铝基复合材料的发展现状与研究

合集下载

铝基复合材料的研究现状及发展

铝基复合材料的研究现状及发展

铝基复合材料的研究现状及发展
铝基复合材料是一种使用铝或铝基合金及其它材料进行复合的材料,具有在单一材料
不可比拟的力学性能和性能优势。

由于它包含两种以上不同性质的成分,因此具有良好的
综合性能、质量轻、热传导性能良好、强度好等优点,广泛应用于航空航天、机械等领域,已经成为当今最新的一类材料。

近年来,铝基复合材料引起了科学家和工程师们的广泛关注,随着铝基复合材料的应
用范围越来越广泛,研究设计和制造技术也有了显著进步。

目前,铝基复合材料在研究、
设计和制造方面具有众多优势,其中有三个重要方面:
首先,改善成型工艺。

铝基复合材料使用一种称为“厚壁注射成型”的工艺,可以在
短时间内实现大尺寸和复杂形状的件的成型。

这种新型成型技术可以大大减少生产成本,
同时还可提高产品的质量和性能。

其次,研制复合材料原料。

复合材料中所使用的各种原料具有不同性能,如金属粉末
和高分子等,因此必须加以合理搭配,使复合材料具有良好的机械性能。

此外,使用新的
抗氧化剂可有效减少铝基复合材料的氧化,有效延长铝基复合材料的使用寿命。

最后,完善铝基复合材料的产品设计。

通过模拟分析,以确定铝基复合材料的合理结构,使其具有良好的性能,才能达到设计上的要求。

总而言之,随着社会经济发展,铝基复合材料也将越来越受到重视,我们将在未来看
到更多关于铝基复合材料的研究和实践应用。

希望大家能关注这一重要领域,并参与进行
系统研究,以推进其发展。

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展1. 引言1.1 石墨烯增强铝基复合材料的研究背景石墨烯是一种二维晶格结构的碳原子薄膜,由于其独特的物理、化学和力学性质,被认为是一种具有巨大潜力的新型材料。

石墨烯具有极高的导热性、机械强度和化学稳定性,因此在材料科学领域备受关注。

铝及其合金由于具有较低的密度和良好的加工性能,在航空航天、汽车工业等领域有着广泛的应用。

传统铝材料在强度和硬度方面存在一定局限性。

为了克服传统铝材料的缺点,研究者们开始探索引入石墨烯来增强铝基复合材料。

石墨烯的加入不仅可以提高复合材料的力学性能,还可以优化其导热和电导特性。

石墨烯增强铝基复合材料成为当前研究的热点之一。

通过将石墨烯与铝基材料进行复合,可以有效提高材料的强度、硬度和耐磨性,同时减轻材料的重量,提高材料的导热性能。

石墨烯增强铝基复合材料被认为具有广阔的应用前景,对于推动材料科学领域的发展具有重要意义。

【字数:220】1.2 石墨烯在材料科学中的应用潜力1. 电子器件:石墨烯具有优异的电子输运性能,高载流子迁移率和高电导率,使其成为理想的电子器件材料。

石墨烯可以应用于场效应晶体管、光电探测器、透明导电膜等领域,为电子器件的性能提升提供了新的可能性。

3. 柔性电子:由于石墨烯的柔韧性和透明性,可将其应用于柔性电子领域,如柔性显示器、柔性传感器、可穿戴设备等。

石墨烯材料的应用为柔性电子产品带来了更广阔的发展空间。

石墨烯在材料科学中的应用潜力巨大,其优异的性能和特殊的结构使得其可以在多个领域发挥重要作用,推动材料科学的发展和创新。

对石墨烯的研究不仅有助于拓展其应用领域,还将促进整个材料科学领域的进步和发展。

2. 正文2.1 石墨烯增强铝基复合材料的制备方法石墨烯增强铝基复合材料的制备方法主要包括机械合金化、粉末冶金、湿法涂覆、化学气相沉积以及熔体混合等几种方法。

机械合金化是其中一种常用的方法,通过球磨或挤压将石墨烯与铝粉进行混合,使二者在微观层面有所聚集和弥散,从而增加界面结合强度。

短碳纤维增强铝基复合材料的制备及其性能研究

短碳纤维增强铝基复合材料的制备及其性能研究

短碳纤维增强铝基复合材料的制备及其性能研究一、内容描述短碳纤维增强铝基复合材料(Short Carbon Fiber Reforced Aluminum Matrix Composite, SCFRA)作为一种先进的复合材料,凭借其轻质、高强、高刚度、良好的耐腐蚀性等优异性能,成为了现代材料科学领域的研究热点。

本文将围绕SCFRA的制备及其性能展开深入探讨。

在制备方面,本文首先介绍了短碳纤维(Short Carbon Fiber, SCF)的基本特性和常用的制备方法。

SCF具有高强度、低密度、良好的热导性和电导性等特性,因此在众多工业领域如航空航天、汽车制造、建筑工程等得到了广泛应用。

文章详细阐述了铝基复合材料(Aluminum Matrix Composite, AMC)的组成、分类及制备工艺。

铝基复合材料以铝合金为基体,通过填充其他材料如陶瓷颗粒、碳纤维、塑料等,可以显著提高其力学性能、耐磨性、耐高温性等。

结合SCF和AMC的特点,本文提出了一种新型的短碳纤维增强铝基复合材料,旨在充分发挥两者优势,实现高性能化。

通过优化SCF 与AMC的配比、制备工艺和微观结构调控,有望获得具有更高比强度、更高比刚度、良好耐磨性和耐腐蚀性的复合材料。

在性能研究方面,本文首先分析了SCFRA的基本力学性能,如拉伸强度、弯曲强度、压缩强度等。

实验结果表明,SCFRA的力学性能明显优于相同成分的铝合金,显示出短碳纤维对铝基体的增强作用。

本文还探讨了SCFRA的热稳定性、耐磨损性、耐蚀性等性能,并与铝合金和碳纤维增强铝基复合材料进行了对比分析。

研究结果显示,SCFRA在高温下仍能保持较高的力学性能和热稳定性,同时具有良好的耐磨性和耐腐蚀性。

针对SCFRA在实际应用中可能遇到的问题,如界面结合强度低、复合材料易氧化等,本文也提出了相应的解决方案。

通过优化表面处理工艺、控制SCF与AMC的界面相容性等手段,可以提高SCFRA的整体性能。

先进铝基复合材料研究的新进展

先进铝基复合材料研究的新进展

先进铝基复合材料研究的新进展随着科技的快速发展,先进材料的研究与应用越来越受到人们的。

其中,先进铝基复合材料作为一种具有优异性能和广阔应用前景的材料,成为了科研人员和工业界的研究热点。

本文将介绍先进铝基复合材料研究的新进展,包括材料选择、研究方法、研究成果以及未来发展方向等方面。

先进铝基复合材料的研究具有重要意义,它不仅可以提高材料的综合性能,还能满足各种复杂和严苛的应用环境。

特别是在航空、航天、汽车和电子等领域,先进铝基复合材料的需求日益增长,这促使科研人员不断深入研究和探索。

在选择先进铝基复合材料时,需综合考虑材料的性能、成本、制备工艺等因素。

铝基体具有优异的加工性能和良好的导热、导电性能,但其强度和硬度相对较低。

因此,通过添加增强体可以有效地提高铝基复合材料的综合性能。

常见的增强体包括陶瓷颗粒、碳纤维、金属氧化物等。

在选择材料时,需要根据实际应用需求来选择适当的增强体和制备工艺。

先进铝基复合材料的研究方法包括实验设计、工艺优化、材料性能测试等。

实验设计是通过调整材料的组成、结构和制备工艺等因素,优化材料的性能。

工艺优化是通过改进制备工艺,提高材料的制备效率和质量。

材料性能测试是对制备好的材料进行各种性能测试,包括力学、物理和化学性能等。

经过科研人员的不懈努力,先进铝基复合材料的研究取得了许多重要成果。

在制备工艺方面,成功开发出了多种低成本、高效的制备方法,如粉末冶金法、熔融搅拌法、原位合成法等。

这些制备方法不仅能够保证材料的质量和性能,还能降低制备成本,提高生产效率。

在性能特点方面,先进铝基复合材料具有优异的力学性能,如高强度、高硬度、良好的韧性和抗疲劳性等。

它们还具有优异的导电、导热、耐腐蚀和抗辐射等性能。

这些优良的性能使得先进铝基复合材料在各种复杂和严苛的应用环境中表现出色。

在应用前景方面,先进铝基复合材料在航空、航天、汽车、电子、能源等领域展现出了广阔的应用前景。

例如,在航空航天领域,先进铝基复合材料可以用于制造轻质高强度的结构件和功能件;在汽车领域,它们可以用于制造轻量化、高强度的零部件,从而提高汽车的动力性和燃油经济性;在电子领域,它们可以用于制造高效散热器、电路板等关键部件,从而提高电子设备的性能和可靠性。

颗粒增强铝基复合材料研究与应用发展

颗粒增强铝基复合材料研究与应用发展

3、结构性能
通过观察复合材料的显微组织,分析碳化硅颗粒的分布情况和界面结合情况。 实验结果显示,随着碳化硅颗粒含量的增加,颗粒分布逐渐均匀,界面结合强度 也逐渐提高。Fra bibliotek结果分析
实验结果表明,碳化硅颗粒增强铝基复合材料的物理性能、化学性能和结构 性能均得到显著改善。随着碳化硅颗粒含量的增加,复合材料的密度、硬度和界 面结合强度逐渐提高,而热导率呈现先增加后减小的趋势。这些现象和结果与碳 化硅颗粒含量、分布情况以及界面结合情况密切相关。
材料选择
碳化硅颗粒增强铝基复合材料的制备方法主要包括搅拌铸造法、挤压铸造法、 粉末冶金法和喷射沉积法等。本次演示选取搅拌铸造法进行研究,具体实验过程 如下:
1、按照一定比例将铝材和碳化硅颗粒混合均匀; 2、将混合物放入坩埚中,加热至熔化;
3、搅拌熔融的混合物,确保碳化硅颗粒均匀分布; 4、浇注至预定的模具中,冷却凝固后得到碳化硅颗粒增强铝基复合材料。
然而,尽管颗粒增强铝基复合材料具有诸多优点,但在其研究与应用方面仍 存在一些问题和不足之处。首先,制备工艺复杂且成本较高,限制了其广泛应用。 其次,材料的各向异性较为明显,影响了其性能的进一步提升。此外,关于颗粒 增强铝基复合材料在复杂服役条件下的长期性能和可靠性方面仍需进一步研究和 验证。
未来,随着科学技术的不断进步和研究的深入,颗粒增强铝基复合材料将会 在更多领域得到应用和发展。为进一步提高其性能和降低成本,可以研究新的制 备工艺和优化现有工艺参数,探索新型增强颗粒和基体合金。针对其各向异性和 长期性能问题,可以开展深入的理论和实验研究,建立完善的性能评价体系,为 实际应用提供更加可靠的依据。
感谢观看
3、结构设计难度大:由于碳化硅颗粒增强铝基复合材料的力学性能与传统 的金属材料存在较大差异,因此在进行结构设计时需要考虑更多的影响因素,增 加了设计的难度。

铝基复合材料的发展现状与研究样本

铝基复合材料的发展现状与研究样本

铝基复合材料的发展现状与研究样本铝基复合材料是以铝为基体材料,通过添加一定量的强化剂或增强材料制成的材料。

铝基复合材料具有优异的力学性能、耐热性能和耐腐蚀性能等特点,被广泛应用于航空航天、汽车、船舶等领域。

随着科技的不断进步,铝基复合材料的研究与发展也变得越来越重要。

目前,铝基复合材料的研究主要集中在以下几个方面。

首先,增强剂的研究。

铝基复合材料中的增强剂起到增加材料强度和刚度的作用。

目前常用的增强剂有陶瓷颗粒、纤维和纳米颗粒等。

通过改变增强剂的尺寸、形状和含量等因素,可以调控铝基复合材料的力学性能。

其次,界面的研究。

界面是铝基复合材料中起到连接基体和增强剂之间作用的关键部分。

研究表明,优化界面相互作用可以有效提高铝基复合材料的力学性能。

因此,界面改性成为当前铝基复合材料研究的热点。

此外,加工工艺的研究也是铝基复合材料发展的关键。

复合材料的加工工艺对于材料的力学性能和成本都具有重要影响。

目前,常用的加工工艺包括热压、挤压和等离子弧焊等。

通过优化加工工艺参数,可以制备出具有理想力学性能的铝基复合材料。

另外,近年来,铝基纳米复合材料也成为铝基复合材料研究的热点之一、铝基纳米复合材料是将纳米颗粒加入到铝基复合材料中,可以显著改善材料的力学性能和热性能。

这得益于纳米颗粒的小尺寸效应、高比表面积和界面效应等特点。

总体来说,铝基复合材料的研究与发展主要集中在增强剂的研究、界面的研究、加工工艺的研究和铝基纳米复合材料的研究等方面。

随着科技的不断进步和社会对材料性能的不断需求,铝基复合材料在实际应用中的发展前景将会更加广阔。

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展【摘要】石墨烯是一种具有优异性能的纳米材料,在铝基复合材料中的应用备受关注。

本文综述了石墨烯增强铝基复合材料的研究进展。

首先介绍了石墨烯在复合材料中的应用优势,然后详细探讨了石墨烯对铝基复合材料性能的影响、制备方法及工艺优化、性能测试及表征分析以及石墨烯分散度和界面相容性研究。

接着讨论了石墨烯增强铝基复合材料的应用领域拓展及展望。

最后总结了石墨烯增强铝基复合材料的发展趋势,提出了未来研究方向,并强调了其重要性及意义。

研究表明,石墨烯对铝基复合材料性能的提升具有重要价值,未来有望在航空航天、汽车制造等领域得到广泛应用。

【关键词】石墨烯增强铝基复合材料,研究进展,性能影响,制备方法,工艺优化,性能测试,表征分析,分散度,界面相容性,应用领域,发展趋势,未来研究方向,重要性,意义。

1. 引言1.1 石墨烯增强铝基复合材料的研究背景石墨烯增强铝基复合材料是一种新型的复合材料,具有在轻量化、强度、硬度、导电性和导热性方面优秀的性能,引起了广泛的研究兴趣。

铝是一种轻质、耐腐蚀的金属材料,被广泛应用于航空航天、汽车制造、电子设备等领域。

铝的力学性能相对较低,容易发生塑性变形和疲劳破坏,限制了其应用范围。

1.2 石墨烯在复合材料中的应用优势1. 高强度:石墨烯具有出色的机械性能,是世界上最强硬的材料之一,比钢强度还高。

将其添加到铝基复合材料中可以显著提高复合材料的强度和硬度。

2. 轻质:石墨烯的密度极低,仅为铝的0.77%,因此可以有效降低复合材料的密度,使其更轻便。

3. 良好的导热性和导电性:石墨烯具有优异的导热和导电性能,可以改善复合材料的导热和导电性能,提高其传热和传电效率。

4. 耐腐蚀性:石墨烯具有优秀的耐腐蚀性,可以有效延长复合材料的使用寿命。

综合以上优势,石墨烯在铝基复合材料中的应用具有巨大的潜力,可以为各个领域提供更高性能的材料解决方案。

2. 正文2.1 石墨烯对铝基复合材料性能的影响石墨烯具有优异的导热性和导电性,能够有效提高铝基复合材料的导热性和导电性能。

铝基复合材料研究进展

铝基复合材料研究进展

铝基复合材料研究进展文章将从铝基复合材料强化机理等方面,介绍铝基复合材料的在目前阶段的研究进展,及铝基复合材料强化方面的研究与应用。

希望通过文章的介绍,对相关工作提供参考。

标签:铝基复合材料;强化;基体前言随着现代科技水平的迅速发展,在航空航天、军用以及其它高科技领域传统材料已经很难满足其需要。

复合材料以其综合性能优异的特点逐步开始代替传统单一材料。

然而一些纤维增强树脂基在某些特定的空间环境下使用时容易产生老化。

在此方面,铝基复合材料具有高比强度、比模量、低热膨胀系数,较高的高温力学性能以及抗疲劳、耐磨损等优良性能,特别是颗粒、短纤维、晶须等非连续增强的铝基复合材料,因其良好的可再加工性及尺寸稳定性备受关注,成为近年来研究最多的复合材料。

1 金属基复合材料强化机理由于材料的强度是一个极度结构敏感性质,金属基复合材料的变形过程极具复杂性,其所具有的强化机制在现有的模型只能在一定程度上较好地诠释金属基复合材料时的强化规律,不能完全得出具体的强化数值。

金属基复合材料的强化机理主要有以下方面:1.1 增强体承载与载荷传递金属基复合材料的主要强化机制是载荷从基体向增强体传递的一个过程,增强体是主要起的是一个承担者作用。

目前相关的模型举例很多,最简单的是混合定律,该模型未考虑增强体形状、分布等其他因素对材料的影响,因此预测强度与实际相比相差较大。

Nardone和Prewo的改进剪切套模型是根据载荷在基体与增强体界面上传递的机制建立的,从该模型计算出的所得的屈服强度值可确认比实验所得屈服强度值约高10%。

1.2 基体中的位错强化金属的热膨胀系数一般要比增强相的热膨胀系数大很多,因此在金属基复合材料的制作生产和热处理过程中,在基体材料中会形成高密度的位错,导致强化。

位错模型主要包括:Orowan模型;林位错硬化模型;弹性栓模型;冲孔模型,且Orowan机制可以较好的预测材料的强度值,对材料强度的预判有着明显的帮助。

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展

石墨烯增强铝基复合材料的研究进展1. 引言1.1 石墨烯增强铝基复合材料的研究进展本文将就石墨烯在铝基复合材料中的应用、石墨烯增强铝基复合材料的制备方法、石墨烯增强铝基复合材料的性能研究、石墨烯增强铝基复合材料在航空航天领域的应用以及石墨烯增强铝基复合材料的未来发展方向进行探讨。

通过对这些方面的研究和分析,可以更全面地了解石墨烯增强铝基复合材料的研究进展,为未来该领域的研究提供重要参考。

2. 正文2.1 石墨烯在铝基复合材料中的应用石墨烯在铝基复合材料中的应用可以增强材料的力学性能。

石墨烯具有极高的强度和刚度,能够显著提高铝基复合材料的抗拉强度和硬度,使其在高强度要求的领域有更广泛的应用。

石墨烯还能有效提高铝基复合材料的耐磨性和耐腐蚀性能,延长材料的使用寿命。

石墨烯在铝基复合材料中的应用还可以提高材料的热导率。

石墨烯具有极好的热导性,能够有效提高铝基复合材料的导热性能,使其在高温应用环境中表现更优异。

石墨烯在铝基复合材料中的应用对材料的力学性能和热导率都有显著的提升作用,为铝基复合材料的性能优化和应用拓展提供了新的思路和方法。

2.2 石墨烯增强铝基复合材料的制备方法石墨烯增强铝基复合材料的制备方法是研究该材料的关键步骤之一。

目前常见的制备方法包括机械合金化、化学气相沉积、热压和挤压等技术。

机械合金化是较为简单的一种方法,通过球磨或搅拌等机械方法将石墨烯加入到铝粉中,并随后进行热压或挤压,使其形成均匀的复合材料。

化学气相沉积是将石墨烯在气相中沉积到铝基物质表面,通过化学反应形成复合结构。

这种方法可以控制石墨烯的厚度和分布,从而调控复合材料的性能。

热压和挤压技术是将经过预处理的石墨烯和铝粉放入模具中,经过高温高压条件下进行压制,使其形成致密均匀的复合材料。

这种方法可大规模生产高质量的复合材料。

不同的制备方法对于石墨烯增强铝基复合材料的性能会产生不同的影响,因此在选择制备方法时需要根据具体要求和应用场景进行合理选择,并不断优化和改进制备工艺,以提高复合材料的性能和应用性。

铝基复合材料

铝基复合材料

内容摘要本次原位铝基纳米复合材料课程设计主要包括四个任务,即原位铝基纳米复合材料在国内外的应用和研究现状,原位铝基纳米复合材料的制备技术,原位铝基纳米复合材料的性能(其中包括力学性能,磨损性能,热学性能,和蠕变性能)以及原位铝基纳米复合材料制备及应用中存在的关键技术问题。

目录一.原位铝基纳米复合材料的国内外应用及研究现状 (3)1.1 原位铝基复合材料的定义 (3)1.2 原位铝基纳米复合材料在国内外的应用 (3)1.3 原位铝基纳米复合材料的研究现状 (4)二.原位铝基纳米复合材料制备技术 (5)2.1气-液反应制备工艺 (5)2-2 固-液反应制备工艺 (7)2-3固-固反应制备工艺 (7)三. 原位铝基纳米复合材料的性能 (8)3.1 力学性能 (8)3.2 磨损性能 (9)3.3 热学性能 (12)3.4 蠕变性能 (16)四.原位铝基复合材料制备及应用中存在的关键技术问题 (17)参考文献 (17)一.原位铝基纳米复合材料的国内外应用及研究现状1.1 原位铝基复合材料的定义复合材料(composite materials)是由两种或两种以上的材料通过先进的材料制备技术组合而成的性能优异的新材料。

一般来说,复合材料由基体和增强材料组成。

它既能保留原组成材料的主要特色,并通过复合效应获得原组分所不具备的性能。

[1]金属基复合材料(MMCs)是以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或陶瓷颗粒组合为增强相的非均质混合物。

在金属基复合材料中,铝基复合材料具有更高的比强度、比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料,不仅具有各向同性特征,而且具有可加工和价值低廉的优点。

在金属基复合材料制备过程中,往往会遇到增强材料与金属基体之间的相容性问题。

如果增强体能从金属基体中直接原位生成,则相容性问题可以得到很好的解决。

因为原位生成的增强体与金属基体界面结合良好,生成相的热力学稳定性好,不存在基体与增强体之间的润湿和界面反应等问题。

铝基复合材料的研究发展现状与发展前景

铝基复合材料的研究发展现状与发展前景

铝基复合材料的研究发展现状与发展前景铝基复合材料的研究发展现状与发展前景摘要:铝基复合材料具有很高的比强度、比模量和较低的热膨胀系数,兼具结构材料和功能材料的特点。

介绍了铝基复合材料的分类、制造工艺、性能及应用等几个方面,最后对铝基复合材料的研究状况及其发展趋势。

做了简单的介绍。

关键词:铝基复合材料,制造工艺,性能,应用Abstract:Aluminum matrix composite was in capacity of structure materials and function materials for its high specific strength and high specific modulus and low coefficient of thermal expansion.The classification of aluminum matrix composite were introduced and the preparation process、properties and application of aluminum matrix composite was expounded,and then the domestic research status and future development trends of the composite were summed up.Key words:aluminum matrix composites,preparation process,properties,application. 1.发展历史1.1概述复合材料是由两种或两种以上物理和化学性质不同的材料通过先进的材料制备技术组合而成的一种多相固体材料。

根据基体材料不同,复合材料包括三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)[1]。

粉末冶金法制备铝基复合材料的研究

粉末冶金法制备铝基复合材料的研究

粉末冶金法制备铝基复合材料的研究一、本文概述本文旨在探讨粉末冶金法制备铝基复合材料的工艺过程、性能特点及其应用前景。

铝基复合材料作为一种新型的高性能材料,以其轻质、高强、耐磨、抗腐蚀等特性在航空航天、汽车制造、电子信息等领域具有广泛的应用价值。

粉末冶金法作为一种制备铝基复合材料的常用方法,具有工艺简单、成本低廉、材料利用率高等优点,因此受到了广泛的关注和研究。

本文首先介绍了铝基复合材料的基本概念和分类,概述了粉末冶金法制备铝基复合材料的原理和方法。

接着,详细分析了粉末冶金法制备过程中影响铝基复合材料性能的关键因素,包括粉末的选择、复合剂的添加、成型工艺、烧结工艺等。

在此基础上,本文进一步探讨了粉末冶金法制备铝基复合材料的性能特点,如力学性能、热学性能、电磁性能等,并分析了其在实际应用中的潜力和挑战。

本文总结了粉末冶金法制备铝基复合材料的研究现状和发展趋势,提出了未来研究的重点和方向。

通过本文的研究,旨在为铝基复合材料的制备和应用提供理论支持和实践指导,推动铝基复合材料在更多领域的应用和发展。

二、铝基复合材料的理论基础铝基复合材料作为一种先进的轻质高强材料,其理论基础主要建立在金属学、材料科学、复合材料力学以及粉末冶金学等多个学科的基础上。

铝基复合材料以其低密度、高比强度、良好的导热和导电性、出色的抗腐蚀性以及优异的可加工性而广受关注。

铝基复合材料的性能提升主要得益于增强相的选择与加入。

增强相可以是颗粒状、纤维状或晶须状,其种类和性能直接影响复合材料的力学、热学、电磁等性能。

常见的增强相包括SiC、Al₂O₃、TiC等陶瓷颗粒,以及碳纤维、玻璃纤维等。

这些增强相在铝基体中通过阻碍位错运动、提高基体强度等方式,显著提升了复合材料的综合性能。

铝基复合材料的制备工艺对其性能有着至关重要的影响。

粉末冶金法作为一种重要的制备工艺,通过控制粉末的粒度、形貌、分布以及烧结过程中的温度、压力等参数,可以实现对复合材料微观结构和性能的精确调控。

2024年颗粒增强铝基复合材料市场发展现状

2024年颗粒增强铝基复合材料市场发展现状

2024年颗粒增强铝基复合材料市场发展现状摘要颗粒增强铝基复合材料具有优异的力学性能和热稳定性,广泛应用于汽车、航空航天、电子等领域。

本文通过对2024年颗粒增强铝基复合材料市场发展现状的研究,分析了其市场规模、应用领域、发展趋势等方面的情况,并对未来的发展前景进行了展望。

1. 引言颗粒增强铝基复合材料是一种由铝基合金基体和颗粒增强相组成的复合材料,具有良好的力学性能、热稳定性和耐腐蚀性。

近年来,随着汽车、航空航天、电子等行业的快速发展,颗粒增强铝基复合材料市场也得到了进一步拓展。

2. 市场规模目前,全球颗粒增强铝基复合材料市场规模逐年扩大。

根据市场调研机构的数据显示,2019年全球颗粒增强铝基复合材料市场规模约为xx亿美元,预计到2025年将达到xx亿美元。

这主要得益于颗粒增强铝基复合材料在汽车轻量化、航空航天结构件和电子领域的广泛应用。

3. 应用领域颗粒增强铝基复合材料在各个领域都有广泛的应用。

在汽车行业中,颗粒增强铝基复合材料被用于制造汽车发动机、底盘和车身结构,可以显著降低汽车整体的重量,提高燃油经济性和车辆性能。

在航空航天领域,颗粒增强铝基复合材料被用于制造飞机机翼、结构件和发动机部件,具有重量轻、强度高的优势。

在电子行业中,颗粒增强铝基复合材料被用于制造散热器、芯片散热模块等,具有优异的导热性能和机械强度。

4. 发展趋势颗粒增强铝基复合材料市场发展的趋势主要表现在以下几个方面:4.1 技术创新随着科技的进步,颗粒增强铝基复合材料的生产工艺和性能不断得到改进。

新的制备技术和增强相材料的研发为颗粒增强铝基复合材料的市场发展提供了更广阔的空间。

4.2 产业链优化颗粒增强铝基复合材料产业链日趋完善,包括原材料供应、加工制造和产品销售等环节的优化,将进一步降低生产成本,提高产品质量。

4.3 应用拓展颗粒增强铝基复合材料在航空航天、电子以外的领域也有较大的应用潜力。

例如,能源领域的发电设备和传输线路等都可以采用颗粒增强铝基复合材料,以提高设备的效率和可靠性。

铝基复合材料的研究进展(或现状)

铝基复合材料的研究进展(或现状)

铝基复合材料的研究进展(或现状)姓名:苑光昊摘要:本文介绍了铝基复合材料的设计与制备、性能、应用,重点讲述了国内外的研究现状和发展趋势。

关键词:设计与制备性能应用研究现状及发展复合材料是应现代科学发展需求而涌现出具有强大生命力的材料,在金属基复合材料中表现尤为明显。

金属基复合材料有铝基、镍基、镁基、抬基、铁基复合材料等多种,其中铝基复合材料发展最快而成为主流。

本文主要对国内外铝及复合材料的研究现状进行简要评述,主要包括材料的设计与制备、界面、性能、应用等方面。

一、铝基复合材料的设计与制备1基体材料的选择铝基复合材料的基体可以是纯铝也可以是铝合金,其中采用铝合金居多。

工业上常采用的铝合金基体有Al-Mg、Al-Si、Al-Cu、Al-Li 和Al-Fe等。

如希望减轻构件质量并提高刚度,可以采用Al-Li合金做基体【1】;用高温的零部件则采用Al-Fe合金做基体【2】;经过处理后的Al-Cu合金强度高、且有非常好的塑性、韧性和抗蚀性、易焊接、易加工,可考虑作这些要求高的基体【3】。

材料的使用要求是选用基体金属材料的首要条件,如要求材料具有良好的耐磨性、耐热性及低的膨胀系数时(活塞材料),选择基体为Al-Si合金;为进一步减轻零部件的重量,可考虑选用Al-Li合金作为基体;为了提高材料的高性能,可选用Al-Fe系合金。

2铝基复合材料增强体选择针对材料的具体应用,增强体首先具有明显提高金属基体应具备的特殊性能,如作为结构材料时,增强体应具有高强度、高弹性模量、低密度等性能。

而作为耐磨材料时,硬度、耐磨性是主要选择依据。

由于金属基体有良好的浸润性可保证增强体与基体金属良好复合和均匀分布B、Al2O3、Si、和C纤维等是最早的纤维材料,该材料的性能优异,但高昂的成本限制了它们的广泛发展及应用。

但在航空及军事等方面有研究应用潜力。

根据增强体的形态可将其分为纤维、颗料、晶须三种类型,也有采用金属丝作为铝基复合材料的增强体,但采用极少。

铝基复合材料的发展现状与研究

铝基复合材料的发展现状与研究

铝基复合材料的发展现状与研究铝基复合材料的发展现状与研究摘要:随着现代生产技术的发展,对材料的性能要求越来越高,目前,铝基复合材料由于其优良的性能已经成为现时研究的热点。

阐述了铝基复合材料的基本性能及应用情况,总结了近几年关于铝基复合材料的主要研究成果与发展趋势。

关键词:铝基复合材料,材料性能,研究成果,趋势Development and progress of aluminiummatrix compositesTang nong-jAbstract:With the development of modern manufacturing technology, The material performance requirements more and more high,The development of aluminum matrix composite materials was reviewed with their properties. Espectively in accordance with the classes to which they belong. The fundamental property and application field of aluminum matrix composite were briefly introduced. The main research achievements and development were summarized in recent years. Meanwhile, the outlook of its development was put forward.Key words:aluminium matrix composites,material properties,researchfindings,trend复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。

铝基复合材料的发展现状及应用

铝基复合材料的发展现状及应用

四 其他增韧方法
1、自增韧 自增韧是通过引入添加剂或晶种来诱导Al2O3晶粒异向 生长成为板状、棒状等形貌, 从而产生类晶须或短纤维的增 韧效果, 其增韧机制主要为晶粒拔出、裂纹桥接、裂纹偏转 等。
2、ZrO2 相变增韧
ZrO2 从t 相( 正方相) 向m相( 单斜相) 转变时 会产生约5%的体积膨胀, 以其作为Al2O3 陶瓷的增韧相, 将在基体内产生微裂纹和残余应力等, 并产生韧化效果。 其增韧机理主要有: 裂纹尖端应力场诱发t m相变产生 的体积膨胀和断裂表面吸收能量, ZrO2 相变产生的残 余压应力阻碍裂纹扩展并使其转向和分叉,相变诱发显 微裂纹, 细化晶粒等。
1、 颗粒增强铝基复合材料的组分
颗粒增强铝基复合材料的组分包括基体和增强体。
基体的作用是: 固结增强体、传递和承受载荷、赋予 复合材料以特定的形状。基体是颗粒增强铝基复合材料的 主要承载组分。一般选用高强度的铝合金作基体。 根据软硬程度, 颗粒增强体可分为两种。一种是硬质 的陶瓷颗粒, 这种复合材料主要用于制作航空航天领域的 结构件、电子壳体、汽车发动机和其它零部件瓦和 机座。
5、面临的问题及发展趋势
纤维增强铝基复合材料不但增强纤维价格昂贵, 而且制造工艺独特、成本高。这样就极大地限制了它 的推广和应用。因此, 为了进一步推广纤维增强铝基 复合材料的应用, 必须努力降低成本。同时还要对纤 维表面涂层技术、合金元素对于界面的影响, 以及界 面对性能的影响等问题进一步展开研究。
小组成员 无机1班:常静 崔红梅 张召娟 无机2班:李小丽 辛明廉 王鹏 王文通

绪论
一 铝基复合材料简单介绍
二 颗粒增强铝基复合材料的发展、应用
三 纤维增韧的发展现状及应用 四 其他增韧方法 五 参考文献

以铝合金为基体复合材料的发展现状及其应用

以铝合金为基体复合材料的发展现状及其应用

• 颗粒增强铝基复合材料国内研究现状
• 我国对金属基复合材料的研究和发展非常重规,国家 “863”计划将金属基复合材料作为新材料的一个重点予 以支持。
• 在颗粒增强铝基复合材料的制备技术、组织性能、应用研 究等方面的研究工作取得了突破性迚展。国内以碳化硅颗 粒增强铝基复合材料体系为主,围绕界面不组织控制、颗 粒分布均匀性等关键问题,开发了粉末冶金、搅拌铸造、 压力浸渗和无压浸渗等制备方法,制备的复合材料性能达 到了国际先迚水平。
• 碳纤维是将有机纤维烧结后得到的一种含碳量在90% 以 上的纤维[ 8] 。碳纤维质轻而强度高, 具有良好的润滑及耐 磨性能, 其价格约为硼纤维的十分之一。碳纤维的制备包 括原料纤维制造、纤维稳定处理和高温碳化及石墨化烧结 等工艺过程。常用的碳纤维有PAN 类、沥青类和人造丝 类。其中PAN类碳纤维性能较好, 但价格较高, 主要用于对 材料性能要求极高的航空航天领域。 • 3 .碳化硅纤维 • 碳化硅纤维因其高的抗拉强度和弹性模量、良好的高温强 度和耐热性、不金属间润湿性极好且纤维直径小等优点, 完全有可能满足2 000 e 耐温性能的要求[ 10] 。碳化硅纤 维的制备方法主要有两种: 一是利用CAD 方法将碳化硅沉 积在钨丝戒碳纤维表面以得到碳化硅纤维; 二是以有机硅 化合物为原料,绊过热处理和烧结后而获得碳化硅连续纤 维。
• 3 在核能领域 • 先迚国家的核反应堆采用DWA Technologies,Inc. 生产 的BORTEC# B4Cp /Al 复合材料和Ceradyne,Inc. 生产 的BORAL#B4Cp /Al 复合材料制造核废料处理容器。 • 4 在电子领域 • 美国Motorola,Inc Semiconductor Products Sector采用 dmc2 Electronic Components 公司的SiCp /Al 复合材料应 用于卫星电子基片、散热基片,PCC、CeramicsProcess Systems、LEC 等多家公司研制生产封装、导热材料,应 用量较大。

铝基材料的研究与应用

铝基材料的研究与应用

铝基材料的研究与应用铝合金是一种常见的轻金属材料,因其良好的强度、耐热性以及优良的抗腐蚀性而受到广泛的应用。

近年来,随着技术的不断发展,铝基材料的应用领域越来越广泛。

本文将从铝基材料的研究与应用两个方面探讨其发展趋势。

一、铝基材料的研究(一)现状分析目前,铝基材料的应用领域较为广泛,如航空航天、汽车制造、建筑等。

其中,由于航空航天行业对材料强度、韧性要求较高,因此航空航天领域对铝基材料评价标准更加严格。

对比国外市场,我国在铝基材料的研究方面还有很大的提升空间。

在研发中,需要注重注重材料的自主知识产权和技术革新。

(二)未来趋势1.高强铝合金高强铝合金主要应用于高速列车、航天器、航空航天器等领域,这些领域对材料的强度和塑性的要求非常高。

未来,高强铝合金的重点研究方向主要是实现更高的强度和更好的热处理稳定性。

2.铝合金复合材料铝合金复合材料是一种新型的复合材料,由于其高强度、低密度、耐腐蚀等优点,其应用前景广阔。

未来,铝合金复合材料的研究重点是实现材料的高性能和低成本。

3.高温铝合金高温铝合金主要应用于航空航天、火箭发射、航空引擎等领域,这些领域对材料的能够承受高温环境的能力很强。

未来,高温铝合金的重点研究方向主要是提高其高温性能和高温下的稳定性。

二、铝基材料的应用(一)现状分析目前,铝基材料的应用范围越来越广,主要应用于汽车、飞机、建筑等领域。

随着人们对轻量化需求的不断增加,铝基材料的应用前景非常广阔。

在建筑领域,铝合金的应用主要集中在门窗、隔断和幕墙等领域。

在汽车制造领域,铝合金广泛运用于车门、车顶、车身等部位。

(二)未来趋势1.运用更广随着轻量化产业的快速发展,铝基材料作为重要的轻量化材料之一,其应用领域将越来越广泛。

未来,铝基材料的应用将不仅限于传统领域,还将应用于新领域。

2.涉及更多行业未来,铝基材料不仅将会被应用于传统的航空航天、船舶、汽车等行业,更多新领域也会将铝基材料作为材料首选。

随着中央空调、光伏、电力设备等领域的不断发展,铝基材料的应用也会随之增加。

铝基新材料行业报告

铝基新材料行业报告

03
产业链结构及竞争格局分析
上游原材料供应情况评估
铝土矿资源储量及开采情况
全球铝土矿资源丰富,但分布不均,主要集中在澳大利亚、印度尼西亚、越南、马来西亚 等国家。中国铝土矿资源相对匮乏,开采成本较高,因此国内铝基新材料生产企业在原材 料供应上存在一定压力。
氧化铝市场供需状况
氧化铝是铝基新材料的主要原材料之一,其市场供需状况直接影响铝基新材料的价格和生 产成本。目前,全球氧化铝市场供需基本平衡,但局部地区存在供应紧张的情况。
能源供应及价格走势
铝基新材料生产过程中的能源消耗较大,能源供应的稳定性和价格走势对企业生产成本具 有重要影响。近年来,随着全球能源结构的转型和新能源的发展,能源价格呈现波动下行 的趋势,有利于铝基新材料生产企业降低生产成本。
中游生产制造企业竞争格局剖析
企业数量及产能分布
目前,全球铝基新材料生产企业 数量众多,产能分布较为分散。 中国是全球最大的铝基新材料生 产国,拥有众多生产企业,但产 能集中度有待提高。
热点区域
关注具备产业基础、资源优势的区域,如山 东、广东、江苏等地,这些地区铝基新材料 产业链完善,上下游企业众多,投资机会丰 富。
项目推荐
重点关注高附加值、高技术含量的铝基新材 料产品,如高性能铝合金、铝基复合材料等。 同时,关注与新能源、汽车轻量化等领域相 关的铝基新材料项目。
潜在风险因素识别及防范策略制定
建议
铝基新材料企业应密切关注国家政策走向和 行业标准变化,及时调整经营策略和发展方 向。同时,企业应加大研发投入、加强技术 创新和人才培养,提高产品质量和技术水平。 此外,企业还应加强环保治理和安全生产管 理,确保生产过程中的安全和环保问题得到
有效解决。

分析铝基复合材料的研究现状及发展论文

分析铝基复合材料的研究现状及发展论文

分析铝基复合材料的研究现状及开展论文(一)铝基复合材料的概述铝基复合材料是具有很大实用性的一种复合材料。

纤维增强铝基复合材料和颗粒增强铝基复合材料是根据增强体的不同而区别开的两种铝基复合材料。

其增强相的形态通常为长纤维、短纤维、晶须以及颗粒四种。

除了长纤维之外的另外三种增强相所组成的复合材料为非连续增强铝基复合材料;长纤维增强的铝基复合材料的优越性表达在纤维长度性能上。

碳化硅铝基复合材料中最常见的增强相,强度、硬度与模量都非常高,所以关于耐磨和承载等构造件中可以采用碳化硅铝基复合材料。

除此之外,还有具备特殊性能的增强相,例如金刚石,其导热效果非常显著,可应用于需要高导热的铝基复合材料。

(二)铝基复合材料的主要性能简介1. 耐磨性。

铝基复合材料的耐磨性是非常好的,这也是它最突出的性能之一。

在诸多研究中发现复合材料的摩擦系数与颗粒的体积分数息息相关,这是王宝顺等人针对磨损性能研究的结论,除此之外,还可以从结果显示中发现其颗粒的尺寸大小与铝基复合材料的摩擦系数仅仅有很小的`影响。

2. 塑性与模量和强度性能之间的联系。

铝基复合材料的塑性与增强体是否参加以及模量与强度的提升或降低有关,如果在参加增强体,模量和强度都提高的情况下,铝基复合材料的塑性就会降低。

也就是说其塑性的上下与强度与模量呈反比趋势。

得出规律性结论之后,就可以将金属的优化通过增强体与其他性能的改变来加工改造成产品所需要的高性能材料。

3. 疲劳与断裂韧性。

铝基复合材料的疲劳强度比较高,而断裂韧性却不是很好。

增强物的特性、分布以及状态都有可能影响铝基复合材料的疲劳强度和断裂韧性。

其中,断裂韧性与界面结合的状态严密相连,界面结合状态越好,断裂韧性也随之增强。

铝基复合材料的疲劳与断裂韧性也是在实际应用中需要考量的两大性能。

(三)铝基复合材料的制备采用连续性纤维增强的复合材料和颗粒增强的复合材料是铝基复合材料主要研究的两个模块。

长纤维增强铝基复合材料的制备:1. 铝/ 碳化硅复合材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2颗粒、晶须或短纤维增强的铝基复合材料
用粉末冶金方法制造这种类型的铝基复合材料有很多优点,从七十年代起就有美国DWA复合材料专业公司等开始研制,现在美国的DWA复合材料专业公司、ARCO化学公司所属的先进复合材料分公司(ACMC)和INCO公司所属Novamet工厂以及英国石油研究中心(British Petroleum Researeh Center)等都已研制成功,投入生产,初步达到商品化。DWA和ACMC公司都把出产的粉末冶金铝基复合材料分为结构材料级、电子材料级、仪表材料级和光学材料级四类。性能都很优良[9]。如ACMC公司生产的SXA结构级材料,30 -35vol%SiC/2024Al复合材料,抗拉强度达800MPa,屈服强度达690MPa,弹性模量则高于150GPa,都大大高于基体合金,而密度在2.89g/m左右,热膨胀系数约在8~10x10-5/℃之间,都低于基体[16],很适合用作航空航天的结构材料。
1.3热性能
增强体和基体之间的热膨胀失配在任何复合材料中都难以避免,为了有效降低复合材料的热膨胀系数,使其与半导体材料或陶瓷基片保持热匹配,常选用低膨胀的Al-Si合金作为基体和采用不同粒径的颗粒制备高体积分数的复合材料。张强等人[5]选用粒径为20和60μm的α-SiC颗粒,基体用LD11铝硅共晶合金,采用挤压铸造的方法实现了70%的体积分数。结果表明,SiCP/Al复合材料的导热率达到151W/m·℃,高于基体的导热率(基体的导热率为140W/m·℃),并且他们在等比表面积的基础上,引入等效颗粒直径的概念(EMA)[6],基于EMA方法,可以较为准确地预测两种粒径颗粒混合增强铝基复合材料的导热率,这为以后进行铝基复合材料导热率的研究奠定了基础。
476
92
2.3
SiCp/ZL101
20
375
101
1.64
CF/Al
26
387
12
1.2疲劳与断裂韧性
铝基复合材料的疲劳强度和疲劳寿命一般比基体金属高,这与刚度及强度的提高有关,而断裂韧性却下降。影响复合材料疲劳性能和断裂的主要因素有增强物与基体的界面结合状态、基体与增强物本身的特性和增强物在基体中的分布等。界面结合状态良好,可以有效地传递载荷,并阻止裂纹扩展,提高材料的断裂韧性[4]。目前对复合材料疲劳断裂过程的研究分为疲劳裂纹的萌生和扩展两个方面。现有的研究工作在实验的基础上得出疲劳裂纹萌生于SiC附近。SiC与铝合金界面或SiC晶须端部附近的基体中,也观察到基体中大块夹杂物破碎导致裂纹萌生。再者,由于使用的绝大部分颗粒是在加工过程中从大的颗粒上碎裂下来的,碎裂的颗粒存在于复合材料中,从而提供了裂纹萌生的位置。裂纹的扩展取决于裂纹尖端的微结构和宏观上最大应变方向[5]。
2.3熔铸法
熔铸法制造铝基复合材料就是把增强物晶须或短纤维—颗粒、加入并均匀地散在熔化的铝液中,然后浇铸凝固成形[7],这工艺看来简单,实际上不容易,因通常非金属增强物与基体合金性质差别很大。往往相互不润湿,倾向于排斥和分离。而且二者常有比重差。增强物有在铝液内上浮或下沉的偏析倾向。
2.4反应自生成法
2.2粉末冶金法
用粉末冶金法制造铝基复合材料的工艺过程是这样的。先将增强物(通常是SiC、A12O3等材质的颗粒、晶须或短纤维)和激冷微晶铝合金粉用机械手段均匀混合,进行冷压实,然后加热去气,在液相线与固相线之间进行真空热压烧结,就得到了复合材料坯料,再将坯料进行热挤压等热压力加工就可制成所要的零件。或者取消对混合粉料的热压,把混合粉料密封于铝包套内,直接进行热挤压,也可成功地制造出致密的铝基复合材料[7]。
3.2界面的优化
由前述可知,控制界面反应可以优化界面。控制界面反应的方法有增强体预处理、基体金属合金化以及优化制备工艺参数等。
优化工艺参数包括对制备的温度、反应的时问、压力、气氛等的控制。过低的制备温度导致增强体和基体金属的界面活性太低,从而不能良好润湿;而过高的制备温度会造成过度界面反应的发生[12]。
Tangnong-j
Abstract:With the development of modern manufacturing technology, The material performance requirements more and more high,The development of aluminum matrix composite materials was reviewed with their properties. Espectively in accordance with the classes to which they belong. The fundamental property and application field of aluminum matrix composite were briefly introduced. The main research achievements and development were summarized in recent years. Meanwhile, the outlook of its development was put forward.
反应自生成法分为固态自生成法和液态自生成法,两者生成法是将预期构成增强相的两种组分均匀混合。加热到基体熔点以上温度,当达到反应温度时,两元素发生放热反应,温度迅速升高,在基体溶液中生成弥散颗粒增强物。液相反应自生成法是在基体熔体中加入能反应生成预期增强颗粒的元素或化合物,在一定温度下发生反应,生成细小、弥散、稳定的颗粒增强物,形成自生增强铝基复合材料[8]。
表1不同铝基复合材料的力学性能
Tab.1 The mechanical properties of aluminum matrix composite
增强相/基体
增强相含量(vol%)
拉伸强度
/Mpa
弹性模量
/GPa
伸长率(%)
Al2O3/Al-1.5Mg
20
226
95
5.9
SiC/Al-4Cu
15
2.5半固态搅拌复合制造法
金属熔体的搅拌温度控制在液相线与固相线之间,在搅拌过程中,将增强物颗粒加入半固态铝合金熔体,通过熔体中的金属粒子把增强物颗粒带入熔体中。该工艺优点在于通过部分凝固粒子对增强体的分散和捕捉作用,可将润湿性不好的增强颗粒加入到铝合金熔体中,并能防止颗粒的聚集和上浮,而使之能均匀分散[9]。此法为目前最成熟最具竞争力也是工业化规模生产铝基复合材料的最主要的方法。
铝基复合材料的发展现状与研究
摘要:随着现代生产技术的发展,对材料的性能要求越来越高,目前,铝基复合材料由于其优良的性能已经成为现时研究的热点。阐述了铝基复合材料的基本性能及应用情况,总结了近几年关于铝基复合材料的主要研究成果与发展趋势。
关键词:铝基复合材料,材料性能,研究成果,趋势
Development and progress of aluminium matrix composites
3基复合材料的界面
3.1界面结构、界面反应与性能的关系
界面是连接基体和增强体的“桥梁”。金属基复合材料宏观性能的好坏在很程度上取决于基体和增强体之间的界面结合状况[10]。一般情况下,随着反应程度增加,界面结合强度亦增加,但由于界面产物多为脆性物质,而当界面层达到一定厚度时,界面上的残余应力可使界面破坏[11]。并且过度的界面反应可能损伤纤维,使其强度降低。
4.3碳管纳米增强铝基复合材料
纳米材料的尺寸非常细小(1~100 nm),形状多为规则的近球状,因此,在铝基复合材料的制备中以纳米级颗粒作为增强相,能改善增强相与基体的结合界面,提高结合强度,进而提高铝基复合材料的力学性能和理化性能等。随着碳纳米管(CNTs)的出现和纳米晶材料研究的深入,为复合材料性能的进一步提高提供了一个新的途径[17]。CNTs具有极小的尺度及优异的力学性能,其封闭中空管状结构具有良好的稳定性,并且具有优异的力学性能,因此,碳纳米管作为一维纳米晶须增强材料在复合材料中具有重要的应用价值。
近几十年来,经过各国科学家的持续不断的努力研究,铝基复合材料得到了异乎寻常的发展。不仅探索和改进了如上所述的很多制造工艺和设备,试制出各种类型的铝基复合材料,包括连续纤维增强的和颗粒、晶须、短纤维增强的。而且在美、日、加拿大等一些发达国家已投入不同规模的批量生产,开始作为商品供应市场。并已在航空航天工业、汽车工业、运动器材等方面得到应用[14]。
2制备工艺
金属基复合材料的制备工艺较复杂。由于金属熔点较高,需要在高温下操作,同时,不少金属对增强体表面的润湿性很差在高温下很活泼,易于多种增强体发生反应。铝基复合材料可用固态扩散法压制,也可用粉末冶金和铸造等如下几种方法制造。
2.1固态扩散法
这是制造连续纤维增强铝基复合材料的传统方法。这方法主要有二步,第一步是先把纤维或经过预浸处理因而包覆有铝的复合丝与基体合金的箔片细丝有规则地排列和堆叠起来。第二步是通过加热加压使他们紧密地扩散结合成为整体。为了防止铝合金在加热加压过程中氧化,热压必须在真空或保护气氛下进行。用固态扩散法制造的铝基复合材料往往具有很高的质量和性能,如美国特殊材料公司就用本方法制成的SiC连续纤维铝基复合材料的工字梁和板材做成一种先进战斗机的尾翼,性能良好。但本方法工艺复杂,纤维的排列堆叠要很精细而繁重的手工操作,热压过程又要求很严格的工艺参数控制和环境条件。所以用这方法进行生产,难度较大,成本很高,有很大的局限性。
Key words:aluminium matrix composites,material properties,research
findings,trend
复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。复合材料包括三类:聚合物基复合材料(PMC)、金属基复合材料(MMC)和陶瓷基复合材料(CMC)[1]。在金属基复合材料中,铝基复合材料具有比基体更高的比强度,比模量和低的热膨胀系数,尤其是弥散增强的铝基复合材料不仅具有各向同性特征,铝基复合材料是以金属铝及其合金为基体,以金属或非金属颗粒、晶须或纤维为增强相的非均质混合物。在金属基复合材料中占主导地位。而且具有可加工和价格低廉等优点。
相关文档
最新文档