实验一 离散时间信号和系统

合集下载

实验一 离散时间信号与系统响应

实验一  离散时间信号与系统响应

班级09电本一班学号2009041507姓名丁孟飞同组人实验日期2011.11.25 室温大气压成绩实验题目:实验一离散时间信号与系统响应一、实验目的:1、熟悉MATLA的主要操作命令;2、学会简单的绘图命令;3、观察离散系统的频率响应;4、学会信号的采样和重建的基本概念。

二、实验仪器:微型计算机(包含MATLAB软件)一台三、实验原理分析:其中由理论计数零点:z=-√2/2-√2/2i或-√2/2+√2/2i;极点:2.计算系列{8 -2 -1 2 3}和{2 3 -1 -3}的离散卷积,并作图表示卷积结果。

解:程序: a=[8,-2,-1,2,3]; b=[2,3,-1,-3]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); title('卷积结果'); xlabel('n'); ylabel('幅度'); 运行结果:分析:计算离散卷积{8 -2 -1 2 3}*{2 3 -1 -3}={2x8,-2x2+3x8,-1x2-2x3-1x8 ,2x2-1x3+2x1-3x8,2x3+3x2+1x1+3x2,3x2+1x1+3x1,-1x3-3x2,-3x3}={16, 20, -16, -21 ,19 ,10,-9, -9}与实验结果相符3.求以下差分方程所描述系统的单位脉冲响应()h n ,050n ≤≤ ()()()()()0.110.06221y n y n y n x n x n +---=-- 解:程序: N=20;a=[1 -2];b=[1 0.1 -0.06]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y);title('单位脉冲响应');xlabel('n');ylabel('幅度');运行结果:2、一信号是三个正弦信号的和,正弦信号的频率为50Hz 、500Hz 、1000Hz ,该信号以800Hz采样。

dip1

dip1

实验一 离散时间信号通过线性时不变系统1.1 实验目的1、通过本实验,进一步加深对离散线性时不变系统的理解。

2、掌握利用线性卷积求解离散线性时不变系统输出的方法。

3、掌握利用差分方程求解离散线性时不变系统输出的方法。

1.2 实验原理与方法离散时间系统的作用是将输入序列通过一定的运算处理转变为输出序列,这种运算关系用[]T ∙表示,因此离散时间系统的输出信号和输入信号之间的关系可描述为:()[()]y n T x n = (1-1)离散时间系统线性时不变(LTI Linear time-invariant )的特点是系统具有线性性质和时不变特性。

即系统满足线性叠加原理。

1212()[()()]()()y n T ax n bx n ay n by n =+=+ (1-2) 系统对输入信号的运算关系[]T ∙在整个运算过程中不随时间变化,即系统是时不变系统:()[()]y n i T x n i -=- (1-3)对于LTI 系统,设该系统的单位脉冲响应为h(n),则该系统的输入输出满足线性卷积关系:()()()()()i y n h i x n i x n h n +∞=-∞=-=*∑ (1-4) 即线性时不变系统的输出等于输入序列与系统单位脉冲响应的线性卷积。

另外一个LTI 系统的输入输出关系还可以用一个N 阶线性常系数差分方程来表示:0()()()M Ni i i i i y n b x n i a y n i ===---∑∑ (1-5)显然当0,0,1,2,,i a i N == 时,式(1-4)与(1-5)等价,即此时系统的输入输出满足线性卷积的关系。

另外:周期信号通过离散时间线性时不变系统,输出仍然是周期信号,并且周期与输入信号周期相同。

1.3 实验内容及步骤1. 在实验编程前,认真复习离散时间线性时不变系统的有关内容,阅读本实验原理与方法,掌握线性卷积和差分方程的求解方法,了解单载波信号通过LTI 系统的特性。

实验一 离散时间信号与系统响应

实验一 离散时间信号与系统响应

班 级 学号 姓 名 同组人 实验日期 室温 大气压 成 绩实验题目: 实验一 离散时间信号与系统响应 一、实验目的1.观察离散系统的频率响应和单位脉冲响应并学会其应用。

2.掌握用MATLAB 实现线性卷积的方法及差分方程的求解方法。

3.了解数字信号采样率转换过程中的频谱特征。

4.通过观察采样信号的混叠现象,进一步理解奈奎斯特采样频率的意义。

二、实验仪器计算机一台 MATLAB7.0软件三、实验原理在数字信号处理中,离散时间信号通常用序列{x(n)}表示。

离散时间系统在数学上定义为将输入序列x(n)映射成输出序列y(n)的唯一性变换或运算,亦即将一个序列变换成另一个序列的系统。

记为y(n)=T[x(n)],通常将上式表示成图()()[]x n y n T −−−→∙−−−→所示的框图。

算子T[∙]表示变换,对T[∙]加上种种约束条件,就可以定义出各类离散时间系统。

1.频率响应:在工程上进行时域分析和轨迹分析用频率响应法,它是分析和设计系统的一中有效经典的方法。

线性时不变系统输入输出关系y(n)=x(n)*h(n)。

H(ejw)是频率响应,离散时间系统的线性卷积,由理论学习我们可知,对于线性时不变离散系统,任意的输入信号()()()...(1)(1)(0)()(1)(1)...k x n x k n k x n n x n x n δδδδ∞=-∞=-=+-+++-+∑x (n )可以用δ(n )及其位移的线性组合来表示,即,当输入δ(n )时,系统的输出y(n)=h(n)。

2.卷积:y=conv(h,x),计算向量h 和x 的卷积,结果放在y 中。

由系统的线性移不变性质可以得到系统对x(n)的响应y(n)为()()()k y n x k h n k ∞=-∞=-∑,称为离散系统的线性卷积,简记为y(n)=x(n)*h(n),也就是说,通过系统的冲激响应,可以将输入信号与系统的冲激响应进行卷积运算,可求得系统的响应。

实验一 时域离散信号与系统(数字信号处理)

实验一 时域离散信号与系统(数字信号处理)

电子信息与自动化学院《数字信号处理》实验报告学号: 姓名: 实验名称: 实验一 时域离散信号与系统一、 实验目的(1) 了解常用的时域离散信号及其特点。

(2) 掌握MATLAB 产生常用时域离散信号的方法。

(3) 掌握时域离散信号简单的基本运算方法。

(4) 掌握求解离散时间系统脉冲响应和阶跃响应的方法。

(5) 进一步理解卷积定理,掌握应用线性卷积求解离散时间系统响应的基本方法。

(6) 掌握离散系统的响应特点。

二、 实验原理1. 典型离散信号的表示与产生方法1) 单位采样序列单位采样序列的表达式为1()00n n n δ=⎧=⎨≠⎩ 或 0()10n k δ⎧⎪-=⎨⎪⎩1n k n k k n N=≤≤≤ 下面的例子介绍了产生()n δ信号的方法。

读者可自行类比()n k δ-信号的产生方法。

2) 单位阶跃序列单位阶跃序列的表达式为1()0u n ⎧=⎨⎩0n n ≥下面的例子介绍了产生()u n 信号的方法。

3) 正(余)弦序列 正弦序列的表达式为0()sin()x n A n ωϕ=+连续时间信号与离散时间信号的联系可由下面的例子清楚地反映出来。

4) 实指数序列实指数序列的表达式为()n x n a =当||1a <时,()x n 的幅度随n 的增大而减小,序列逐渐收敛;当||1a >时,()x n 的幅度随n 的增大而增大,序列逐渐发散。

5) 随机序列在实际系统的研究和处理中,常常需要产生随机信号。

MATLAB 提供的rand 函数可以生成随机信号。

rand(1,N):产生[0,1]上均匀分布的随机序列。

randn(1,N):产生均值为0、方差为1的高斯随机序列,也就是白噪声序列。

2. 时域离散信号的基本运算1) 信号的移位在MATLAB 中给定离散信号()x n ,若信号()y n 定义为()()y n x n k =-,那么()y n 是信号()x n 在时间轴上的移位序列。

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。

在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。

实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令一实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令tem()和plot()。

实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。

其基本原理分别如下:对一个模拟信号某(t)进行采样离散化某(n),为了不失真地从采样信号某(n)中恢复原始信号某(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2倍。

一个离散时间系统,输入信号为某(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[某(n)]。

(1)线性时不变(LTI)系统的输入输出关系可通过h(n)表示:y(n)=某(n)某h(n)=式中某表示卷积运算。

(2)LTI系统的实现可物理实现的线性时不变系统是稳定的、因果的。

这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:h(n)0,n0;nh(n)0在MATLAB语言中采用conv实现卷积运算,即:Y=conv(某,h),它默认从n=0开始。

常系数差分方程可以描述一个LTI系统,通过它可以获得系统的结构,也可以求信号的瞬态解。

利用MATLAB 自带的filter(),可以代替手工迭代运算求解系统的差分方程,求解的过程类似于对输入信号进行滤波处理。

三、实验内容1、试画出如下序列的波形(1)某(n)3(n3)(n2)2(n1)4(n1)2(n2)3(n3)(2)某(n)0.5R10(n)解:用MATLAB描述波形1(1)某=[3120-42-3];%矩阵输入某n=-3:1:3;%输入自变量n,以间隔为1从-3到3变化n实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令tem(n,某);%tem()函数绘制火柴杆图,注意n,某元素个数必须相等某label('n');%横坐标显示nylabal('某(n)');%纵坐标显示某(n)grid;%绘制网格1(2)n=0:9;某=0.5.^n;tem(n,某);某label('n');ylabel('某(n)');gri实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令2、用MATLAB计算序列{-201–13}和序列{120-1}的离散卷积,即计算某(n)2(n)(n2)(n3)3(n4)与h(n)(n)2(n1)(n3)解:用MATLAB描述波形。

离散时间的信号和系统(实验报告)

离散时间的信号和系统(实验报告)

实验二、离散时间的信号和系统(实验报告)一、 实验目的:1、复习离散时间的信号和系统,复习离散时间重要类型的信号和它们的运算的实现。

2、复习离散时间信号理论中一些重要的结果,它们在数字信号处理中很有用。

二、 实验原理:1、典型序列单位采样序列;单位阶跃序列;实数指数序列;复数指数序列;正余弦序列;随机序列:MATLAB 可用rand(1,N)和randn(1,N)来生成;周期序列。

2、序列的运算 信号加;信号乘;改变比例 ;移位;折叠:fliplr(x);取样和:sum(x(n1:n2)) 取样积:prod(x(n1:n2));信号能量:sum(abs(x)^2); 信号功率:sum(abs(x)^2)/length(x)3、一些有用的结果 单位采样合成:奇偶合成:几何级数:序列相关:卷积运算:差分方程:在Matlab 中:三、 实验内容1、 单位阶跃响应clear all;clf;t=-4:4;t0=0;y=stepfun(t,t0);stem(t,y,'filled'); title('单位阶跃序列')xlabel('时间(t)');ylabel('幅值f(t)');axis([-4.5,4.5,-0.5,1.5]);∑∞-∞=-=k k n k x n x )()()(δ)()()(n x n x n x o e +=1||,110<-→∑∞=a aan n对∑∞-∞=-=n y x l l ny n x l r 称为移位),()()(,),(y x conv ∑∑==---=Mm Nk k m k n y a m n x b n y 01)()()(),,()(x a b filter n y =-4-2024-0.500.511.5单位阶跃序列时间(t)幅值f (t )2、实数指数序列 clf;k1=-1;k2=10; k=k1:k2; a=0.6; A=1; f=A*a.^k;stem(k,f,'filled'); title('指数序列')xlabel('时间(k)');ylabel('幅值f(k)');指数序列时间(k)幅值f (k )3、复数指数序列 clf;c = -(1/12)+(pi/6)*i; K = 2; n = 0:40;x = K*exp(c*n);subplot(2,1,1); stem(n,real(x)); ylabel('幅值f(k)'); title('实部'); subplot(2,1,2); stem(n,imag(x));xlabel('时间(k )');ylabel('幅值f(k)'); title('虚部');010203040幅值f (k )实部010203040时间(k )幅值f (k )虚部4、正余弦序列clf;k1=-20;k2=20; k=k1:k2; f=sin(k*pi/6); f1=cos(k*pi/6); subplot(2,1,1); stem(k,f,'filled'); title('正弦序列')xlabel('时间(k)');ylabel('幅值(k)'); subplot(2,1,2); stem(k,f1,'filled'); title('余弦序列')xlabel('时间(k)');ylabel('幅值(k)');正弦序列时间(k)幅值f (k )余弦序列时间(k)幅值f (k )5、随机序列 clf;R = 51;d = rand(1,R) % m = 0:R-1;stem (m,d','b');title('随机序列')xlabel('k');ylabel('f(k)');1020304050随机序列kf (k )clf;R = 51;d = randn(1,R) % m = 0:R-1; stem (m,d','b');title('随机序列')xlabel('k');ylabel('f(k)');1020304050随机序列kf (k )6、序列的运算给定序列x1=[1 2 3 4 5 6 7 8 9], ns1=-4; x2=[9 8 7 6 5 4 3 2 1], ns2=4求:1) x1+x2; 2) y3=x1×x2; 3) y1=0.5×x1+0.8×x2; 4) y2=0.3×x1(n)×δ(n-6)+0.8×δ(n-5)×x2(n); 5) x1和x2的反折序列; 6) x1(n)和x2(n)的功率; 7) y3=x1*x2 (线性卷积);(1) x1=[1 2 3 4 5 6 7 8 9]; x2=[9 8 7 6 5 4 3 2 1]; c=x1+x2; n=-4:1:4; stem(n,c);xlabel('n'); ylabel('幅度');-4-224c =10 10 10 10 10 10 10 10 10 (2) clc;f1=[1 2 3 4 5 6 7 8 9];f2=[9 8 7 6 5 4 3 2 1]; y3=f1.*f2; k=-4:4; stem(k,f);-4-224y3 =9 16 21 24 25 24 21 16 9(3)clc;f1=[1 2 3 4 5 6 7 8 9]; f2=[9 8 7 6 5 4 3 2 1]; k=-4:4;y1=0.5*f1+0.8*f2; stem(k,y);-4-2024y 1 =7.7000 7.4000 7.1000 6.8000 6.5000 6.2000 5.9000 5.6000 5.3000(4)clc;f1=[1 2 3 4 5 6 7 8 9]; f2=[9 8 7 6 5 4 3 2 1]; k1=-4;k2=4;k=k1:k2; n=5;f=[(k-n)==0]; n1=6;f3=[(k-n1)==0];y2=0.3*f3.*f1+0.8*f2.*f; stem(k,y);-4-2024y 2 = 0 0 0 0 0 0 0 0 0(5)clc;f1=[1 2 3 4 5 6 7 8 9]; f2=[9 8 7 6 5 4 3 2 1]; k=-4:4y=Fliplr(f1); subplot(2,1,1); stem(k,y); y1=Fliplr(f2); subplot(2,1,2); stem(k,y1);-4-2024-4-2024y =9 8 7 6 5 4 3 2 1 y1 =1 2 3 4 5 6 7 8 9(6)clc;f1=[1 2 3 4 5 6 7 8 9]; f2=[9 8 7 6 5 4 3 2 1]; n=length(f1);n1=length(f2);y=sum((abs(f1).^2))/n; subplot(2,1,1); stem(y);y1=sum((abs(f2).^2))/n1; subplot(2,1,2); stem(y1);0.511.520204000.511.5202040y = 31.6667 y1 = 31.6667(7)f1=[1 2 3 4 5 6 7 8 9];f2=[9 8 7 6 5 4 3 2 1]; y=conv(f1,f2); k=0:16; stem(k,y);05101520y =9 26 50 80 115 154 196 240 285 240 196 154 115 80 50 26 9。

实验一 时域离散信号、系统及系统响应

实验一 时域离散信号、系统及系统响应

四、 思考题
• 1 在分析理想采样序列特性的实验中, 采样频率不同时, 相应 在分析理想采样序列特性的实验中, 采样频率不同时, 理想采样序列的傅里叶变换频谱的数字频率度量是否都相同? 理想采样序列的傅里叶变换频谱的数字频率度量是否都相同 它 们所对应的模拟频率是否相同? 为什么? 们所对应的模拟频率是否相同 为什么 • 2 在卷积定理验证的实验中, 如果选用不同的频域采样点数 值, 在卷积定理验证的实验中, 如果选用不同的频域采样点数M值 例如, 例如, 选M=10和M=20, 分别做序列的傅里叶变换, 求得 和 , 分别做序列的傅里叶变换,
• 3 调通并运行实验程序, 完成下述实验内容: 调通并运行实验程序, 完成下述实验内容: 分析采样序列的特性。 ① 分析采样序列的特性。 a. 取采样频率 s=1 kHz, 即T=1 ms。 取采样频率f 。 b. 改变采样频率 fs=300 Hz, 观察 改变采样频率, 的变化, , 观察|X(ejω)|的变化, 并 的变化 做记录(打印曲线 打印曲线); 进一步降低采样频率, 做记录 打印曲线 ; 进一步降低采样频率, fs=200 Hz, , 观察频谱混叠是否明显存在, 说明原因, 并记录(打印 打印) 观察频谱混叠是否明显存在, 说明原因, 并记录 打印 这时的|X(ejω)|曲线。 曲线。 这时的 曲线 • ② 时域离散信号、 系统和系统响应分析。 时域离散信号、 系统和系统响应分析。 a. 观察信号 b(n)和系统 b(n)的时域和频域特性; 利用 观察信号x 和系统h 的时域和频域特性; 和系统 的时域和频域特性 线性卷积求信号x 通过系统h 的响应y(n), 比较 线性卷积求信号 b(n)通过系统 b(n)的响应 通过系统 的响应 , 所求响应y(n)和hb(n)的时域及频域特性, 注意它们之 的时域及频域特性, 所求响应 和 的时域及频域特性 间有无差别, 绘图说明, 并用所学理论解释所得结果。 间有无差别, 绘图说明, 并用所学理论解释所得结果。 b. 观察系统 a(n)对信号 c(n)的响应特性。 观察系统h 对信号x 的响应特性。 对信号 的响应特性 ③ 卷积定理的验证

实验一 离散时间信号及系统冲激响应和零状态响应

实验一   离散时间信号及系统冲激响应和零状态响应

实验一 离散时间信号及系统冲激响应和零状态响应一、 实验原理利用MATLAB 软件生成典型信号,通过系统差分方程求系统单位冲激响应,利用卷积计算给定输入的系统输出 二、 实验目的(1)熟悉MATLAB 软件的使用方法。

(2)利用MATLAB 产生典型信号(3)利用MATLAB 计算系统单位冲激响应 (4)利用MATLAB 计算系统输出 三、实验内容(1)编写MATLAB 程序来产生下列基本脉冲序列。

1) 单位脉冲序列:起点0n ,终点f n ,在s n 处有一单位脉冲(0s f n n n ≤≤)。

程序:2) 单位阶跃序列:起点0n ,终点f n ,在s n 前为0,在s n 处及以后为l(0s f n n n ≤≤)。

程序:3)实数指数序列:() 3()0.75n x n=程序:4)复数指数序列:(0.207) 4()j n x n e-+=程序:5)一个连续的锯齿波信号频率为1Hz,振幅值幅度为1V,在窗口上显示两个周期的信号波形,对它进行32点采样获得离散信号,试显示原信号和其采样获得离散信号波形。

程序:(2) ()0.75(1)0.125(2)()(1)y n y n y n x n x n+-+-=--表示线性时不变系统,用MATLAB求其冲激响应和阶跃响应程序:(3)用MATLAB 计算线性时不变系统()0.8(1)0.15y n y n x n--=当输入为1()2s i n (0.05)x n n π=时的零状态响应。

程序:(4) 用MATLAB计算线性时不变系统()0.9(1)()--=,当输入为y n y n x n =--时系统的零状态响应x n u n u n()()(10】程序:。

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告报告⼆:⼀、设计题⽬1.绘制信号)()(1k k f δ=和)2()(2-=k k f δ的波形2.绘制直流信号)()(1k k f ε=和)2(2-=k f ε的波形3绘制信号)()(6k G k f =的波形⼆实验⽬的1.掌握⽤MATLAB 绘制离散时间信号(序列)波形图的基本原理。

2.掌握⽤MATLAB 绘制典型的离散时间信号(序列)。

3.通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

三、设计原理离散时间信号(也称为离放序列)是指在时间上的取值是离散的,只在⼀些离放的瞬间才有定义的,⽽在其他时间没有定义,简称离放信号(也称为离散序列) 序列的离散时间间隔是等间隔(均匀)的,取时间间隔为T.以f(kT)表⽰该离散序列,k 为整数(k=0,±1.±2,...)。

为了简便,取T=1.则f(kT)简记为f(k), k 表⽰各函数值在序列中出现的序号。

序列f(k)的数学表达式可以写成闭合形式,也可逐⼀列出f(k)的值。

通常,把对应某序号K0的序列值称为序列的第K0个样点的“样点值”。

四、设计的过程及仿真1clear all; close all; clc;k1=-4;k2=4;k=k1:k2;n1=0;n2=2;f1=[(k-n1)==0];f2=[(k-n2)==0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('δ(k)')axis([k1,k2,-0.1,1.1]);subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);ylabel('f_2(k)');title('δ(k-2)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:2c lear all; close all; clc;k1=-2;k2=8;k=k1:k2;n1=0;n2=2; %阶跃序列开始出现的位置f1=[(k-n1)>=0]; f2=[(k-n2)>=0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('ε(k)')axis([k1,k2+0.2,-0.1,1.1])subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);xlabel('k');ylabel('f_2(k)');title('ε(k-2)')axis([k1,k2+0.2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:3clear all; close all; clc;k1=-2;k2=7;k=k1:k2; %建⽴时间序列n1=0;n2=6; f1=[(k-n1)>=0];f2=[(k-n2)>=0];f=f1-f2;stem(k,f,'fill','-k','linewidth',2);xlabel('k');ylabel('f(k)');title('G_6(k)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:五、设计的结论及收获实现了⽤matlab绘制离散时间信号, 通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

离散时间信号与系统实验的matlab实现

离散时间信号与系统实验的matlab实现

离散时间信号与系统[实验目的]1.了解信号处理的基本操作2.熟悉一些常用的序列及其应用[实验原理]我们所接触的信号大多为连续信号,为使之便于处理,往往要对其进行采样,对信号抽样并保证其能完全恢复,对抽样频率有一定的限制。

基本的离散序列的定义如下:1.单位采样序列2.单位阶跃序列3.实指数序列,;a为实数4.复数指数序列,5.正余弦序列,6.周期序列,[实验内容]1.用MATLAB实现函数impseq(n0,n1,n2),使函数实现,。

函数定义:function [x,n]=impseq(n0,n1,n2)if (n1>n2||n0>n2||n0<n1)error('parameter error');end;if (n1<=n2)for n=1:n2-n1+1if (n==n0)x(1,n)=n1-1+n;x(2,n)=1;end;x(1,n)=n1-1+n;x(2,n)=0;end;x(2,n0-n1+1)=1;end;运行结果:impseq(3,1,9)ans =6 7 8 9 10 11 12 13 140 0 0 0 1 0 0 0 0注:上面一行为自变量n,下面一行为函数值,以下运行结果为两行的,都与此题同,不在表明。

2.用MATLAB实现函数stepseq(n0,n1,n2),使函数实现u(n-n0),。

函数定义:function [x,n]=stepseq(n0,n1,n2)if (n0>n2||n0<n1||n1>n2)error('parameter error');end;for n=1:n2-n1+1if (n+n1-1<n0)x(1,n)=n1+n-1;x(2,n)=0;elsex(1,n)=n1+n-1;x(2,n)=1;end;end;运行结果:Stepseq(4,2,10)ans =2 3 4 5 6 7 8 9 100 0 1 1 1 1 1 1 1 注:与上同,上面一行是自变量,下面一行是函数值。

实验一 离散时间信号与系统的傅里叶分析

实验一 离散时间信号与系统的傅里叶分析

电子信息工程系实验报告课程名称:数字信号处理成绩:实验项目名称:实验1 离散时间信号与系统的傅里叶分析时间:指导教师(签名):班级:电信092 姓名:XXX 学号:910706201实验目的:用傅里叶变换对离散时间信号和系统进行频域分析。

实验环境:计算机、MATLAB软件实验原理:对信号进行频域分析即对信号进行傅里叶变换。

对系统进行频域分析即对其单位脉冲响应进行傅里叶变换,得到系统的传输函数;也可由差分方程经过傅里叶变换直接求其传输函数,传输函数代表的就是频率响应特性。

而传输函数是w的连续函数,计算机只能计算出有限个离散频率点的传输函数值,故可在0~2∏之间取许多点,计算这些点的传输函数的值,并取它们的包络,所得包络即所需的频率特性。

实验内容和步骤:1、已知系统用下面差分方程描述:y(n)=x(n)+ay(n-1),试在a=0.95和a=0.5 两种情况下用傅立叶变换分析系统的频率特性。

要求写出系统的传输函数,并打印|H(e jω)|~ω曲线。

解:B=1;A=[1,-0.95]; [H,w]=freqz(B,A,'whole');subplot(1,3,1);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);B=1;A=[1,-0.5];[H,w]=freqz(B,A,'whole');subplot(1,3,3);plot(w/pi,abs(H),'linewidth',2);grid on;xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性');axis([0,2,0,2.5]);图形如下图1、2所示:图1 a=0.95时的幅频响应特性图2 a=0.5时的幅频响应特性2、已知两系统分别用下面差分方程描述: y1(n)=x(n)+x(n-1) y2(n)=x(n)-x(n-1)试分别写出它们的传输函数,并分别打印|H(e jω)| ~ω曲线。

实验一离散时间信号的表示与运算

实验一离散时间信号的表示与运算

实验一离散时间信号的表示与运算实验一:离散时间信号的表示与运算一、实验目的本实验旨在让学生了解和掌握离散时间信号的基本表示方法,包括时域和频域表示方法,以及基本信号的运算方法,从而为学生进一步学习数字信号处理和通信系统等课程打下坚实的基础。

二、实验原理离散时间信号是在时间轴上离散出现的信号,与连续时间信号不同,它只能在离散的时间点上采样观察。

离散时间信号的表示方法包括时域和频域表示方法,其中时域表示方法是最基本和直观的表示方法。

离散时间信号的运算包括加法、减法、乘法和除法等基本运算,通过这些基本运算可以实现对离散时间信号的基本处理。

此外,离散时间信号的变换也成为频域分析,将信号从时域转化为频域,可以对信号的频率特性进行分析。

三、实验步骤1.准备阶段:在进行实验之前,需要准备好实验所需的器材和软件,包括计算机、信号发生器和数字示波器等。

同时,学生应该对离散时间信号的基本概念和表示方法进行预习,以便更好地进行实验。

2.时域表示:首先,通过计算机生成一组离散时间信号,例如矩形波信号、正弦波信号和余弦波信号等。

然后,将所生成的离散时间信号在数字示波器中进行观察和记录,并对这些信号进行简单的处理,例如加减乘除等基本运算。

3.频域表示:通过使用离散傅里叶变换(DFT)将所生成的离散时间信号从时域转化到频域,并对信号的频谱进行分析。

通过观察信号的频谱,可以了解信号的频率成分和幅度分布等情况。

4.实验总结:在完成实验观察和记录后,学生应该对实验结果进行分析和总结,并对实验过程中遇到的问题进行思考和解决。

同时,学生应该了解并掌握离散时间信号的表示与运算的基本原理和方法。

四、实验结果及分析通过本次实验,学生应该得到以下实验结果:1.了解并掌握离散时间信号的基本概念和表示方法;2.学会使用简单的离散时间信号处理算法对信号进行处理;3.掌握将离散时间信号从时域转化为频域的方法,并对信号的频谱进行分析;4.学会使用MATLAB等软件对离散时间信号进行处理和分析。

实验一 时域离散信号与系统分析(实验报告)-2015

实验一 时域离散信号与系统分析(实验报告)-2015

《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。

2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。

3、学会离散信号及系统响应的频域分析。

4、学会时域离散信号的MATLAB 编程和绘图。

5、学会利用MATLAB 进行时域离散系统的频率特性分析。

二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。

(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。

4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。

ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。

4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。

其中位移点数n1在起点n0和终点n2之间任意可选。

自选3个入口参数产生杆图。

实验一离散信号与系统时域分析的Matlab实现

实验一离散信号与系统时域分析的Matlab实现

实验1 离散信号与系统时域分析的Matlab实现一、实验目的1.掌握用Matlab表示常用离散信号的方法;2.掌握用Matlab求解离散系统的单位取样响应与零状态响应;3.掌握用Matlab实现离散信号卷积的方法;二、实验原理与内容1. Matlab基本操作打开Matlab 6.5,只保留命令窗口(Command Window),点击文本编辑窗口(M-file)创建、编辑M程序。

图1命令窗口在文本编辑窗口输入指令程序。

当输入完整程序后,点击DEBUG→RUN运行程序,或用键盘F5键直接运行。

另外,也可点击窗口快捷运行程序键。

图2文本编辑窗口编辑完成一个程序后,第一次运行或另存为时,需要保存M程序,保存的路径为命令窗口所示的当前目录路径(Current Directory),该路径可自行设置。

图3当前目录路径注意:M 文件在命名时有一定规则,错误命名时会使M 文件不能正常运行。

(1)M 文件名首字符不能是数字或下划线。

(2)M 文件名不能与Matlab 的内部函数名相同(3)M 文件名中不能有空格,不能含有中文。

一般应采用英文或拼音对M 文件命名。

2.离散信号的Matlab 表示表示离散时间信号x(n)需要两个行向量,一个是表示序号n=[ ],一个是表示相应函数值x=[ ],画图指令是stem 。

(1)正、余弦序列正、余弦序列为MATLAB 内部函数,可直接调用,文件名为sin 和cos 。

例1-1 画出()sin()4x n n π=的波形。

打开文本编辑窗口,输入波形程序:n=0:40;xn=sin(pi*n/4);stem(n,xn,'.')title('sin(pi*n/4)')运行,输出波形如下图4。

图4 ()x n 的波形图对于0cos()n ωϕ+或0sin()n ωϕ+,当2/πω是整数或有理数时,才是周期信号。

练习:(1)把上述程序中第三行分别改为stem(n,xn)、stem(n,xn,'*') 、stem(n,xn,' filled ') 后依次运行,看输出波形有何变化。

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告

离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。

本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。

在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。

2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。

通过设置函数发生器的频率和振幅,我们可以产生不同的信号。

接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。

使用合适的采样率,我们可以准确地获取模拟信号的离散样本。

最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。

2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。

通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。

通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。

2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。

例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。

通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。

此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。

3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。

例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。

而当信号频率小于采样率的一半时,可以还原原始信号。

此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。

4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9
矩形序列


[x,n] = rectseq(-3,-1,4,5); stem(n,x); axis([-3,5,0,1.5]);
10
实指数序列


n = [0:10]; x = (0.6).^n; stem(n,x); axis([0,10,0,1.5]);
% 生成位置向量 % 生成实指数序列
20
例:判断系统稳定
(2) 求得单位抽样响应的和 sum(abs(h)); 程序的运行结果为

% 计算单位抽样响应的和 ans = 6.1718
绝对可和,说明系统是稳定的。
21
完成下列题目的matlab实现
22
实验报告的要求



实验目的 实验原理 实验内容及结论:要求有程序并指出各函 数功能,有结果,有图形(坐标要标识 清楚)。 仔细观察上机操作时出现的各种现象, 记录主要情况,作出必要说明和分析。


conj求共轭复数 sum求总和
E = sum(x.*conj(x)); abs求幅值 sum求总和 E = sum(abs(x).^2);

15
卷积和:调用conv


x = [3,-3,7,0,-1,5,2]; % 序列x的非零区间-4≤n≤2 h = [2,3,0,-5,2,1]; % 序列x的非零区间-1≤n≤4
stem(n,x);axis([-3,3,0,1.5]);
% 生成位置向量 % 生成阶跃序列
8
矩形序列生成函数


function [x,n] = rectseq(n0,n1,n2,N) % 单位矩形序列生成函数 % 调用方式 [x,n] = rectseq(n0,n1,n2,N) n = [n0:n2]; % 生成位置向量 x = [(n-n1) >= 0&((n1+N-1)-n) >= 0]; % 生成矩形脉冲序列
3
2、序列的运算


信号加 信号乘 改变比例 移位 折叠 卷积运算
4
3、系统的实现及响应的求解
y(n) bm x(n m) ak y(n k ) 差分方程:
m 0 k 1 M N


在Matlab中: y(n)
filter(b, a, x)
5
三、实验内容
离散时间信号和系统的matlab 描述与实现
一、实验目的
1、熟悉MATLAB的软件环境,学习MATLAB 的编程方法 2、学习离散时间典型信号及其运算的 Matlab实现。 3、学习离散时间系统的Matlab实现并掌 握求解系统对输入的响应的方法
2
二、实验原理
1、典型序列 单位抽样序列 单位阶跃序列 实数指数序列 复数指数序列 正余弦序列
11
正弦序列 3sin(0.1πn+π/3)


n = [0:1:20]; x = 3*sin(0.1*pi*n+pi/3); stem(n,x); axis([0,20,-4,4]);
% 生成位置向量 % 生成正弦序列

12
复指数序列




n = [-2:10]; x = exp((0.2-0.5j)*n); % 复指数序列 subplot(1,2,1), stem(n,real(x)); %用空心圆画点 line([-5,10], [0,0]); % 画横坐标 subplot(1,2,2), stem(n,imag(x),'filled'); %用实心圆画点 % line([-5,10], [0,0])
例:解差分方程
已知线性常系数差分方程y(n)-y(n-1)+0.75y(n-2)= x(n), 求输入x(n)= δ(n)时系统的输出序列。 (1) 求单位脉冲响应h(n) b= 1; a= [1,-1,0.75]; x= impseq(-10,0,50); % 生成单位脉冲序列 h= filter(b,a,x); % 计算单位抽样响应 n= [-10:50];stem(n,h); %单位抽样响应曲线 axis([-10,50,-1,1.5]) % 标出坐标 title('Impulse Response'); xlabel('n'); ylabel('h(n)');
18
解差分方程 :调用filter
函数的调用方式为
y = filter(b,a,x); 输入参数b、 a为差分方程的系数, b=[b0, b1, …, bM] a=[a0, a1, …, aN] 输入参数x是输入序列 求得的输出序列y和输入x的长度一样 系数a0必须不为零。

19
13
翻转: 调用fliplr


n = [-3:3]; %生成一个序列 x = [0,0,1,0.5,0.25,0.125,0];stem(n,x); x = fliplr(x); %x排列次序左右翻转 n = -fliplr(n); %向量n对n= 0翻转 stem(n,x);
14
序Байду номын сангаас的能量
1、典型序列的实现
impseq(n0,n1,n2) stepseq(n0,n1,n2) a.^n exp((a+bj)*n) sin or cos
2、序列的运算
sigadd(x1,n1,x2,n2) sigmult(x1,n1,x2,n2) a*x sigshift(x,m,n0) sigfold(x,n)
23
3、系统的实现及响应的求解
6
单位脉冲序列δ(n-1)



n = [-3:3]; x = [(n-1) == 0]; stem(n,x); axis([-3,3,0,1.5]);
% 生成位置向量 % 生成单个脉冲序列 % 标示坐标
7
单位阶跃序列 u (n-1)


n = [-3:3]; x = [(n+1) >= 0];
% 调用conv计算卷积和 y = conv(x,h);
运行结果:无位置信息
y = 6 3 5 6 19 -31 30 18 -27 -1 9 2
16
卷积和函数:convextd.m




function [y,ny] = convextd(x,nx,h,nh) % 序列y为序列x和序列h的卷积 % ny,nx,nh 分别为序列y,x和h的位置向量 % 调用方式 [y,ny] = convextd(x,nx,h,nh) ny1 = nx(1)+nh(1); % 计算卷积后的起点位置 ny_end = nx(end) + nh(end); % 计算卷积后的终点位置 y = conv(x,h); % 计算卷积和序列的数值 ny = [ny1:ny_end]; % 计算卷积和序列的位置向量
17
卷积和:包含位置向量



x = [3,-3,7,0,-1,5,2]; nx = [-4:2]; % 给定输入序列 h = [2,3,0,-5,2,1]; nh = [-1:4]; % 给定脉冲响应序列 [y,ny] = convextd(x,nx,h,nh); % 带位置序列的卷积结果 运行结果:有位置信息 y = 6 3 5 6 19 -31 30 18 -27 -1 9 2 ny = -5 -4 -3 -2 -1 0 1 2 3 4 5 6
相关文档
最新文档