《高等数学》(下)课程教学大纲

合集下载

(完整word版)《高等数学》(下)课程教学大纲

(完整word版)《高等数学》(下)课程教学大纲

《高等数学》(下)课程教学大纲教研室主任:王树泉执笔人:蔡俊青一、课程基本信息开课单位:经济学院课程名称:高等数学下册课程编号:101001212英文名称:Advanced Mathematics课程类型:专业基础课总学时: 72理论学时: 72 实验学时: 0学分:3开设专业:所有专业先修课程:《高等数学》(上)二、课程任务目标(一)课程任务本课程是理科院校经济管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。

通过本课程的学习,要使学生掌握多元函数微积分学、无穷级数和常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

(二)课程目标基本了解多元函数微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握多元函数微积分学、无穷级数和常微分方程的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学、无穷级数和微分方程的思想方法解决应用问题。

三、教学内容和要求第六章多元函数微积分1.内容概要空间解析几何简介,多元函数基本概念,偏导数,全微分,多元复合函数微分法与隐函数微分法,多元函数的极值及其求法,二重积分的概念与性质,直角坐标系下二重积分的计算,极坐标系下二重积分的计算。

2.重点和难点重点:多元函数的概念;偏导数与全微分的概念;多元复合函数的求导法则;多元函数的极值问题;二重积分的概念及其计算难点:全微分的概念;多元复合函数的求导法则与隐函数微分法;二重积分的计算。

3.学习目的与要求(1)理解多元函数的极限与连续性,以及有界闭区域上的连续函数的性质。

(2)理解偏导数、全微分的概念。

(3)熟练掌握复合函数求导法;会求二阶偏导。

(4)会求隐函数的偏导数。

高等数学第二版下册教学大纲

高等数学第二版下册教学大纲

高等数学第二版下册教学大纲一、前言高等数学是理工科学生必修的一门重要基础课程,本教学大纲是为了帮助教师掌握本门课程的教学内容和教学要求,以便更好地进行教学工作。

二、课程简介高等数学第二版下册主要内容包括:三重积分、曲线积分与曲面积分、无穷级数、傅里叶级数、常微分方程等。

三、教学目标学生通过本门课程的学习,应该掌握以下知识和技能:1.熟悉三重积分的概念和计算方法,掌握变量替换法和球坐标系法。

2.理解曲线积分和曲面积分的概念,并且掌握计算方法。

3.掌握傅里叶级数和函数解析的基本概念。

4.熟悉无穷级数的基本概念和判别法,并且掌握其收敛性判别方法。

5.掌握常微分方程的基本概念和解法,能够应用欧拉公式、变量分离法、齐次方程和一阶线性微分方程解法等方法。

四、教学内容1. 三重积分教学目标学生通过本章节的学习,应该掌握以下知识和技能:1.了解三重积分的概念和性质;2.掌握三重积分的计算方法,包括累次积分法和三中介积分法;3.熟悉变量替换法和球坐标系法。

教学重点1.三重积分的概念和性质;2.三重积分的计算方法;3.变量替换法和球坐标系法。

2. 曲线积分与曲面积分教学目标学生通过本章节的学习,应该掌握以下知识和技能:1.理解曲线积分和曲面积分的概念;2.掌握计算曲线积分和曲面积分的方法;3.熟悉曲线积分和曲面积分的性质。

教学重点1.曲线积分和曲面积分的概念;2.计算曲线积分和曲面积分的方法;3.曲线积分和曲面积分的性质。

3. 无穷级数教学目标学生通过本章节的学习,应该掌握以下知识和技能:1.熟悉无穷级数的基本概念和性质;2.掌握无穷级数的判别方法和收敛性。

教学重点1.无穷级数的基本概念和性质;2.无穷级数的判别方法和收敛性。

4. 傅里叶级数教学目标学生通过本章节的学习,应该掌握以下知识和技能:1.理解傅里叶级数和函数解析的基本概念;2.掌握傅里叶级数的计算公式和性质。

教学重点1.傅里叶级数的基本概念和性质;2.傅里叶级数的计算公式。

(完整版)《高等数学》课程教学大纲

(完整版)《高等数学》课程教学大纲

《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学的思想方法解决应用问题。

三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。

难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。

《高等数学》(经管类)课程教学大纲

《高等数学》(经管类)课程教学大纲

书读百遍,其义自见。——陈寿
*(8) 了解三重积分的概念及计算。
(9) 会用多元函数的微积分知识解决一些简单的经济问题。
[教学重点与难点] 二元函数偏导数与全微分的概念;全微分存在的必要条件与充分条件。求偏导数和全微分Байду номын сангаас方法。二元函数极值与条件极值概念;求二元函数的极值.二重积分的计算方法.
[考核目标]
偏导数的求法. 全微分.二元函数极值与条件极值概念;二元函数的极值.二重积分的计算方法.
第九章 无穷级数
[教学目标]
(1) 理解无穷级数收敛、发散以及收敛级数和的概念;了解无穷级数的基本性质及收敛的必要条件。
(2) 了解正项级数的比较审敛法,掌握几何级数与p-级数的敛散性结果;掌握正项级数的比值审敛法。
(3) 了解交错级数的莱布尼茨定理;了解绝对收敛与条件收敛的概念及二者的关系。
[考核目标]
微分方程的一些基本概念。基本的一阶微分方程(可分离变量方程、齐次方程及一阶线性方程)的求解方法。二阶线性微分方程解的结构;二阶常系数的齐次线性微分方程。
四、课程学时分配:
序号 章节标题 学时 练习题 第六章 向量代数与空间解析几何 6 本章例题 第七章 多元函数微分学 7 本章例题 第八章 多元函数积分学 5 本章例题 第九章 无穷级数 7 本章例题 第十章 常微分方程 5 本章例题
(4) 掌握简单幂级数收敛区间的求法(区间端点的收敛性不作要求);了解幂级数在其收敛区间内的一些基本性质,会求一些简单的幂级数的和函数。
(5) 会用 泰勒 与麦克劳林(Maclaurin)展开式将一些简单的函数展开成幂级数。
(6) 了解一些无穷级数在经济中的应用。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲一、课程基本信息课程编码:课程名称:《高等数学》总学时:112学时适用专业:长春大学旅游学院商学院、旅游管理学院、工学院相关专业开课单位:基础部计算机与数学教研室课程类别:公共基础课课程性质:必修课二、课程性质、目的与任务高等数学课程的教学内容由3个数学分支的内容组成,即《微积分》(52学时)、《线性代数》(30学时)、《概率论及数理统计》(30学时)。

本课程是一门培养学生具有一定的抽象概括问题能力、逻辑推理能力、熟练的运算能力,综合运用所学知识去分析问题,解决问题能力的公共基础课,是商学院、旅游管理学院、工学院相关专业一门必修的课程。

通过本课程的学习,使学生掌握高等数学的基本知识、基本理论和基本方法,为学生解决实际问题提供有效的数学方法,以及将高等数学的知识在自然科学和工程技术中的广泛应用奠定良好的数学基础。

本课程的主要任务是为专业课提供必不可少的数学基础知识,在传授知识的同时,努力培养学生进行抽象思维和逻辑推理的理性思维能力,综合运用所学的知识分析问题和解决问题的能力,以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

三、课程的内容及要求、教学重点与难点(一)函数、极限、连续1.主要教学内容函数的概念;数列的极限;函数的极限;无穷小量与无穷大量;极限运算法则;极限存在准则、两个重要极限;函数的连续性与间断点;连续函数的运算、初等函数的连续性;闭区间上的连续函数的性质。

2.知识点与能力点(1)知识点:加深对函数概念的理解,了解函数性质(奇偶性、单调性、周期性和有界性);理解复合函数的概念,了解反函数的概念;理解极限的概念,了解极限的,Nεεδ--定义、理解左、右极限的定义;掌握极限的四则运算法则;了解极限的性质(唯一性、有界性、保号性)和两个存在准则(夹逼准则与单调有界准则);掌握两个重要极限;了解无穷小、无穷大,理解高阶无穷小和等价无穷小的概念;理解函数在一点连续和在区间上连续的概念;了解函数间断点的概念;了解初等函数的连续性和闭区间上连续函数的介值定理,最大值、最小值定理。

09010021《高等数学(下)》64(64 0)课程教学大纲

09010021《高等数学(下)》64(64 0)课程教学大纲

高等数学(下)课程教学大纲(总学时数:64 学分数:4)一、课程的性质,任务和目的高等数学课程是高等工科院校各专业学生必修的重要的基础理论课。

为学生培养分析问题、解决问题的能力,抽象思维和逻辑思维能力,为学生进一步学习后继课程打下扎实的基础。

二、课程基本内容和要求1.通过本课程的学习,要使学生获得:向量代数和空间解析几何;多元函数微积分学;无穷级数(包括傅里叶级数)等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

2.在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析问题和解决问题的能力。

3.本课程的教学就把重点放在培养学生正确理解和运用基本概念与基本方法上,并注意理论联系实际的原则,力求反应这些基本概念的实际背景及其应用。

使学生认识到数学来源于实践又服务于实际,从而有助于树立辩证唯物主义观点。

4.教材的选取与课堂讲授要贯彻少而精原则,着重于基本概念,基本理论的讲授和基本技能的培养,不要追求内容上的完备和全面。

本大纲包括(一)教学内容(二)教学要求(三)重点与难点教学要求的高低用不同的词汇加以区分,对概念、理论从高到低用“理解”、“了解”、“知道”三级区分,对运算、方法从高到低用“熟练掌握”、“掌握”、“会”三级区分。

熟悉一词相当于“理解”、“熟练掌握”。

空间解析几何与向量代数(一)教学内容空间直角坐标系,向量及其加减法,向量与数的乘法,向量的坐标,数量积,向量积,曲面及其方程,空间曲线及其方程,平面及其方程,空间直线及其方程,二次曲面。

其中:基本概念:空间直角坐标的概念,向量的概念,曲面及其方程、空间曲线与方程。

基本理论:平面与三元一次方程的对应。

基本方法:向量代数的线性运算、数量积与向量积的运算方法,根据已知条件建立各类平面、直线方程的方法。

高等数学教学大纲(2024年版)

高等数学教学大纲(2024年版)

高等数学教学大纲(2024年版)1. 引言本教学大纲旨在为高等数学课程提供清晰、详细的指导,确保教学内容的系统性和连贯性,帮助学生掌握高等数学的核心概念和方法,培养其分析和解决问题的能力。

本大纲适用于我国高等教育阶段理科、工科、经济管理类等专业的本科生。

2. 教学目标通过本课程的研究,学生应达到以下目标:1. 掌握高等数学的基本概念、理论和方法。

2. 能够运用高等数学知识解决实际问题。

3. 培养逻辑思维、创新能力和团队合作精神。

4. 提高数学素养,为后续专业课程和研究生阶段的研究打下坚实基础。

3. 教学内容高等数学教学内容主要包括以下几个部分:3.1 极限与连续1. 极限的概念与性质2. 极限的计算方法3. 无穷小与无穷大4. 函数的连续性5. 极限与连续在实际问题中的应用3.2 导数与微分1. 导数的概念与性质2. 导数的计算方法3. 高阶导数4. 隐函数求导与参数方程求导5. 微分学在实际问题中的应用3.3 积分与面积1. 不定积分与定积分的概念与性质2. 积分计算方法3. 换元积分与分部积分4. 定积分的应用5. 面积与体积的计算3.4 微分方程1. 微分方程的基本概念与分类2. 一阶微分方程的解法3. 高阶微分方程的解法4. 常微分方程的应用5. 线性微分方程与非线性微分方程3.5 级数1. 数项级数的概念与性质2. 收敛性与发散性判断3. 幂级数与泰勒公式4. 傅里叶级数5. 级数在实际问题中的应用3.6 向量与空间解析几何1. 向量的概念与运算2. 空间解析几何的基本概念3. 线性空间与线性变换4. 向量空间的应用5. 坐标变换与几何变换3.7 线性代数1. 矩阵的概念与运算2. 线性方程组3. 特征值与特征向量4. 二次型5. 线性代数在实际问题中的应用4. 教学方法与手段1. 采用讲授、讨论、自学相结合的教学方法,引导学生主动探究、积极思考。

2. 使用多媒体课件、板书等多种教学手段,提高教学效果和学生的研究兴趣。

《高等数学》教学大纲

《高等数学》教学大纲

《高等数学》教学大纲一、课程基本信息课程名称:高等数学课程类别:公共基础课课程学分:_____课程总学时:_____授课对象:_____先修课程:_____二、课程性质与任务高等数学是高等院校各专业学生必修的一门重要基础理论课,它不仅为学生学习后续课程和解决实际问题提供了必不可少的数学基础知识和数学方法,而且在培养学生的创新思维能力、逻辑推理能力、空间想象能力以及分析问题和解决问题的能力等方面都起着重要的作用。

本课程的主要任务是使学生掌握高等数学的基本概念、基本理论和基本方法,培养学生运用数学知识解决实际问题的能力,为学生学习后续课程以及今后从事科学研究和实际工作打下坚实的数学基础。

三、课程教学目标1、知识目标使学生掌握函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本方法。

了解数学建模的基本思想和方法,能够运用所学的数学知识建立简单的数学模型,并求解实际问题。

2、能力目标培养学生的逻辑推理能力、抽象思维能力和空间想象能力。

提高学生的运算能力和综合运用所学知识分析问题、解决问题的能力。

培养学生的创新意识和创新能力。

3、素质目标培养学生的科学态度和严谨的治学精神。

提高学生的数学素养和文化素质。

培养学生的团队合作精神和沟通能力。

四、课程教学内容与要求(一)函数、极限与连续1、函数理解函数的概念,掌握函数的表示方法。

了解函数的单调性、奇偶性、周期性和有界性。

掌握基本初等函数的性质和图形,了解初等函数的概念。

2、极限理解数列极限和函数极限的概念。

掌握极限的性质和运算法则,会求数列和函数的极限。

了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。

3、连续理解函数连续的概念,掌握函数在一点连续的充要条件。

了解函数的间断点及其类型,会判断函数的间断点。

掌握初等函数的连续性,会利用连续性求函数的极限。

(二)一元函数微分学1、导数与微分理解导数的概念,掌握导数的几何意义和物理意义。

《高等数学II》课程教学大纲

《高等数学II》课程教学大纲

《高等数学II》课程教学大纲课程名称:高等数学II课程性质:专业基础课课程代码:J60008学分:6理论学时:96实验学时:0面向专业:国际经济与贸易先修课程:无执笔人:仇昌荣审定人:仇昌荣盛海涛一、说明1.课程的性质、地位和任务《高等数学Ⅱ》是国际经济与贸易专业的一门专业基础课。

本课程主要讲授极限、连续、导数、微分、定积分和不定积分、空间直角坐标系、向量代数、多元微积分、级数、常微分方程和高等数学在经济学中的应用等基础理论,围绕上述理论培养学生的基本运算能力、抽象思维能力、逻辑推理能力以及解决实际问题的能力,即提高学生的数学素质。

2.课程教学基本要求通过本课程的系统教学,特别是讲授如何提出新问题、思考分析问题,逐渐培养学生的创新思维能力和数学建模的能力;通过揭示数学中的美,结合教学内容,适当讲解科学家献身科学的故事,加强素质教育。

通过对《高等数学Ⅱ》课程的系统学习,将达到以下目标:一在掌握必要的高等数学知识的同时,具有一定的数学建模思想,并将这种思想贯穿于整个提出问题分析问题解决问题。

二能够把理论知识与应用性较强实例有机结合起来,培养学生的逻辑思维能力并能用数学知识解决实际问题。

三是使学生在充分了解和把握高等数学重要概念和定理的基础上,加强对其他相关课程关系的了解,为学生进行其他专业课程的后续学习奠定学科理论基础,使之具备系统扎实的知识体系储备。

二、教学内容与课时分配第一章函数与极限(9学时)1.函数的概念1.1函数的定义1.2函数的表示法和函数记号1.3函数的定义域复合函数1.4函数的几种特性2.反函数、复合函数、初等函数2.1反函数2.2复合函数2.3基本初等函数2.4初等函数3.极限的概念3.1数列的极限3.2函数的极限4.极限运算法则4.1无穷大与无穷小4.2极限四则运算法则。

5.两个重要极限6.无穷小的比较7.函数的连续性7.1函数连续性的概念7.2函数的间断点7.3连续函数的运算教学重点:函数的极限,极限存在的夹逼准则、两个重要极限。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》教学大纲一、课程的性质和任务课程的性质:高等数学是高职高专各专业必修的一门重要基础课。

高等数学的思想、内容、方法和语言已成为现代文化的重要组成部分,是提高学生文化素质,进一步学习有关专业知识,专业技术必不可少的工具。

主要任务:本着"服务专业,兼顾数学体系的原则",重视数学的思想本质,倡导和发展数学的应用性,全面提高学生的数学素质;以必需、够用为度的原则。

使学生在高中文化的基础上,进一步学习和掌握一元微积分学、多元微积分学、微分方程、级数等内容。

三、课程教学内容第一章绪论了解本课程发展过程及思想方法。

第二章函数熟悉掌握函数的概念、基本初等函数、复合函数、初等函数;掌握函数的性质,反函数;了解分段函数。

重点:函数的定义和定义域。

难点:复合函数的概念。

第三章极限与连续熟悉掌握极限的概念,无穷小和无穷大概念,函数连续的概念;掌握无穷小和函数极限的关系、极限四则运算、两个重要极限,间断点分类和初等函数的连续性;了解无穷小的比较、等价无穷小、连续函数和、差、积、商的连续性及反函数与复合函数连续性。

重点:函数极限的概念、无穷小、极限四则运算、函数在某一点连续的概念。

难点:函数极限的概念、求应用问题中的最值判定函数在某点连续性。

第四章导数与微分熟悉掌握导数的概念、几何意义、求导公式和导数的四则运算,复合函数求导法则;掌握变化率问题、反函数求导法、隐函数求导法,求函数的微分;能理解微分的定义及几何意义,会求参数方程导数、高阶导数和使用对数求导法;运用微分公式和运算法则,了解可导与连续的关系。

重点:导数的定义、导数的四则运算、复合函数求导法则、基本初等函数的导数公式。

难点:导数的定义、复合函数求导法则。

第五章一元函数微分学的应用熟练掌握拉格朗日定理和罗必塔法则;能判定函数的单调性并求其极值,讨论曲线的凹凸,求其拐点,求渐近线和作函数的图象,应用最值解决一些实际问题;了解柯西定理。

重点:拉格朗日定理、判定函数的单调性并求其极值、求应用问题中的最值。

《高等数学》(下)课程教学大纲

《高等数学》(下)课程教学大纲

《高等数学》(下)课程教学大纲一、课程基本信息二、课程任务目标(一)课程任务本课程是理科院校经济管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。

通过本课程的学习,要使学生掌握多元函数微积分学、无穷级数和常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

(二)课程目标基本了解多元函数微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握多元函数微积分学、无穷级数和常微分方程的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学、无穷级数和微分方程的思想方法解决应用问题。

三、教学内容和要求第六章多元函数微积分1.内容概要空间解析几何简介,多元函数基本概念,偏导数,全微分,多元复合函数微分法与隐函数微分法,多元函数的极值及其求法,二重积分的概念与性质,直角坐标系下二重积分的计算,极坐标系下二重积分的计算。

2.重点和难点重点:多元函数的概念;偏导数与全微分的概念;多元复合函数的求导法则;多元函数的极值问题;二重积分的概念及其计算难点:全微分的概念;多元复合函数的求导法则与隐函数微分法;二重积分的计算。

3.学习目的与要求(1)理解多元函数的极限与连续性,以及有界闭区域上的连续函数的性质。

(2)理解偏导数、全微分的概念。

(3)熟练掌握复合函数求导法;会求二阶偏导。

(4)会求隐函数的偏导数。

(5)理解多元函数极值的概念,会求函数的极值,了解条件极值的概念,会用拉格朗日乘数法求条件极值,会求一些简单的最大值、最小值的应用问题。

(6)理解二重积分的概念。

会在适当的坐标系下计算二重积分。

第七章无穷级数1.内容概要常数项级数的概念与性质,正项级数的审敛性判别法,一般常数项级数审敛性的判别法,幂级数,函数展开成幂级数。

《高等数学》课程教学大纲

《高等数学》课程教学大纲

《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。

本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。

2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。

2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。

3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。

4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。

4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。

4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。

5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》(下)课程教学大纲
教研室主任:王树泉执笔人:蔡俊青
一、课程基本信息
开课单位:经济学院
课程名称:高等数学下册
课程编号:101001212
英文名称:Advanced Mathematics
课程类型:专业基础课
总学时: 72理论学时: 72 实验学时: 0
学分:3
开设专业:所有专业
先修课程:《高等数学》(上)
二、课程任务目标
(一)课程任务
本课程是理科院校经济管理类专业的一门专业基础课,又是全国硕士研究生入学考试统考科目。

通过本课程的学习,要使学生掌握多元函数微积分学、无穷级数和常微分方程的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。

(二)课程目标
基本了解多元函数微积分学的基础理论;充分理解微积分学的背景思想及数学思想。

掌握多元函数微积分学、无穷级数和常微分方程的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。

能较熟练地应用微积分学、无穷级数和微分方程的思想方法解决应用问题。

三、教学内容和要求
第六章多元函数微积分
1.内容概要
空间解析几何简介,多元函数基本概念,偏导数,全微分,多元复合函数微分法与隐函数微分法,多元函数的极值及其求法,二重积分的概念与性质,直角坐标系下二重积分的计算,极坐标系下二重积分的计算。

2.重点和难点
重点:多元函数的概念;偏导数与全微分的概念;多元复合函数的求导法则;多元函数的极值问题;二重积分的概念及其计算
难点:全微分的概念;多元复合函数的求导法则与隐函数微分法;二重积分的计算。

3.学习目的与要求
(1)理解多元函数的极限与连续性,以及有界闭区域上的连续函数的性质。

(2)理解偏导数、全微分的概念。

(3)熟练掌握复合函数求导法;会求二阶偏导。

(4)会求隐函数的偏导数。

(5)理解多元函数极值的概念,会求函数的极值,了解条件极值的概念,会用拉格朗日乘数法求条件极值,会求一些简单的最大值、最小值的应用问题。

(6)理解二重积分的概念。

会在适当的坐标系下计算二重积分。

第七章无穷级数
1.内容概要
常数项级数的概念与性质,正项级数的审敛性判别法,一般常数项级数审敛性的判别法,幂级数,函数展开成幂级数。

2.重点和难点
重点:无穷级数收敛与发散的概念;正项级数的审敛性判别法;一般项级数审敛性判别法;幂级数的收敛区间,泰勒级数,函数展开为幂级数。

难点:级数审敛性的判断;函数展开为幂级数。

3.学习目的与要求
(1)理解无穷级数收敛、发散及其和的概念。

(2)熟练掌握无穷级数的基本性质。

(3)掌握几何级数和P-级数的敛散性。

(4)熟练掌握正项级数审敛性判别法。

(5)掌握交错级数的审敛性判别法。

(6)理解无穷级数绝对收敛、条件收敛的概念及关系。

(7)了解函数项级数的收敛域、和函数的概念。

(8)掌握幂级数收敛域及某些和函数的求法。

(9)理解幂级数在收敛域上的基本性质。

(10)知道函数展开成泰勒级数的充要条件。

(11)掌握x e、sin x、
1
1x
+
、ln(1)x
+、cos x的麦克劳林展式,并能用它们
将一些简单的函数展开为幂级数。

第八章微分方程
1.内容概要
微分方程的基本概念,可分离变量的微分方程,一阶线性微分方程,可降阶的二阶微分方程,二阶微分方程解的结构,二阶常系数齐次线性微分方程,二阶常系数非齐次线性微分方程,差分方程。

2.重点和难点
重点:微分方程的一般概念,一阶可分离变量微分方程,一阶线性微分方程;二阶常系数线性微分方程;差分方程。

难点:微分方程类型的判别及解法;一阶线性微分方程通解的求法;二阶常系数非齐次线性微分方程的特解的求法。

3.学习目的与要求
(1)了解微分方程及其阶、解、通解、初始条件、特解的概念。

(2)能识别一阶微分方程:可分离变量的微分方程,齐次方程,二阶线性方程。

(3)熟练掌握可分离变量的微分方程及一阶线性方程的解法,会求其通解、特解。

(4)会解齐次方程,进而领会运用变量代换求解微分方程的思想方法。

(5)掌握下述三种特殊形式的高阶方程的降阶法:()()n y f x = 、()''',y f x y = 、()''',y f y y = ,进而领会降阶法的实质及运用范围。

(7)掌握二阶线性微分方程解的结构。

(8)熟练掌握二阶常系数齐次线性微分方程的解法。

(9)掌握高阶常系数齐次线性微分方程的解法。

(10)掌握非齐次项为多项式,指数函数、正弦函数、余弦函数以及它们的线性组合与乘积的二阶常系数非齐次线性微分方程的解法。

(11)掌握差分方程的解法。

四、学时分配
五、考核说明
考核方法:闭卷
成绩评定法法:平时成绩+⨯%30考试成绩%70⨯
六、主要教材及教学参考书目
(一)主要教材
1.吴赣昌编《微积分》上册(经管类.第四版),中国人民大学出版社,20011年。

(二)主要参考书目
1.同济大学数学系编《高等数学》下册第六版,高等教育出版社,2002年。

2.四川大学数学系高等数学教研室编《高等数学》第二册第三版,高等教育出版社,2006年。

3. 吴礼斌主编《经济数学基础》,高等教育出版社,2005年。

4. 范培华等编《微积分》,中国商业出版社,2006年。

相关文档
最新文档