的工艺,包括氮化、硬化、镀膜等多种方法。

通过这些方法可以改善材料表面硬度、抗腐蚀性、耐磨性和抗疲劳性等,适用于制造各种高性能零部件和设备。

综上所述,四种热处理工艺在现代工业中都具有广泛的应用。

不同材料和加工要求会产生不同的需要,因此选择合适的热处理工艺不仅可以改善材料的性能,也可以提高生产效率,实现工业生产的可持续发展。

金属热处理工艺技术的研究与创新

金属热处理工艺技术的研究与创新

金属热处理工艺技术的研究与创新金属热处理工艺技术是一项重要的金属加工技术,通过控制金属材料的加热和冷却过程,改变其组织结构和性能,从而获得满足不同要求的材料性能。

随着科技的不断进步和工业的发展,金属热处理工艺技术也在不断改进和创新,以满足不同行业和领域对材料性能的要求。

一方面,金属热处理工艺技术的研究与创新主要集中在对新材料的热处理工艺的研究上。

随着航空航天、汽车、电子等行业的快速发展,对新材料的需求越来越大。

新材料往往具有更好的性能和更高的应用温度,但它们的热处理工艺也更加复杂。

因此,研究人员需要针对不同的新材料,开展深入的工艺研究,以找到合适的热处理方法,以保证新材料的性能达到设计要求。

例如,针对高温合金材料,研究人员不仅需要确定合适的加热和冷却工艺,还需要进行高温变形和退火工艺的研究,以获得良好的高温力学性能和抗氧化性能。

另一方面,金属热处理工艺技术的研究与创新还包括对传统工艺的优化和改进。

传统的金属热处理工艺通常是根据经验和试错法确定的,存在一定的局限性。

随着计算机技术和模拟方法的进步,研究人员可以使用数值模拟和计算机模拟来优化和改进金属热处理工艺。

通过数值模拟,研究人员可以模拟金属的加热和冷却过程,预测材料的组织和性能,并优化加热和冷却工艺参数,从而提高工艺效率和产品质量。

此外,还可以利用计算机模拟来研究金属的相变行为和晶体生长过程,以揭示材料的微观结构和宏观性能之间的关系。

除了对新材料和传统材料的热处理工艺进行研究与创新外,金属热处理工艺技术在环保和节能方面也有了一些创新。

传统的金属热处理过程中会产生大量的废气、废水和废渣,严重污染环境。

因此,在金属热处理工艺技术的研究与创新中,研究人员也开始关注如何减少环境污染。

他们发展了一些新的工艺方法,如水溶胶热处理、电火花处理等,以减少废气排放和废水处理的压力。

同时,通过改变热处理工艺参数和优化设备设计,可以降低能源消耗,实现金属热处理过程的节能。

热处理工艺-淬火

热处理工艺-淬火

分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。
● 贝氏体等温淬火
是将钢件奥氏体化,使之快冷到贝氏体转变温度区间(260~400℃)等温保持,使奥氏体转变为贝氏体的淬火工艺,有时也叫等温淬火。一般保温时间为30~60min。
常用的淬火介质有水、水溶液、矿物油、熔盐、熔碱等。
● 水
水是冷却能力较强的淬火介质。来源广、价格低、成分稳定不易变质。缺点是在C曲线的“鼻子”区(500~600℃左右),水处于蒸汽膜阶段,冷却不够快,会形成“软点”;而在马氏体转变温度区(300~100℃),水处于沸腾阶段,冷却太快,易使马氏体转变速度过快而产生很大的内应力,致使工件变形甚至开裂。当水温升高,水中含有较多气体或水中混入不溶杂质(如油、肥皂、泥浆等),均会显著降低其冷却能力。因此水适用于截面尺寸不大、形状简单的碳素钢工件的淬火冷却。
过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。因此过共析钢的淬火加热温度高于AC1太多是不合适的,加热到完全奥氏体化的ACm或以上温度就更不合适。
采用高温淬火可获得较多的板条状马氏体或使全部板条马氏体提高强度和韧性。如16Mn钢在940℃淬火,5CrMnMo钢在890℃淬火,20CrMnMo钢在920℃淬火,效果较好。

热处理新技术简介

热处理新技术简介
9
(1)离子渗氮
离子渗氮是在低于一个大气压的渗氮气氛中利用工件(阴极)和阳极之间产生的辉 光放电进行渗氮的工艺。离子渗氮常在真空炉内进行,通入氨气或氮、氢混合气体,炉 压在133~1 066 Pa。接通电源,在阴极(工件)和阳极(真空器)间施加400~700 V直 流电压,使炉内气体放电,在工件周围产生辉光放电现象,并使电离后的氮正离子高速 冲击工件表面,获得电子还原成氮原子而渗入工件表面,并向内部扩散形成氮化层。
电子束加热工件时,表面温度和淬硬深度取决于电子束的能量大小和轰击时间。试 验表明,功率密度越大,淬硬深度越深,但轰击时间过长会影响自激冷作用。
电子束热处理的应用与激光热处理相似,其加热效率比激光高,但电子束热处理需 要在真空下进行,可控制性也差,而且要注意X射线的防护。
8
3)离子热处理
离子热处理是利用低真空中稀薄气体辉光放电产生的等离子体 轰击工件表面,使工件表面成分、组织和性能改变的热处理工艺。 离子热处理主要包括离子渗氮和离子渗碳等工艺。
可以在零件选定表面局部加 热,解决拐角、沟槽、盲孔 底部、深孔内壁等一般热处 理工艺难以解决的强化问题。
生产效率高,易实现自动化, 无需冷却介质,对环境无污 染。
度为0.25~0.35 mm,表面硬度 为64 HRC的四条淬火带。处理 后使用寿命提高10倍,而费用 仅为高频感应加热淬火和渗氮 处理的 1 。
5
4 高能束表面改性热处理
高能束表面改性热处理是利用激光、电子束、等离子弧等高功率、高能量密度 能源加热工件的热处理工艺的总称。
1)激光热处理
激光热处理是利用激光器发射的高能激光束扫描工件表面,使表面迅速加热到高温, 以达到改变局部表层组织和性能的热处理工艺。目前工业用激光器大多是二氧化碳激光器。

材料热处理新技术集锦

材料热处理新技术集锦

第34卷 第1期2009年1月HEAT T RE AT ME NT OF MET ALSVol 134No 11January 2009新技术信息材料热处理新技术集锦樊东黎The collecti on of ma ter i a l and hea t trea ti n g outst and i n g technolog i esF AN Dong 2li中图分类号:TG15 文献标识码:E 文章编号:025426051(2009)0120108210收稿日期:2008211220作者简介:樊东黎(1934—),男,山西定襄人,教授级高工,中国热处理学会荣誉理事长,中国热处理行业协会誉理理事长,全国热处理标准化技术委员会顾问,本刊编委会高级顾问。

在翻阅材料与热处理新技术报道之际,看到一些值得注意的方向,诸如纳米材料和技术的应用、无污染防锈润滑剂、长寿命炉用高温材料、离子束增强涂层、微波热处理和钎焊、热处理用二极管激光器、奥氏体不锈钢表面硬化、节能循环热处理、加速贝氏体转变的循环等温热处理、低压渗氮和蒸汽处理等。

现整理列述如下,供读者参考。

1 纳米材料和技术的应用[1]2006年10月16~17日在美国麻省剑桥市召开了Lux Research 执事最高层年度会议,全世界纳米技术组织高级主管在会上发言,其中包括Du 2Pont,Agilent Technol ogies,3M 和I B M 以及Lux analysis 。

Lux Research (Ne w York )对纳米材料和技术的应用作了图1所示的概述。

图1 纳米技术价值链Fig 11 The value links of nanotechnol ogy纳米技术最大程度地继续激发着工业和政府的热情。

乔治W 布什总统把纳米技术在国家网站上设置了网址。

通用电气公司首席执行官Jeffrey I m melt 把纳米技术称作为其公司最优先发展技术,Pr octer &Ga mble 公司CEO A lan Lafley 把纳米技术当作消费者产品巨人的极富效益领域。

热处理的方式及作用

热处理的方式及作用

热处理的方式及作用热处理是一种通过加热和冷却来改变材料的物理性质和组织结构的工艺。

热处理可以用于提高材料的硬度、强度、耐腐蚀性和耐磨性等性能,也可用于改善材料的加工性能和塑性等特性。

下面将详细介绍热处理的几种方式及其作用。

1.固溶处理:固溶处理是将固溶体中的溶质元素加热到足够高温下溶解,然后迅速冷却,产生固溶体。

该过程可以改善晶体的塑性和延展性,提高材料的抗腐蚀性能和抗氧化性能。

固溶处理常用于合金材料,如不锈钢、铝合金等。

2.空化处理:空化处理是在高温下使材料发生相变,产生一种新的组织结构。

通过调整空化处理的时间、温度和压力等参数,可以改变材料的硬度、强度和耐磨性。

空化处理多用于工具钢、刀具、汽车零部件等。

3.淬火处理:淬火是通过在高温下迅速冷却材料,使其产生马氏体组织,从而提高材料的硬度和强度。

淬火后的材料常常需要回火处理来消除内部残余应力,增加韧性和塑性。

4.回火处理:回火是将淬火后的材料加热到适当温度,然后冷却,以降低材料的硬度和脆性,提高其韧性和强度。

回火处理常用于汽车发动机缸体、弹簧、刀具等。

5.等温处理:等温处理是将材料在一个恒定温度下保持一段时间,以使其逐渐达到热平衡。

等温处理可以使材料达到最终的组织结构和性能,提高材料的韧性、强度和耐腐蚀性能,常用于钢铁材料的处理。

6.热机械处理:热机械处理是将材料加热到一定温度,然后进行塑性变形。

热机械处理可以改变材料的晶粒结构、内部应力分布和形状等,提高材料的塑性变形能力和焊接性能。

总之,热处理是一种重要的材料改性工艺,通过控制加热和冷却过程可以改变材料的组织结构和性能。

不同的热处理方式可以使材料达到不同的硬度、强度、韧性、耐腐蚀性和耐磨性等性能。

热处理广泛应用于金属材料和合金材料的制备和加工过程中,可提高产品的品质和使用寿命,满足不同工程要求。

热处理新技术简介

热处理新技术简介

热处理新技术简介
形变热处理不但能够得到一般加工处理所达不到 的高强度、高塑性和高韧性的良好配合,而且还能大 大简化钢材或零件的生产流程,从而带来相当好的经 济效益。这种工艺方法不仅可以提高钢的强韧性,还 可以大大简化金属材料或工件的生产流程。
热处理新技术简介
目前,形变热处理得到了冶金工业、机械制造业 和尖端部门的普遍重视,发展极为迅速,已在钢板、 钢丝、管材、板簧、连杆、叶片、工具、模具等生产 中广泛应用。如钢板弹簧感应加热后热压成形,然后 进行油冷淬火,通过严格控制加热温度和成形时间, 使一次中频加热同时满足了成形和热处理的需要。
热处理新技术简介
为了提高零件力学性能和表面质量,节约能源, 降低成本,提高经济效益,以及减少或防止环境污染 等,发展了许多热处理新技术、新工艺。热处理新技 术的大量涌现以及计算机技术的应用,为机器制造业 的发展、机械产品质量的提高、热处理企业的技术改 造积累了大量的技术储备,为热处理生产技术的进步 提供了广阔前景。
可控气氛是把燃料气(天然气、城市煤气、丙烷)按一定比例与空 气混合后,通入发生器进行加热,或者靠自身的燃烧反应而制成的气 体,也可用液体有机化合物(如甲醇、乙醇、丙酮等)滴入热处理炉内 得到气氛。
可控气氛热处理的应用有一系列技术、经济优点,能减少和避 免工件在加热过程中的氧化和脱碳,节约材料,提高工件质量,可实 现光亮化热处理,保证工件的尺寸精度。
与常规热处理相比,真空热处理可实现无氧化、 无脱碳、无渗碳,可去掉工件表面的磷屑,并有脱脂 除气等作用,从而达到表面光亮净化的效果。
热处理新技术简介
三、 形变热处理
形变热处理是将塑性变形同热处理 有机结合在一起,获得形变强化和相变 强化综合效果的工艺方法。形变热处理 方法很多,有低温形变热处理、高温形 变热处理、等温形变热处理、形变时效 和形变化学热处理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热处理的新工艺
一、形变热处理
形变热处理是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法。

形变强化和相变强化相结合的一种综合强化工艺。

它包括金属材料的范性形变和固态相变两种过程,并将两者有机地结合起来,利用金属材料在形变过程中组织结构的改变,影响相变过程和相变产物,以得到所期望的组织与性能。

形变热处理的主要优点
①将金属材料的成形与获得材料的最终性能结合在一起,简化了生产过程,节约能源消耗及设备投资。

②与普通热处理比较,形变热处理后金属材料能达到更好的强度与韧性相配合的机械性能。

有些钢特别是微合金化钢,唯有采用形变热处理才能充分发挥钢中合金元素的作用,得到强度高、塑性好的性能。

例如09MnNb钢正常轧制后屈服强度(σs)为39kgf/mm2,-40℃梅氏(Mesnager)冲击值(αK)为0.63kgf·m/cm2;经正火后,-40℃的αK可提高到6~8kgf·m/cm2,而σs下降5kgf/mm2;如采用控制轧制(形变热处理工艺之一),强度与韧性都可进一步提高:αs约45kgf/mm2,-40℃的αK可达6~
12kgf·m/cm2。

由于以上原因,形变热处理已广泛应用于生产金属与合金的板材、带材、管材、丝材,和各种零件如板簧、连杆、叶片、工具、模具等。

塑性变形
形变热处理工艺中的塑性变形(范性形变),可以用轧、锻、挤压、拉拔等各种形式;与其相配合的相变有共析分解、马氏体相变、脱溶等。

形变与相变的顺序也多种多样:有先形变后相变;或在相变过程中进行形变;也可在某两种相变之间进行形变。

二、真空热处理
真空热处理是真空技术与热处理技术相结合的新型热处理技术,真空热处理所处的真空环境指的是低于一个大气压的气氛环境,包括低真空、中等真空、高真空和超高真空,真空热处理实际也属于气氛控制热处理。

真空热处理是指热处理工艺的全部和部分在真空状态下进行的,真空热处理可以实现几乎所有的常规热处理所能涉及的热处理工艺,但热处理质量大大提高。

与常规热处理相比,真空热处理的同时,可实现无氧化、无脱碳、无渗碳,可去掉工件表面的磷屑,并有脱脂除气等作用,从而达到表面光亮净化的效果。

真空热处理的优点
优点:1.有防止氧化作用2.真空脱气作用 3.脱脂作用 4.处理工件无氢脆5.淬火变形小 6.真空热处理工艺稳定性和重复性好7.能
耗少8.操作安全减少污染。

真空热处理的缺点
1.有些合金元素在真空中蒸发较大
2.设备投资大
三、可控气氛热处理
可控气氛热处理是在防止工件表面发生化学反应的可控气氛或
单一惰性气体的炉内进行的热处理。

可控气氛热处理的条件
制备气氛的气源我国在掌握和推广可控气氛过程中,在解决气氛问题上走过了漫长的道路。

最早的吸热式气氛发生炉主要用液化气,即纯度较高的丙烷或丁烷。

近年已证实,我国的天然气资源丰富,为用甲烷制备吸热式气氛创造了良好的条件。

设备能密封的炉型;自动化程度高,生产柔性大,适用性强的多用炉生产线等;因而发展前途广,市场需求大。

四、激光热处理
激光技术是本世纪60 年代初诞生,而且发展极为迅速的一门高新技术。

它的发展与渗透,带动了其他学科和技术的发展,激光技术已成为本世纪高新技术产业的主要支柱之一。

激光加工技术是激光技术在工业中的主要应用,激光加工技术加速了对传统加工工业的改造,提供了现代工业加工技术的新手段,影响很大。

激光加工是指用高功率激光束对工业用零部件进行切割、热处理、焊接、打孔等等,与传统加工方法相比,激光加工的特点是:激光束能量高度集中,加工区域小,因而热变形小,加工质量高、精度高,加工件不受尺寸、形状限制,不需冷却介质,而且无污染,噪声小,劳动强度低,效率高。

激光加工技术的产业化正在我国兴起。

激光热处理是一种表面热处理技术。

即利用激光加热金属材料表面实现表面热处理。

激光加热具有极高的功率密度,即激光的照射区域的
单位面积上集中极高的功率。

由于功率密度极高,工件传导散热无法及时将热量传走,结果使得工件被激光照射区迅速升温到奥氏体化温度实现快速加热。

当激光加热结束,因为快速加热时工件基体大体积中仍保持较低的温度,被加热区域可以通过工件本身的热传导迅速冷却,从而实现淬火等热处理效果。

激光淬火效果:激光淬火层的硬度分布曲线激光淬火层的硬度分布激光淬火技术可对各种导轨、大型齿轮、轴颈、汽缸内壁、模具、减振器、摩擦轮、轧辊、滚轮零件进行表面强化。

适用材料为中、高碳钢,铸铁。

激光淬火的应用实例:激光淬火强化的铸铁发动机汽缸,其硬度提高HB230提高到HB680,使用寿命提高2~3倍。

激光热处理技术的特点
激光热处理是利用高功率密度的激光束对金属进行表面处理的方法,它可以对金属实现相变硬化(或称作表面淬火、表面非晶化、表面重熔粹火)、表面合金化等表面改性处理,产生用其大表面淬火达不到的表面成分、组织、性能的改变。

经激光处理后,铸铁表面硬度可以达到hrc60度以上,中碳及高碳的碳钢,表面硬度可达hrc70度以上,从而提高起抗磨性,抗疲劳,耐腐蚀,抗氧化等性能,延长其使
用寿命.激光热处理技术与其它热处理如高频淬火,渗碳,渗氮等传统工艺相比,具有以下特点:
1.无需使用外加材料,仅改变被处理材料表面的组织结构.处理后的改性层具有足够的厚度,可根据需要调整深浅一般可达
0.1-0.8mm .
2.处理层和基体结合强度高.激光表面处理的改性层和基体材料之间是致密的冶金结合,而且处理层表面是致密的冶金组织,具有较高的硬度和耐磨性.
3.被处理件变形极小,由于激光功率密度高,与零件的作用时间很短(10-2-10秒),故零件的热变形区和整体变化都很小。

故适合于高精度零件处理,作为材料和零件的最后处理工序。

4.加工柔性好,适用面广。

利用灵活的导光系统可随意将激光导向处理部分,从而可方便地处理深孔、内孔、盲孔和凹槽等,可进行选择性的局部处理。

五、电子束表面淬火
电子束热处理是利用高能量密度的电子束加热,进行表面淬火的新技术。

电子束是由电子枪呢热阴极(灯丝)发出的电子,通过高压环形阳极加速,并聚焦成束使电子束流打击金属表面,达到加热的效果。

被处理零件的加热深度,是加热加速电压和金属密度的函数,当功率为150kw时,在铁中的理论加热深度为0.076mm,而在铝中的则为0.178。

一般来讲,电子束表面淬火的原理,同一般表面淬
火没有什么区别。

然而,由于电子束加热速度和冷却速度都很快,在相变过程中,奥氏体化时间很短,故能获得超细晶粒组织,这是电子束表面淬火最大特点。

相关文档
最新文档