(word完整版)相似三角形六大证明技巧(提高类技巧训练).doc

合集下载

第四讲:相似三角形证明的方法与技巧.doc

第四讲:相似三角形证明的方法与技巧.doc

第五讲:相似三角形证明的方法与技巧A 字形,斜A 形,8字形(X 型),蝴蝶形,双垂直型, 旋转形双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项⑴△ACD ∽△CDB →AD:CD=CD:BD →CD2=AD •BD ⑵△ACD ∽△ABC →AC:AB=AD:AC →AC2=AD •AB ⑶△CDB ∽△ABC →BC:AC=BD:BC →BC2=BD •AB结论:⑵÷⑶得AC2:BC2=AD:BD ;结论:面积法得AB •CD=AC •BC →比例式 证明等积式(比例式)策略1、直接法:找同一三角形两条边,变化:等号同侧两边同一三角形 三点定形法2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换;⑵创造条件 ①添加平行线——创造“A ”字型、“8”字型②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略:遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换;两共线,上下比,过端平行条件边。

彼相似,我角等,两边成比边代换。

(3)等比代换:若dc b a ,,,是四条线段,欲证d c b a =,可先证得fe ba =(f e ,是两条线段)然后证d c fe =,这里把f e叫做中间比。

方法一:遇等积,化比例,同侧三点找相似 1.∠ABC=∠ADE .求证:AB ·AE=AC ·AD2.△ABC 中,AB=AC ,△DEF 是等边三角形,求证:BD•CN=BM•CE .3.等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。

求证:BP •PC=BM •CNEA B D E AB B A DECF E DA B C 321E DABC12FA 方法二:有射影,或平行,等比传递我看行1.在Rt △ABC 中,∠BAC=90°,AD ⊥BC 于D ,E 为AC 的中点,求证:AB •AF=AC •DF (换比法) 斜边上作高线,比例中项一大片2.如图,在ABCD 中,求证:BF EFFG BF(换比法)3.梯形ABCD 中,AD//BC ,作BE//CD,求证:OC2=OA.OE (换比法)方法三:四共线,看条件,其中一条可转换;1.Rt △ABC 中,四边形DEFG 为正方形。

相似三角形六大证明技巧

相似三角形六大证明技巧

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

五、等比三角形如果两个三角形的对应边成等比,那么这两个三角形相似。

这是因为等比关系可以保证两个三角形的形状相同。

六、共线相似如果两个三角形有一条边共线,且这条边上的两个点分别与另一个三角形的两个点对应,那么这两个三角形相似。

这是因为共线关系可以保证两个三角形的形状相同。

相似三角形六大证明技巧一、AA(角角)相似准则这是最常用的相似三角形证明方法。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

这是因为两个三角形如果两个角相等,那么第三个角也必然相等,从而保证了两个三角形的形状相同。

二、SAS(边角边)相似准则如果两个三角形的两边分别成比例,且夹角相等,那么这两个三角形相似。

这是因为两边成比例且夹角相等,可以保证两个三角形的形状相同。

三、SSS(边边边)相似准则如果两个三角形的三边分别成比例,那么这两个三角形相似。

这是因为三边成比例,可以保证两个三角形的形状相同。

四、HL(斜边和直角边)相似准则这个准则适用于直角三角形。

如果两个直角三角形的斜边和一条直角边分别成比例,那么这两个三角形相似。

这是因为斜边和直角边成比例,可以保证两个直角三角形的形状相同。

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结:1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2. 三边成比例的两个三角形相似.(SSS)3. 两边成比例且夹角相等的两个三角形相似. (SAS)4. 两角分别相等的两个三角形相似.(AA)5.斜边和一条直角边成比例的两个直角三角形相似(HL)模型一:反A型:如图,已知△ABC,∠ADE=∠C,若连CD、BE,进而能证明△ACD∽△ABE(SAS)试一试写出具体证明过程模型二:反X型:如图,已知角∠BAO=∠CDO,若连AD,BC,进而能证明△AOD∽△BOC.试一试写出具体证明过程应用练习:1.已知△ABC中,∠AEF=∠ACB,求证:(1)AE AB AF AC⋅=⋅(2)∠BEO=∠CFO,∠EBO=∠FCO(3)∠OEF=∠OBC,∠OFE=∠OCB2.已知在△ABC中,∠ABC =90∘,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长。

模型三:射影定理如图已知△ABC,∠ACB=90°,CH⊥AB于H,求证:2AC AH AB=⋅,2BC BH BA=⋅,,2HC HA HB=⋅,试一试写出具体证明过程相似三角形证明方法之射影定理与类射影相似三角形6大证明技巧相似三角形证明方法之反A型与反X型EDC BA模型四:类射影如图,已知2AB AC AD =⋅,求证:BD ABBC AC=,试一试写出具体证明过程 应用练习:1.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F 。

求证:2.如图,在ABC △中,AD BC ⊥于D ,DE AB ⊥于E ,DF AC ⊥于F ,连EF ,求证:∠AEF =∠C模型五:一线三等角如图,已知∠B =∠C =∠EDF ,则△BDE ∽△CFD (AA ),试一试写出具体证明过程应用练习:1.如图,△ABC 和△DEF 两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E 与△ABC 的斜边BC 的中点重合.将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1) 如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△BPE ≌△CQE ; (2) (2)如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当BP=a ,CQ=9a/2 时,P 、Q 两点间的距离(用含a 的代数式表示)2.△ABC 中,AB=AC ,D 为BC 的中点,以D 为顶点作∠MDN=∠B (1)如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅助线,写出图中所有与△ADE 相似的三角形.(2)如图(2),将∠MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交线段AC ,AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图(2)中,若AB=AC=10,BC=12,当△DEF 的面积等于△ABC 的面积的时,求线段EF 的长. 3.如图,点在线段上,点、在同侧,,,。

相似三角形证明技巧窍门(汇总整编)

相似三角形证明技巧窍门(汇总整编)

相似三角形证明技巧窍门(汇总整编)相似三角形证明技巧窍门(汇总整编)相似三角形是几何学中的一个重要概念,通过相似三角形的性质可以帮助我们解决很多几何问题。

本文将总结整理各种相似三角形的证明技巧,以便读者在解题时能够灵活运用。

一、相似三角形的定义相似三角形指的是具有相同形状但不同大小的两个三角形。

两个三角形相似的条件是它们对应角相等,并且对应边的比例相等。

二、边长比例证明技巧当我们需要证明两个三角形相似时,可以从边长的比例入手。

以下是几种常见的边长比例证明技巧:1. 直接证明:如果我们可以直接计算出两个三角形各边的比例,且它们相等,则可以直接得出两个三角形相似。

例:已知三角形ABC和DEF,且AB/DE = BC/EF = AC/DF,我们可以直接得出三角形ABC和DEF相似。

2. 两边成比例证明:当两个三角形的两边对应成比例,并且它们夹角相等时,可以得出两个三角形相似。

例:已知三角形ABC和DEF,且AB/DE = BC/EF,∠B = ∠E,我们可以得出三角形ABC和DEF相似。

3. 三边成比例证明:当两个三角形的三边对应成比例时,可以得出两个三角形相似。

例:已知三角形ABC和DEF,且AB/DE = BC/EF = AC/DF,我们可以得出三角形ABC和DEF相似。

三、角度证明技巧除了边长的比例证明技巧外,角度的证明也是判断相似三角形的重要手段。

以下是几种常见的角度证明技巧:1. 角度对应证明:当两个三角形的对应角相等时,可以得出两个三角形相似。

例:已知三角形ABC和DEF,∠A = ∠D,∠B = ∠E,我们可以得出三角形ABC和DEF相似。

2. 角度和内角和证明:当两个三角形的内角和相等时,可以得出两个三角形相似。

例:已知三角形ABC和DEF,∠A + ∠B + ∠C = ∠D + ∠E + ∠F,我们可以得出三角形ABC和DEF相似。

3. 夹角和内角和证明:当两个三角形的夹角和相等时,可以得出两个三角形相似。

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 相似三角形6大证明技巧相似三角形证明方法之反A型与反X型1. 2. 3. 4. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似三边成比例的两个三角形相似.(SSS两边成比例且夹角相等的两个三角形相似.(SAS)两角分别相等的两个三角形相似.(AA)斜边和一条直角边成比例的两个直角三角形相似(HL)5.模型一:反A型:如图,已知△ ABC, / ADE = / C,若连CD、BE,进而能证明△ ACD ABE(SAS) 试一试写出具体证明过程模型二:反X型:如图,已知角/ BAO= / CDO,若连AD, BC,进而能证明△ AODBOC.试一试写出具体证明过程D B应用练习:1.已知△ ABC 中,/ AEF= / ACB,求证:(1) AE AB AF AC (2)/ BEO= / CFO ,/ EBO= / FCO ( 3)/ OEF= / OBC,/ OFE= / OCB2.已知在MBC中,/ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.⑴当点P在线段AB上时,求证:MPQ S /△ABC ;⑵当/△^QB为等腰三角形时,求AP的长。

模型三:射影定理相似三角形证明方法之射影定理与类射影如图已知^ ABC,/ ACB=90° , CH 丄AB 于H,求证:A C2AH AB , BC2 BH BA ,, 2HC HA HB ,试一试写出具体证明过程模型四:类射影BD AB如图,已知AB 2AC AD ,求证:亍 乔,试一试写出具体证明过程BC AC应用练习:J 451.如图,在 △ ABC 中,AD 丄BC 于D ,DE 丄AB 于E ,DF 丄AC 于F 。

求证:—AP AS2.如图,在 △ ABC 中,AD BC 于 D , DE AB 于 E , DF/ AEF= / C模型五:一线三等角如图,已知/ B=/ C= / EDF ,则△ BDECFD (AA ),试 一试写出具体证明过程应用练习:1.如图,△ ABC 和/ DEF 两个全等的等腰直角三角形, / BACK EDF=90, △ DEF 的顶点E 与^ABC 的斜边BC 的中点重合.将△ DEF 绕点E 旋转,旋转过程中, 线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1) 如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△ BPE^ZCQE (2) (2)如图②,当点Q 在线段CA 的延长线上时,求证: 并求当BP=a CQ=9a/2时,P 、Q 两点间的距离(用含2.^ABC 中,AB=AC , D 为BC 的中点,以 D 为顶点作/(1) 如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅 助线,写出图中所有与/△ADE 相似的三角形.(2) 如图(2),将/ MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交 线段AC ,AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图 中所有的相似三角形,并证明你的结论.(3) 在图(2 )中,若 AB=AC=10,BC=12,当 Z\DEF 的面积等于 /ABC 的面积的4时,求线段EF 的长.3.如图,点仔在线段《上,点D 、F 在M 同侧,"=« =妙,他丄砒,AD = SC(1)求证:胆"D+CA(2 )若37, CE",点P 为线段丄&上的动点,连接DP ,作M3尸,交 直线占E相似三角形证明方法之一线三等角△ BP0A CEQa 的代数式表示)AC 于F ,连EF ,求证:于点Q。

相似三角形六大证明技巧

相似三角形六大证明技巧

相似三角形六大证明技巧在数学中,相似三角形的研究是非常重要的,因为这可以帮助我们解决各种有关比例和比较的问题。

在证明相似三角形的过程中,存在许多有效的技巧和方法来简化问题并加深我们对其性质的理解。

以下是六大证明技巧,可用于证明相似三角形。

1.AA相似性定理:AA相似性定理是最常见的相似三角形证明技巧之一、该定理指出,如果两个三角形中的两个角度相等,则两个三角形相似。

这可以用于简化相似三角形的证明,特别是当两个三角形之一已知边长或角度的情况下,通过证明两个角度相等,即可得出它们相似的结论。

2.SAS相似性定理:SAS相似性定理是另一种常用的相似三角形证明技巧。

该定理指出,如果两个三角形中的两个边的比值相等,并且这两条边夹角的比值也相等,则两个三角形相似。

这可以用于证明两个三角形相似的证明,特别是当两个三角形已知有一个相等的边和夹角的情况下。

3.SSS相似性定理:SSS相似性定理是证明相似三角形的另一种方法。

该定理指出,如果两个三角形的三条边的比值相等,则两个三角形相似。

这可以用于证明两个三角形相似的证明,特别是当两个三角形已知边长的情况下。

4.比较边与角:当两个三角形中的两个角度已知且相等时,可以比较它们的边。

通过确定它们的边比值并与已知比值进行比较,可以确定它们是否相似。

这个方法通常需要使用三角函数和三角恒等式来解决。

5.直角三角形的特殊性质:在直角三角形中,如果两个直角三角形的一个角是相等的,并且另一个角是互补的,则两个三角形一定相似。

这是因为两个直角三角形的另一个角度相等,而直角定理保证了两个三角形的边的比值相等。

6.利用平行线:当直线与两条平行线相交时,可以使用平行线的性质来证明相似三角形。

具体而言,如果两个平行线通过一个第三个线段形成一个相似三角形,则可以通过证明这两个平行线的其他线段与第三个线段的比值相等来证明这两个平行线的其他线段与第三个线段的比值相等。

除了上述六大证明技巧之外,还有一些其他技巧可以用于证明相似三角形,如三角形的重心和垂心的性质,重心和垂心在相似三角形的边和角之间有特殊的关系。

专题6_相似三角形证明的方法与技巧文库.docx

专题6_相似三角形证明的方法与技巧文库.docx

专题6相似三角形的判定和应用一、判定相似三角形的基本思路:1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的饬所对的边是对应边,对应边所对的饬是对应角。

2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。

二、相似形的应用:1.证比例式;2.证等积式;3 •证直线平行;4.证直线垂直;5.证面积相等;三、经典例题:例1.如图,在AABC中,D是BC的中点,E是AC延长线上任意一点,连接DE与AB交于F,与过A平行于BC的直线交于G。

变式1:如图,在AABC中,也4与ZB互余,CD丄AB, DE//BC,交AC于点E,求证: AD:AC=CE:BD.例2:如图:己知梯形ABCD小,AD//BC, ZABC =90° ,且BD丄CD于D。

求证:①AABD〜ADCB ;②BD》=AD・BC求证:AF AE^F~~CE例3.如图,在AABC中,ZBAC = 90°, M 是BC 的中点,DM丄BC交BA的延长线于D, 交AC于E。

求证:MA1=MD^ME例4.已知:在AABC中,AD是ZBAC的平分线,点E在AD ±,点F在AD的延长线上, ED ABI J ------------ — --------------DF~ AC 求证:BE//FCo例5.如图,在正方形ABCD中,E, F分别为AB、AC上一点,切BE二BF, BP丄CE,垂足为P。

求证:PD丄PF.例6.在AABC 的中线AD,BE 和交于G 。

求证:AAGB 的面积等于以边形CEGD 。

四. 课堂练习:1. 如图,在厶ABC 中,AC>BC, £>是AC 边上一点,连接BD.(1)耍使△ CBD s MAB ,述需耍补充一个条件是 ______________ (只耍求填一个)(2)若厶CBD s/\CAB ,且 AD = 2. BC 二品,求 CD 的长.2. 如图,在平行四边形ABCD 中,R 在BC 的延长线上,AR 交CD 于Q,若DQ : CQ=4 : 3,求 AQ : QR 的值。

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全比例式的证明方法比例式是数学中常见的重要概念,其证明方法也是需要掌握的基本技能。

下面介绍几种比例式的证明方法。

1.相似三角形法若两个三角形相似,则它们对应边的比例相等。

因此,可以通过相似三角形的证明来得到比例式。

2.射影定理法射影定理指:在直角三角形中,直角边上的高的平方等于直角边与这个高的两个部分的乘积。

因此,可以通过射影定理来证明比例式。

3.平行线法若两条直线平行,则它们所截线段的比例相等。

因此,可以通过平行线的证明来得到比例式。

4.等角定理法等角定理指:在同一圆周角或同位角中,对应弧所对应的角相等。

因此,可以通过等角定理来证明比例式。

5.数学归纳法数学归纳法是数学中常见的证明方法,适用于证明一般情况下的比例式。

其基本思路是:证明当n=1时比例式成立,假设当n=k时比例式成立,证明当n=k+1时比例式也成立。

比例式的证明方法多种多样,需要根据具体情况选择合适的方法。

熟练掌握这些方法,可以更加轻松地解决各种数学问题。

通过前面的研究,我们知道,比例线段的证明离不开“平行线模型”(A型、X型、线束型),也离不开上述的6种“相似模型”。

但是,XXX认为,“模型”只是工具,怎样选择工具、怎样使用工具、怎样用好工具,取决于我们如何思考问题。

合理的思维方法能让模型成为解题的利刃,让复杂的问题变简单。

在本模块中,我们将研究比例式的证明中经常用到的思维技巧,包括三点定型法、等线段代换、等比代换、等积代换、证等量先证等比、几何计算。

技巧一:三点定型法例1】在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于F,求证:$\frac{DC}{CF}=\frac{AE}{AD}$。

例2】在直角三角形△ABC中,$\angle BAC=90^\circ$,M为BC的中点,DM垂直于BC交CA的延长线于D,交AB 于E。

求证:$AM^2=MD\cdot ME$。

例3】在直角三角形△ABC中,AD是斜边BC上的高,$\angle ABC$的平分线BE交AC于E,交AD于F。

相似三角形证明技巧窍门(汇总整编)

相似三角形证明技巧窍门(汇总整编)

-!相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:① ______________________ :② ________________________ :③ ______________________________ 斛边上的高只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而 使问题得以解决• 三、三角形相似的证题思路:判定两个三角形相似思路: 1) 先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2) 再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3) 若无对应角相等,则只考虑三组对应边是否成比例;、斤 f 找另一角 --------- ►两角对应相等,两三角形相似 a ) -------------------------------------------------------- 已知一对等 j 找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似L 找夹角相等 ----- ►两边对应成比例且夹角相等,两三角形相似b ) ------------------------------------------------------------------------- 己知两边对应成比 v 找第三边也对应成比例 三边对应成比例,两三角形相似-找一个直角一■斜边、直角边对应成比例,两个直角三角形相似人士 r 找另一角—k两角对应相等,两三角形相似 C )己知'—个直 VI 找两边对应成比例 判定定理2 ‘找顶角对应相等 判定定理1d ) --------------------------------------------------- 有等腰关“找底角对应相等 判定定理1-找底和腰对应成比例 ------ 判定定理3e ) 相似形的传递性 若2, 3,则3四、“三点定形法”, 即由有关线段的三个不同的端点来确定三角形的方法。

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全

相似三角形的六大证明技巧大全1.AA判定法AA判定法指的是若两个三角形的两个对应角度相等,则这两个三角形相似。

该方法一般用于解决两个三角形已经有一个角度相等的情况。

证明过程中,首先要证明两个对应角度相等,然后在利用角度相等证明其余对应边的比例关系。

2.SAS判定法SAS判定法指的是若两个三角形的一个角度相等,而另两边的比例相等,则这两个三角形相似。

该方法一般用于解决两个三角形已经知道两个对应边的比例相等的情况。

证明过程中,首先要证明一个角度相等,然后根据比例关系证明其余边的比例关系。

3.SSS判定法SSS判定法指的是若两个三角形的三边长度比例相等,则这两个三角形相似。

该方法一般用于解决两个三角形已经知道三边长度比例相等的情况。

证明过程中,需要证明各个对应边的比例相等。

4.直角三角形的相似证明直角三角形的相似证明可以利用勾股定理、正弦定理、余弦定理等三角函数关系进行证明。

当两个直角三角形的一个角度相等,而另两个边的比例相等时,可以通过三角函数关系证明两个三角形的相似性。

5.角平分线相似证明角平分线相似证明利用了角平分线的性质,也可以通过角度相等和角平分线的长度比例相等来证明两个三角形的相似性。

此外,利用角平分线的性质可以导出很多关于比例的等式或者比例关系,进而推导出相似三角形。

6.边平分线相似证明边平分线相似证明利用了边平分线的性质,要证明两个三角形相似,可以利用角平分线切分三角形,并利用与之相关的角度相等和边长比例相等进行推导,最终得到两个三角形相似的结论。

以上六大相似三角形的证明技巧是解决各种几何问题的基础。

在实际应用中,可以根据题目给出的条件选择合适的证明方法,灵活运用这些技巧,帮助我们解决各种与相似三角形相关的问题。

总结起来,相似三角形的证明技巧主要包括AA判定法、SAS判定法、SSS判定法、直角三角形的相似证明、角平分线相似证明和边平分线相似证明。

通过熟练掌握这些技巧,我们可以更好地解决各种相似三角形的证明问题。

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)

相似三角形六大证明技巧(提高类技巧训练)1.如图,在△ABC中,∠B=∠C,点D在AB边上,点E在AC边上,且AD=CE。

求证:△BED∽△CDE。

2.如图,在△ABC中,点D在AB边上,点E在AC边上,且∠XXX∠C。

求证:△BED∽△ABC。

ABF∽△ECF证明:首先根据题目中给出的比例式,可以得到:frac{BF}{AB}=\frac{BE}{BC}$$移项可得:frac{AB-BF}{AB}=\frac{BC-BE}{BC}$$化简可得:frac{AF}{AB}=\frac{CE}{BC}$$由此可知,△ABF与△ECF的两个对应角分别为∠A和∠C,因为它们有一个共同的角∠B,所以根据相似三角形的性质,可知△ABF∽△ECF。

例1】如图,在△ABC中,AD平分∠BAC,AD的垂直平分线交AD于E,交BC的延长线于F,要证明FD2=FB·FC。

证明:连接AF,因为AE=ED,所以∠EAD=∠EDA,即AD是∆AEF的角平分线,所以AF=EF,又因为AF∥BC,所以∆BFC与∆AFE相似,所以FB/AF=FC/FE,即FB·FE=FC·AF,代入AF=EF,得到FB·FC=FD2,即证。

例2】如图,四边形ABCD是平行四边形,点E在边BA 的延长线上,CE交AD于F,要证明AC·BE=CE·AD。

证明:连接BE、CF,因为AB∥CD,所以∠BCE=∠EAD,所以∆BCE与∆EAD相似,所以BE/AD=CE/AC,即AC·BE=CE·AD,即证。

例3】如图,△ACB为等腰直角三角形,AB=AC,∠BAC=90°,∠DAE=45°,要证明AB2=BE·CD。

证明:连接AE、BD,因为AB=AC,所以∠ABC=∠ACB=45°,所以∆ABD与∆AEC相似,所以AB/AC=BD/CE,即AB·CE=BD·AC,又因为AB=AC,所以AB2=BD·AC,代入AB·CE=BD·AC,得到AB2=BE·CD,即证。

(word完整版)相似三角形证明技巧(整理)

(word完整版)相似三角形证明技巧(整理)

1相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:① ;② ;③ 。

二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决。

三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2a )已知一对b)己知两边对应成c)己知一个2找顶角对应相等 判定定理1找底角对应相等 判定定理1找底和腰对应成比例 判定定理3e )相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB ,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )例2、如图,CD 是Rt △ABC 的斜边AB 上的高,∠BAC 的 平分线分别交BC 、CD 于点E 、F ,AC ·AE=AF ·AB 吗? 说明理由。

(word完整版)相似三角形知识点及典型例题(2),推荐文档

(word完整版)相似三角形知识点及典型例题(2),推荐文档

相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。

(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

(6)判定直角三角形相似的方法:①以上各种判定均适用。

②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。

#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)2=BD·DC,(2)(AB)2=BD·BC ,(3)(AC)2=CD·BC 。

注:由上述射影定理还可以证明勾股定理。

即(AB)2+(AC)2=(BC)2。

典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC , ∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2, 即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CE EF∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。

(完整版)相似三角形证明技巧(整理)

(完整版)相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析一、相似三角形(1)三角形相似的条件:①;② ;③ . 二、两个三角形相似的六种图形:只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决.三、三角形相似的证题思路:判定两个三角形相似思路:1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例;找另一角 两角对应相等,两三角形相似找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似找夹角相等 两边对应成比例且夹角相等,两三角形相似找第三边也对应成比例 三边对应成比例,两三角形相似找一个直角 斜边、直角边对应成比例,两个直角三角形相似找另一角 两角对应相等,两三角形相似找两边对应成比例 判定定理2 找顶角对应相等 判定定理1找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。

例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BAAC AF AE(判断“横定”还是“竖定”? )a)已知一对等b)己知两边对应成比c)己知一个直d)有等腰关例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB吗?说明理由。

(完整word版)初中相似三角形几何证明技巧

(完整word版)初中相似三角形几何证明技巧

初中几何证明技巧(分类)证明两线段相等1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 2 讲相似三角形6大证明技巧模块一相似三角形证明方法之反A型与反X型回顾相似三角形的判定方法总结:1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.2.三边成比例的两个三角形相似 . ( SSS)3.两边成比例且夹角相等的两个三角形相似. (SAS)4.两角分别相等的两个三角形相似.(AA)5.斜边和一条直角边成比例的两个直角三角形相似(HL)模型一:反 A 型:如图,已知△ ABC,∠ ADE =∠C,若连 CD 、BE,进而能证明△ ACD ∽△ ABE (SAS) 试一试写出具体证明过程AEDC B模型二:反X 型:如图,已知角∠BAO=∠CDO ,若连 AD, BC,进而能证明△AOD∽△ BOC.试一试写出具体证明过程BAOD C应用练习:1. 已知△ ABC 中,∠ AEF= ∠ ACB ,求证:( 1) AE AB AF AC (2)∠ BEO= ∠ CFO ,∠EBO= ∠FCO ( 3)∠ OEF= ∠OBC ,∠ OFE=∠ OCBAEFOB C2.已知在△ABC 中 ,∠ ABC=90°,AB=3,BC=4. 点 Q 是线段 AC 上的一个动点 , 过点 Q 作 AC 的垂线交线段 AB( 如图 1) 或线段 AB 的延长线 ( 如图2) 于点 P.(1)当点 P 在线段 AB 上时 , 求证:△APQ ∽ △ABC ;(2)当△PQB 为等腰三角形时,求 AP 的长。

模块一相似三角形证明方法之射影定理与类射影模型三:射影定理如图已知△ ABC,∠ ACB =90°, CH ⊥ AB 于 H ,求证:AC 2 AH AB , BC 2 BH BA ,,HC 2 HA HB ,试一试写出具体证明过程CA HB 模型四:类射影如图,已知 2 BD ABAB AC AD ,求证:,试一试写出具体证明过程BC ACADC B应用练习:1.如图,在△ ABC中, AD⊥ BC于 D, DE⊥ AB 于 E,DF⊥ AC 于 F。

求证:2.如图,在△ABC中,AD BC 于 D , DE AB 于 E , DF AC 于 F ,连EF,求证:∠AEF=∠ CAEFBD C模块一相似三角形证明方法之一线三等角模型五:一线三等角如图,已知∠B=∠ C=∠EDF ,则△ BDE ∽△ CFD ( AA ),试一试写出具体证明过程AEAFFE A EBD 图1 C BD 图2C B CD 图3应用练习:1.如图,△ ABC和△ DEF两个全等的等腰直角三角形,∠BAC=∠ EDF=90°,△DEF 的顶点 E与△ABC 的斜边 BC 的中点重合.将△ DEF 绕点 E 旋转,旋转过程中,线段 DE 与线段 AB 相交于点 P,线段 EF 与射线 CA 相交于点 Q.(1)如图①,当点 Q 在线段 AC 上,且 AP=AQ时,求证:△BPE≌△ CQE;(2)(2)如图②,当点 Q 在线段 CA 的延长线上时,求证:△BPE∽△CEQ;并求当 BP=a,CQ=9a/2 时,P、Q 两点间的距离(用含 a 的代数式表示)2.△ABC 中, AB=AC , D 为 BC 的中点,以 D 为顶点作∠ MDN= ∠ B (1)如图( 1)当射线 DN 经过点 A 时, DM 交 AC 边于点 E,不添加辅助线,写出图中所有与△ADE 相似的三角形.(2)如图( 2),将∠ MDN 绕点 D 沿逆时针方向旋转, DM ,DN 分别交线段 AC ,AB 于 E,F 点(点 E 与点 A 不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.(3)在图( 2)中,若 AB=AC=10 ,BC=12 ,当△DEF 的面积等于△ABC 的面积的时,求线段 EF 的长.3. 如图,点在线段上,点、在同侧,,,。

( 1)求证:。

( 2)若,,点为线段上的动点,连接,作,交直线于点。

①当点与、两点不重合时,求的值。

②当点从点运动到的中点时,求线段的中点所经过的路径(线段)长。

(直接写出结果,不必写出解答过程)通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”( A 型,X 型,线束型),也离不开上述的 6 种“相似模型” . 但是“模型” 只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题 . 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。

在本模块中,我们将学比例式的证明中,会经常用到的思维技巧.技巧一:三点定型法技巧二:等线段代换技巧三:等比代换技巧四:等积代换技巧五:证等量先证等比技巧六:几何计算技巧一:三点定型横向与纵向观察所证线段比列式(如果是等积式,则将其化为等比式)的分子分母,三个字母即可确定三角形,从而证三角形相似即可。

1.如图,在 Rt△ ABC 中, AD 是斜边 BC 上的高,ABC 的平分线BE交AC于E,交 AD 于BF AB .F .求证:BE BCAEFB D C2.如图,平行四边形ABCD 中,E是AB延长线上的一点,.DE 交 BC 于F,求证:DC CFAE AD D CFA B E3.如图,△ ABC 中,BAC 90 ,M为 BC 的中点, DM BC 交 CA 的延长线于D,交AB于 E .求证:AM2 MD MEDAE若三点定型法无法确定哪两个三角形相似,则考虑用等量代换替代其中线段,然后再用三点定型法确定三角形证相似,常用的方法有:等线段代换,等比代换,等积代换1如图,在△ ABC,AD 平分∠ BAC,AD 的垂直平分线交AD 于 E,交 BC 的延长线于【例】2F,求证:FD FB FC证明 :连接 AF, A 是的平分线 ,E,B DC F是 AD 的垂直平分线,(线段垂直平分线上的点到线段两端的距离相等),(等边对等角 ),,,,又,,【例 2】如图,四边形 ABCD 是平行四边形,点 E 在边 BA 的延长线上,CE交AD于 F ,ECAD .求证:AC BE CE AD.D CFEA B【例 3】如图,△ACB为等腰直角三角形,AB=AC,∠ BAC=90°,∠ DAE=45°,求证:2AB BE CDABD EC4如图,△ ABC中,AB AC, AD 是中线,P是 AD 上一点,过C作CF ∥ AB,【例】延长 BP 交AC于 E ,交CF 于F.求证:BP2 PE PF.AFEPB D C模块二比例式的证明方法之等比代换【例 5】如图,平行四边形ABCD 中,过 B 作直线 AC 、AD于 O , E 、交 CD 的延长线于 F ,求证:OB 2OE OF .【解题方法提示】要证OB2=OF·OE ,即证=,接下来你有思路了吗?因为 AB ∥CE ,由平行线分线段成比例定理,可得=;同理因为AF ∥ BC,可得=,由等式的传递性,问题即可得证.证明:∵ AB ∥ CE ,∴=.∵AF ∥BC ,∵=,∴=,∴OB 2=OE·OF .【例 6】如图,在△ABC中,已知 A 90 时, AD BC 于D,E为直角边AC的中点,过 D 、 E 作直线交 AB 的延长线于 F .求证:AB AF AC DF .AEBD CF【例 7】 如图,在 △ ABC 中( AB > AC )的边 AB 上取一点 D ,在边 AC 上取一点 E ,使AD AE ,直线 DE 和 BC 的延长线交于点 P .求证: BP CE CP BDADEBCP例 8.( 1)如图 1,在 △ABC 中,点 D 、E 、Q 分别在 AB 、AC 、BC 上,且 DE ∥ BC , AQ 交 DE 于点 P ,求证:DP =PE;BQPC( 2)如图, △ABC 中,∠ BAC=90° ,正方形 DEFG 的四个顶点在 △ABC 的边上,连接 AG , AF 分别交 DE 于 M ,N 两点.①如图 2,若 AB=AC=1 ,直接写出 MN 的长;②如图 3,求证: MN 2=DM?EN .模块二比例式的证明方法之 等积代换8 如图, △ ABC 中, BD 、 CE 是高, EHBC于 H 、交 BD 于 G、交 CA 的延长 【例 】线于 M .求证: HE 2 HG MH .MA EDGBHC9如图,在 △ ABC 中,BAC 90 , D 为 AC中点, AEBD , E 为垂足,求证:【例 】CBDECD .ADCEB【例 10】 在 Rt △ABC 中, AD ⊥ BC , P 为 AD 中点, MN ⊥ BC ,求证 MN 2AN NCANPBCD M11.如图,已知 △ ABC 中, AD , BF 分别为 BC , AC 边上的高,过 D 作 AB 的垂线交 AB 于 E ,交 BF 于 G ,交 AC 延长线于 H 。

求证:2DE=EG?EH模块二比例式的证明方法之证等量先证等比【例 11】已知,平行四边形 ABCD 中, E、 F 分别在直线AD、 CD 上, EF//AC, BE、 BF 分别交 AC 于 M、 N.,求证: AM=CN.A E DMFNB C【例 12】已知如图AB=AC, BD //AC,AB//CE,过 A 点的直线分别交BD、 CE 于 D、 E. 求证: AM=NC, MN //DE.EADNMB C【例 13】如图,△ ABC 为等腰直角三角形,点P 为 AB 上任意一点, PF ⊥ BC, PE⊥ AC,AF 交 PE 于 N, BE 交 PF 于 M.,求证: PM =PN, MN//AB.AE N PMC BF【例 14】如图,正方形BFDE 内接于△ ABC , CE 与 DF 交于点 N, AF 交 ED 于点 M, CE 与AF 交于点 P. 求证:( 1) MN//AC;( 2)EM =DN.AM DEP NB CF【例 15】(※)设E、F 分别为 AC、 AB 的中点, D 为 BC 上一点, P 在 BF 上, DP //CF ,1Q 在 CE 上, DQ//BE,PQ 交 BE 于 R,交 CF 于 S,求证:RS PQ3AEFG QR SPCB D【例 16】(※)如图,梯形 ABCD 的底边 AB 上任取一点 M,过 M 作 MK //BD , MN//AC,分别交 AD、BC 于 K 、N,连 KN ,分别交对角线 AC、BD 于 P、Q,求证: KP=QN.D CO NQPSKRA B模块二比例式的证明方法之几何计算【例 17】( 2016 年四月调考)如图,在△ABC 中, AC> AB,AD 是角平分线, AE 是中线,BF⊥ AD 于 G,交 AC 于点 M,EG 的延长线交AB 于点 H.( 1)求证: AH =BH ,( 2)若∠ BAC=60 °,求FG 的值.DGAMHFGB CD E【例 18】( 2016 七一华源)如图:正方形ABCD 中,点 E、点 F 、点 G 分别在边BC 、AB、CD 上,∠ 1=∠ 2=∠ 3=α. 求证:( 1)EF +EG= AE(2)求证:CE+CG=AF模块二比例式的证明方法之动点问题运动问题中经常涉及没有明确对应关系的相似三角形,此时分类讨论思想在动态问题中尤其重要,应充分考虑所有可能出现的情况避免遗漏。

相关文档
最新文档