人教版数学八年级上册 三角形填空选择(培优篇)(Word版 含解析)

合集下载

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。

人教版八年级上册数学 三角形填空选择单元练习(Word版 含答案)

人教版八年级上册数学 三角形填空选择单元练习(Word版 含答案)

人教版八年级上册数学 三角形填空选择单元练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.在ABC 中,BAC α∠=,边AB 的垂直平分线交边BC 于点D ,边AC 的垂直平分线交边BC 于点E ,连结AD ,AE ,则DAE ∠的度数为______.(用含α的代数式表示)【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B =∠BAD ,∠C =∠CAE ,进而得到∠BAD +∠CAE =∠B +∠C =180°-a ,再根据角的和差关系进行计算即可. 解:有两种情况:①如图所示,当∠BAC ⩾90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAC −(∠BAD +∠CAE )=α−(180°−α)=2α−180°;②如图所示,当∠BAC <90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAD +∠CAE −∠BAC =180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.3.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.4.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________【答案】20172α【解析】【分析】根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.5.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC +∠ACB =130°,然后根据角平分线的概念得出∠OBC +∠OCB ,再根据三角形的内角和定理即可得出∠BOC 的度数.【详解】解;∵∠A =50°,∴∠ABC +∠ACB =180°﹣50°=130°,∵∠B 和∠C 的平分线交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12×(∠ABC +∠ACB )=12×130°=65°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=115°,故答案为:115°.【点睛】 本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数.6.如图,已知AB ∥DE ,∠ABC=80°,∠CDE=140°,则∠BCD=_____.【答案】40°【解析】试题分析:延长DE 交BC 于F 点,根据两直线平行,内错角相等,可知∠ABC=BFD ∠=80°,由此可得100DFC ∠=︒,然后根据三角形的外角的性质,可得BCD ∠=EDC ∠-FD C ∠=40°.故答案为:40°.7.已知a 、b 、c 为△ABC 的三边,化简:|a+b ﹣c|-|a ﹣b ﹣c|+|a ﹣b+c|=______.【答案】3a b c --【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a 、b 、c 为△ABC 的三边,∴a +b >c ,a -b <c ,a +c >b ,∴a +b -c >0,a -b -c <0,a -b +c >0,∴|a +b -c |-|a -b -c |+|a -b +c |=(a +b -c )+(a -b - c )+(a -b +c )=a +b -c +a -b - c +a -b +c =3a -b -c .故答案为:3a -b -c .【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.8.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.9.如图,小亮从A 点出发前进5m ,向右转15°,再前进5m ,又向右转15°…,这样一直走下去,他第一次回到出发点A 时,一共走了______m .【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.10.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.【答案】125°【解析】【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴12OBC ABC∠=∠,12OCB ACB∠=∠,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB∠+∠=⨯︒=︒,∴∠BOC=180°-(∠OBC+∠OCB)=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.二、八年级数学三角形选择题(难)11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.13.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④【答案】C【解析】【分析】根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+12∠1,再结合三角形外角性质可得∠ECD=∠OBC+∠2,从而可得∠BOC=90°+∠2,据此即可进行判断.【详解】∵BO,CO分别平分∠ABC,∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠ABC+∠ACB+∠1=180°,∴∠ABC+∠ACB=180°-∠1,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠1)=90°-12∠1,∴∠BOC=180°-∠OBC-∠OCB=180°-(90°-12∠1)=90°+12∠1,∵∠ACD=∠ABC+∠1,CE平分∠ACD,∴∠ECD=12∠ACD=12(∠ABC+∠1),∵∠ECD=∠OBC+∠2,∴∠2=12∠1,即∠1=2∠2,∴∠BOC=90°+12∠1=90°+∠2,∴①④正确,②③错误,故选C.【点睛】本题考查了三角形内角和定理、三角形外角的性质、三角形的角平分线等知识,熟练掌握相关的性质及定理、运用数形结合思想是解题的关键.14.已知△ABC的两条高分别为4和12,第三条高也为整数,则第三条高所有可能值为()A.3和4 B.1和2 C.2和3 D.4和5【答案】D【解析】【分析】先设长度为4、12的高分别是a、b边上的,边c上的高为h,△ABC的面积是S,根据三角形面积公式,可求a=24S;b=212S;c=2Sh,结合三角形三边的不等关系,可得关于h的不等式,解不等式即可.【详解】设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=24S;b=212S;c=2Sh∵a-b<c<a+b,∴24S -212S <c <24S +212S , 即 3S <2S h <23S , 解得3<h <6,∴h=4或h=5,故选D.【点睛】主要考查三角形三边关系;利用三角形面积的表示方法得到相关等式是解决本题的关键.15.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AC ,垂足为G ,那么∠AHE 和∠CHG 的大小关系为( )A .∠AHE >∠CHGB .∠AHE <∠CHGC .∠AHE=∠CHGD .不一定【答案】C【解析】【分析】 先根据AD 、BE 、CF 为△ABC 的角平分线可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,由三角形内角和定理可知,2x+2y+2z=180° 即x+y+z=90°在△AHB 中由三角形外角的性质可知∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,故可得出结论.【详解】∵AD 、BE 、CF 为△ABC 的角平分线∴可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,∴2x+2y+2z=180° 即x+y+z=90°,∵在△AHB 中,∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,∴∠AHE=∠CHG ,故选C .【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.16.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是四边形ABCD 内一点, 若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为7、9、10,则四边形DHOG 的面积为A .7B .8C .9D .10【答案】B【解析】 分析:连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,所以S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,所以可以求出S 四边形DHOG .详解:连接OC ,OB ,OA ,OD ,∵E、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,∴S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =7,S 四边形BFOE =9,S 四边形CGOF =10,∴7+10=9+S 四边形DHOG ,解得,S 四边形DHOG =8.故选B.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.17.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )A .270B .210C .180D .150【答案】B【解析】利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB与DE交于点G,AB与EF交于点H,∵∠1=∠A+∠DGA,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2=∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.18.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【答案】D【解析】【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.∆的高的是()19.如下图,线段BE是ABCA.B.C.D.【答案】D【解析】【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【详解】解:由图可得,线段BE是△ABC的高的图是D选项;故选:D.【点睛】本题主要考查了三角形的高线的画法,掌握三角形的高的画法是解题的关键.20.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.。

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,ZABC=120° , AB=10cm,点P是这个菱形内部或边上的一点.若以P,B f C为顶点的三角形是等腰三角形,则P, A(P, A两点不重合)两点间的最短距离为____________ c m .【答案】1OJJ-1O【解析】解:连接3D,在菱形A3CD中,T Z ABC=120° , AB=BC=AD=CD=10 , :. Z A=Z C=60° ,二△ ABD , △ BCD都是等边三角形,分三种情况讨论:①若以边8C为底,则3C垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了"直线外一点与直线上所有点连线的线段中垂线段最短",即当点P与点D重合时,必最小,最小值^4=10 ;②若以边P3为底,ZPCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧3D (除点8外)上的所有点都满足APBC是等腰三角形,当点P在AC上时,AP 最小,最小值为lOjJ-10 ;③若以边PC为底,ZPBC为顶角,以点3为圆心,BC为半径作圆,则弧AC上的点&与点D均满足APBC为等腰三角形,当点P与点A重合时,必最小,显然不满足题意,故此种情况不存在;综上所述,必的最小值为10>/3-10 (cm).故答案为:10x/I—10 .点睹:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在等腰△遊中,肋丄肚交直线%于点以若妙丄万G则△磁的顶角的度数为【答案】30。

或150。

或90°【解析】试题分析:分两种情况:①3C为腰,②BC为底,根据直角三角形30。

角所对的直角边等于斜边的一半判断岀ZACD=3O°,然后分AD在^ABC内部和外部两种情况求解即可.解:①BC为腰,VAD丄 BC 于点D t AD= - BC f2:.ZACD二30。

人教版八年级上册数学 三角形填空选择检测题(WORD版含答案)

人教版八年级上册数学 三角形填空选择检测题(WORD版含答案)

人教版八年级上册数学 三角形填空选择检测题(WORD 版含答案) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.3.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.4.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.【答案】22cm,26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.6.已知一个三角形的三边长为3、8、a ,则a 的取值范围是_____________.【答案】5<a <11【解析】【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a <8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a <8+3,解得:5<a <11,故答案为:5<a <11.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.7.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.8.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.cm.【答案】242【解析】【分析】由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.【详解】∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,∴OF=CF;△AEF等于AB+AC,又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,根据角平分线的性质可得O到BC的距离为4cm,∴S△OBC=1×12×4=24cm2.2考点:1.三角形的面积;2.三角形三边关系.9.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.10.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.【答案】80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.二、八年级数学三角形选择题(难)11.如图,△ABC 中,角平分线AD 、BE 、CF 相交于点H ,过H 点作HG ⊥AC ,垂足为G ,那么∠AHE 和∠CHG 的大小关系为( )A .∠AHE >∠CHGB .∠AHE <∠CHGC .∠AHE=∠CHGD .不一定【答案】C【解析】【分析】 先根据AD 、BE 、CF 为△ABC 的角平分线可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,由三角形内角和定理可知,2x+2y+2z=180° 即x+y+z=90°在△AHB 中由三角形外角的性质可知∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,故可得出结论.【详解】∵AD 、BE 、CF 为△ABC 的角平分线∴可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,∴2x+2y+2z=180° 即x+y+z=90°,∵在△AHB 中,∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,∴∠AHE=∠CHG ,故选C .【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.12.如图P 为ABC ∆内一点,070,BAC ∠=0120,BPC ∠=BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,BD 与CE 交于F ,则BFC ∠=( )A .085B .090C .095D .0100【答案】C【解析】 ∵070,BAC ∠= 0120,BPC ∠= ∴∠ABC+∠ACB=110°,∠PBC+∠PCB=60°,∴∠ABP+∠ACP=(∠ABC+∠ACB)-(∠PBC+∠PCB)=110°-60°=50°,∵BD 是ABP ∠的平分线,CE 是ACP ∠的平分线,∴∠FBP+∠FCP=12 (∠ABP+∠ACP)=00150252⨯=; ∴∠FBC+∠FCB=∠FBP+∠FCP+∠PBC+∠PCB=25°+60°=85°,∴BFC ∠=180°-(∠FBC+∠FCB )=180°-85°=95°.故选C.点睛:本题主要考查了三角形的内角和定理和角平分线的定义,根据图形正确找出角与角之间的数量关系是解题的关键.13.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【答案】B【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333= S △ABC =1111••••2222BC AH AB PD BC PE AC PF ==+ ∴11113?3?3?3?2222AH PD PE PF ⨯=⨯+⨯+⨯ ∴33 即点P 33 故选B.14.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是()A.4个 B.3个 C.2个 D.1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.故选:C15.一个多边形的内角和是外角和的3倍,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】C【解析】解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故选C.【点评】本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键,要注意“八”不能用阿拉伯数字写.16.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BC G;其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.17.如果一个多边形的内角和是1800°,这个多边形是()A.八边形B.十四边形C.十边形D.十二边形【答案】D【解析】【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=12.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.18.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A.75°B.135°C.120°D.105°【答案】D【解析】如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选的高的是()19.如下图,线段BE是ABCA.B.C.D.【答案】D【解析】【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【详解】解:由图可得,线段BE是△ABC的高的图是D选项;故选:D.【点睛】本题主要考查了三角形的高线的画法,掌握三角形的高的画法是解题的关键.20.一个多边形的每个内角均为108º,则这个多边形是()A.七边形 B.六边形 C.五边形 D.四边形【答案】C【解析】试题分析:因为这个多边形的每个内角都为108°,所以它的每一个外角都为72°,所以它的边数=360÷72=5(边).考点:⒈多边形的内角和;⒉多边形的外角和.。

八年级数学上册 三角形填空选择(培优篇)(Word版 含解析)

八年级数学上册 三角形填空选择(培优篇)(Word版 含解析)

八年级数学上册 三角形填空选择(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.如图,在△ABC 中,∠B=50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =_______°.【答案】65【解析】如图,∵AE 平分∠DAC ,CE 平分∠ACF ,∴∠1=12∠DAC ,∠2=12∠ACF , ∴∠1+∠2=12(∠DAC+∠ACF ), 又∵∠DAC+∠ACF=(180°-∠BAC )+(180°-∠ACB )=360°-(∠BAC+∠ACB ),且 ∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°, ∴在△ACE 中,∠E=180°-(∠1+∠2)=180°-115°=65°.3.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。

人教版八年级数学上册 三角形填空选择单元复习练习(Word版 含答案)

人教版八年级数学上册 三角形填空选择单元复习练习(Word版 含答案)

人教版八年级数学上册 三角形填空选择单元复习练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.在ABC 中,BAC α∠=,边AB 的垂直平分线交边BC 于点D ,边AC 的垂直平分线交边BC 于点E ,连结AD ,AE ,则DAE ∠的度数为______.(用含α的代数式表示)【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B =∠BAD ,∠C =∠CAE ,进而得到∠BAD +∠CAE =∠B +∠C =180°-a ,再根据角的和差关系进行计算即可. 解:有两种情况:①如图所示,当∠BAC ⩾90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAC −(∠BAD +∠CAE )=α−(180°−α)=2α−180°;②如图所示,当∠BAC <90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAD +∠CAE −∠BAC =180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.3.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB 为Rt△,AD ,BE ,分别是∠CAB 和∠ABC 的角平分线,AD ,BE 相交于一点F .∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°.故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.4.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.5.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.6.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.【答案】5<a<11【解析】【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a<8+3,解得:5<a <11,故答案为:5<a<11.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.7.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.8.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.9.如图,直线a∥b,∠l=60°,∠2=40°,则∠3=______.【答案】80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.10.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.【答案】30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P的度数.【详解】∵BP是∠ABC的平分线,CP是∠ACM的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.二、八年级数学三角形选择题(难)11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC 内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180° 【详解】】解:图1中,当△ABC 内只有1个点时,可分割成3个互不重叠的小三角形; 图2中,当△ABC 内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC 内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC 内有n 个点(P 1,P 2,…,P n )时,可以把△ABC 分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°. 【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.一个多边形除了一个内角外,其余各内角的和为2100°则这个多边形的对角线共有( )A .104条B .90条C .77条D .65条【答案】C【解析】【分析】 n 边形的内角和是(2)180n -︒,即内角和一定是180度的整数倍,即可求解,据此可以求出多边形的边数,在根据多边形的对角线总条数公式()32n n -计算即可.【详解】 解:22100180113÷=,则正多边形的边数是11+2+1=14. ∴这个多边形的对角线共有()()314143==7722n n --条. 故选:C .【点睛】 本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理;要注意每一个内角都应当大于0︒而小于180度.同时要牢记多边形对角线总条数公式()32n n -.13.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠,...,6A BC ∠与6A CD ∠的平分线相交于点7A ,得7A ∠,则7A ∠=( )A .32αB .64αC .128αD .256α 【答案】C【解析】【分析】 根据角平分线的性质及外角的性质可得11122A A α∠=∠=,同理可得2212A α∠=,3312A α∠=,由此可归纳出12n nA α∠=,易知7A ∠. 【详解】 解:ABC ∠与ACD ∠的平分线交于点1A1111,22A BC ABC ACD ACD ∴∠=∠∠=∠ 111ACD A BC A ∠=∠+∠ 11122ACD ABC A ∴∠=∠+∠ ACD ABC A ∠=∠+∠111222ACD ABC A ∴∠=∠+∠ 11122A A α∴∠=∠= 同理可得21211112222A A αα∠=∠=⨯=,3231122A A α∠=∠=,…,由此可知12n n A α∠=, 所以7712128A αα∠==. 故选:C.【点睛】本题考查了角平分线的性质及图形的规律探究,灵活的利用角平分线的性质及外角的性质确定角的变化规律是解题的关键.14.已知如图,△ABC中,∠ABC=50°,∠BAC=60°,BO、AO分别平分∠ABC 和∠BAC,求∠BCO的大小()A.35°B.40°C.55°D.60°【答案】A【解析】分析:先根据三角内角和可求出∠ACB=180°-50°-60°=70°,根据角平分线的性质:角平分线上的点到角两边的距离相等可得:点O到AB和BC的距离相等,同理可得:点O到AC和BC的距离相等,然后可得: 点O到AC和BC的距离相等,再根据角平分线的判定可得:OC平分∠ACB,所以∠BCO =12∠ACB=35°.详解: 因为∠ABC=50°,∠BAC=60°,所以∠ACB=180°-50°-60°=70°,,因为BO,AO分别平分∠ABC和∠BAC,所以点O到AB和BC的距离相等,同理可得:点O到AC和BC的距离相等,所以点O到AC和BC的距离相等,所以OC平分∠ACB,所以∠BCO =12∠ACB=35°.点睛:本题主要考查三角形内角和和角平分线的性质和判定,解决本题的关键是要熟练掌握三角形内角和性质和角平分线的性质和判定.15.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.16.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是()A.4个 B.3个 C.2个 D.1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.故选:C17.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒【答案】C【解析】【分析】根据多边形的内角和公式()2180n-•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.18.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605︒=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.19.如图,若∠A =27°,∠B =45°,∠C =38°,则∠DFE 等于( )A .110︒B .115︒C .120︒D .125︒【答案】A【解析】【分析】 根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC ,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A .【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.20.在ΔABC 中,AB 3=,AC 5=,第三边BC 的取值范围是( )A .10BC 13<<B .4BC 12<< C .3BC 8<<D .2BC 8<<【答案】D【解析】【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【点睛】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.。

八年级上册数学 三角形填空选择(培优篇)(Word版 含解析)

八年级上册数学 三角形填空选择(培优篇)(Word版 含解析)

八年级上册数学 三角形填空选择(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,∵∠AA 1B 1=∠A 1B 1B 2+∠C ,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C ;∴当∠B=2∠C 时,∠BAC 是△ABC 的好角;当∠B=3∠C 时,∠BAC 是△ABC 的好角; 故若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关系为∠B=n ∠C ;∵最小角为20°,∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m 、n 为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.2.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为x cm ,则x 的取值范围是_______【答案】3<x <5【解析】【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,AD MD ADB MDC BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△MCD (SAS ),∴CM=AB=8. 在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为:3<x <5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.3.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).4.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.5.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】 1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.6.已知等腰三角形的两边长分别为3和5,则它的周长是____________【答案】11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内时,∠A 与∠1+∠2之间有始终不变的关系是__________.【答案】2∠A=∠1+∠2【解析】【分析】根据∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2),即2∠A=∠1+∠2.故答案为:2∠A=∠1+∠2.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.8.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.【答案】45°【解析】【分析】根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.9.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD ,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD 的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD 的度数.【详解】解:∵△B′CD 时由△BCD 翻折得到的,∴∠BCD=∠B′CD ,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.如图,五边形ABCDE的每一个内角都相等,则外角CBF=∠__________.【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.二、八年级数学三角形选择题(难)11.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320【答案】B【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得y=43x,再根据△ABC的面积是3即可求得x、y的值,从而求解.【详解】连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1∴△ABD的面积是4x+2y∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=43x.又∵△ABC的面积为3∴4x+x=32,x=310.则四边形PDCE的面积为x+y=710.故选B.【点睛】此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.12.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()A.45°B.45° 或135°C.45°或125°D.135°【答案】B【解析】【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【详解】①如图1,△ABC 是锐角三角形时,∵BD 、CE 是△ABC 的高线,∴∠ADB=90°,∠BEC=90°,在△ABD 中,∵∠A=45°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°;②如图2,△ABC 是钝角三角形时,∵BD 、CE 是△ABC 的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD (对顶角相等),∴∠BHC=∠A=45°.综上所述,∠BHC 的度数是135°或45°.故选B.【点睛】本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC 是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.13.适合下列条件的△ABC 中, 直角三角形的个数为 ①111345a b c ,,;===②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c =⑦::12:13:15A B C ∠∠∠=⑹5,25,5a b c === A .2个B .3个C .4个D .5个【答案】C【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:222111+345≠()()(),故①不能构成直角三角形;当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;由三角形的三边关系,2+2=4可知⑤不能构成三角形;令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;根据三角形的内角和可知⑦不等构成直角三角形;由a 2=5,b 2=20,c 2=25,可知a 2+b 2=c 2,故⑧能够成直角三角形.故选:C.点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.14.如图,已知AB ∥CD ,直线AB ,CD 被BC 所截,E 点在BC 上,若∠1=45°,∠2=35°,则∠3=( )A .65°B .70°C .75°D .80°【答案】D【解析】【分析】 由平行线的性质可求得∠C ,在△CDE 中利用三角形外的性质可求得∠3.【详解】解:∵AB ∥CD ,∴∠C =∠1=45°,∵∠3是△CDE 的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.15.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【答案】D【解析】【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.16.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.17.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.18.一个多边形的每个内角都等于120°, 则此多边形是( )A.五边形B.七边形C.六边形D.八边形【答案】C【解析】【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n=360°÷60°=6.故选C.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.19.如图,把一副三角板的两个直角三角形叠放在一起,则α的度数()A .75°B .135°C .120°D .105°【答案】D【解析】 如图,根据三角板的特点,可知∠3=45°,∠1=60°,因此可知∠2=45°,再根据三角形的外角的性质,可求得∠α=105°.故选20.在ΔABC 中,AB 3=,AC 5=,第三边BC 的取值范围是( )A .10BC 13<<B .4BC 12<< C .3BC 8<<D .2BC 8<<【答案】D【解析】【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【点睛】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.。

八年级全等三角形(培优篇)(Word版 含解析)

八年级全等三角形(培优篇)(Word版 含解析)

八年级全等三角形(培优篇)(Word 版 含解析)一、八年级数学轴对称三角形填空题(难)1.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG是∠DAC的平分线,AF=AE,∴AN⊥BE,FN=EN,在△ABN与△GBN中,∵90ABN GBNBN BNANB GNB∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN≌△GBN(ASA),∴AN=GN,又∵FN=EN,∠ANE=∠GNF,∴△ANE≌△GNF(SAS),∴∠NAE=∠NGF,∴GF∥AE,即GF∥AC,故④正确;∵AE=AF,AE=FG,而△AEF不一定是等边三角形,∴EF不一定等于AE,∴EF不一定等于FG,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.2.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B关于AD对称的点为点E,连接BE交AD于P点,那么有PB=PF,PE+PF=BE最小,根据正六边形的性质可知三角形APB是等边三角形,因此可知BE 的长为10,即PE+PF的最小值为10.故答案为10.3.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P 1OP 2是等腰三角形是解题的关键.4.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.【详解】解:如图示:连接OC ,OD ,∵点P与点C关于射线OA对称,点P与点D关于射线OB对称,∴OA为PC的垂直平分线,OB是PD的垂直平分线,∵OP=5cm,∴12COA AOP COP,12POB DOB POD,PE=CE,OP=OC=5cm,PF=FD,OP=OD=5cm,∵△PEF的周长是5cm,∴PE+EF+PF=CE+EF+FD=CD=5cm,∴CD=OD=OD=5cm,∴△OCD是等边三角形,∴∠COD=60°,∴11122230 AOB AOP BOP COP DOP COD,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.5.在锐角三角形ABC中.BC=32,∠ABC=45°,BD平分∠ABC.若M,N分别是边BD,BC上的动点,则CM+MN的最小值是____.【答案】4【解析】【分析】过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN 的最小值,再根据32ABC=45°,BD平分∠ABC可知△BCE是等腰直角三角形,由锐角三角函数的定义即可求出CE的长.【详解】解:过点C作CE⊥AB于点E,交BD于点M′,过点M′作M′N′⊥BC于N′,则CE即为CM+MN的最小值,∵32ABC=45°,BD平分∠ABC,∴△BCE是等腰直角三角形,∴CE=BC•cos45°=32×22=4. ∴CM+MN 的最小值为4.【点睛】本题考查了轴对称最短路线问题,难度较大,根据题意作出辅助线,构造出等腰直角三角形,利用锐角三角函数的定义求解是解答此题的关键.6.如图,在ABC 中,AB AC >,按以下步骤作图:分别以点B 和点C 为圆心,大于BC 一半长为半径作画弧,两弧相交于点M 和点N ,过点M N 、作直线交AB 于点D ,连接CD ,若10AB =,6AC =,则ADC 的周长为_____________________.【答案】16【解析】【分析】利用基本作图可以判定MN 垂直平分BC ,则DC=DB ,然后利用等线段代换得到ACD ∆的周长=AB+AC ,再把10AB =,6AC =代入计算即可.【详解】解:由作法得MN 垂直平分BC ,则DC=DB ,10616ACD C CD AC AD DB AD AC AB AC ∆=++=++=+=+=故答案为:16.【点睛】本题考查了基本作图和线段垂直平分线的性质,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是本题的关键.7.如图,△ABC 中,AB =AC ,∠A =30°,点D 在边AB 上,∠ACD =15°,则AD BC =____.【答案】2. 【解析】【分析】根据题意作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH =DH ,连接DH ,并设AD =2x ,解直角三角形求出BC (用x 表示)即可解决问题.【详解】解:作CE ⊥AB 于E ,作DF ⊥AC 于F ,在CF 上截取一点H ,使得CH=DH ,连接DH .设AD=2x ,∵AB=AC ,∠A=30°, ∴∠ABC=∠ACB=75°,DF 12=AD=x ,AF 3=, ∵∠ACD=15°,HD=HC ,∴∠HDC=∠HCD=15°,∴∠FHD=∠HDC+∠HCD=30°,∴DH=HC=2x ,FH 3=,∴3x ,在Rt △ACE 中,EC 12=AC=x 3+,AE 3=3=, ∴BE=AB ﹣AE 3=﹣x ,在Rt △BCE 中,BC 22BE EC =+=2x ,∴222AD BC x ==. 故答案为:22. 【点睛】本题考查的等腰三角形的性质和解直角三角形以及直角三角形30度角的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【解析】【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.9.如图,在Rt ABC △中,AC BC =,D 是线段AB 上一个动点,把ACD 沿直线CD 折叠,点A 落在同一平面内的A '处,当A D '平行于Rt ABC △的直角边时,ADC ∠的大小为________.【答案】112.5︒或67.5︒【解析】【分析】当A D '平行于Rt ABC △的直角边时,有两种情况,一是当A D BC '时,二是当A D AC '时,两种情况根据折叠的性质及等腰三角形的性质进行角度的计算即可.【详解】如图1,当点D 在线段AB 上,且A D BC '时,45A DB B '∠=∠=︒,45180ADC A DC '∴∠+∠-=︒︒,解得112.5A DC ADC '∠=∠=︒.图1 如图2,当A D AC '时,45A DB A '∠=∠=︒,45180ADC A DC '∴∠+∠+=︒︒,解得67.5A DC ADC '∠=∠=︒.图2本题考查了翻折变换的性质,等腰直角三角形的性质,掌握折叠的性质是解题关键.10.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..二、八年级数学轴对称三角形选择题(难)11.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④【答案】C【解析】【分析】根据全等三角形的判定和性质以及等腰三角形的判定进行判断即可.【详解】选取①②:在ADF∆和BEF∆中1=2{12AFD BFEAD BEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取①④:在ADF∆和BEF∆中1=2{12AFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠∠∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=选取③④:在ADF∆和BEF∆中={12AF BFAFD BFEFD FEADF BEFAF BFFAB FBACAB CBAAC BC∠=∠=∴∆≅∆∴=∴∠=∠∠=∠∴∠=∠∴=故选C.【点睛】本题考查了等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是熟练地运用定理进行推理,是一道开放性的题目,能培养学生分析问题的能力.12.已知∠AOB =30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点构成的三角形是 ( )A .直角三角形B .钝角三角形C .等边三角形D .等腰三角形 【答案】C【解析】【分析】根据题意,作出相应的图形,然后对相应的角进行标记;本题先证明P 1,O ,P 2三点构成的三角形中1260POP ∠=︒,然后证边12OP OP OP ==,得到P 1,O ,P 2三点构成的三角形为等腰三角形,又因为该等腰三角形有一个角为60︒,故得证P 1,O ,P 2三点构成的三角形是等边三角形。

人教版八年级上册数学 三角形填空选择单元测试题(Word版 含解析)

人教版八年级上册数学 三角形填空选择单元测试题(Word版 含解析)

人教版八年级上册数学三角形填空选择单元测试题(Word版含解析)一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.2.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.【答案】30【解析】【分析】由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.【详解】解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△CGE.又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.3.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.4.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.5.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.6.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=__________度.【答案】360 °【解析】如图所示,根据三角形外角的性质可得,∠1+∠5=∠8,∠4+∠6=∠7,根据四边形的内角和为360°,可得∠2+∠3+∠7+∠8=360°,即可得∠1+∠2+∠3+∠4+∠5+∠6=360°.点睛:本题考查的知识点:(1)三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和;(2)四边形内角和定理:四边形内角和为360°.7.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【答案】B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.8.等腰三角形一边长是10cm,一边长是6cm,则它的周长是_____cm或_____cm.【答案】22cm,26cm【解析】【分析】题目给出等腰三角形有两条边长为10cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当腰是6cm时,周长=6+6+10=22cm;(2)当腰长为10cm时,周长=10+10+6=26cm,所以其周长是22cm或26cm.故答案为:22,26.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD ,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD 的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD 的度数.【详解】解:∵△B′CD 时由△BCD 翻折得到的,∴∠BCD=∠B′CD ,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)11.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320【答案】B【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得y=43x,再根据△ABC的面积是3即可求得x、y的值,从而求解.【详解】连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1∴△ABD的面积是4x+2y∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=43x.又∵△ABC的面积为3∴4x+x=32,x=310.则四边形PDCE的面积为x+y=710.故选B.【点睛】此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.12.如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接O在AO上取一点F,使得OF=12AF若S△ABC =12,则四边形OCDF的面积为()A.2 B.83C.3 D.103【答案】B【解析】 【分析】 重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心,∴13AOC S=ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S +DOF S =83.故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.13.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A .4B .5C .6D .7【答案】D【解析】【分析】 连接AO ,利用等高不等底的三角形面积比等于底长的比,可求出△COD 与△BOE 的面积.列出关于△AOE 与△AOD 的面积的方程即可求出四边形AEOD 的面积.【详解】连接OA ,∵OB=OD,∴S△BOC=S△COD=2,∵OC=2OE,∴S△BOE=12S△BOC=1,∵OB=OD,∴S△AOB=S△AOD,∴S△BOE+S△AOE=S△AOD,即:1+S△AOE=S△AOD①,∵OC=2OE,∴S△AOC=2S△AOE,∴S△AOD+S△COD=2S△AOE,即:S△AOD+2=2S△AOE②,联立①和②:解得:S△AOE=3,S△AOD=4,S四边形AEOD=S△AOE+S△AOD=7,故选D.【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.14.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定【答案】C【解析】【分析】先根据AD 、BE 、CF 为△ABC 的角平分线可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,由三角形内角和定理可知,2x+2y+2z=180° 即x+y+z=90°在△AHB 中由三角形外角的性质可知∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,故可得出结论.【详解】∵AD 、BE 、CF 为△ABC 的角平分线 ∴可设∠BAD=∠CAD=x ,∠ABE=∠CBE=y ,∠BCF=∠ACF=z ,∴2x+2y+2z=180° 即x+y+z=90°,∵在△AHB 中,∠AHE=x+y=90°﹣z ,在△CHG 中,∠CHG=90°﹣z ,∴∠AHE=∠CHG ,故选C .【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.15.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是( )A .4个B .3个C .2个D .1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确; 由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确. 故选:C16.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )A.270B.210C.180D.150【答案】B【解析】【分析】利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB与DE交于点G,AB与EF交于点H,∵∠1=∠A+∠DGA,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2=∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.∠的度数17.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则3等于()A.50°B.30°C.20°D.15°【答案】C【解析】【分析】根据平行和三角形外角性质可得∠2=∠4=∠1+∠3,代入数据即可求∠3.【详解】如图所示,∵AB∥CD∴∠2=∠4=∠1+∠3=50°,∴∠3=∠4-30°=20°,故选C.18.在下列图形中,正确画出△ABC的AC边上的高的图形是()A.B.C.D.【答案】C【解析】【分析】△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段.根据定义正确的只有C.故选:C.【点睛】本题考查了三角形的高线的定义,理解定义是关键.19.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【解析】【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.4,5,9都不符合不等式5<x<9,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.20.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于D点,∠A=50°,则∠D=()A.15°B.20°C.25°D.30°【答案】C 【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=12∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=12∠ACE,∠2=12∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=12∠A=25°.故选C.。

人教版八年级上册数学 三角形填空选择单元练习(Word版 含答案)

人教版八年级上册数学 三角形填空选择单元练习(Word版 含答案)

人教版八年级上册数学 三角形填空选择单元练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.【答案】1.5或5或9【解析】【分析】分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.2.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键. 3.如图,△AEF 是直角三角形,∠AEF=900,B 为AE 上一点,BG⊥AE 于点B ,GF∥BE,且AD =BD =BF ,∠BFG=600,则∠AFG 的度数是___________。

人教版数学八年级上册 三角形填空选择单元练习(Word版 含答案)

人教版数学八年级上册 三角形填空选择单元练习(Word版 含答案)

人教版数学八年级上册 三角形填空选择单元练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.在ABC 中,BAC α∠=,边AB 的垂直平分线交边BC 于点D ,边AC 的垂直平分线交边BC 于点E ,连结AD ,AE ,则DAE ∠的度数为______.(用含α的代数式表示)【答案】2α﹣180°或180°﹣2α【解析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B =∠BAD ,∠C =∠CAE ,进而得到∠BAD +∠CAE =∠B +∠C =180°-a ,再根据角的和差关系进行计算即可. 解:有两种情况:①如图所示,当∠BAC ⩾90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAC −(∠BAD +∠CAE )=α−(180°−α)=2α−180°;②如图所示,当∠BAC <90°时,∵DM 垂直平分AB ,∴DA =DB ,∴∠B =∠BAD ,同理可得,∠C =∠CAE ,∴∠BAD +∠CAE =∠B +∠C =180°−α,∴∠DAE =∠BAD +∠CAE −∠BAC =180°−α−α=180°−2α.故答案为2α−180°或180°−2α.点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.2.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠:1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α【解析】【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.3.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78. 【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒,∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.4.一机器人以0.3m/s 的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s .【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.5.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.【答案】22【解析】【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.6.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.【答案】2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=27.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,则∠ACB= .【答案】85°.【解析】试题分析:令A→南的方向为线段AE ,B→北的方向为线段BD ,根据题意可知,AE ,DB 是正南,正北的方向BD//AE=45°+15°=60°又=180°-60°-35°=85°.考点:1、方向角. 2、三角形内角和.8.如图,△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作EF ∥BC 交AB 、AC 于E 、F ,若△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,△OBC 的面积_____cm 2.【答案】242cm .【解析】【分析】由BE=EO 可证得EF ∥BC ,从而可得∠FOC=∠OCF ,即得OF=CF ;可知△AEF 等于AB+AC ,所以根据题中的条件可得出BC 及O 到BC 的距离,从而能求出△OBC 的面积.【详解】∵BE=EO ,∴∠EBO=∠EOB=∠OBC ,∴EF ∥BC ,∴∠FOC=∠OCB=∠OCF ,∴OF=CF ;△AEF 等于AB+AC ,又∵△ABC 的周长比△AEF 的周长大12cm ,∴可得BC=12cm ,根据角平分线的性质可得O 到BC 的距离为4cm ,∴S △OBC =12×12×4=24cm 2. 考点:1.三角形的面积;2.三角形三边关系.9.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.【答案】20°.【解析】【分析】根据翻折的性质可知:∠BCD=∠B′CD,又∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD的度数.【详解】解:∵△B′CD时由△BCD翻折得到的,∴∠BCD=∠B′CD,又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,∴∠BCD=70°,又∵∠ACD+∠BCD=∠ACB=90°,∴∠ACD=20°.故答案为:20°.【点睛】本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.∠__________.10.如图,五边形ABCDE的每一个内角都相等,则外角CBF【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.二、八年级数学三角形选择题(难)11.若△ABC内有一个点P1,当P1、A、B、C没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC内有两个点P1、P2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC内有n个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A.n·180°B.(n+2)·180°C.(2n-1)·180°D.(2n+1)·180°【答案】D【解析】【分析】当△ABC内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180°【详解】】解:图1中,当△ABC内只有1个点时,可分割成3个互不重叠的小三角形;图2中,当△ABC内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC内有n个点(P1,P2,…,P n)时,可以把△ABC分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°.【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M、N分别是BA、CD延长线上的点,∠EAM和∠EDN的平分线交于点F,∠F的度数为()A.120°B.135°C.150°D.不能确定【答案】B【解析】【分析】先根据∠1+∠2=90°得出∠EAM+∠EDN的度数,再由角平分线的定义得出∠EAF+∠EDF的度数,根据AE⊥DE可得出∠3+∠4的度数,进而可得出∠FAD+∠FDA的度数,由三角形内角和定理即可得出结论.【详解】解:∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分线交于点F,∴∠EAF+∠EDF=12×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°.故选B.【点睛】本题查的是三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于180°是解答此题的关键.13.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理14.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.15.如图,在△ABC 中,点D 、E 分别是边AC,AB 的中点,BD,CE 相交于点O,连接O 在AO 上取一点F,使得OF=12AF 若S △ABC =12,则四边形OCDF 的面积为( )A .2B .83C .3D .103【答案】B【解析】【分析】 重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心,∴13AOC S=ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S +DOF S =83.故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.16.下列多边形中,不能够单独铺满地面的是( )A .正三角形B .正方形C .正五边形D .正六边形【答案】C【解析】【分析】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.【点睛】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.17.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.18.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.19.下列长度的三根小木棒能构成三角形的是( )A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【答案】D【解析】【详解】A.因为2+3=5,所以不能构成三角形,故A错误;B.因为2+4<6,所以不能构成三角形,故B错误;C.因为3+4<8,所以不能构成三角形,故C错误;D.因为3+3>4,所以能构成三角形,故D正确.故选D.20.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110︒B.115︒C.120︒D.125︒【答案】A【解析】【分析】根据三角形外角的性质三角形的一个外角等于和它不相邻的两个内角的和可得∠AEB=∠A+∠C=65°,∠DFE=∠B+∠AEC,进而可得答案.【详解】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.【点睛】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.。

人教版数学八年级上册 三角形填空选择(提升篇)(Word版 含解析)

人教版数学八年级上册 三角形填空选择(提升篇)(Word版 含解析)

人教版数学八年级上册三角形填空选择(提升篇)(Word版含解析)一、八年级数学三角形填空题(难)1.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°.故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.2.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______°.【答案】65【解析】如图,∵AE平分∠DAC,CE平分∠ACF,∴∠1=12∠DAC ,∠2=12∠ACF , ∴∠1+∠2=12(∠DAC+∠ACF ), 又∵∠DAC+∠ACF=(180°-∠BAC )+(180°-∠ACB )=360°-(∠BAC+∠ACB ),且∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°, ∴在△ACE 中,∠E=180°-(∠1+∠2)=180°-115°=65°.3.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为x cm ,则x 的取值范围是_______【答案】3<x <5【解析】【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,AD MD ADB MDC BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM中:8-2<2x<8+2,解得:3<x<5.故答案为:3<x<5.【点睛】本题考查了三角形的三边关系,解答的关键在于画出图形,数形结合完成解答.4.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________【答案】10【解析】【分析】【详解】解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.故答案为:10 .考点:多边形的内角和定理.5.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【答案】B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.6.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.7.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.【答案】5<a<11【解析】【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a<8+3,解得:5<a <11,故答案为:5<a<11.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.8.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于 ______ 度.【答案】108°【解析】【分析】如图,易得△OCD为等腰三角形,根据正五边形内角度数可求出∠OCD,然后求出顶角∠COD,再用360°减去∠AOC、∠BOD、∠COD即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.9.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.【答案】﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.10.如图,在△ABC中,∠A=70°,点O到AB,BC,AC的距离相等,连接BO,CO,则∠BOC=________.【答案】125°【解析】【分析】根据角平分线性质推出O为△ABC三角平分线的交点,根据三角形内角和定理求出∠ABC+∠ACB,根据角平分线定义求出∠OBC+∠OCB,即可求出答案.【详解】:∵点O到AB、BC、AC的距离相等,∴OB平分∠ABC,OC平分∠ACB,∴12OBC ABC∠=∠,12OCB ACB∠=∠,∵∠A=70°,∴∠ABC+∠ACB=180°-70°=110°,∴1110552OBC OCB∠+∠=⨯︒=︒,∴∠BOC=180°-(∠OBC+∠OCB)=125°;故答案为:125.【点睛】本题主要考查平分线的性质,三角形内角和定理的应用,能求出∠OBC+∠OCB的度数是解此题的关键.二、八年级数学三角形选择题(难)11.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()A.80米B.160米C.300米D.640米【答案】A【解析】【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360︒,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.故选:A.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.12.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A .α-β+γ=180°B .α+β-γ=180°C .α+β+γ=360°D .α-β-γ=90°【答案】B【解析】【分析】延长CD 交AE 于点F ,利用平行证得β=∠AFD ;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD 交AE 于点F∵AB ∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α ∵γ+∠FDE=∠ADF∴γ+180°-α=β ∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.13.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )A .20B .35C .50D .70【答案】B【解析】【分析】依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.【详解】如图,C'D'//AC ,,又DAC 20∠=,AGH 70∠∴=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,1AEF GFE AGH 352∠∠∠∴===, 故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.14.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为( )A .56B .64C .72D .90【答案】D【解析】【分析】根据题意找出规律得到第n 个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.【详解】第1个图形的花盆个数为:(1+1)(1+2);第2个图形的花盆个数为:(2+1)(2+2)=12;第3个图形的花盆个数为:(3+1)(3+2)=20;,第n个图形的花盆个数为:(n+1)(n+2);则第7个图形中花盆的个数为:(7+1)(7+2)=72.故选:C.【点睛】本题考查图形规律题,解此题的关键在于根据题中图形找到规律.15.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.16.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是()A.4个 B.3个 C.2个 D.1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.故选:C17.一个多边形的内角和是1260°,这个多边形的边数是()A.6 B.7 C.8 D.9【答案】D【解析】试题解析:设这个多边形的边数为n,由题意可得:(n-2)×180°=1260°,解得n=9,∴这个多边形的边数为9,故选D.18.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°【答案】C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.19.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【答案】C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.20.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24°B.25°C.30°D.35°【答案】D【解析】【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选:D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.。

数学八年级上册 三角形填空选择(篇)(Word版 含解析)

数学八年级上册 三角形填空选择(篇)(Word版 含解析)

数学八年级上册 三角形填空选择(篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =___________________,△APE 的面积等于6.【答案】1.5或5或9【解析】【分析】分为两种情况讨论:当点P 在AC 上时:当点P 在BC 上时,根据三角形的面积公式建立方程求出其解即可.【详解】如图1,当点P 在AC 上.∵△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,∴CE =4,AP =2t .∵△APE 的面积等于6,∴S △APE =12AP •CE =12AP ×4=6.∵AP =3,∴t =1.5. 如图2,当点P 在BC 上.则t >3∵E 是DC 的中点,∴BE =CE =4. ∵PE ()43=7-PE t t =-- ,∴S =12EP •AC =12•EP ×6=6,∴EP =2,∴t =5或t =9. 总上所述,当t =1.5或5或9时,△APE 的面积会等于6.故答案为1.5或5或9.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.2.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.3.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α【解析】【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.4.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键. 5.△ABC 的两边长为4和3,则第三边上的中线长m 的取值范围是_______.【答案】1722m << 【解析】【分析】 作出草图,延长AD 到E ,使DE=AD ,连接CE ,利用“边角边”证明△ABD 和△ECD 全等,然后根据全等三角形对应边相等可得CE=AB ,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE 的取值范围,便不难得出m 的取值范围.【详解】解:如图,延长AD 到E ,使DE=AD ,连接CE ,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,AD DEADB EDCBD CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=4,∴4-3<AE<4+3,即1<AE<7,∴1722m<<.故答案为:1722m<<.【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.6.已知ABC中,90A∠=,角平分线BE、CF交于点O,则BOC∠= ______ .【答案】135【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.7.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若l∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.【答案】30【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为:30【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.8.如图,李明从A 点出发沿直线前进5米到达B 点后向左旋转的角度为α,再沿直线前进5米,到达点C 后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.9.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.10.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.【答案】108°【解析】【分析】如图,易得△OCD 为等腰三角形,根据正五边形内角度数可求出∠OCD ,然后求出顶角∠COD ,再用360°减去∠AOC 、∠BOD 、∠COD 即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD是等腰三角形,然后求出顶角是关键.二、八年级数学三角形选择题(难)11.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+12∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-12∠A.上述说法正确的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】【分析】根据三角形的内角和外角之间的关系计算.【详解】解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,∴∠ABP=∠PBC,∠ACP=∠PCB∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)∠P=180°-(∠PBC+∠PCB)∴∠P=90°+12∠A;故(1)的结论正确;(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)∠P=∠PCE-∠PBC∴2∠P=∠A故(2)的结论是错误.(3)∠P=180°-(∠PBC+∠PCB)=180°-12(∠FBC+∠ECB)=180°-12(∠A+∠ACB+∠A+∠ABC)=180°-12(∠A+180°)=90°-12∠A.故(3)的结论正确.正确的为:(1)(3).故选:C【点睛】主要考查了三角形的内角和外角之间的关系.(1)三角形的外角等于与它不相邻的两个内角和;(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.12.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类讨论C.方程思想D.数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.13.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【答案】D【解析】【分析】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95 n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.14.一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是()A.x>5 B.x<7 C.2<x<12 D.1<x<6【答案】D【解析】如图所示:AB=5,AC=7,设BC=2a,AD=x,延长AD至E,使AD=DE,在△BDE与△CDA中,∵AD=DE,BD=CD,∠ADC=∠BDE,∴△BDE≌△CDA,∴AE=2x ,BE=AC=7,在△ABE 中,BE-AB <AE <AB+BE ,即7-5<2x <7+5,∴1<x <6.故选D .15.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )A .15 cm 2B .20 cm 2C .30 cm 2D .35 cm 2【答案】D【解析】【分析】 连接AD ,BE ,CF .根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC 的面积,故△DEF 的面积等于7倍的△ABC 面积,即可得出结果.【详解】连接AD ,BE ,CF .∵BC =CD ,∴S △ACD =S △ABC =5,S △FCD =S △BCF .同理S △AEB =S △ABC =5,S △AED =S △ACD =5;S △AEB =S △BEF =5,S △BFC =S △ABC =5;∴S △FCD =S △BCF =5,∴S △EFD =7 S △ABC =35(cm 2).故选D .本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.16.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A.20°B.35°C.40°D.45°【答案】B【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.17.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65°B.70°C.75°D.80°【答案】D【分析】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【详解】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.18.在下列图形中,正确画出△ABC的AC边上的高的图形是()A.B.C.D.【答案】C【解析】【分析】△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC的AC边上的高的就是通过顶点B作的AC所在直线的垂线段.根据定义正确的只有C.故选:C.【点睛】本题考查了三角形的高线的定义,理解定义是关键.19.如果一个多边形的内角和是1800°,这个多边形是()A.八边形B.十四边形C.十边形D.十二边形【答案】D【解析】【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=12.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.的高的是()20.如下图,线段BE是ABCA.B.C.D.【答案】D【解析】【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【详解】解:由图可得,线段BE是△ABC的高的图是D选项;故选:D.【点睛】本题主要考查了三角形的高线的画法,掌握三角形的高的画法是解题的关键.。

八年级上册数学 三角形填空选择(篇)(Word版 含解析)

八年级上册数学 三角形填空选择(篇)(Word版 含解析)

八年级上册数学三角形填空选择(篇)(Word版含解析)一、八年级数学三角形填空题(难)1.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.2.△ABC的两边长为4和3,则第三边上的中线长m的取值范围是_______.【答案】17 22m<<【解析】【分析】作出草图,延长AD到E,使DE=AD,连接CE,利用“边角边”证明△ABD和△ECD全等,然后根据全等三角形对应边相等可得CE=AB,再根据三角形的任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,便不难得出m的取值范围.【详解】解:如图,延长AD到E,使DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,AD DEADB EDCBD CD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ECD(SAS),∴CE=AB,∵AB=3,AC=4,∴4-3<AE<4+3,即1<AE<7,∴1722m<<.故答案为:1722m<<.【点睛】本题主要考查倍长中线法构造全等三角形和三边关系,解决本题的关键是要熟练掌握倍长中线法构造全等三角形.3.一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为__s.【答案】160.【解析】试题分析:该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.试题解析:360÷45=8,则所走的路程是:6×8=48m,则所用时间是:48÷0.3=160s.考点:多边形内角与外角.4.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC +∠ACB =130°,然后根据角平分线的概念得出∠OBC +∠OCB ,再根据三角形的内角和定理即可得出∠BOC 的度数.【详解】解;∵∠A =50°,∴∠ABC +∠ACB =180°﹣50°=130°,∵∠B 和∠C 的平分线交于点O ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB , ∴∠OBC +∠OCB =12×(∠ABC +∠ACB )=12×130°=65°, ∴∠BOC =180°﹣(∠OBC +∠OCB )=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数.5.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.6.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.7.如图,小亮从A 点出发前进5m ,向右转15°,再前进5m ,又向右转15°…,这样一直走下去,他第一次回到出发点A 时,一共走了______m .【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A 点出发最后回到出发点A 时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.8.如图,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E =____度.【答案】12【解析】【分析】利用三角形的外角与内角的关系及平行线的性质可直接解答.【详解】∵ AB ∥CD ,∴ ∠BFC =∠ABE =66°.在△EFD 中,利用三角形的外角等于与它不相邻的两个内角的和,得到∠BFC =∠E +∠D , ∴ ∠E =∠BFC -∠D =12°.故答案是:12.【点睛】本题考查了三角形外角与内角的关系及平行线的性质,比较简单.9.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.10.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.【答案】30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.二、八年级数学三角形选择题(难)11.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()A.80米B.160米C.300米D.640米【答案】A【解析】【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360︒,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.故选:A.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.12.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类讨论C.方程思想D.数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.13.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320【答案】B【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得y=43x,再根据△ABC的面积是3即可求得x、y的值,从而求解.【详解】连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1∴△ABD的面积是4x+2y∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=43x.又∵△ABC的面积为3∴4x+x=32,x=310.则四边形PDCE的面积为x+y=710.故选B.【点睛】此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.14.如图:∠A+∠B+∠C+∠D+∠E+∠F等于()A.180°B.360°C.270°D.540°【答案】B【解析】【分析】先根据三角形的外角,用∠AGE表示出∠A,∠B;用∠EMC表示出∠E,∠F;用∠CNA 表示出∠C,∠D,然后再根据对顶角相等的性质解出它们的度数即可【详解】解:如图:∵∠AGE是△ABG的外角∴∠AGE=∠A+∠B;同理:∠EMC=∠E+∠F;∠CNA=∠C+∠D∴∠A+∠B+∠C+∠D+∠E+∠F=∠AGE+∠EMC+∠CNA又∵∠AGE+∠EMC+∠CAN是△MNG的三个外角∴∠AGE+∠EMC+∠CAN=360°故选:B.【点睛】本题主要考查了三角形外角及其外角和,其中找出三角形的外角是解答本题的关键. 15.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A .7B .8C .7或8D .无法确定【答案】C【解析】【分析】n 边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x 度,边数为n . 则(n-2)×180=830+x ,即(n-2)×180=4×180+110+x ,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8. 故选C .【点睛】本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.16.如图,△ABC 中,E 是 AC 的中点,延长 BC 至 D ,使 BC :CD =3:2,以 CE ,CD 为邻边做▱CDFE ,连接 AF,BE,BF ,若△ABC 的面积为 9,则阴影部分面积是( )A .6B .4C .3D .2【答案】A【解析】【分析】根据三角形中位线性质结合三角形面积去解答.【详解】 解:在ABC 中,E 是 AC 的中点,S ABC 9=, BC :CD =3:2▱CDFE 中,CD=EF1S BCE 4.52S ABC ∴== 设BCE 的高为1h , ABC 的高为2.h11S BCE 4.52BC h ∴=⨯⨯= 13h =12:1:2h h =26h ∴=S AEF S EFB s ∴=+阴()2111122EF h h EF h =⨯⨯-+⨯⨯ 212EF h =⨯⨯ 1262=⨯⨯ 6.=【点睛】此题重点考察学生对三角形中位线和面积的理解,熟练掌握三角形面积计算方法是解题的关键.17.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【答案】B【解析】如图,∵等边三角形的边长为3,∴高线AH=3×333= S △ABC =1111••••2222BC AH AB PD BC PE AC PF ==+ ∴11113?3?3?3?2222AH PD PE PF ⨯=⨯+⨯+⨯ ∴33 即点P 33 故选B.18.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )A .270B .210C .180D .150【答案】B【解析】【分析】 利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB 与DE 交于点G ,AB 与EF 交于点H ,∵∠1=∠A+∠DGA ,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH 中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2= ∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.19.一正多边形的内角和与外角和的和是1440°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形【答案】C【解析】【分析】依题意,多边形的内角与外角和为1440°,多边形的外角和为360°,根据内角和公式求出多边形的边数.【详解】解:设多边形的边数为n ,根据题意列方程得,(n ﹣2)•180°+360°=1440°,n ﹣2=6,n =8.故这个多边形的边数为8.故选:C .【点睛】考查了多边形的外角和定理和内角和定理,熟练记忆多边形的内角和公式是解答本题的关键.20.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠【答案】A【解析】【分析】 根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A ,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A 转化到同一个三角形中是解题的关键.。

人教版八年级上册数学 三角形填空选择检测题(Word版 含答案)

人教版八年级上册数学 三角形填空选择检测题(Word版 含答案)

人教版八年级上册数学三角形填空选择检测题(Word版含答案)一、八年级数学三角形填空题(难)1.已知如图,BQ平分∠ABP,CQ平分∠ACP,∠BAC=α,∠BPC=β,则∠BQC=_________.(用α,β表示)【答案】12(α+β).【解析】【分析】连接BC,根据角平分线的性质得到∠3=12∠ABP,∠4=12∠ACP,根据三角形的内角和得到∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,求出∠3+∠4=12(β-α),根据三角形的内角和即可得到结论.【详解】解:连接BC,∵BQ平分∠ABP,CQ平分∠ACP,∴∠3=12∠ABP,∠4=12∠ACP,∵∠1+∠2=180°-β,2(∠3+∠4)+(∠1+∠2)=180°-α,∴∠3+∠4=12(β-α),∵∠BQC=180°-(∠1+∠2)-(∠3+∠4)=180°-(180°-β)-12(β-α),即:∠BQC=12(α+β).故答案为:12(α+β).【点睛】本题考查了三角形的内角和,角平分线的定义,连接BC构造三角形是解题的关键.2.如图,ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D ,点,E F 分别在线段BD 、CD 上,点G 在EF 的延长线上,EFD ∆与EFH ∆关于直线EF 对称,若60,84,A BEH HFG n ︒︒︒∠=∠=∠=,则n =__________.【答案】78.【解析】【分析】利用ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D 得到∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC),根据三角形的内角和得到∠D=12∠A=30︒,利用外角定理得到∠DEH=96︒,由EFD ∆与EFH ∆关于直线EF 对称得到∠DEG=∠HEG=48︒,根据外角定理即可得到∠DFG=∠D+∠DEG=78︒.【详解】∵ABC ∆的ABC ∠的平分线与ACB ∠的外角平分线相交于点D∴∠DBC=12∠ABC ,∠ACD=12(∠A+∠ABC), ∵∠DBC+∠BCD+∠D=180︒,∠A+∠ABC+∠ACB=180︒, ∴∠D=12∠A=30︒, ∵84BEH ︒∠=,∴∠DEH=96︒,∵EFD ∆与EFH ∆关于直线EF 对称,∴∠DEG=∠HEG=48︒,∠DFG=∠HFG n ︒=,∵∠DFG=∠D+∠DEG=78︒,∴n=78.故答案为:78.【点睛】此题考查三角形的内角和定理、外角定理,角平分线性质,轴对称图形的性质,此题中求出∠D=12∠A=30︒是解题的关键.3.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.【答案】2b-2a【解析】【分析】【详解】根据三角形的三边关系得:a﹣b﹣c<0,c+a﹣b>0,∴原式=﹣(a﹣b﹣c)﹣(a+c﹣b)=﹣a+b+c﹣a﹣c+b=2b﹣2a.故答案为2b﹣2a【点睛】本题考查了绝对值得化简和三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数,据此解答即可.4.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为 _______.【答案】100°【解析】【分析】先根据三角形的内角和定理可出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=80°,然后利用平角的定义即可求出∠1.【详解】如图,∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=20°,∴∠3+20°+∠4+40°+40°=180°,∴∠3+∠4=80°,∴∠1=180°-80°=100°.故答案是:100°.【点睛】考查了折叠前后两图形全等,即对应角相等,对应线段相等.也考查了三角形的内角和定理以及外角性质.5.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.6.如图,小亮从A点出发前进5m,向右转15°,再前进5m,又向右转15°…,这样一直走下去,他第一次回到出发点A时,一共走了______m.【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.7.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.8.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.【答案】110【解析】已知∠A=50°,∠ABO=28°,∠ACO=32°,根据三角形外角的性质可得∠BDC=∠A+∠ABO=78°,∠BOC=∠BDC+∠ACO=110°.∠__________.9.如图,五边形ABCDE的每一个内角都相等,则外角CBF=【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.10.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.【答案】﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.二、八年级数学三角形选择题(难)11.若△ABC 内有一个点P 1,当P 1、A 、B 、C 没有任何三点在同一直线上时,如图1,可构成3个互不重叠的小三角形;若△ABC 内有两个点P 1、P 2,其它条件不变,如图2,可构成5个互不重叠的小三角形:……若△ABC 内有n 个点,其它条件不变,则构成若干个互不重叠的小三角形,这些小三角形的内角和为()A .n·180°B .(n+2)·180°C .(2n-1)·180°D .(2n+1)·180°【答案】D【解析】【分析】 当△ABC 内的点的个数是1时,三角形内互不重叠的小三角形的个数是3;当△ABC 内的点的个数是2时,三角形内互不重叠的小三角形的个数是5;依此类推得到当△ABC 内的点的个数是3时,三角形内互不重叠的小三角形的个数是7;当△ABC 内的点的个数是n 时,三角形内互不重叠的小三角形的个数2n+1,所以这些小三角形的内角和为(2n+1)·180° 【详解】】解:图1中,当△ABC 内只有1个点时,可分割成3个互不重叠的小三角形; 图2中,当△ABC 内只有2个点时,可分割成5个互不重叠的小三角形;图3中,当△ABC 内只有3个点时,可分割成7个互不重叠的小三角形;根据以上规律,当△ABC 内有n 个点(P 1,P 2,…,P n )时,可以把△ABC 分割成S=2n+1个互不重叠的三角形,所以这些小三角形的内角和为(2n+1)·180°. 【点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.12.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )A.14B.14.4C.13.6D.13.2【答案】B【解析】【分析】连结BF,设S△BDF=x,则S△BEF=6-x,由CD是中线可以得到S△ADF=S△BDF,S△BDC=S△ADC,由BE=2CE可以得到S△CEF=12S△BEF,S△ABE=23S△ABC,进而可用两种方法表示△ABC的面积,由此可得方程,进而得解.【详解】解:如图,连接BF,设S△BDF=x,则S△BEF=6-x,∵CD是中线,∴S△ADF=S△BDF=x,S△BDC= S△ADC=12△ABC,∵BE=2CE,∴S△CEF=12S△BEF=12(6-x),S△ABE=23S△ABC,∵S△BDC= S△ADC=12△ABC,∴S△ABC=2S△BDC=2[x+32(6-x)]=18-x,∵S△ABE=23S△ABC,∴S△ABC=32S△ABE=32[2x+ (6-x)]=1.5x+9,∴18-x =1.5x+9,解得:x=3.6,∴S△ABC=18-x,=18-3.6=14.4,故选:B.【点睛】本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.13.已知,如图,AB∥CD,则图中α、β、γ三个角之间的数量关系为()A.α-β+γ=180°B.α+β-γ=180° C.α+β+γ=360° D.α-β-γ=90°【答案】B【解析】【分析】延长CD交AE于点F,利用平行证得β=∠AFD;再利用三角形外角定理及平角定义即可得到答案.【详解】如图,延长CD交AE于点F∵AB∥CD∴β=∠AFD∵∠FDE+α=180°∴∠FDE=180°-α∵γ+∠FDE=∠ADF∴γ+180°-α=β∴α+β-γ=180°故选B【点睛】本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.14.如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是()A.∠1=∠2+∠A B.∠1=2∠A+∠2C.∠1=2∠2+2∠A D.2∠1=∠2+∠A【答案】B【解析】试题分析:如图在∆ABC中,∠A+∠B+∠C=180°,折叠之后在∆ADF中,∠A+∠2+∠3=180°,∴∠B+∠C=∠2+∠3,∠3=180°-∠A-∠2,又在四边形BCFE中∠B+∠C+∠1+∠3=360°,∴∠2+∠3+∠1+∠3=360°∴∠2+∠1+2∠3=∠2+∠1+2(180°-∠A-∠2)=360°,∴∠2+∠1-2∠A-2∠2=0,∴∠1=2∠A+∠2.故选B点睛:本题主要考查考生对三角形内角和,四边形内角和以及三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角和的理解及掌握。

人教版八年级上册数学 三角形填空选择(提升篇)(Word版 含解析)

人教版八年级上册数学 三角形填空选择(提升篇)(Word版 含解析)

人教版八年级上册数学 三角形填空选择(提升篇)(Word 版 含解析)一、八年级数学三角形填空题(难) 1.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠: 1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=________________.【答案】20202α【解析】【分析】 根据角平分线的定义,三角形的外角性质及三角形的内角和定理可知21211112222a A A A A a ∠=∠=∠=∠=,,…,依此类推可知2020A ∠的度数. 【详解】解:∵∠ABC 与∠ACD 的平分线交于点A 1,∴11118022A ACD ACB ABC ∠=︒-∠-∠-∠ 1118018022ABC A A ABC ABC =︒-∠+∠-︒-∠-∠-∠()() 1122a A =∠=, 同理可得221122a A A ∠=∠=, …∴2020A ∠=20202α. 故答案为:20202α. 【点睛】 本题是找规律的题目,主要考查三角形的外角性质及三角形的内角和定理,同时也考查了角平分线的定义.2.如图,BE 平分∠ABC,CE 平分外角∠ACD,若∠A=42°,则∠E=_____°.【答案】21°【解析】根据三角形的外角性质以及角平分线的定义可得.解:由题意得:∠E=∠ECD−∠EBC=12∠ACD−12∠ABC=12∠A=21°.故答案为21°.3.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.4.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.5.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.【答案】40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】÷=,连续左转后形成的正多边形边数为:4559︒÷=︒.则左转的角度是360940故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.6.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.【答案】2【解析】由D是AC的中点且S△ABC=12,可得1112622ABD ABCS S∆∆==⨯=;同理EC=2BE即EC=13BC,可得11243ABES∆=⨯=,又,ABE ABF BEF ABD ABF ADFS S S S S S∆∆∆∆∆∆-=-=等量代换可知S△ADF-S△BEF=27.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.【答案】5:4:3【解析】试题解析:设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,∴三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°,则三个外角的度数比为:150°:120°:90°=5:4:3,故答案为5:4:3.8.如果一个n边形的内角和是1440°,那么n=__.【答案】10【解析】∵n边形的内角和是1440°,∴(n−2)×180°=1440°,解得:n=10.故答案为:10.9.如果一个n边形的内角和等于它的外角和的3倍,则n=______.【答案】8【解析】【分析】根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,解得:n=8,故答案为:8.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.10.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.二、八年级数学三角形选择题(难)11.如图,小明从A点出发,沿直线前进10米后向左转10°再沿直线前进10米后向左转20°再沿直线前进10米后向左转30°……照这样下去,他第一次回到出发地A点时,一共走了()A.80米B.160米C.300米D.640米【答案】A【解析】【分析】利用多边形的外角和得出小明回到出发地A点时左转的次数,即可求出多边形的边数,即可解决问题.【详解】解:由题意可知,小明第一次回到出发地A点时,他一共转了360︒,由题意得10°+20° +30°+40°+50°+60°+70°+80°=360°,所以共转了8次,每次沿直线前进10米,所以一共走了80米.故选:A.【点睛】本题考查根据多边形的外角和解决实际问题,注意多边形的外角和是360︒,要注意第一次转了10°,第二次转了20°,第三次转了30°……,利用好规律解题.12.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理13.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.A B C.再分14.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.…… 按此规律,倍长2018次后得到的别倍长A1B1,B1C1,C1A1得到222A B C的面积为()201820182018A.201787D.20186C.20186B.2018【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.15.如图:∠A+∠B+∠C+∠D+∠E+∠F等于()A.180°B.360°C.270°D.540°【答案】B【解析】【分析】先根据三角形的外角,用∠AGE表示出∠A,∠B;用∠EMC表示出∠E,∠F;用∠CNA 表示出∠C,∠D,然后再根据对顶角相等的性质解出它们的度数即可【详解】解:如图:∵∠AGE是△ABG的外角∴∠AGE=∠A+∠B;同理:∠EMC=∠E+∠F;∠CNA=∠C+∠D∴∠A+∠B+∠C+∠D+∠E+∠F=∠AGE+∠EMC+∠CNA又∵∠AGE+∠EMC+∠CAN是△MNG的三个外角∴∠AGE+∠EMC+∠CAN=360°故选:B.【点睛】本题主要考查了三角形外角及其外角和,其中找出三角形的外角是解答本题的关键.16.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°【答案】C【解析】【分析】由三角形的内角和定理,可求∠BAC=82°,又由AE是∠BAC的平分线,可求∠BAE=41°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=56°,所以∠DAE=∠BAD-∠BAE,问题得解.【详解】在△ABC中,∵∠ABC=34°,∠ACB=64°,∴∠BAC=180°−∠B−∠C=82°,∵AE 是∠BAC 的平分线,∴∠BAE=∠CAE=41°.又∵AD 是BC 边上的高,∴∠ADB=90°,∵在△ABD 中∠BAD=90°−∠B=56°,∴∠DAE=∠BAD −∠BAE =15°.【点睛】在本题中,我们需要注意到已知条件中已经告诉三角形的两个角,所以利用内角和定理可以求出第三个角,再有已知条件中提到角平分线和高线,所以我们可以利用角平分线和高线的性质计算出相关角,从而利用角的和差求解,在做几何证明题时需注意已知条件衍生的结论.17.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A .4B .5C .6D .7【答案】D【解析】【分析】 连接AO ,利用等高不等底的三角形面积比等于底长的比,可求出△COD 与△BOE 的面积.列出关于△AOE 与△AOD 的面积的方程即可求出四边形AEOD 的面积.【详解】连接OA ,∵OB=OD ,∴S △BOC =S △COD =2,∵OC=2OE , ∴S △BOE =12S △BOC =1, ∵OB=OD ,∴S △AOB =S △AOD ,∴S △BOE +S △AOE =S △AOD ,即:1+S △AOE =S △AOD ①,∵OC=2OE ,∴S △AOC =2S △AOE ,∴S △AOD +S △COD =2S △AOE ,即:S △AOD +2=2S △AOE ②, 联立①和②:解得:S △AOE =3,S △AOD =4,S 四边形AEOD =S △AOE +S △AOD =7,故选D .【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.18.已知:如图,ABC ∆三条内角平分线交于点D ,CE ⊥BD 交BD 的延长线于E ,则∠DCE=( )A .12BAC ∠ B .12CBA ∠ C .12ACB ∠ D .CDE ∠ 【答案】A【解析】【分析】 根据角平分线的性质以及三角形的外角性质可推导出DCE ∠与BAC ∠的关系.【详解】 由题意知,ECD BDC 90∠∠=-︒由三角形内角和定理得,BAC 180ABC ACB ∠∠∠=︒-+DBC DCB 180BDC ∠∠∠+=︒-∵点D 是ΔABC 三条内角平分线的交点∴ABC 2DBC ∠∠= ACB 2DCB ∠∠=()BAC 180ABC ACB ∠∠∠=︒-+()1802DBC DCB ∠∠=︒-+()1802180BDC ∠=︒-︒-2BDC 180∠=-︒1BAC BDC 902∠∠=-︒ ∴1ECD BAC 2∠∠=故答案选A.【点睛】本题考查角平分线的性质以及三角形的外角性质.19.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A .11B .12C .13D .14【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a ,根据三角形的三边关系,得:4-3<a <4+3,即1<a <7,∵a 为整数,∴a 的最大值为6,则三角形的最大周长为3+4+6=13.故选:C .【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.20.如果一个多边形的内角和是1800°,这个多边形是( )A .八边形B .十四边形C .十边形D .十二边形【答案】D【解析】【分析】n 边形的内角和可以表示成(n ﹣2)•180°,设这个正多边形的边数是n ,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=12.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.。

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版 含解析)

八年级数学全等三角形(培优篇)(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.【答案】5【解析】【分析】作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由等腰直角三角形的性质即可得出结论.【详解】如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN 为所求的最小值.∵AD是∠BAC的平分线,∴MH=MN,∴BH是点B到直线AC的最短距离(垂线段最短).∵AB=5,∠BAC=45°,∴BH==5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为5.【点睛】本题考查了轴对称﹣最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.3.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.【答案】10【解析】利用正多边形的性质,可得点B 关于AD 对称的点为点E ,连接BE 交AD 于P 点,那么有PB=PF ,PE+PF=BE 最小,根据正六边形的性质可知三角形APB 是等边三角形,因此可知BE 的长为10,即PE+PF 的最小值为10.故答案为10.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C 向下平移1个单位得到点D (4,2),这时△ABD 与△ABC 全等,分别作点C ,D 关于y 轴的对称点(-4,3)和(-4,2),所得到的△ABD 与△ABC 全等.故答案为(-4,2)或(-4,3).5.如图,ABC 中,ABC=45∠︒,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G ,下列结论:BF=AC ①;A=67.5∠︒②;DG=DF ③;ADGE GHCE S S =四边形四边形④,其中正确的有__________(填序号).【答案】①②③【解析】【分析】只要证明△BDF ≌△CDA ,△BAC 是等腰三角形,∠DGF=∠DFG=67.5°,即可判断①②③正确,作GM ⊥BD 于M ,只要证明GH <DG 即可判断④错误.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠BDC=∠ADC=∠AEB=90°,∴∠A +∠ABE=90°,∠ABE +∠DFB=90°,∴∠A=∠DFB ,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°−45°=45°=∠DBC ,∴BD=DC ,在△BDF 和△CDA 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=CD ,∴△BDF ≌△CDA (AAS ),∴BF=AC ,故①正确.∵∠ABE=∠EBC=22.5°,BE ⊥AC ,∴∠A=∠BCA=67.5°,故②正确,∵BE 平分∠ABC ,∠ABC=45°,∴∠ABE=∠CBE=22.5°,∵∠BDF=∠BHG=90°,∴∠BGH=∠BFD=67.5°,∴∠DGF=∠DFG=67.5°,∴DG=DF ,故③正确.作GM ⊥AB 于M .如图所示:∵∠GBM=∠GBH ,GH ⊥BC ,∴GH=GM <DG ,∴S △DGB >S △GHB ,∵S △ABE =S △BCE ,∴S 四边形ADGE <S 四边形GHCE .故④错误,故答案为:①②③.【点睛】此题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,全等三角形的性质和判定,三角形的面积等知识点的综合运用,第五个问题难度比较大,添加辅助线是解题关键,属于中考选择题中的压轴题.6.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===,同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.7.如图,在直角坐标系中,点()8,8B -,点()2,0C -,若动点P 从坐标原点出发,沿y 轴正方向匀速运动,运动速度为1/cm s ,设点P 运动时间为t 秒,当BCP ∆是以BC 为腰的等腰三角形时,直接写出t 的所有值__________________.【答案】2秒或46秒或14秒【解析】【分析】分两种情况:PC 为腰或BP 为腰.分别作出符合条件的图形,计算出OP 的长度,即可求出t 的值.【详解】解:如图所示,过点B 作BD ⊥x 轴于点D ,作BE ⊥y 轴于点E ,分别以点B 和点C 为圆心,以BC 长为半径画弧交y 轴正半轴于点F ,点H 和点G∵点B (-8,8),点C (-2,0),∴DC=6cm ,BD=8cm ,由勾股定理得:BC=10cm∴在直角三角形COG中,OC=2cm,CG=BC=10cm,∴OP=OG= 22-=,10246(cm)当点P运动到点F或点H时,BE=8cm,BH=BF=10cm,∴EF=EH=6cm∴OP=OF=8-6=2(cm)或OP=OH=8+6=14(cm),故答案为:2秒,46秒或14秒.【点睛】本题综合考查了勾股定理和等腰三角形在平面直角坐标系中的应用,通过作图找出要求的点的位置,利用勾股定理来求解是本题的关键.8.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

人教版数学八年级上册 三角形填空选择(篇)(Word版 含解析)

人教版数学八年级上册 三角形填空选择(篇)(Word版 含解析)

人教版数学八年级上册三角形填空选择(篇)(Word版含解析)一、八年级数学三角形填空题(难)1.小明在用计算器计算一个多边形的内角和时,得出的结果为2005°,小芳立即判断他的结构是错误的,小明仔细地复算了一遍,果然发现自己把一个角的度数输入了两遍.你认为正确的内角和应该是________.【答案】1980【解析】【详解】解:设多边形的边数为n,多加的角度为α,则(n-2)×180°=2005°-α,当n=13时,α=25°,此时(13-2)×180°=1980°,α=25°故答案为1980.2.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.【答案】30°【解析】【分析】延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.【详解】解:延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,∵BD是∠ABC的平分线在△BDE与△BDF中,ABD CBD BD BDAED DFC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE≌△BDF(ASA),∴DE=DF,又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°∴∠CAD=∠EAD,∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,在Rt△ADE与Rt△ADG中,AD AD DE DG=⎧⎨=⎩,∴△ADE≌△ADG(HL),∴DE=DG,∴DG=DF.在Rt△CDG与Rt△CDF中,CD CD DG DF=⎧⎨=⎩,∴Rt△CDG≌Rt△CDF(HL),∴CD为∠ACF的平分线,∠ACB=74°,∴∠DCA=53°,∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.故答案为:30°【点睛】本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.3.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=1 2(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=12(∠BAC﹣∠C);其中正确的是_____.【答案】①②③④【解析】【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③根据垂直的定义和同角的余角相等的性质证明结论正确;④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.【详解】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,故①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,∴∠BEF=12(∠BAF+∠C),故②正确;③∵∠AEB=∠EBC+∠C,∵∠ABE=∠EBC,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=90︒-∠DFH,∠AEB=90︒-∠DFH,∴∠FGD=∠AEB∴∠FGD=∠ABE+∠C.故③正确;④∠ABD=90°-∠BAC,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,∵∠CBD=90°-∠C,∴∠DBE=∠BAC-∠C-∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC-∠C-∠DBE,∴∠F=12(∠BAC-∠C);故答案为①②③④.【点睛】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键4.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.【答案】30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.5.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.6.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.【答案】80°【解析】根据三角形内角和可以求得∠PBC+∠PCB的度数,再根据角平分线的定义,求出∠ABC+∠ACB,最后利用三角形内角和定理解答即可.【详解】解:在△PBC中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×50°=100°,在△ABC中,∠A=180°-(∠ABC+∠ACB)=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.7.已知等腰三角形的两边长分别为3和5,则它的周长是____________【答案】11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13.故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是_____.【答案】85°.【解析】【分析】根据三角形内角和得出∠C=60°,再利用角平分线得出∠DBC=35°,进而利用三角形内角和得出∠BDC 的度数.【详解】∵在△ABC 中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD 平分∠ABC ,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为85°.9.如图,直线a ∥b ,∠l =60°,∠2=40°,则∠3=______.【答案】80°.【解析】【分析】根据平行线的性质求出∠4,再根据三角形内角和定理计算即可.【详解】∵a ∥b ,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案为80°.【点睛】本题考查了平行线的性质、三角形内角和定理,掌握两直线平行,同位角相等是解题的关键.10.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>【解析】【分析】根据三角形的外角的性质判断即可.【详解】解:根据三角形的外角的性质得,∠2>∠1,∠1>∠A∴∠2>∠1>∠A ,故答案为:∠2>∠1>∠A .【点睛】本题考查了三角形的外角的性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.二、八年级数学三角形选择题(难)11.如图,ABC 的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到111A B C .再分别倍长A 1B 1,B 1C 1,C 1A 1得到222A B C .…… 按此规律,倍长2018次后得到的201820182018A B C 的面积为( )A .20176B .20186C .20187D .20188【答案】C【解析】 分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A 1B 1C 1的面积是△ABC 的面积的7倍,依此类推写出即可.详解:连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,S △A 1B 1C 1=7S △ABC ,同理S △A 2B 2C 2=7S △A 1B 1C 1=72S △ABC ,依此类推,S △AnBnCn =7n S △ABC .∵△ABC 的面积为1,∴S △AnBnCn =7n ,∴S △A 2018B 2018C 2018=72018.故选C .点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.12.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm【答案】D【解析】试题分析:①当A,B,C三点在一条直线上时,分点B在A、C之间和点C在A、B之间两种情况讨论;②当A,B,C三点不在一条直线上时,根据三角形三边关系讨论.解:当点A、B、C在同一条直线上时,①点B在A、C之间时:AC=AB+BC=3+1=4;②点C 在A、B之间时:AC=AB-BC=3-1=2,当点A、B、C不在同一条直线上时,A、B、C三点组成三角形,根据三角形的三边关系AB-BC<AC<AB+BC,即2<AC<4,综上所述,选D.故选D.点睛:本题主要考查点与线段的位置关系..利用分类思想得出所有情况的图形是解题的关键,13.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形ABCD内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG的面积为()A.7B.8C.9D.10【答案】B【解析】分析:连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边形DHOG.详解:连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,∴S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=7,S四边形BFOE=9,S四边形CGOF=10,∴7+10=9+S四边形DHOG,解得,S四边形DHOG=8.故选B.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.14.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2 B.4 C.3 D.5【答案】B【解析】如图,满足条件的点C共有4个.故选B.15.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9 B.8 C.7 D.6【答案】A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.16.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A.7 B.8 C.9 D.10【答案】A【解析】设这个多边形的边数为x,根据题意可得:x-=⨯+,180(2)2360180x=.解得:7故选A.17.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()244∠=,则1α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.18.一个多边形的每个内角都等于120°, 则此多边形是( )A .五边形B .七边形C .六边形D .八边形 【答案】C【解析】【分析】先求出这个多边形的每一个外角的度数,然后根据任意多边形外角和等于360°,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°﹣120°=60°,∴边数n =360°÷60°=6.故选C .【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.19.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A .180︒B .210︒C .360︒D .270︒【答案】B【解析】【分析】 根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D ,∠β=∠4+∠F ,∴∠α+∠β=∠1+∠D+∠4+∠F ,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B .【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.20.在ΔABC 中,AB 3=,AC 5=,第三边BC 的取值范围是( )A .10BC 13<<B .4BC 12<< C .3BC 8<<D .2BC 8<<【答案】D【解析】【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【点睛】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.。

人教版八年级上册数学 三角形填空选择检测题(Word版 含答案)

人教版八年级上册数学 三角形填空选择检测题(Word版 含答案)

人教版八年级上册数学 三角形填空选择检测题(Word 版 含答案) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.【答案】80【解析】【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.3.如图,已知四边形ABCD中,对角线BD平分∠ABC,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC为_________度.【答案】32【解析】【分析】过C点作∠ACE=∠CBD,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC,根据角平分线的定义可得∠ABD=∠CBD,再根据三角形内角和为180°,以及等量关系可得∠BDC的度数.【详解】过C点作∠ACE=∠CBD,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC,∵对角线BD平分∠ABC,∴∠ABD=∠CBD,∴∠ABD=∠ACE,∴∠BAC=∠CEB=64°,∴∠BDC=12∠CEB=32°.故答案为:32.【点睛】此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.4.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________【答案】20172α【解析】 【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.5.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.6.一个多边形的内角和与外角和的差是180°,则这个多边形的边数为_____.【答案】5【解析】【分析】根据多边形的内角和公式(n ﹣2)•180°与外角和定理列式求解即可【详解】解:设这个多边形的边数是n ,则(n ﹣2)•180°﹣360°=180°,解得n =5.故答案为5.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.7.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.【答案】7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.8.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.【答案】45°【解析】【分析】根据正多边形的外角度数等于外角和除以边数可得.【详解】∵硬币边缘镌刻的正多边形是正八边形,∴它的外角的度数等于360÷8=45°.故答案为45°.【点睛】本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.9.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.10.如图,五边形ABCDE的每一个内角都相等,则外角CBF=∠__________.【答案】72︒【解析】【分析】多边形的外角和等于360度,依此列出算式计算即可求解.【详解】360°÷5=72°.故外角∠CBF等于72°.故答案为:72︒.【点睛】此题考查了多边形内角与外角,关键是熟悉多边形的外角和等于360度的知识点.二、八年级数学三角形选择题(难)11.如图,∠ABC =∠ACB ,BD 、CD 分别平分△ABC 的内角∠ABC 、外角∠ACP ,BE平分外角∠MBC 交 DC 的延长线于点 E ,以下结论:①∠BDE =12∠BAC ;② DB⊥BE ;③∠BDC +∠ACB= 90︒;④∠BAC + 2∠BEC = 180︒ .其中正确的结论有()A.1 个B.2 个C.3 个D.4 个【答案】D【解析】【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角的性质、判断即可.【详解】① ∵BD、CD分别平分△ABC的内角∠ABC、外角∠ACP,∴∠ACP=2∠DCP,∠ABC=2∠DBC,又∵∠ACP=∠BAC+∠ABC,∠DCP=∠DBC+∠BDC,∴∠BAC=2∠BDE,∴∠BDE =12∠BAC∴①正确;②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥DB,故②正确,③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确,④∵∠BEC=180°−12 (∠MBC+∠NCB) =180°−12 (∠BAC+∠ACB+∠BAC+∠ABC) =180°−12(180°+∠BAC) ∴∠BEC=90°−12∠BAC, ∴∠BAC+2∠BEC=180°,故④正确,即正确的有4个,故选D【点睛】此题考查三角形的外角性质,平行线的判定与性质,三角形内角和定理,解题关键在于掌握各性质定理12.如图,在ABC ∆中,点D 在BC 上,点O 在AD 上,如果3AOB S ∆=,2BOD S ∆=,1ACO S ∆=,那么COD S ∆=( )A .13B .12C .32D .23【答案】D【解析】【分析】根据三角形的面积公式结合3AOB S ∆=,2BOD S ∆=求出AO 与DO 的比,再根据1ACO S ∆=,即可求得COD S ∆的值.【详解】∵3AOB S ∆=,2BOD S ∆=,且AD 边上的高相同,∴AO :DO=3:2.∵△ACO 和△COD 中,AD 边上的高相同,∴S △AOC :S △COD = AO :DO=3:2,∵1ACO S ∆=,∴COD S ∆= 23.故选D .【点睛】本题考查了三角形的面积及等积变换,利用同底等高的三角形面积相等是解题的关键.13.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )A .4B .5C .6D .7【答案】D【解析】【分析】 连接AO ,利用等高不等底的三角形面积比等于底长的比,可求出△COD 与△BOE 的面积.列出关于△AOE 与△AOD 的面积的方程即可求出四边形AEOD 的面积.【详解】连接OA ,∵OB=OD ,∴S △BOC =S △COD =2,∵OC=2OE ,∴S △BOE =12S △BOC =1, ∵OB=OD ,∴S △AOB =S △AOD ,∴S △BOE +S △AOE =S △AOD ,即:1+S △AOE =S △AOD ①,∵OC=2OE ,∴S △AOC =2S △AOE , ∴S △AOD +S △COD =2S △AOE ,即:S △AOD +2=2S △AOE ②,联立①和②:解得:S △AOE =3,S △AOD =4,S 四边形AEOD =S △AOE +S △AOD =7,故选D .【点睛】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.14.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )A .20B .35C .50D .70【答案】B【解析】【分析】 依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.【详解】如图,C'D'//AC ,,又DAC 20∠=,AGH 70∠∴=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,1AEF GFE AGH 352∠∠∠∴===, 故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.15.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积与△BCE的面积相等;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③B.②③④C.①③④D.①②③④【答案】A【解析】根据三角形中线的性质可得:△ABE的面积和△BCE的面积相等,故①正确,因为∠BAC=90°,所以∠AFG+∠ACF=90°,因为AD是高,所以∠DGC+∠DCG=90°,因为CF是角平分线,所以∠ACF=∠DCG,所以∠AFG=∠DGC,又因为∠DGC=∠AGF,所以∠AFG=∠AGF,故②正确,因为∠FAG+∠ABC=90°,∠ACB+∠ABC=90°,所以∠FAG=∠ACB,又因为CF是角平分线,所以∠ACB=2∠ACF,所以∠FAG=2∠ACF,故③正确,④假设BH=CH,∠ACB=30°,则∠HBC=∠HCB =15°,∠ABC=60°,所以∠ABE=60°-15°=45°,因为∠BAC=90°,所以AB=AE,因为AE=EC,所以AB=12AC,这与在直角三角形中30°所对直角边等于斜边的一半相矛盾,所以假设不成立,故④不一定正确,故选A.16.已知△ABC的两条高的长分别为5和20,若第三条高的长也是整数,则第三条高的长的最大值为( )A.5 B.6 C.7 D.8【答案】B【解析】设△ABC的面积为S,所求的第三条高线的长为h,则三边长分别为,,,根据三角形的三边关系为,解得,所以h的最大整数值为6,即第三条高线的长的最大值为6.故选B.点睛:本题主要考查了三角形的面积公式,三角形三边关系定理及不等式组的解法,有一定难度.利用三角形的面积公式,表示出△ABC三边的长度,从而运用三角形三边关系定理,列出不等式组是解题的关键,难点是解不等式组.17.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为、、3的三角形为直角三角形;③等腰三角形的两边长为3、4,则等腰三角形的周长为10;④一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是()A.4个 B.3个 C.2个 D.1个【答案】C【解析】试题分析:根据等边三角形的性质可知,有一个角为60°的等腰三角形是等边三角形,故①正确;根据三边可知:,,3²=9,因此可知:,由勾股定理的逆定理可知其是直角三角形,故②正确;由等腰三角形的三边可知其边长为:3,3,4或3,4,4,则周长为10或11,故③不正确;由一边上的中线等于这边长的一半的直角三角形是等腰直角三角形,故④不正确.故选:C18.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为()A.9 B.4 C.5 D.13【答案】A【解析】【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】设这个三角形的第三边为x.根据三角形的三边关系定理,得:9-4<x<9+4,解得5<x<13.故选A.【点睛】本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.19.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.14【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.20.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【解析】【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学八年级上册 三角形填空选择(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°【解析】【分析】(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.【详解】(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,∵∠AA 1B 1=∠A 1B 1B 2+∠C ,∴∠B=2∠C故答案为:∠B=2∠C(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C ;∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;∵最小角为20°,∴设另两个角为20m°和20mn°,∴20°+20m°+20mn°=180°,即m(1+n)=8,∵m、n为整数,∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.解得:m=1,n=7;m=2,n=3,m=4,n=1,∴另两个角为20°、140°或40°、120°或80°、80°,∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.故答案为:140°、120°或80°【点睛】本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.2.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确.故答案为①②④.点睛:本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键.3.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°.故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.4.如图,在∆ABC中,∠A=80︒,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;……;∠A7BC与∠A7CD的平分线相交于点A8,得∠A8,则∠A8的度数为_________..【答案】516【解析】【分析】 利用外角等于不相邻的两个内角之和,以及角平分线的性质求∠A 1=12∠A ,再依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A ,即可求解. 【详解】解:根据三角形的外角得:∠ACD=∠A+∠ABC.又∵∠ABC 与∠ACD 的平分线交于点A 1, ∴1111222A ABC A ABC ∠+∠=∠+∠ ∴∠A 1=12∠A 依此类推得,∠A 2=212∠A ,……,∠A 8= 812∠A=180256⨯=516 故答案为516. 【点睛】 本题考查三角形外角、角平分线的性质,解答的关键是弄清楚角之间的关系..5.若正多边形的一个外角是45°,则该正多边形的边数是_________.【答案】8;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等).6.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.7.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.【答案】3a b c--【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.8.如图,△ABC中,∠BAC=70°,∠ABC的平分线与∠ACB的外角平分线交于点O,则∠BOC=_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,再根据角平分线的定义可得∠OBC=12∠ABC,∠OCE=1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.9.如图,∠A=50°,∠ABO=28°,∠ACO=32°,则∠BOC=______°.【答案】110【解析】已知∠A=50°,∠ABO=28°,∠ACO=32°,根据三角形外角的性质可得∠BDC=∠A+∠ABO=78°,∠BOC=∠BDC+∠ACO=110°.10.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)A B C.再分11.如图,ABC的面积为1.分别倍长(延长一倍)AB,BC,CA得到111A B C.…… 按此规律,倍长2018次后得到的别倍长A1B1,B1C1,C1A1得到222A B C的面积为()201820182018A.201787D.20186C.20186B.2018【答案】C【解析】分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.详解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1=72S△ABC,依此类推,S△AnBnCn=7n S△ABC.∵△ABC 的面积为1,∴S△AnBnCn=7n,∴S△A2018B2018C2018=72018.故选C.点睛:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.12.如图:∠A+∠B+∠C+∠D+∠E+∠F等于()A.180°B.360°C.270°D.540°【答案】B【解析】【分析】先根据三角形的外角,用∠AGE表示出∠A,∠B;用∠EMC表示出∠E,∠F;用∠CNA 表示出∠C,∠D,然后再根据对顶角相等的性质解出它们的度数即可【详解】解:如图:∵∠AGE是△ABG的外角∴∠AGE=∠A+∠B;同理:∠EMC=∠E+∠F;∠CNA=∠C+∠D∴∠A+∠B+∠C+∠D+∠E+∠F=∠AGE+∠EMC+∠CNA又∵∠AGE+∠EMC+∠CAN是△MNG的三个外角∴∠AGE+∠EMC+∠CAN=360° 故选:B .【点睛】本题主要考查了三角形外角及其外角和,其中找出三角形的外角是解答本题的关键.13.如图,在△ABC 中,点D 、E 分别是边AC,AB 的中点,BD,CE 相交于点O,连接O 在AO 上取一点F,使得OF=12AF 若S △ABC =12,则四边形OCDF 的面积为( )A .2B .83C .3D .103【答案】B 【解析】【分析】 重心定理:三角形的三条边的中线交于一点,该点叫做三角形的重心.重心和三角形任意两个顶点组成的3个三角形面积相等.【详解】解:∵点D 、E 分别是边AC,AB 的中点,∴O 为△ABC 的重心,∴13AOC S=ABC S =4, ∴12DOC DOA S S ==AOC S =2,∵OF=12AF , ∴13DOF S =AOD S =23, ∴S 阴=DOC S +DOF S =83.故选:B.【点睛】本题考查了重心及重心定理,熟练掌握相关定理是解题关键.14.如图,三角形ABC 中,AB=AC ,D ,E 分别为边AB ,AC 上的点,DM 平分∠BDE,EN 平分∠DEC,若∠DMN=110°,则∠DEA=( )A .40°B .50°C .60°D .70°【答案】A【解析】【分析】 由等腰三角形的性质得到∠B=∠C ,由角平分线的定义得到∠BDM=∠EDM ,∠CEN=∠DEN ,根据外角的性质得∠B=∠DMN -∠BDM ,∠C=∠ENM -∠CEN ,整理可得∠DMN+∠DEN=∠EDM+∠ENM ,再根据四边形的内角和可得∠DMN+∠DEN=∠EDM+∠ENM=180°,则∠DEN=70°,故∠DEA=40°.【详解】解:∵AB=AC ,∴∠B=∠C ,又∵DM 平分∠BDE ,EN 平分∠DEC ,∴∠BDM=∠EDM ,∠CEN=∠DEN ,∵∠B=∠DMN -∠BDM=∠DMN -∠EDM ,∠C=∠ENM -∠CEN=∠ENM -∠DEN ,∴∠DMN -∠EDM=∠ENM -∠DEN ,即∠DMN+∠DEN=∠EDM+∠ENM ,∵四边形DMNE 内角和为360°,∴∠DMN+∠DEN=∠EDM+∠ENM=180°,∴∠DEN=70°,则∠DEA=180°-2∠DEN=40°.故选A .15.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )A.15 cm2B.20 cm2C.30 cm2D.35 cm2【答案】D【解析】【分析】连接AD,BE,CF.根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC的面积,故△DEF的面积等于7倍的△ABC面积,即可得出结果.【详解】连接AD,BE,CF.∵BC=CD,∴S△ACD=S△ABC=5,S△FCD=S△BCF.同理S△AEB=S△ABC=5,S△AED=S△ACD=5;S△AEB=S△BEF=5,S△BFC=S△ABC=5;∴S△FCD=S△BCF=5,∴S△EFD=7S△ABC=35(cm2).故选D.【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.16.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°【答案】B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.17.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=,则1244α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.18.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24°B.25°C.30°D.35°【答案】D【解析】【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选:D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.19.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.14【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.20.如果一个多边形的内角和是1800°,这个多边形是()A.八边形B.十四边形C.十边形D.十二边形【答案】D【解析】【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【详解】这个正多边形的边数是n,根据题意得:(n﹣2)•180°=1800°解得:n=12.故选D.【点睛】本题考查了多边形的内角和定理.注意多边形的内角和为:(n﹣2)×180°.。

相关文档
最新文档