人工智能-1绪论
第一章 绪论
1.1.2 人工智能的起源与发展
孕 育 期 ( 1956年前) 形 成 期 ( 1956-1970年) 暗 淡 期 ( 1966-1974年) 知识应用期 ( 1970-1988年) 集成发展期 ( 1986年至今)
1.1.2 人工智能的起源与发展
孕 育 期 ( 1956年前)
亚里斯多德(公元前384—322):古希腊伟大的哲学家和思 想家,创立了演绎法。他提出的三段论至今仍然是演绎推理的 最基本出发点。
AI的严格定义依赖于对智能的定义,即要定义人工智能,首先应该定义智能;但 智能本身也还无严格定义。
一般解释:人工智能就是用人工的方法在机器(计算机)上实现的智能,或称机 器智能、计算机智能。
1.1.1 人工智能的定义
知识与智能 知识 人们通过体验、学习或联想而知晓的对客观世界规律性的认识,包括事实、
能理论框架,使人工智能进入一个新的发展时期 。
1.1.2 人工智能的起源与发展
中国的AI研究
1981年中国人工智能学会在长沙艰难成立,其后长期得不到国内科技界的认同,只能 挂靠中国社会科学院哲学研究所,直到2004年,才得以“返祖归宗”,挂靠到中国科 学技术协会。
1985年前,人工智能在西方国家得到重视和发展,而在苏联却受到批判;我国人工智 能也与“特异功能”一起受到质疑,人工智能学科群专著不能公开出版。
(表处理语言)。 1961年,明斯基发表了“走向人工智能的步骤”的论文,推动了人工智能的发展。 1965年,鲁宾逊提出了归结(消解)原理。费根鲍姆开发第一个专家系统DENDRAL,
用于质谱仪分析有机化合物的分子结构
1.1.2 人工智能的起源与发展
暗 淡 期 ( 1966-1974年)
由于一些人工智能研究者被“胜利冲昏了头脑”,盲目乐观,对人工智能的未来发展 和成果做出了过高的预言,而这些语言的失败,给人工智能的声誉造成重大伤害。 当时的人工智能主要存在下列三个局限性:
人工智能导论-第一章绪论
法律问题
涉及知识产权保护、责任归属、监 管机制等。
社会问题
人工智能的发展对就业、教育、社 会公平等方面产生的影响,以及如 何确保人工智能的可持续发展。
02 认知科学与人工智能关系
认知科学基本概念及研究方法
认知科学是研究人类心智和智能的科学,包括心理学、语言学、哲学等多个学科领 域。
认知科学的研究方法包括实验、观察、调查和建模等,旨在揭示人类心智和智能的 本质和规律。
目标检测
在图像中定位并识别出感兴趣的目标物体,通常包括绘制物体的边界框并给出物体的类别标签。 目标检测在智能监控、自动驾驶等领域有广泛应用。
目标跟踪
在视频序列中跟踪感兴趣的目标物体,获取物体的运动轨迹。目标跟踪是计算机视觉中的重要研 究方向,也是实现智能视频监控、人机交互等应用的关键技术之一。
三维重建和虚拟现实技术
当前研究热点与未来趋势
研究热点
深度学习、强化学习、生成对抗网络、迁移学习等。
未来趋势
人工智能将更加注重可解释性、鲁棒性、隐私保护、公平性等方面的研究,同 时,人工智能与物联网、区块链等技术的结合也将成为未来发展的重要趋势。
伦理、法律及社会问题探讨
伦理问题
包括数据隐私、算法偏见、人工 智能决策的可解释性和透明度等。
任务
计算机视觉的主要任务包括图像分类、目标 检测、图像分割、场景理解等。这些任务的 核心是提取图像中的特征信息,并利用这些
特征信息进行高层次的推理和决策。
图像分类、目标检测和跟踪
图像分类
将图像划分为若干个预定义的类别,如猫、狗、汽车等。图像分类是计算机视觉中最基础的任务 之一,也是其他复杂任务的基础。
三维重建
利用计算机视觉技术从二维图像中恢复出三维物体的形状和结构。三维重建技术广泛应 用于文物保护、医学影像处理、工业检测等领域。
第1章 人工智能-绪论
2020/8/1
人工智能
3
学者们从不同的角度、不同的层面给出了各自的定义:
(1)人工智能是那些与人的思维相关的活动,诸如决策、问 题求解和学习等的自动化(Bellman,1978)。
(2)人工智能是研究怎样让电脑模拟人脑从事推理、规划、 设计、思考、学习等思维活动,解决至今认为需要由专家才 能处理的复杂问题(Elaine Rich,1983)。
2020/8/1
人工智能
15
1.3人工智能的研究目标
➢ 近期目标
人工智能的近期目标是实现机器智能。即先部分地或 某种程度地实现机器智能,从而使现有的计算机更灵活 好用和更聪明有用。
➢ 远期目标
人工智能的远期目标是要制造智能机器。具体讲就是 使计算机具有看、听、说、写等感知和交互能力,具有 联想、学习、推理、理解、学习等高级思维能力,还要 有分析问题解决问题和发明创造的能力。
2020/8/1
人工智能
25
1.5人工智能的研究领域
1.5.1 博弈(Game Playing) 1.5.2 自动定理证明(Automatic Theorem Proving) 1.5.3 专家系统(Expert System) 1.5.4 模式识别(Pattern Recognition) 1.5.5 机器学习(Machine Learning) 1.5.6 计算智能(Computational Intelligence) 1.5.7 自然语言处理(Natural Language Processing) 1.5.8 分布式人工智能(Distributed Artificial Intelligence) 1.5.9 机器人(Robot)
2020/8/1
人工智能
《人工智能导论》第1章-绪论
20世纪80年代 中期至今
稳步增长期
形成及第一个兴旺期
20世纪50年代中 期至60年代中期
第二个兴旺期
20世纪70年代中 期至80年代中期
1.2.1 孕育期 (20世纪50年代中期以前)
人工智能的孕育期大致可以认为是1956年以前的时期。这个 时期的主要成就是数理逻辑、自动机理论、控制论、信息论、神 经计算、电子计算机等学科的建立和发展,为人工智能的诞生准 备了理论和物质的基础。
1.1.2 人工智能的定义
人工智能(AI)是一门正在发展中的综合性前沿学科,它由 计算机科学、控制论、信息论、神经生理学、心理学、语言学 等多种学科相互渗透而发展起来。
人工智能研究的近期目标是:使现有的计算机不仅能做一般 的数值计算及非数值信息的数据处理,而且能运用知识处理问 题,能模拟人类的部分智能行为。
过高预言的失败,给AI造成重大伤害
“20 年内,机器将能做人所能做的一切。”
——西蒙,1965
“在3~8年时间里,我们将研制出具有普通人智力的计算机。这 样的机器能读懂莎士比亚的著作,会给汽车上润滑油,会玩弄政治 权术,能讲笑话,会争吵。……它的智力将无以伦比。”
——明斯基,1977
1.2.3 萧条波折期 (20世纪60年代中期至70年代中期)
➢ 1955 年年末,纽厄尔和西蒙编写了一个 名为“逻辑专家”的程序,被许多人认为 是第一个人工智能程序。它将问题表示成 一个树形模型,然后选择最可能得到正确 结论的那一支来求解问题。
1.2.2 形成及第一个兴旺期 (20世纪50年代中期至60年代中期)
AI诞生于一次历史性的聚会——达特茅斯会议
1956年夏季,由美国学者麦卡锡、 明斯基、朗彻斯特和香农共同发起,在 美国达特茅斯大学举办了一次长达2个 多月的研讨会,讨论用机器模拟人类智 能的问题。会上,首次使用了“人工智 能”这一术语。这是人类历史上第一次 人工智能研讨会,标志着人工智能学科 的诞生,具有十分重要的历史意义。
人工智能导论第一章绪论
人工智能学科结构
计算原理 算法分析
控制理论 空间研究
自动程序设计
机器人 工业自动化
逻辑 数学
系统程序设计
心理学 图示学
认识论
心理学
逻辑学 自动定理证明 有关学科
图示学
运筹学
知识的模型化 和表示
机器视觉 计算机语言
光学
模式识别 声学 语音学
教学、科学和 工程辅助
3 知识与推理
知识是智能的基础和源泉。 推理是人脑的一个基本功能和重要功能,因此,
在知与交流
感知与交流指计算机对外部信息的直接感知和人 机之间、智能体之间的直接信息交流。
机器感知就是计算机直接“感觉”周围世界,就 像人一样通过“感觉器官”直接从外界获取信息 ,如通过视觉器官获取图形、图像信息,通过听 觉器官获取声音信息。
智能是多种能力的综合:
感知能力:人类获取外界信息的基本途径 行为能力:对感知到的外界信息的反应,包含:
简单的直接反应 复杂情况通过大脑思维反应
推理能力:根据当前掌握的信息,得出适当结论的能 力
问题求解能力: 学习与自适应能力—是人类的一种本能 社交能力:与他人交往的能力 创造力:智能中最难以理解和实现的部分
人工智能技术的发展对社会的进步具有重 要意义,与能源技术、空间技术并称为三 大尖端技术。
人类对人工智能的研究刚刚起步,有很多 关于人工智能根本性问题还有待于探索。
1.1 智能
从工程上讲,人工智能就是人造智能,不清楚什 么是智能,就难以真正理解和实现人工智能。
智能是人们认识和改造客观世界的综合能力,是 人类区别于其他事物的本质特征。
• 美国数学家Mauchly,1946发明了电子数字计算机ENIAC • 美国神经生理学家McCulloch,建立了第一个神经网络数学模型。 • 美国数学家Shannon(香农),1948年发表了《通讯的数学理
人工智能导论--第一章绪论
1.2.1 如何衡量机器具有智能
两种衡量机器智能的观点:
弱人工智能:强调智能的外在表现,认为 通过机器的行为可以反映出机器是否具有 智能,只要表现得像人一样的机器就具有 智能。----图灵测试
强人工智能:强调智能内在机制,认为不 仅要看到机器的行为,而且要了解表现出 相应行为的机器是否确实在思考,只有像 人一样思考的机器才具有智能。----中文屋
13、智能控制:无需人的干预或者基本无需人的干预, 能独立地驱动机器实现其目标的自动控制技术。
14、智能决策支持系统:决策支持系统是在管理信息系 统基础上发展起来的计算机管理系统。智能决策支持系 统即是将人工智能技术应用于决策支持系统而形成的。
人工智能技术的发展对社会的进步具有重 要意义,与能源技术、空间技术并称为三 大尖端技术。
人类对人工智能的研究刚刚起步,有很多 关于人工智能根本性问题还有待于探索。
1.1 智能
从工程上讲,人工智能就是人造智能,不清楚什 么是智能,就难以真正理解和实现人工智能。
智能是人们认识和改造客观世界的综合能力,是 人类区别于其他事物的本质特征。
人工智能实际上是一门综合性的交叉学科 和边缘学科。
人工智能学科结构
计算原理 算法分析
控制理论 空间研究
自动程序设计
机器人 工业自动化
逻辑 数学
系统程序设计
心理学 图示学
认识论
心理学
逻辑学 自动定理证明 有关学科
图示学
运筹学
知识的模型化 和表示
机器视觉 计算机语言
光学
模式识别 声学 语音学
教学、科学和 工程辅助
1.2 人工智能
一般性概念:人工智能是关于理解人类智 能内在机制,并在机器上予以实现的科学。 具有能力和科学两方面的含义:
《人工智能》--课后习题答案
《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法。
第一章人工智能绪论
28
14
第一章 人工智 研究的核心课题
1、 知识的模型化及其表示; 2、知识的组织、积累和管理; 3、知识的推理与问题的求解; 4、启发式搜索及其控制策略; 5、神经网络、人脑的结构及其工作原理; 6、人工智能系统及其开发语言。
15
第一章 人工智能绪论
23
第一章 人工智能绪论
概念及发展 学科范畴 研究目标、途径及领域
➢ 1.3.3 研究的领域
3、 模式识别 模式识别的主要目标就是用计算机来模拟人的各种识别
能力,当前主要是对视觉能力和听觉能力的模拟,并且主要 集中于图形识别和语音识别。
模式识别的过程大体是先将摄像机、送话器或其它传感 器接受的外界信息转变成电信号序列,计算机再进一步对这 个电信号序列进行各种预处理,从中抽出有意义的特征,得 到输入信号的模式,然后与机器中原有的各个标准模式进行
➢ 1.1.1 基本概念
2. 人工智能( “Artificial Intelligence”,AI ) 顾名思义,用人工的方法在计算机上模拟人类的智能,
或人工智能就是人造智能。
定义:人工智能是一门研究如何构造智能计算机,使它 能模拟、延伸、扩展人类智能的学科。即具体来讲,就是要 使计算机具有看、听、说、写等感知和交互功能,具有联想、 推理、理解、学习等高级思维能力,还要有分析问题、解决 问题和发明创造的能力。简言之,也就是使计算机像人一样
概念及发展 学科范畴 研究目标、途径及领域
➢ 1.1.1 基本概念
1、智能:就是在巨大的搜索空间中迅速找到一个满意解的能 力。即是知识和智力的总和。 智能的特征: (1) 感知能力; (2) 记忆与思维能力; (3) 学习能力及自适应能力; (4) 行为能力。
《人工智能基础》第一章课件
Page .
人工智能
人工智能(Artificial Intelligence,AI)是计算机科 学的一个分支,是研究智能的实质并且使计算机表现出 类似人类智能的学科。
人工智能是那些与人的思维、决策、问题求解和学习 等有关活动的自动化。源自Page .人工智能的定义
定义1 人工智能是一种使计算机能够思维,使机器具有智力的 激动人心的新尝试。
Page .
AlphaGo与“深蓝” 的区别
“深蓝”是“教”出来的——IBM的程序员们从国际象棋大师那 里获得信息、提炼出特定的规则和领悟,再通过预编程灌输给机器 ,即采用传统的人工智能技术。 AlphaGo是自己“学”出来的——DeepMind的程序员为它灌 输的是学习如何学习的能力,随后它通过自己不断的训练和研究学 会围棋,即采用深度学习技术。某种程度上讲,AlphaGo的棋艺不 是开发者教给他的,而是自学成才。
1950年,他还提出了著名的“图灵实验”,给 智能的标准提供了明确的定义:
把人和计算机分两个房间,并且相互对话,如
果作为人的一方不能判断对方是人还是计算机,
那这台计算机就达到了人的智能。
Page .
麦卡锡(John McCarthy),美国数学家、计算机科学家,“人工 智能之父”。
➢ 首次提出“人工智能” (AI)概念; ➢ 发明Lisp语言; ➢ 研究不寻常的常识推理; ➢ 发明“情景演算”。
定义7 人工智能是一门通过计算过程力图理解和模仿智能行为的 学科。
定义8 人工智能是计算机科学中与智能行为的自动化有关的一个 分支。
其中,定义1和定义2涉及拟人思维;定义3和定义4与理性思维
有关;定义5和定义6涉及拟人行为;定义7和定义8与拟人理性行为
《人工智能》--课后习题答案
《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和机器思维”解决需要人类专家才能处理的问题。
1.2答:智能”一词源于拉丁Legere ”意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。
1.4 答:自然语言处理一语言翻译系统,金山词霸系列机器人一足球机器人模式识别一Microsoft Cartoon Maker博弈一围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S, 0, S0, G):S—状态集合;0—操作算子集合;S0—初始状态,S0 S;G —目的状态,G S,(G可若干具体状态,也可满足某些性质的路径信息描述)从SO结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0 S1 S2 ……G其中O1 ,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法。
即用一个有向图表示概念和概念之间的关系,其中节点代表概念,节点之间的连接弧(也称联想弧)代表概念之间的关系。
人工智能1第一章绪论PPT课件
2020/8/10
4
第一章 人工智能概述
智能研究中一些难回答的问题
智能是一种独立的才能,还是一系列独一无二且不相 关联的能力的总称 ?
多大程度上可以说智能是学到的而不是先天存在的?
学习时发生什么?
什么是创造力?
什么是直觉?
可以从观察到的行为推断出具有智能,还是需要特定 内部机制的证据?
2020/8/10
3
第一章 人工智能概述
人工智能的定义
人工智能至今尚无统一的定义 我们给出的定义(狭义):
能够在各类环境中自主地或交互地执行各种拟人任务的 机器称为智能机器
从学科的角度看,人工智能是计算机科学的一个分支, 它研究、设计和应用智能机器,其目标是使智能行为自 动化。
从能力的角度看,人工智能是智能机器所执行的与人的 智能有关的功能,如判断、推理、理解、学习和问题求 解等思维活动
案的基础
2020/8/10
8
第一章 人工智能概述
图灵测试的反对意见
它偏向于纯粹的符号问题求解任务,不适用 于测试感知技能或要实现手工灵活性所需要 的能力
没有必要把机器智能强行套入人类智能的模 具中,或许机器智能就是不同于人类智能, 试图按照人类的方式来评价它,可能根本就 是一个错误。
也有人全面批评图灵测试,认为分散了我们 的注意力,应研究通用理论,解释人工智能 ,指导具体实践问题
逻辑的严谨性和普遍性 低效性
谓词演算 逻辑编程语言 启发式算法
2020/8/10
19
第一章 人工智能概述
专家系统
对特定领域知识的重视引发了对专家系统的研 究
基于规则的知识表示 基于模型的知识表示 推理
2020/8/10
20
人工智能概论第1章-绪论
1956年的达特茅斯会议是由麦卡锡、明斯基、罗彻斯特和香农等一批有远 见卓识的青年科学家共同研究和讨论用机器来模拟智能的一系列相关问题,并 首次提出了“人工智能”这一术语。
该术语标志“人工智能”新学科的正式诞生。此外会议给了“人工智能” 的第一个准确的描述。
2006年,达特茅斯会议50年后,当事人重聚(左起:摩尔、麦卡锡、明斯基、 塞弗里奇、所罗门诺夫)
22
➢人工智能的应用发展期
20世纪80年代机器学习取代逻辑计算,“知识处理”成为了主流AI研究的焦点。
卡内基·梅隆大学为数字设备公司设计了一个名为 XCON 的专家系统
B
人工智能的应用发展 期
(1980-1989)
D c
A
人工智能的诞生 (1943-1956)
人工智能的第一个 低谷
(1974-1980)
E
人工智能的第二个 低谷
(1989-1993)
人工智能的稳步发 展期
(1993-2006)
F
人工智能的蓬勃 发展期
(2006-至今)
G
14
➢人工智能的诞生
在20世纪40年代到20世纪50年代,一群来自不同领域(数学,心理学,工 程学,经济学和政治学)的科学家开始探索如何实现用生命体外的东西模拟人 类的智慧。
12
➢人工智能的发展现状
从人工智能的应用场景来看,目前的人工智能仍是以具体应用领域为主的弱人工 智能。 其内容和相关领域包括机器视觉,专家系统,智能工厂,智能控制,智能搜索, 机器人,自动规划,无人驾驶,定理证明,棋类博弈,遗传编程,语言识别,自然 语言处理等。 1997年,打败了世界围棋冠军的IBM公司“深蓝”超级计算机也是IA,不是AI。 尽管这一事件被一些被戏称为“人工智能的历史上的里程碑事件”。
人工智能讲稿ppt课件
第一节 问题求解与问题表示
二、状态空间法 1、图的概念与术语
图,父辈结点与后继结点
nr
nh
np
路径, 树
ni
nq
nj
ns
nl3
nl1
nl2
第一节 问题求解与问题表示
2、状态空间表示 一个问题求解系统,问题的状态可由图中的结点代表,
它的所有可能的状态就成结点的集合,构成了状态空间, 或称状态图。
状态空间图中: 有向弧线代表操作,反应状态间的转移关系; 节点代表问题的状态。
第二节 人工智能的学科范畴
一、研究目标
AI是一门研究:如何使机器具有智能,如何设计智能 机器的学科,即使机器具有象人那样的
(1)感知能力 (2)思维能力 (3)行为能力 (4)学习、记忆能力
四种能力:
感知能力 听、看、闻
行为能力
将作出的结论付之于行 动,即去说、写、画,
进行操作、处理等。
思维能力
讨论
如果设d(n)反映搜索层次或深度, 当w(n)=0,
f(n)=d(n),即同一层代价相同,就全部要扩展,挨个判 断是否为目标——宽度优先搜索 当d(n)=0,极好地反映被解问题的特性,使搜索完全向 目标结点进行——深度优先搜索。
283
1644
7
5
283 164
75
6
2 18
76
5
283
1
44
部分成果: 1、1984年完成了串行推理机PSI和操作系统SIMPOS
2、1988年完成了并行推理机Multi-PSI和操作系统
PIMOS !
80年代末期ANN飞速发展给AI发展注入新血液:
1、80年代Hopfield模型及B-P反向传播模型的提出使 ANN兴起了一个热潮
《人工智能》课后习题答案
《人工智能》课后习题答案第一章绪论1.1答:人工智能确实是让机器完成那些假如由人来做则需要智能的情况的科学。
人工智能是相关于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来仿照延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、聚拢,智能通常用来表示从中进行选择、明白得和感受。
所谓自然智能确实是人类和一些动物所具有的智力和行为能力。
智力是针对具体情形的,依照不同的情形有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的运算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的运算机程序度能够称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯独的)(2)谓词逻辑是命题逻辑的扩充和进展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采纳网络形式表示人类知识的方法。
人工智能(第一讲绪论)
4
2014/2/28
Байду номын сангаас
2014/2/28
符号学派
Newell和Simon提出物理符号系统假设观点。这种 观点认为物理符号系统是实现智能行为的充要条件,即 所有智能行为都等价于一个符号系统,任何信息加工系 统都可看作是一个具体的物理符号系统,如人的神经系 统、计算机的构造系统等。所谓符号就是物理模型,任 何一个符号都代表一个物理模型,不同符号代表不同的 物理模型。一个物理符号系统由一个符号结构和一组过 程构成。其中,符号结构由不同符号按照某种物理方法 联结而成,过程实现对符号结构的操作。
人工智能(artificial intelligence,或简称AI),有 时也称作机器智能。 John McCarthy:使一部机器的反应方式就像是
理论基础
信息论、控制论、系统论、计算机科学、心理学、神 经生理学、认知科学、数学和哲学等多学科相互渗 透的结果。
一个人在行动时所依据的智能 Feigenbaum:从知识工程的角度出发,认为AI
一、智能 (Intelligence) 二、知识 (knowledge) 三、AI可行性 四、背景及发展 五、AI学派 六、AI的技术路线 七、研究领域及研究方向
2014/2/28 1 2
2014/2/28
2014/2/28
人工智能
思想基础
长期研究能够进行计算、推理和其它思维活动的智能 机器的必然结果。
物质和技术基础
电子计算机和电子技术得到广泛应用的结果。
3
是一个知识信息处理系统。
4
2014/2/28
2014/2/28
一、智能 (Intelligence)
《人工智能》--课后习题问题详解
《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。
人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。
1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。
所谓自然智能就是人类和一些动物所具有的智力和行为能力。
智力是针对具体情况的,根据不同的情况有不同的含义。
“智力”是指学会某种技能的能力,而不是指技能本身。
1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。
即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。
1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。
状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。
与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。
一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。
(3)语义网络是一种采用网络形式表示人类知识的方法。
第一章 人工智能绪论
第一章 人工智能绪论
1.1 基本概念及发展过程 1.2 人工智能的学科范畴 1.2.1 研究的基本内容 1.2.2 研究的核心课题 1.3人工智能的研究目标、 1.2.3 计算机在智能应用 研究途径及研究领域 上与传统应用的区别
13
第一章 人工智能绪论
概念及发展
学科范畴
研究目标、途径及领域
解。
26
第一章 人工智能绪论
概念及发展
学科范畴
研究目标、途径及领域
1.3.3 研究的领域
(3) 定理证明器。它研究一切可判定问题的证明方法。
(4) 计算机辅助证明。它是以计算机为辅助工具,利用机器
的高速度和大容量,帮助人完成手工证明中难以完成的大
量计算、推理和穷举。 5、 自然语言理解 6、 自动程序设计 7、 机器人学 8、 搏奕
学科范畴
研究目标、途径及领域
1.1.1
基本概念
2. 人工智能( “Artificial Intelligence”,AI ) 顾名思义,用人工的方法在计算机上模拟人类的智能, 或人工智能就是人造智能。
定义:人工智能是一门研究如何构造智能计算机,使它
能模拟、延伸、扩展人类智能的学科。即具体来讲,就是要 使计算机具有看、听、说、写等感知和交互功能,具有联想、 推理、理解、学习等高级思维能力,还要有分析问题、解决 问题和发明创造的能力。简言之,也就是使计算机像人一样
为数理逻辑的产生奠定基础,是现代机器思维设计思想的萌 芽。 (4) 英国逻辑学家布尔创立了布尔代数,在《思维法则》 中首次用符号语言描述了思维活动的基本推理法则。
(5) 英国数学家图灵1936年提出理想计算机的数学模型,
即图灵机。
10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能的初期阶段(3) ——打击
一个笑话(英俄翻译): The spirit is willing but the flesh is week. (心有余而力不足)
The vodka is strong but meat is rotten. (伏特加酒虽然很浓,但肉是腐烂的)
人工智能的初期阶段(4) ——打击
深蓝(2)
96年2月第一次比赛结果: “深蓝”:胜、负、平、平、负、负 2:4(负) 97年5月第二次比赛结果: “深蓝”:负、胜、平、平、平、胜 3.5:2.5(胜)
深蓝(3)
―深蓝”的技术指标:
32个CPU 每个CPU有16个协处理器 每个CPU有256M内存 每个CPU的处理速度为200万步/秒
ISBN978-7-111-28837-4
参考书
陆汝钤,人工智能,北京:科学出版社,1996 王永庆,人工智能原理与方法,西安:西安交通大学出 版社,1998 蔡自兴,人工智能基础,北京:高教出版社, 2005 Michell T M. 机 器 学 习 , 北 京 : 机 械 工 业 出 版 社 , 2003 Tomas Dean. 人工智能:理论与实践,北京:电子工业 出版社,2004 刘峡壁,人工智能导论:方法与系统,北京:国防工业 出版社,2008 史忠植,高级人工智能,北京:科学出版社,2006
对人工智能的定义
麦卡锡(John McCarthy):
人工智能就是要让机器的行为看起来就象是人所表现 出的智能行为一样。 人工智能是关于人造物的智能行为,包括知觉、推理、 学习、交流和在复杂环境中的行为。
人工智能属于计算机科学的一个分支,旨在设计智能 的计算机系统,也就是说,对照人类在自然语言理解、 学习、推理问题求解等方面的智能行为,它所设计的 系统应呈现出与之类似的特征。
人工智能提出之前(1)
• Aristotle ( 公元前 384—322) 在《工具论》的著作中提出形 式逻辑。 • Bacon (1561—1626)在《新工具》中提出归纳法。 • Leibnitz (1646—1716) 研制了四则计算器,提出了“通用符 号”和“推理计算”的概念,使形式逻辑符号化,可以说是 “机器思维”研究的萌芽。 • 19 世纪以来,数理逻辑、自动机理论、控制论、信息论、仿 生学、计算机、心理学等科学技术的进展,为人工智能的诞 生,准备了思想、理论和物质基础。 • Boole (1815—1864)创立了布尔代数,他在《思维法则》一书 中,首次用符号语言描述了思维活动的基本推理法则。
人工智能提出之前(2)
• 1936: 图灵提出了“图灵机”概念——一种理想计算机的数 学模型。 • 1943:美国神经生理学家W.McCulloch and W.Pitts提出了MP模型,奠定了人工神经网络发展的基础。 • 1946: ENIAC Electronic Numerical Integrator and Calculator • 1950: Alan Turing的文章“Computing Machinery and Intelligence.‖提出图灵测试。
考核内容(1)
写一份5千字以上的读书报告。 主题:
a.(学号末尾为0,5):专家系统、智能决策、智能规划、智能体; b.(学号末尾为1,6):机器学习(数据挖掘、知识发现); c.(学号末尾为2,7):机器视觉、模式识别、图像理解; d.(学号末尾为3,8):知识、推理; e.(学号末尾为4,9):搜索、博弈、优化。
对图灵测试的质疑
——JOHN R. SEARLE
Mills Prof. Of the Philosophy of Mind and Language at University of California,Berkeley
一个不懂汉语的人A,一个充分详细的汉语问 答手册。 不计查手册的时间代价。 给A一个使用汉语提出的问题,A通过汉语符号 的比对使用手册,给出回答。 Searle问,如果A通过查手册做出的回答与懂汉 语的人一样,A懂汉语吗?
深蓝(4)
―深蓝”有智能吗? 媒体与大众
“可以有”
科学家
“真没有”
人工智能的近期目标
使现有的计算机系统更聪明、更有用,使它不 仅能做一般的数值计算及非数值信息处理,而 且能运用知识处理问题,能模拟人类的部分智 能行为,成为人类的智能化辅助工具。
1.2 人工智能发展简史
人工智能的发展到目前为止经历的三个阶段 第一阶段:孕育(1956年之前) 第二阶段:形成(1956~1969) 第三阶段:发展(1970年至今)
进化理论
MIT的Brooks教授提出。 人的本质能力是在动态环境中的行走能力,对外界 事务的感知能力,维持生命和繁衍生息的能力。因 此智能是某种复杂系统所浮现的性质。 该理论的核心是用控制取代表示,从而取消概念、 模型及显式表示的知识。否定抽象对于智能及智能 模拟的必要性,强调分层结构对于智能进化的可能 性与必要性。
图灵测试(1)
英国数学家Alan M.Turing在1950年发表的“计算机 与智能(Computing Machinery and Intelligence)‖论文 中提出了“图灵测试”。 他被誉为“人工智能之父”。 Turing测试第一次给出了检验计算机是否具有智能的 哲学说法。
图灵测试(2)
人工智能就是要使计算机能够像人一样去思考和 行动,完成人类能够完成的工作,甚至在某些方 面比人更强。
1.1.2 人工智能的研究目标
最终目标
造出一个像人一样具有智能,会思维和行动的计
算机系统。
强人工智能
机器可以有知觉,有自我意识。
弱人工智能
机器只不过看起来像是智能的,不会有自主意识。
什么是智能?
现代汉语词典:
智慧和才能;或者具有人的某些智慧和才能。
牛津高阶英语词典(OXFORD
ADVANCED
LEARNER‘S DICTIONARY):
以逻辑的方式学习、理解、思考事物的能力 The
ability to learn understand and think in a logical way about things.
人工智能的初期阶段(2) ——盲目乐观
• 1958: Newell和Simon的四个预测 –十年内,计算机将成为世界象棋冠军 – 1997年“深蓝”才第一次击败国际象棋世界冠军 –十年内,计算机将发现或证明有意义的数学定理 – 1976年美国数学家Kenneth Appel等人在三台大型 机上完成了四色定理证明。1977年我国数学家吴 文俊在提出了一种几何定理机械化证明方法 –十年内,计算机将能谱写优美的乐曲 –十年内,计算机将能实现大多数的心理学理论
要求:
严禁相互拷贝!违者0分!
考核内容(3)
课堂讨论。
主题:机器的反叛——机器的智能会超越人类吗?
听课情况。 笔试。
第一章
绪 论
1.1 什么是人工智能 1.2 人工智能发展简史 1.3 人工智能研究方法 1.4 人工智能研究及应用领域
1.1.1 关于智能
深蓝(DEEP BLUE)(1) ——IBM公司的RS/6000SP
北京时间1997年5月12日凌晨4点50分,美国 纽约公平大厦,当IBM公司的“深蓝”超级电 脑将棋盘上的一个兵走到C4的位臵上时,国 际象棋世界冠军卡斯帕罗夫(Kasparov)对“深 蓝”的人机大战落下帷幕,“深蓝”以3.5: 2.5的总比分战胜卡斯帕罗夫。
尼尔逊(Nilsson):
巴尔(A. Barr)和费根鲍姆(E. A. Feigenbaum):
我们认为
人工智能就是研究如何使一个计算机系统具有像 人一样的智能特征,使其能模拟、延伸、扩展人 类智能。 通俗地讲,
人工智能就是研究如何使得计算机会听、说、读、写、 学习、推理,能够适应环境变化,能够模拟出人脑思 维活动。
• 1956夏: 麦卡锡(McCarthy)等10人正式提出了“人工智能” 这 一术语。 • 1956:赛缪尔(Samuel)研制出了跳棋程序。 • 1957: Newell, Shaw和Simon提出通用问题求解系统 GPS • 1958: 美籍华人王浩在IBM-740机器上用3~5分钟证明了《数 学原理》中有关命题演算的全部定理(220条)。1959年鲁宾逊 (Robinson)提出了消解定理,为定理的机器证明作出了突破性贡 献。 • 1958: McCarthy在MIT实现了 LISP • 1959: Samuel的跳棋程序打败他本人 – 能学棋谱、能从对阵中学习 – 1962年打败Connecticut洲的跳棋冠军 • 1965:Stanford的费根鲍姆(E.A.Feigenbaum)开展了专家系统 DENDRAL的研究,并于1968年投入使用。这是一个分析化合物分子 结构的专家系统。
出现这样的错误的原因: Spirit:
1)精神 2)烈性酒、酒精
结论: 必须理解才能翻译,而理解需要知识
人工智能的初期阶段(5) ——打击
• 1966: ALPAC的负面报告造成 美国政府取消对机器翻译的资助 • 1969: Minsky 和 Papert的感知机报告造成美国政府取消对神经网络研究 的资助。 • 1973: James Lighthill爵士的负面报告使得英国政府取消对AI研究的资 助 – “人工智能研究是不成功的,不值得政府资助。” – 英政府接受了此报告的观点。从那时起至今,英国AI研究一蹶不振。