第6章-马尔可夫预测方法PPT课件
马尔科夫预测课件.ppt
以 p11 表示连续畅销的可能性,以频率代替概率,得:
p11
7 15 1
50%
??
分子 7 是表中连续出现畅销的次数,分母 15 是表中出现畅销的 次数,因为第24季度是畅销,无后续记录,故减1。
季度
销售 状态
1 2 3 4 5 6 7 8 9 10 11 12 畅畅滞畅滞滞畅畅畅滞畅滞 112122111212
7 p21 9 78% 分子 7 是表中由滞销转入畅销的次数,分母数 9 是表中出
现滞销的次数。
季度
销售 状态
1 2 3 4 5 6 7 8 9 10 11 12 畅畅滞畅滞滞畅畅畅滞畅滞 112122111212
季度
销售 状态
13 14 15 16 17 18 19 20 21 22 23 24 畅畅滞滞畅畅滞畅滞畅畅畅 112211212111
一、基本概念
它可能跳到第一张或者第三张荷叶,也可能在原地不动。 我们把青蛙在某个时刻所在的荷叶称为青蛙所处的状态, 这样,青蛙在未来处于什么状态,只与它现在所处的状 态有关,与它以前所处的状态无关,这种性质就是所谓 的“无后效性”。 上例中,青蛙所处的那张荷叶,称为青蛙所处的状态, 在经济系统的研究中,一种经济现象,在某一时刻 t 所 出现的某种结果,就是该系统在该时间t 所处的状态。
第三节 马尔可夫决策
一、基本概念
经济学中把这种现象称为“无后效性”,即 “系统在每一时刻的状态仅仅取决于前一时刻 的状态”。 例如,池塘里有三张荷叶,编号为1,2,3,假 设有个青蛙在荷叶上随机地跳来跳去,在初始 时刻 t0,它在第二张荷叶上。在时刻t1,
2
3 1
马尔科夫预测方法
求解该方程组得: 1 =0.3653, 2 =0.3525, π π
π 3 =0.2799。
这说明,该地区农业收成的变化过程,在 无穷多次状态转移后,“丰收”和“平收”状 态出现的概率都将大于“欠收”状态出现的概 率。
在地理事件的预测中,被预测对象所 经历的过程中各个阶段(或时点)的状态 和状态之间的转移概率是最为关键的。
计算: ① 计算:
从表3.7.1中可以知道,在15个从E1出发 (转移出去)的状态中, (1)有3个是从E1转移到E1的
(即1→2,24→25,34→35)
(2)有7个是从E1转移到E2的
(即2→3,9→10,12→13,15→16,29→30, 35→36,39→40)
(3)有5个是从E1转移到E3的
(3.7.3)
一般地,将满足条件(3.7.3)的任 何矩阵都称为随机矩阵,或概率矩阵。
不难证明,如果P为概率矩阵,则对于任何整数 m>0,矩阵都是概率矩阵。
标准概率矩阵、平衡向量。 标准概率矩阵、平衡向量。
几 个 基 本 概 念
如果P为概率矩阵,而且存在整数m>0, 使得概率矩阵 P m 中诸元素皆非零,则称P 为标准概率矩阵。可以证明,如果P为标 准概率矩阵,则存在非零向量 α = [ x1 , x2 ,L, xn ] ,而且 x i 满足
第k个时刻时期的状态概率预测如果某一事件在第0个时刻或时期的初始状态已知即已知则利用递推公式378式就可以求得它经过k次状态转移后在第k个时刻时期处于各种可能的状态的概从而就得到该事件在第k个时刻时期的状态概率预测
马尔可夫预测方法
本节主要内容:
几个基本概念
状态; 状态转移过程; 马尔科夫过程; 状态转移概率; 状态转移概率矩阵。
马尔科夫预测方法.pptx
E30.2799
E10.3653
E20.3525
E30.2799
第18页/共24页
终极状态概率预测
① 定义 :经过无穷多次状态转移后所得到的状态概率称为终极状态概率 ,即: ② 终极状态概率应满足的条件:
马尔可夫预测法
第19页/共24页
③ 例题:在例1中,设终极状态的状态概率为 则
第23页/共24页
马尔可夫预测法
第16页/共24页
例题2: 将例题1中1999年的农业收成状态记为 =[0,1,0] ,将状态转移概率矩阵(3.7.5)式及代入递推公式(3.7.8)式,可求得2000——2010年可能出现的各种状态的概率(见表3.7.2)。
第17页/共24页
表3.7.2 某地区1990—2000年农业收成 状态概率预测值
例题1: 考虑某地区农业收成变化的三个状态,即“丰收”、“平收”和“欠收”。记E1为“丰收”状态,E2为“平收”状态,E3为“欠收”状态。表3.7.1给出了该地区1960~1999年期间农业收成的状态变化情况。试计算该地区农业收成变化的状态转移概率矩阵。
第8页/共24页
表3.7.1 某地区农业收成变化的状态转移情况
几个基本概念
第3页/共24页
状态转移概率。在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态Ei转为状态Ej的状态转移概率是
(3.7.1)
状态转移概率矩阵。假定某一个事件的发展过程有n个可能的状态,即E1,E2,…,En。记为从状态Ei转变为状态Ej的状态转移概率 ,则矩阵
几个基本概念
第6页/共24页
状态转移概率矩阵的计算。 计算状态转移概率矩阵P,就是求从每个状态转移到其它任何一个状态的状态转移概率 。 为了求出每一个,一般采用频率近似概率的思想进行计算。
经济预测与决策课件 第6章 马尔柯夫预测法
6.1 马尔柯夫预测法的基本原理
【例6.1.1】
在对产品抽样检验时,每次取一件,以随机变量 表示检验结
果, 1 表示废品, 0 表示合格品,连续进行n 次,即抽
n件检验,从而得到随机变量序列:1,2,L ,n L记为
,
而状态n , n空 1间, 2E,L={0,1}。
【例6.1.2】
统计某种商品在t时刻的库存量,假若该仓库最大的容量为R;t
(3)对于任意i,j∈E,pij
(0)
1 0
i j i j
一步转移矩阵的形式如下:
p11
p=
p21
pn1
p12 p22 pn2
p1n p2n pnn
i,j =1,2,…,n
6.1 马尔柯夫预测法的基本原理
⒊ 转移矩阵的计算
(1)根据概率的古典定义计算
若事物由状态i,经过一步转向状态j的次数为 nij ,则一
一、 随机过程的概念
设{ i ;t T }是一组随机变量, T 是一个实数集合, 若对任意的实数 t∈ T ; i都是一个随机变量,则称 { i ;t T }是一个随机过程。 T是参数t的集合,才可以看成时间, i 的每一个取值 可称为随机过程中的一个状态,而状态的所有可能值构成 的集合称为状态空间,记为E。 • 当T是正整数集合时,随机过程又称为随机序列。下面要 讲的马尔柯夫链就是一类随机序列。
(第一次从1中取)
p12 =p(2 2 1 1) 1 4
(第二次从2中取)
p13 =p(2 3 1 1) 1 4 p21 =p(2 1 1 2) 2 3
(第二次从3中取) p22 p(2 2 1 2) 0
p23 =p(2 3 1 2) 1 3
马尔科夫预测与决策ppt课件
故可用矩阵式表达所有状态:
[S1(k),S2(k), …… ,SN(k)]= [S1(0),S2(0), …… ,SN(0)] P[k]
即 S(k) = S(0) P [k] 当满足稳定性假设时,有
S(k) = S(0) Pk 这个公式称为已知初始状态条件下的市场占有
率k步预测模型.
例:东南亚各国味精市场占有率预测, 初期工作: a)行销上海,日本,香港味精,确定状态1,2,3. b)市场调查,求得目前状况,即初始分布 c)调查流动状况;上月转本月情况,求出一步状 态转移概率. 1)初始向量: 设 上海味精状况为1;
马尔科夫决策基本方法是用转移概率 矩阵进行预测和决策。
P(k)
P1k1 P2k1
P1k2 P2k2
P1kn P2kn
............................
Pmk1 Pmk2
Pmkn
其中Pij 表示概率,P(k) 表示转移概率矩阵。
1—— 3—— 2: P13 • P32
P12 = P11 • P12 + P12 • P22 +P13 • P32 =∑ P1i • Pi2
解法二: k = 2, N = 3
P11(2) P12 (2) P13(2)
P = P21(2) P22 (2) P23(2)
P31(2) P32(2) P33(2)
转移概率矩阵决策的步骤如下: 1、建立转移概率矩阵。 2、利用转移概率矩阵进行模拟预测。 3、求出转移概率矩阵的平衡状态,即稳 定状态。 4、应用转移概率矩阵进行决策
案例1 市场占有率预测
商品在市场上参与竞争,都拥有顾客,并由此而
产生销售,事实上,同一商品在某一地区所有的N个商 家(或不同品牌的N个同类产品)都拥有各自的顾客, 产生各自销售额,于是产生了市场占有率定义:
马尔柯夫预测法对经济分析PPT模板
pN1(n) pN 2 (n)...pNN (n)
某经济系统有三种状态E1,E2,E3,系统状态转移情况如表。 求系统的二步状态转移概率矩阵
状态1 E1
E2
E3
状态0
E1
21
7
14
E2
16
8
12
E3
10
8
2
P11P12 ...P1N P11P12...P1N
P2
0.6 0.2 0.2
s1
(0.30.40.3)0.1
0.7
0.2
0.1 0.1 0.8
=(0.25 0.37 0.38)
下月市场占有率:
0.6 0.2 0.22 s2 (0.30.40.3)0.1 0.7 0.2
0.1 0.1 0.8
0.4 0.26 0.32 =(0.3 0.4 0.3)0.15 0.53 0.32
经济分析马尔柯夫预测法
马尔柯夫链的简介 马尔柯夫链预测法 市场占有率预测 期望利润预测
无后效性
系统在每一时刻的状态仅仅取 决于前一时刻状态
马尔柯夫链
就是一种随机时间序列,它在将来取什么值 只与它现在的取值有关,而与它过去取什么 值无关. 具备以上这个性质的离散性随机过程, 称为马尔柯夫链
状态
从到 甲
乙
丙
合计
甲 400 50 50 500
乙 20 300 80 400
丙 10 10 80 100
合计 430 360 210 1000
从到 甲
乙
丙
合计
甲 400 50 50 500
乙 20 300 80 400
预测方法——马尔可夫预测
预测⽅法——马尔可夫预测马尔可夫预测若某⼀系统在已知现在情况的条件下,系统未来情况只与现在有关,与历史⽆直接关系,则称描述这类随机现象的数学模型为马尔可夫模型(马⽒模型)。
时齐马尔可夫链:系统由状态i转移到状态j的转移概率只与时间间隔长短有关,与初始时刻⽆关。
状态转移概率矩阵及柯尔莫哥洛夫定理:概率矩阵:若系统在时刻 t0 处于状态 i,经过 n 步转移,在时刻 tn 处于状态 j 。
那么,对这种转移的可能性的数量描述称为 n 步转移概率。
记为:P(xn =j|x=i)=P(n)ij令P(n)=P11(n)P12(n)⋯P1N(n) P21(n)P22(n)⋯P2N(n)⋯⋯⋯P N1(n)P N2(n)⋯P NN(n)为n部转移概率矩阵。
(P0为初始分布⾏向量)性质:1. P(n)=P(n−1)P2. P(n)=P n转移概率的渐进性质——极限概率分布正则矩阵:若存在正整数k,使得p k的每⼀个元素都是正数,则称该马尔可夫链的转移矩阵P是正则的。
马克可夫链正则阵的性质:1. P有唯⼀的不动点向量W,W的每个分量为正,满⾜WP=W;2. P的n次幂P n随n的增加趋近于矩阵V, V的每⼀⾏向量均等于不动点向量W。
马尔可夫链预测法步骤:1. 划分预测对象可能出现的状态;2. 计算初始概率,由此计算⼀步状态转移概率;3. 计算多步状态转移概率;4. 根据状态转移概率进⾏预测。
()实例:eg:由于公路运输的发展,⼤量的短途客流由铁路转向公路。
历年市场调查结果显⽰,某铁路局发现今年⽐上年相⽐有如下规律:原铁路客流有85%仍由铁路运输,有15%转由公路运输,原公路运输的客流有95%仍由公路运输,有5%转由铁路运输。
已知去年公、铁客运量合计为12000万⼈,其中铁路10000万⼈,公路2000万⼈。
预测明年总客运量为18000万⼈。
运输市场符合马⽒链模型假定。
试预测明年铁、公路客运市场占有率各是多少?客运量是多少?最后发展趋势如何?解:1. 计算去年铁路、公路客运市场占有率将旅客由铁路运输视为状态1,由公路运输视作状态2,则铁、公占有率就是处于两种状态的概率,分别记作a1,a2.以去年作为初始状态,则初始状态概率向量:A(0)=(a1(0),a2(0))=(0.83,0.17)2. 建⽴状态转移矩阵PP=0.850.15 0.050.953. 预测明年铁路,公路客运市场占有率A(2)=(a1(2),a2(2))=A(0)P2=(0.83,0.17)0.850.150.050.952=(0.62,0.38)4. 进后发展趋势lim ()()Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。
《马尔可夫预测》PPT课件
二、状态和状态转移 1、状态:系统在某时刻出现的某种结果。 常用Ei表示(i=1,2,…,N)。 2、状态变量Xt=i:表示系统在时刻t处于 Ei 。 3、状态转移:系统由一种状态转移为另一种状态 。常用Ei →Ej表示。
状态举例: 例1:人民生活水平可分为三种水平状态:温 饱、小康、富裕。 例2:企业经营状况可分为:盈利、不盈不亏、 亏损。 例3:商品销售状况可分为:畅销、平销、滞 销。 状态转移举例: 例4:营业情况由盈利→亏损。
例:设一步转移矩阵为:
0.5 0.5 P 求P(2) 0.6 0.4 0.5 0.5 解: P(2) 0.6 0.4 0.5 0.5 0.5 0.6 0.5 0.5 0.5 0.4 = 0.6 0.5 0.4 0.6 0.6 0.5 0.4 0.4 0.55 0.45 = 0.54 0.46
0≤ Pij ≤1 ∑ Pij =1
所有Pij构成的矩阵为:
P 11 P P 21 PN 1 P 12 P22 PN 2 P 1N P2 N P ij N N PNN
称为一步转移概率矩阵。
在多步转移中,k步转移概率记为:
解:状态转移概率为
400 P 0.8 11 500 20 P21 0.05 400 10 P31 0.1 100 50 P 0.1 12 500 300 P22 0.75 400 10 P32 0.1 100 50 P 0.1 13 500 80 P23 0.2 400 80 P33 0.8 100
五、状态转移概率和转移概率矩阵
设系统有N个状态Ei(i=1,2,…,N),以状态变量 xt=i表示在时刻t处于Ei(i=1,2,…,N),如果系统在时 刻t处于Ei而在时刻t+1转移到Ej的概率只与Ei有关而与t以 前处的状态无关,则此概率可表示为: Pij=P(Ei→Ej)=P( xt+1 =j∣xt =i) 并称为一步转移概率。
公共经济预测和决策 第6章 马尔科夫预测法
2019/11/8
5
例6.3 设 Z (t ) 是未来第 t个交易日收盘时的
上证指数,t T1,2,3, ,则 Z(t),tT是
随机过程。
例6.4 考查未来第 t个交易日上证指数的涨 跌情况,记
1, 上涨
Z(t)0,平盘 tT1,2,3,
1,下跌
则Z(t),tT是一随机过程。
• 即 k步转移概率矩阵等于一步转移概率矩阵
的 k次幂。
i
2019/11/8
17
• 例6.6 设马尔科夫链的一步转移概率矩阵
为:
0
0
1
P 1 0 0
1 3
1 3
1 3
• 求三步转移概率矩阵 P(3) ,并写出 t时刻之 状态3到 t 3时刻各状态的转移概率。
P(2) P2 0.4 0.2 0.4 0.4 0.2 0.4
0.5 0.25 0.250.5 0.25 0.25
0.43 0.255 0.315 0.44 0.26 0.3
0.425 0.2625 0.3125
• 因此,购买C品牌的顾客在未来第二个月购买A品 牌的概率为0.425,购买B品牌的概率为0.2625。
P(t的) 乘P积t ,即
pt p0Pt p0Pt
2019/11/8
24
• 一般地,设马尔科夫链 Z t,t T0 ,1 ,2 , 的状态
空间为
,S 则1 的,2,概 率,n分布 Z 0
Z0 1 2 … n
p p10
p
0 2
…
p
0 n
• 称为马尔科夫链 Zt,t的T初始分布。 的概Z t 率分 布
2019PPT-马尔科夫预测法
2.稳定性假设
若系统的一步状态转移概率 不随时间变化,即转移矩阵在各 个时刻都相同,称该系统是稳定 的。
这个假设称为稳定性假设。 蛙跳问题属于此类,后面的讨论 均假定满足稳定性条件。
{2004/11/22}
马尔科夫预测法
第一节 基本原理
一、基本概念
1.随机变量 、 随机函数与随机过程 一变量x,能随机地取数据(但不能准 确地预言它取何值),而对于每一个数值 或某一个范围内的值有一定的概率,那么 称x为随机变量。
假定随机变量的可能值xi发生概率为Pi
即P(x = xi) = Pi
对于xi的所有n个可能值,有离散型随
初期工作:
a)行销上海,日本,香港味精,确定状 态1,2,3.
b) 市 场 调 查 , 求 得 目 前 状 况 , 即 初 始 分布
c)调查流动状况;上月转本月情况,求 出一步状态转移概率.
1)初始向量:
设 上海味精状况为1;
日本味精状况为2;
2)确定一步状态转移矩阵
P11 P12 P13
0.4 0.3 0.3
0.5 0.25 0.25
lim S(k) = [0.5 0.25 0.25]
= lim
第三节 期望利润预测
是考虑:一个与经济有关随 机系统在进行状态转移时,利润 要发生相应变化,例如商品连续 畅销到滞销,显然在这些过程变 化时,利润变化的差距是很大的.
所以有如下的定义:
若马尔科夫链在发生状态转 移时,伴随利润变化,称这个马尔
定理二:设X为任意概率向量, 则XT = U
即任意概率向量与稳态概率矩阵 之点积为固定概率向量。
马尔柯夫预测法.pptx
则称 X n , n 0为马尔柯夫链。
X n 所可能取到的每一个值 E1, E2 ,, Em ; E j 称为状态。
第4页/共75页
第8.1 马尔柯夫链简介
2. 状态转移概率
由定义 8.1.1 可知,马尔柯夫链的概率特性取决于条件概率
P X mk E j X m Ei
(8.1.2)
在概率论中,条件概率 P( A | B) 表达了由状态B向状态A转移的概率,简称为状态
M11 3
M12 4
M13 0
M 21 1
M 22 1
M 23 3
M 31 2
M 32 0
M 33 5
第19页/共75页
从而
p11
3 7
3 p23 5
所以
p12
4 7
p13
0 7
p 21
1 5
2
0
p31 7 p32 7
5 p33 7
3 4 0
7 7
P
1 5
1 5
3 5
k 1 N
p2k pk2
k 1
N
pNk pk 2
N
k 1
N
k 1
N
p1k
p2k
p Nk
pkN pkN pkN
==
p11 p21
pN1
p12 p22
p1N p11 p2N p21
pN 2 pNN pN1
p12 p22
pN2
p1N p2N
转移概率。式(8.1.2)中条件概率的含义是,某系统在时刻 m 处于状态 Ei 的条件下,
到时刻 m k 处于状态 E j 的概率。
定义 8.1.2 称
马尔可夫链预测PPT文档100页
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法ቤተ መጻሕፍቲ ባይዱ律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
Thank you
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表示,即为
p (k) =P (k-1) P, p (k) =Pk k≥1
(6.4)
记t0为过程的开始时刻,pi(0)=P{X0=X(t0)=i},
P(0)=(p1(0), p2(0), …, pN(0))
.
10
第6章
为初始状态概率向量。
如已知齐次马尔可夫链,则任一时刻的状态概率分布也就确定了:
由于系统状态的变化是随机的,因此,必须用概率描述状 态转移的各种可能性的大小。
.
4
第6章
6.1.2
马尔可夫链是一种描述动态随机现象的数学模型, 它建立在系统“状态”和“状态转移”的概念之上。
所谓系统,就是我们所研究的事物对象;所谓状态,是表
示系统的一组记号。当确定了这组记号的值时,也就确
定了系统的行为,并说系统处于某一状态。系统状态常
一种状态完全是随机的,因此必须用概率描述状态转移的各
种可能性的大小。如果在时刻tn系统的状态为Xn=i的条件下, 在下一个时刻tn+1系统状态为Xn+1=j的概率pij (n)与n无关,则 称 此 马 尔 可 夫 链 是 齐 次 马 尔 可 夫 链 , 并 pij=P{Xn+1=j|Xn=i}i, j=1, 2, …, N称pij为状态转移概率。显然,
对k≥1,记pi(k)=P{Xk=i},
N
pi(k)=
pj(0)·p (k) ji i=1, 2, …, N; k≥1
若记向量jP1 (k)=(p1(k), p2(k), …, pN(k)),
P(k)=P(0)P (k) =P(0)Pk
(6.5) (6.6)
P(k)=P(k-1)P
(6.7)
.
11
设有参数集T (-∞, +∞),如果对任意的t∈T,总有一随机
变量Xt与之对应,则称{Xt, t∈T}为一随机过程。
T
为离散集(不妨设T={t0, t1, t2, …, tn, …}),同时Xt的取值
也是离散的,则称{Xt, t∈T}为离散型随机过程。
.
2
第6章
设有一离散型随机过程,它所有可能处于的状态的集合 为S={1, 2,…, N},称其为状态空间。系统只能在时刻t0, t1, t2, …改变它的状态。为简便计,以下将Xtn等简记为Xn。
1
pN 2
pNN
为该系统的状态转移概率矩阵,简称转移矩阵。
为了论述和计算的需要,引入下述有关概念。
.
7
第6章
概率向量 对于任意的行向量(或列向量),如果其 每个元素均非负且总和等于1,则称该向量为概率向量。
概率矩阵 由概率向量作为行向量所构成的方阵称
为概率矩阵。对于一个概率矩阵P,若存在正整数m,使
第6章
第6章 马尔可夫预测方法
6.1 马尔可夫预测的基本原理 6.2 马尔可夫预测的应用 思考与练习
.
1
第6章
6.1 马尔可夫预测的基本原理
6.1.1
为了表征一个系统在变化过程中的特性(状态),可 以用一组随时间进程而变化的变量来描述。如果系统在 任何时刻上的状态是随机的,则变化过程就是一个随机过 程。
表示为向量,故称之为状态向量。例如,
A、
B、C三种牌号洗衣粉的市场占有率分别是0.3、0.4、
0.3,则可用向量P=(0.3, 0.4, 0.3)来描述该月市场洗衣粉
销售的状况。
.
5
第6章
当系统由一种状态变为另一种状态时,我们称之为状态
转移。例如,洗衣粉销售市场状态的转移就是各种牌号洗衣
粉市场占有率的变化。显然,这类系统由一种状态转移到另
第6章
例6.1 考察一台机床的运行状态。机床的运行存在 正常和故障两种状态。由于出现故障带有随机性,故可将 机床的运行看作一个状态随时间变化的随机系统。可以 认为,机床以后的状态只与其以前的状态有关,而与过去 的状态无关,即具有无后效性。因此,机床的运行可看作 马尔可夫链。
p (k) ij=P{Xn+k=j|Xn=i}
P(k) =(p (k) ij) N×N
(6.3)
称p (k) ij为k步状态转移概率, P(k)为k步状态转移概率 矩阵,它们均与n无关(从式(6.4)也可看出)。
特别地,当k=1时,p (1) ij=pij为1步状态转移概率。马 尔可夫链中任何k步状态转移概率都可由1步状态转移 概率求出。
.
3
第6章
如果对任一n>1,任意的i1, i2, …, in-1 , j∈S, P{Xn=j|X1=i1, X2=i2, …, Xn-1=in-1}=P{Xn=j|Xn-1=in-1}
(6.1)
则称离散型随机过程{Xt, t∈T}为马尔可夫链。 例如,在荷花池中有N张荷叶,编号为1, 2, …, N。假设有一 只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动 可看作一随机过程。在时刻tn,青蛙所在的那张荷叶,称为青蛙 所处的状态。那么,青蛙在未来处于什么状态,只与它现在所 处的状态i(i=1, 2, …, N) 有关,与它以前在哪张荷叶上无关。 此过程就是一个马尔可夫链。
.
9
第6章
由全概率公式可知, 对k≥1,有(其中P (0) 表示单位矩阵)
p (k) ij=P{Xn+k=j|Xn=i}
N
=
l 1
P{Xn+k-1=l| Xn =i}·P{Xn+k=j|Xn+k-1=l}
N
= p (k-1) ilplj l 1
i, j=1, 2, …, N
其中用到马尔可夫链的“无记忆性”和齐次性。用矩阵
得Pm的所有元素均为正数,则称矩阵P为正规概率矩阵。
例如,
A
0.7 0.5
0.3 0.5
中每个元素均非负,每行元素之和皆为1,行数和列
数相同,为2×2方阵,故矩阵A为概率矩阵。
.
8
第6章
概率矩阵有如下性质: 如果A、B皆是概率矩阵,则 AB也是概率矩阵;如果A是概率矩阵,则A的任意次幂 Am(m≥0)也是概率矩阵。对k≥1,
pij P{Xn1jXn i} i, j1,2,..N.
N
pij 1 i1,2,..N.
j1
.
6
第6章
转移矩阵设系统的状态转移过程是一齐次马尔可夫
链,状态空间S={1, 2, …, N}为有限,状态转移概率为pij,则 称矩阵
p11 p12 p1N
P
p21
p22
p2
N
(6.2)
pN