第三讲 蚁群优化算法

合集下载

蚁群算法及案例分析精选全文

蚁群算法及案例分析精选全文
问过的节点;另外,人工蚁
群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
正反馈、较强的鲁棒性、全
局性、普遍性
局部搜索能力较弱,易出现
停滞和局部收敛、收敛速度
慢等问题
优良的分布式并行计算机制
长时间花费在解的构造上,
导致搜索时间过长
Hale Waihona Puke 易于与其他方法相结合算法最先基于离散问题,不
能直接解决连续优化问题
蚁群算法的
特点
蚁群算法的特点及应用领域
由于蚁群算法对图的对称性以
及目标函数无特殊要求,因此
L_ave=zeros(NC_max,1);
%各代路线的平均长度
while NC<=NC_max
%停止条件之一:达到最大迭代次数
% 第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
scatter(C(:,1),C(:,2));
L(i)=L(i)+D(R(1),R(n));
hold on
end
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])

智能控制课件蚁群优化算法

智能控制课件蚁群优化算法

实验数据(算法复杂度)
摘自Ant Colony Optimization
4 实例:JSP
Job-shop Scheduling Problem
M:机器数量 J :任务数 ojm:工序 djm:工时
O ,o jm, :工序集合
JSP(Muth & Thompson 6x6)
m.t Job1 3.1 Job2 2.8 Job3 3.5 Job4 2.5 Job5 3.9 Job6 2.3
Update the shortest tour found
TSP蚁群算法(ant-cycle)
Step 4.2
For every edge (i,j) For k:=1 to m do
m
ij
k ij
k 1
k ij
Q Lk
0
if (i, j) tour described by tabuk otherwise
TSP蚁群算法(ant-cycle)
Step 6
If (NC < NCMAX) and (not stagnation behavior) then Empty all tabu lists Goto step 2 else Print shortest tour Stop
3 蚁群算法调整与参数设置
符合TSP规则; 完成一次旅行后,在经过的路径上释放信息
素; 无需按原路返回。
实例:TSP(参数与机制)
路径上的信息素浓度 ij (t) 信息素更新
ij (t n) ij (t) ij
信息素释放(ant-cycle)
m
ij
k ij
k 1
k ij
Q Lk
if k - th ant uses edge (i, j) in its tour (between time t and t n)

蚁群算法最全集PPT课件

蚁群算法最全集PPT课件
参数优化方法
采用智能优化算法,如遗传算法、粒子群算法等,对算法参数进行 优化,以寻找最优参数组合,提高算法性能。
04
蚁群算法的实现流程
问题定义与参数设定
问题定义
明确待求解的问题,将其抽象为优化 问题,并确定问题的目标函数和约束 条件。
参数设定
根据问题的特性,设定蚁群算法的参 数,如蚂蚁数量、信息素挥发速度、 信息素更新方式等。
动态调整种群规模
根据搜索进程的需要,动态调整参与搜索的蚁群规模,以保持种群 的多样性和搜索的广泛性。
自适应调整参数
参数自适应调整策略
根据搜索进程中的反馈信息,动态调整算法参数,如信息素挥发速 度、蚂蚁数量、移动概率等。
参数动态调整规则
制定参数调整规则,如基于性能指标的增量调整、基于时间序列的 周期性调整等,以保持算法性能的稳定性和持续性。
06
蚁群算法的优缺点分析
优点
高效性
鲁棒性
蚁群算法在解决组合优化问题上表现出高 效性,尤其在处理大规模问题时。
蚁群算法对噪声和异常不敏感,具有较强 的鲁棒性。
并行性
全局搜索
蚁群算法具有天然的并行性,可以充分利 用多核处理器或分布式计算资源来提高求 解速度。
蚁群算法采用正反馈机制,能够实现从局 部最优到全局最优的有效搜索。
强化学习
将蚁群算法与强化学习相结合,利用强化学习中的奖励机制指导 蚁群搜索,提高算法的探索和利用能力。
THANKS
感谢观看
蚂蚁在移动过程中会不断释放新 的信息素,更新路径上的信息素 浓度。
蚂蚁在更新信息素时,会根据路 径上的信息素浓度和自身的状态 来决定释放的信息素增量。
搜索策略与最优解的形成
搜索策略

蚁群优化算法课件技术介绍

蚁群优化算法课件技术介绍

算法执行
初始化
随机初始化蚂蚁的位置或路径,形成 初始解。
信息素更新
在每只蚂蚁完成一次迭代后,根据其 路径上的信息素和启发式信息更新信 息素矩阵。
蚂蚁移动
根据蚂蚁当前位置和信息素矩阵,计 算下一步可行解的概率,按照概率选 择下一个位置或路径。
迭代终止
设定最大迭代次数或满足一定的终止 条件,算法执行结束。
详细描述
启发式信息是根据问题特征和经验知识总结出来的指导算法搜索的规则。通过引入启发 式信息,可以引导蚂蚁向更优解的方向移动,从而加快算法的收敛速度并提高搜索精度。
多目标优化问题中的蚁群优化算法
总结词
蚁群优化算法在多目标优化问题中具有广泛 的应用前景,它可以处理多个相互冲突的目 标函数。
详细描述
多目标优化问题中,各个目标之间往往存在 相互冲突的关系,需要在满足多个目标的同 时找到最优解。蚁群优化算法可以通过引入 多种蚂蚁种类和信息素挥发机制来处理多个 目标函数,并找到一组非支配解作为最终的 解决方案。
任务调度
在多核处理器、云计算平台等 资源受限环境中,优化任务调 度以提高资源利用率。
图像处理
用于图像分割、特征提取等图 像处理任务,提高图像处理效 果。
组合优化
用于解决如旅行商问题、背包 问题等组合优化问题,寻找最
优解或近似最优解。
02 蚁群优化算法的基本原理
信息素的挥发与更新
信息素的挥发
信息素在蚁群路径上挥发,随着时间 的推移,信息素浓度逐渐降低。挥发 速度可以模拟环境因素对信息素的影 响。
解规模,并提高算法的鲁棒性。
算法与其他智能优化算法的结合
混合算法
将蚁群优化算法与其他智能优化算法(如遗传算法、 粒子群优化算法等)结合,形成一种混合算法,可以 取长补短,提高算法的性能。

蚁群优化算法课件

蚁群优化算法课件

05
蚁群优化算法的改进与优 化
信息素更新策略的改进
动态更新策略
根据解的质量实时调整信息素浓度,以提高算法的搜 索效率。
自适应更新策略
根据蚂蚁移动过程中信息素挥发的情况,动态调整信 息素更新规则,以保持信息素浓度的平衡。
局部与全局更新结合
在蚂蚁移动过程中,既进行局部更新又进行全局更新 ,以增强算法的全局搜索能力。
该算法利用了蚂蚁之间信息素传递的 机制,通过不断迭代更新,最终找到 最优路径或解决方案。
蚁群优化算法的起源与发展
蚁群优化算法最初起源于对自然界中蚂蚁觅食行为的研究, 发现蚂蚁能够通过信息素传递找到从巢穴到食物源的最短路 径。
随着研究的深入,蚁群优化算法逐渐发展成为一种通用的优 化算法,广泛应用于各种组合优化问题,如旅行商问题、车 辆路径问题等。
任务调度问题
总结词
蚁群优化算法在任务调度问题中能够实现高效的任务调度,提高系统整体性能。
详细描述
任务调度问题是指在一个多任务环境中,根据任务的优先级、资源需求等因素,合理分配任务到不同 的处理单元,以实现系统整体性能的最优。蚁群优化算法通过模拟蚂蚁的行为,利用信息素传递机制 ,能够实现高效的任务调度,提高系统整体性能。
利用已知领域知识
将领域专家的经验或启发式信息融入算法中,以提高算法的搜索 效率和准确性。
利用问题特性
根据问题的特性,引入与问题相关的启发式信息,以引导蚂蚁的移 动方向和选择行为。
自适应调整启发式信息
根据算法的搜索过程和结果,动态调整启发式信息的权重或规则, 以平衡算法的全局搜索和局部搜索能力。
06
蚂蚁行为规则的改进
引入变异行为
01
在蚂蚁移动过程中,随机选择某些蚂蚁进行变异操作,以增强

蚁群优化算法69893

蚁群优化算法69893

Pijk(i,
j)
(i,u)(i,u)
uJki
,
jJk i
0,
其他
其中,J i 表示从城市i可以直接到达的且又不在蚂蚁访问过的城市序列
R
k
k
中的城市集合。
i,
j 是一个启发式信息,通常由i, j=1/d 直接计算。 ij
i , j 表示边 i , j 上的信息量
-
2.3 蚂蚁系统理论

蚁群优化算法相关应用
-
问题简述:
2.1 TSP问题
已知有 n
个城市的集合
Cc,c,L,c
n
12
n
,任意两个城市之间均有路
径连接,dij i,j1,2,L,n表示城市与之间的距离。旅行商问题就是需要 寻找这样的一中周游方案:周游路线从某个城市出发,经过每个城市
一次且仅一次,最终回到出发城市,使得周游的路线总长度最短。
-
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。
2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。
3.实验最终结果:所有的蚂蚁 都会选择同一分支。
自身催化(正反馈)过程
-
双桥实验
1.1 基本原理
1.起初两条分支上不存在信息 素,蚂蚁随机选择一条路径。
2.将ACO纳入了基于模型的搜索框架中。
趋势
1.利用ACO算法去解决更为复杂的优化问题,例如:
动态问题、随机问题、多目标问题。 2、ACO算法的高效并行执行。 3.更理论化的理解和刻画ACO算法在求解问题时的行为。 4.与其他算法结合(粒子群算法)。

蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用

蚁群优化算法及其在工程中的应用引言:蚁群优化算法(Ant Colony Optimization,ACO)是一种基于蚁群行为的启发式优化算法,模拟了蚂蚁在寻找食物过程中的行为。

蚁群优化算法以其在组合优化问题中的应用而闻名,特别是在工程领域中,其独特的优化能力成为解决复杂问题的有效工具。

1. 蚁群优化算法的原理与模拟蚁群优化算法源于对蚂蚁觅食行为的研究,它模拟了蚂蚁在寻找食物时使用信息素沉积和信息素蒸发的策略。

蚂蚁释放的信息素作为信息传播的媒介,其他蚂蚁会根据信息素浓度选择路径。

通过这种方式,蚁群优化算法利用信息素的正反馈机制,不断优化路径选择,从而找到全局最优解。

2. 蚁群优化算法的基本步骤蚁群优化算法的基本步骤包括:初始化信息素浓度、蚁群初始化、路径选择、信息素更新等。

2.1 初始化信息素浓度在蚁群优化算法中,信息素浓度表示路径的好坏程度,初始时,信息素浓度可以设置为一个常数或随机值。

较大的初始信息素浓度能够提醒蚂蚁找到正确的路径,但也可能导致过早的收敛。

2.2 蚁群初始化蚂蚁的初始化包括位置的随机选择和路径的初始化。

通常情况下,每只蚂蚁都在搜索空间内的随机位置开始。

2.3 路径选择蚂蚁通过信息素和启发式信息来选择路径。

信息素表示路径的好坏程度,而启发式信息表示路径的可靠程度。

蚂蚁根据这些信息以一定的概率选择下一个位置,并更新路径。

2.4 信息素更新每只蚂蚁走过某条路径后,会根据路径的好坏程度更新信息素浓度。

信息素更新还包括信息素的挥发,以模拟现实中信息的流失。

3. 蚁群优化算法在工程中的应用蚁群优化算法在工程领域中有广泛的应用,以下将从路径规划、交通调度和电力网络等方面进行说明。

3.1 路径规划路径规划是蚁群算法在工程中最为常见的应用之一。

在物流和交通领域,蚁群算法可以帮助寻找最短路径或最佳路线。

例如,蚁群优化算法在无人驾驶车辆中的应用,可以通过模拟蚁群的行为,找到最优的路径规划方案。

3.2 交通调度蚁群优化算法在交通调度中的应用可以帮助优化交通流,减少拥堵和行程时间。

蚁群优化算法及其应用研究

蚁群优化算法及其应用研究

蚁群优化算法及其应用研究随着计算机技术的不断发展,各种优化算法层出不穷,其中蚁群优化算法作为一种新兴的智能优化算法,已经引起了广泛的关注和研究。

本文主要介绍蚁群优化算法的基本原理、算法流程及其在实际问题中的应用。

一、蚁群优化算法的基本原理蚁群优化算法是一种仿生智能算法,其基本原理是模拟蚂蚁在寻找食物时的行为。

在蚂蚁寻找食物的过程中,蚂蚁会释放一种叫做信息素的物质,用来标记通路的好坏程度。

其他蚂蚁在寻找食物时,会根据信息素的浓度选择走过的路径,从而最终找到食物。

蚁群优化算法的基本思想就是将蚂蚁寻找食物的行为应用到优化问题中。

在算法中,每个解就相当于蚂蚁寻找食物的路径,信息素就相当于解的质量。

当蚂蚁在搜索过程中找到更好的解时,就会释放更多的信息素,从而吸引其他蚂蚁继续探索这个解。

通过不断地迭代,最终找到全局最优解。

二、蚁群优化算法的算法流程蚁群优化算法的算法流程主要包括以下几个步骤:1.初始化信息素和解的质量在算法开始之前,需要对信息素和解的质量进行初始化。

一般情况下,信息素的初始值为一个比较小的正数,解的质量可以通过一个评价函数进行计算。

2.蚂蚁的移动在每一轮迭代中,每个蚂蚁会根据当前信息素的分布和启发式函数选择下一步要走的方向。

启发式函数一般是根据当前解的质量和距离计算的。

3.信息素的更新当每个蚂蚁完成一次搜索后,需要更新信息素的浓度。

一般情况下,信息素的更新公式为:τi,j = (1-ρ)τi,j + Δτi,j其中τi,j表示从城市i到城市j的信息素浓度,ρ表示信息素的挥发因子,Δτi,j表示当前蚂蚁留下的信息素。

4.全局信息素的更新在每一轮迭代中,需要对全局信息素进行更新。

一般情况下,全局信息素的更新公式为:τi,j = (1-α)τi,j + αΔτi,j其中α表示全局信息素的影响因子,Δτi,j表示当前蚂蚁留下的信息素。

5.终止条件的判断当达到预设的迭代次数或者满足一定的停止条件时,算法停止。

《蚁群算法介绍》课件

《蚁群算法介绍》课件
总结词
输出最优解和相关性能指标。
详细描述
这一步是将最优解和相关性能指标输出,以 便于对算法的性能进行分析和评估。
04
蚁群算法的性能分析
收敛性分析
收敛速度
蚁群算法在优化问题中的收敛速度取决于初始信息素分布、蚂蚁数量、迭代次数等因素 。
最优解质量
蚁群算法在某些问题上可能找到全局最优解,但在其他问题上可能只能找到近似最优解 。
VS
详细描述
这一步是生成初始解的过程,需要按照设 定的规则,将蚂蚁随机放置在解空间中, 并初始化每条路径上的信息素。
迭代优化
总结词
通过蚂蚁的移动和信息素的更新,不断优化 解的质量。
详细描述
这一步是蚁群算法的核心部分,通过模拟蚂 蚁的移动和信息素的更新机制,不断迭代优 化解的质量,最终找到最优解。
结果
多目标优化问题的蚁群算法
针对多目标优化问题,蚁群算法需要 进行相应的改进。
VS
多目标优化问题要求算法在满足多个 冲突目标的同时找到最优解。这需要 对蚁群算法进行相应的调整,以适应 多目标优化的特性。例如,可以通过 引入权重因子来平衡各个目标之间的 矛盾,或者采用非支配排序方法对解 进行分层处理,以便更好地处理多目 标优化问题。
蚁群算法的优化目标
寻找最短路径
蚁群算法的主要目标是找到起点到终 点之间的最短路径,这在实际应用中 可用于解决如旅行商问题、车辆路径 问题等优化问题。
平衡搜索与探索
蚁群算法需要在搜索和探索之间取得 平衡,以避免陷入局部最优解,提高 算法的全局搜索能力。
03
蚁群算法的实现步骤
问题建模
总结词
将实际问题抽象为蚁群算法能够解决的问题模型。
蚂蚁根据局部信息素浓度选择移动方向,倾向于选择信息素浓度较高的路径。

蚁群优化算法及其应用研究

蚁群优化算法及其应用研究

蚁群优化算法及其应用研究
蚁群优化算法(Ant Colony Optimization,简称ACO)是一种新兴的基于密度信息的群智能优化技术,是一种由多只蚂蚁理性行为协同搜索最优解的复杂优化算法。

该算法在处理多种组合优化问题时具有不错的实用价值,例如旅行商问题、仓库搬运问题、背包问题以及路径覆盖问题等。

蚁群优化算法的原理是根据蚂蚁以递增的概率在各解的集合中搜索,并把解的可能性尽可能地重新分布在蚂蚁搜索的道路中,借以达到找出最优解的效果。

这种重新分布的过程是依据蚂蚁之间的认知,逐渐地形成一个信息流,来用来帮助每只蚂蚁按照可行的最优路径继续搜索;当蚁群迭代到收敛时,系统便放出少量蚂蚁,用以把形成的信息流引导到最佳的全局极值。

ACO是一种强大的机器学习技术,并在广泛的工程领域有过良好的实现,包括:计算机视觉、机器人规划、认知计算、网络优化、交通模拟、复杂生态系统模拟、计算机辅助设计、工作流程优化、数据挖掘和机器人轨迹规划等。

在这些方面,ACO算法应用范围十分广泛,其优势体现在算法复杂度低;有效控制最优解搜索的扩散和收敛;足够的并发执行性能,以及支持任意异构的设备系统;以及更高的稳定性和可靠性,提高了解决复杂问题的能力。

蚁群优化算法课件

蚁群优化算法课件
改进算法。
在基于聚类分析的蚁群优化算法中,算 法首先利用聚类分析技术将问题空间划 分为多个子空间,然后将蚂蚁分配到不
同的子空间中进行搜索。
这种算法通过聚类分析技术将问题空间 划分为多个子空间,可以减少蚂蚁搜索
范围,提高算法的寻优效率。
基于粒子群的蚁群优化算法
基于粒子群的蚁群优化算法是 一种将粒子群优化算法与蚁群 优化算法相结合的改进算法。
THANKS
感谢观看
蚁群优化算法课件
目录
• 蚁群优化算法简介 • 蚁群优化算法的基本原理 • 蚁群优化算法的实现细节 • 蚁群优化算法的改进版本 • 蚁群优化算法的实验与分析 • 么是蚁群优化算法
蚁群优化算法是一种启发式优化算法,通过模拟 01 自然界中蚂蚁寻找食物的行为来求解优化问题。
在基于粒子群的蚁群优化算法 中,每只蚂蚁被视为一个粒子 ,每个粒子都有一个位置和一 个速度。
该算法通过粒子的位置和速度 来描述蚂蚁的状态,并利用粒 子群优化算法的优点来指导蚂 蚁的搜索行为。
05
蚁群优化算法的实验与分析
在TSP问题上的应用
总结词
高效、稳定
详细描述
蚁群优化算法在TSP问题上具有高效、稳定的性能表现。通过模拟蚂蚁觅食行为 ,该算法能够在较短的时间内寻找到一条最短路径,并且具有较好的鲁棒性。
果的质量。
02
蚁群优化算法的基本原理
蚂蚁的行为特征
01 蚂蚁具有记忆能力
蚂蚁能够记住之前走过的路径和相关的信息,如 食物的来源、路径的长度等。
02 蚂蚁具有协作能力
在寻找食物的过程中,蚂蚁之间会相互协作,通 过信息素的传递来共享信息。
03 蚂蚁具有适应性
蚂蚁能够根据环境的变化来调整自己的行为和策 略,以适应不同的环境条件。

蚁群优化算法PPT

蚁群优化算法PPT

ACO首次被系统的提出
自然界中真实蚁群集体行为
4
蚁群算法原理
如何找到最短路径 ?
• 信息素:信息素多的地方显然经过这里的蚂蚁多, 因而会有更多的蚂蚁聚集过来。
• 正反馈现象:某一路径上走过的蚂蚁越多,则后来 者选择该路径的概率就越大。
类比:
大肠杆菌在人体肠道内觅食的过程
5
蚁群算法原理
自然蚂蚁的智能特点
Meet the requirement of the solution
Y
output
31
实现过程
32
实现过程
33
实现过程
·
当 比较小时,搜索的全局性好,但收敛速度变慢; 当 比较大时,收敛速度比较快,但是容易陷入局部最优。
13
蚁群算法参数选择
因子 和 的选取
启发式因子 的大小则反映了在蚁群路径搜索中的随机性因素作 用的强度;
启发式因子 的大小反映了在蚁群路径搜索中确定性因素作用的 强度。
1.Ant-cycle
Q / Lk,第k只蚂蚁从城市i访问城市j k ii 0, 其他
k ii
Q / dij,第k只蚂蚁从城市i访问城市j 2.Ant-quantity 0, 其他
Q,第k只蚂蚁从城市i访问城市j 3.Ant-density 0, 其他
8
求解组合优化问题的蚁群算法
9
基本蚁群算法
蚂蚁k(k=1,2,…,m)根据各个城市间连接路径上的信 息素浓度决定其下一个访问城市,设 Pijk t 表示t时刻蚂蚁 k从城市i转移到城市j的概率,其计算公式为:
is (t )is (t ) , s allowk Pijk (t ) is (t )is (t ) xallowk 0, s allowk

《蚁群算法》课件

《蚁群算法》课件
《蚁群算法整理》ppt课件

CONTENCT

• 蚁群算法简介 • 蚁群算法的基本原理 • 蚁群算法的实现过程 • 蚁群算法的改进策略 • 蚁群算法的性能评价 • 蚁群算法的应用案例
01
蚁群算法简介
蚁群算法的基本概念
蚁群算法是一种模拟自然界中蚂蚁觅食行为的优化 算法,通过模拟蚂蚁的信息素传递机制来寻找最优 解。
02
蚁群算法的基本原理
信息素的挥发与更新
信息素挥发与更新是蚁群算法中一个重要的过程,它影响着蚂蚁 的移动和信息传递。
在蚁群算法中,信息素是蚂蚁之间传递的一种化学物质,用于标 识路径的优劣。信息素会随着时间的推移而挥发,同时蚂蚁在移 动过程中会释放新的信息素。挥发和更新的过程是动态的,影响 着蚂蚁对路径的选择。
要点一
总结词
信息素更新规则是蚁群算法中的重要环节,通过改进信息 素更新规则,可以提高算法的性能。
要点二
详细描述
在蚁群算法中,信息素更新规则决定了蚂蚁在移动过程中 如何更新信息素。改进信息素更新规则可以提高算法的全 局搜索能力和局部搜索能力。例如,可以采用动态调整策 略,根据蚂蚁的移动路径和状态动态调整信息素的更新量 ,或者采用自适应策略,根据问题的特性和求解结果自适 应地调整信息素更新规则,以提高算法的性能。
详细描述
在蚁群算法中,信息素挥发速度决定了信息素消散的快慢。较慢的挥发速度可以使信息素积累,有利于增强算法 的全局搜索能力;较快的挥发速度则有利于算法的局部搜索。通过调整信息素的挥发速度,可以在全局搜索和局 部搜索之间取得平衡,提高算法的效率和稳定性。
蚂蚁数量与移动规则的调整
总结词
蚂蚁数量和移动规则是蚁群算法中的重要参数,通过调整这些参数,可以改善算法的性 能。

蚁群优化算法

蚁群优化算法
2015-5-19 copyright:hhq
精英蚂蚁系统
精英蚂蚁系统(EAS)是最早的改进蚂蚁系统。
遗传算法中的精英策略
传统的遗传算法可能会导致最适应个体的遗传信息丢失 精英策略的思想是保留住一代中的最适应个体
蚂蚁系统中的精英策略
每次循环之后给予最优解以额外的信息素量 这样的解被称为全局最优解(global-best solution) 找出这个解的蚂蚁被称为精英蚂蚁(elitist ants)
2015-5-19
copyright:hhq
最大最小蚂蚁系统
MMAS和AS主要有四个方面不同:
在每次循环之后,只有一只蚂蚁进行信息素更新。 这只蚂蚁可能是找出当前循环中最优解的蚂蚁,也 可能是找出从实验开始以来最优解的蚂蚁 在每个解的元素上的的信息素量被限制在[ min , max ] 范围区间内 信息素初始值为信息素取值范围的上限 max ,信息维 持率保持一个较大值。 当系统陷入停滞,将问题空间所有边的信息素重新 初始化。
启发式算法(Heuristic Algorithm)
在可接受的花费(指时间和空间)下给出待解决组合优化问题 每一个实例的一个可行解,该可行解与最优解的偏离程度不一 定能事先预计,也不能保证每次能用相同的时间求出结果。
2015-5-19 copyright:hhq
有趣的问题
1.为何大多数蚂蚁在觅食时,会选择相同的 路径,而且这条路径往往是一条食物和巢穴 之间的最短路径,它们是如何做到的? 2.当原来最优路径上出现了障碍物或者食物 位置改变了;蚁群仍能够重新探索出新的一 条最优路径?
k ij ij k 1 m
1. 原有信息素的挥发 通常的做法是设置信息持久率 (0 1) 让所有 ij (t )乘以 。在算法中用于避免信息素的无限增长 淹没启发式信息,也有助于丢弃那些构建过的较差的路径。

蚁群算法ppt课件

蚁群算法ppt课件

,则以概率
pij
ij (k 1) , j T ij (k 1)
, pij 0, j T
lT
到达j,L(s) L(s) { j},i : j;若L(s) N且T {l | (i,l) A,l L(s)}{i0}
则到达 i0, L(s) L(s) {i0},i : i0; 重复STEP 2。 16
在STEP 3中,蚁群永远记忆到目前为止的最优解。
19
图的蚁群系统(GBAS)
四个城市的非对称TSP问题,距离矩阵和城市图示如下:
0 1 0.5 1
D
(dij
)
1
1.5
0 5
1 0
1
1
1 1 1 0
20
5 初始的蚁群优化算法—基于图的蚁群 系统(GBAS)
假设共4只蚂蚁,所有蚂蚁都从城市A出发,挥发因子
出 蚂计 蚁s算行得走到的的城最市好集解合。,否初则始使L蚂(s蚁) 为s从空起集点,1i0出s发,m用。L(s) 表示
STEP 2 (内循环) 按蚂蚁1 s m的顺序分别计算。当蚂 蚁在城市i,若 L(s) N或{l | (i,l) A,l L(s)}
完成第s只蚂蚁的计算。否则,若
L(s) N且T {l | (i,l) A,l L(s)} {i0}
31 168
1 24
0
这是第一次外循环结束的状态。
为了说明蚁群算法的原理,先简要介绍一下蚂蚁搜寻食物的具 体过程。在蚁群寻找食物时,它们总能找到一条从食物到巢穴之间 的最优路径。这是因为蚂蚁在寻找路径时会在路径上释放出一种特 殊的信息素。当它们碰到一个还没有走过的路口时.就随机地挑选 一条路径前行。与此同时释放出与路径长度有关的信息素。路径越 长,释放的激索浓度越低.当后来的蚂蚁再次碰到这个路口的时 候.选择激素浓度较高路径概率就会相对较大。这样形成一个正反 馈。最优路径上的激索浓度越来越大.而其它的路径上激素浓度却 会随着时间的流逝而消减。最终整个蚁群会找出最优路径。

蚁群优化算法

蚁群优化算法
信息素是一种化学物质,由蚂蚁自身释放,是实现蚁群内 间接通信的物质。蚂蚁随机选择路径,但是能感知当前地 面上的信息素浓度,并倾向于往信息素浓度高的方向前进。
信息素
1.1 基本原理
双桥实验
蚁穴
食物源
(a)两个路具有同样的长度
自身催化(正反馈)过程
1.起初两条分支上不存在信息 素,蚂蚁以相同的概率进行 选择。 2.随机波动的出现,选择某一 条分支的蚂蚁数量可能比另 外一条多。 3.实验最终结果:所有的蚂蚁 都会选择同一分支。
2
蚂蚁数目过少时,算法的探索能力变差,容易出现早熟现象。特别是当问题的规模很大时,算法的全局寻优能力会十分糟糕
3
在用蚂蚁系统、精华蚂蚁系统、基于排列的蚂蚁系统和最大最小蚂蚁系统求解TSP时,m取值等于城市数目时有较好性能。
蚂蚁数目
2.3 蚂蚁系统理论
参数设置
1
信息素挥发因子较大,信息素挥发速率大,从未被蚂蚁选择过的边上信息素急剧减少到接近0,降低算法的全局探索能力。
2
信息素会不断的蒸发。
3
路径探索也是必需的,否则容易陷入局部最优。
1.1基本理论
蚁群觅食现象
蚁群优化算法
蚁群
搜索空间的一组有效解(种群规模m)
觅食空间
问题的搜索空间(问题的规模、解的维数n)
信息素
信息素浓度变量
蚁巢到食物的一条路径
一个有效解
找到的最短路
问题的最优解
蚁群觅食现象和蚁群优化算法的基本定义对照表
3.3 最大最小蚂蚁系统
最大最小蚂蚁系统
提出背景:
1.对于大规模的TSP,由于搜索蚂蚁的个数有限,而初始化时蚂蚁的 分布是随机的,这会不会造成蚂蚁只搜索了所有路径中的小部分就 以为找到了最好的路径,而真正优秀的路径并没有被探索到呢? 2.当所有蚂蚁都重复构建着同一条路径的时候,意味着算法已经进入 了停滞状态,有没有办法利用算法停滞后的迭代过程进一步搜索以 保证找到更接近真实目标的解呢?

蚁群优化算法及编程实现

蚁群优化算法及编程实现

目录蚁群优化算法及编程实现 (III)摘要 (III)关键词 (III)Abstract (IV)Keywords (IV)第一章绪论 (1)1.1引言 (1)1.2课题背景 (1)1.2.1 蚁群优化算法在国外发展历史及发展趋势 (1)1.2.2蚁群优化算法在国内的发展趋势 (1)1.2.3设计要求及解决思路 (2)第二章蚁群优化系统原理 (3)2.1 蚁群优化算法的基本原理 (3)2,2蚁群优化算法的机制原理 (4)2.3 蚁群优化算法特征 (4)2.3.1 蚁群优化算法具有群体性 (4)2.3.2 蚁群优化算法就是一个完整的正反馈系统 (4)2.4 蚁群优化算法模型的建立 (5)2.4.1 对个体蚂蚁的抽象 (5)2.4.2 空间问题的描述 (5)2.4.3 寻找最优路径的抽象 (6)2.4.4 信息素挥发的抽象及计算 (6)第三章用蚁群优化算法解决TSP问题建模 (10)3.1什么是TSP? (10)3.2蚁群优化算法如何解决TSP问题 (10)3.3蚁群优化问题解决TSP问题的数学建模 (10)3.3.1 基本参数设定及计算 (10)3.4 程序难点介绍 (12)3.4.1 程序 (12)3.4.2 程序框图 (12)3.4.3 程序难点分析 (12)3.4.4 程序结构分析 (13)第四章用蚁群优化算法实现贵州旅游TSP问题 (14)4.1实验内容 (14)4.2贵州旅游景点坐标的提取 (14)4.3提取的景点及对应坐标 (15)4.4实验结果及分析 (17)4.4.1程序调试 (17)4.4.2调试结果 (17)4.4.3蚂蚁数量对于实验结果的影响分析 (19)第五章实现贵阳公交车连通所有大学的路径问题 (21)5.1贵阳所有大学的坐标 (21)5.2程序测试结果 (21)结语 (23)参考文献 (24)致谢 (25)附件 (26)蚁群优化算法及编程实现摘要蚁群优化算法是人工智能研究领域中一个非常重要重要的分支,蚁群优化算法最初是由意大利学者Ddorigo M与1991年首次提出来的,蚁群优化算法的本质就是一个非常复杂的智能化系统,而且这个系统还具有很强的鲁棒性(Robust)、比较好的分布式计算机制而且还能够与其他的相关方法相互结合使用的优点。

现代优化算法-蚁群算法

现代优化算法-蚁群算法
3)易出现停滞现象,即算法搜索进行到一定程度后,所有个 体发现的解都完全一致,不能对解空间进一步进行搜索。
蚁群优化算法—改进
蚁群算法的各种改进: 1)MAX-MIN ANT SYSTEM (MMAS)算法
2)自适应蚁群优化算法
3)自适应调整信息素的蚁群算法
4)自适应调整 (残留信息的保留部分)的蚁群算法 5)带杂交算子的蚁群算法 6)在解决TSP问题——分段算法Section_MMMAS 7)在解决TSP问题——相遇算法MMMAS
— ij t 。
2)由城市 i 转移到城市 j 的启发信息,该启发信息是由要
解决的问题给出的——
ij ,在TSP问题中一般取
ij
1,
d ij
其中, d ij 表示城市 i,j 间的距离, ij 在这里可以称为先
验知识。
蚁群优化算法—算法流程
选择机制, 那么,t 时刻位于城市 i 的蚂蚁 k 选择城市 j 为目标城市的概率是:
这个解满足以上四个约束 条件。
蚁群优化算法—算法提出
NP问题:至今为止,还没有一个有能求得最优解的多项式时间算法 的组合优化问题称为NP问题。
TSP问题就是一个著名的NP问题。在如何解决这个问题方面已 经有了大量的研究。这其中包括遗传算法,退火算法,动态规 划等等。
蚁群优化算法—算法提出
TSP问题与蚁群寻径行为比较:
个城市推销商品,每个两个城市 i 和 j 之间的距离为 dij ,如何选择 一条道路使得商人每个城市走一遍后回到起点且所走路径最短。
蚁群优化算法—算法提出
一般旅行商问题TSP,数学模型描述:
min dij xij i j
n
s.t. xij 1, i 1, 2 ,, n j1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)只允许迭代最优蚂蚁(在本次迭代构建出最短路径的 蚂蚁),或者至今最优蚂蚁释放信息素。
(2)信息素量大小的取值范围被限制在一个区间内。 (3)信息素初始值为信息素取值区间的上限,并伴随一个
较小的信息素蒸发速率。 (4)每当系统进入停滞状态,问题空间内所有边上的信息
素量都会被重新初始化。
3.3 最大最小蚂蚁系统
(3)蚂蚁根据自己构建的路径长度在它们本轮经过的边上释放信 息素。蚂蚁构建的路径越短、释放的信息素就越多。一条边被蚂 蚁爬过的次数越多、它所获得的信息素也越多。
(4)迭代(2),直至算法终止。
2 算法流程
信息素更新
m
(i, j) (1 r) (i, j) k (i, j),
食物
6:我自己走,说不定能探索 出一条更短的路径呢,
到时候你们就都会跟着我了
蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度, 并倾向于往信息素浓度高的方向行进。信息素由蚂蚁自身释放,是实现蚁群内间接通信的物 质。由于较短路径上蚂蚁的往返时间比较短,单位时间内经过该路径的蚂蚁多,所以信息素 的积累速度比较长路径快。因此,当后续蚂蚁在路口时,就能感知先前蚂蚁留下的信息,并 倾向于选择一条较短的路径前行。这种正反馈机制使得越来越多的蚂蚁在巢穴与食物之间的 最短路径上行进。由于其他路径上的信息素会随着时间蒸发,最终所有的蚂蚁都在最优路径 上行进。
长度越短、信息素浓度越大的路径被蚂蚁选择的概率越大。和是
两个预先设置的参数,用来控制启发式信息与信息素浓度作用的权
重关系。当=0时,算法演变成传统的随机贪心算法,最邻近城市被 选中的概率最大。当=0时,蚂蚁完全只根据信息素浓度确定路径,
算法将快速收敛,这样构建出的最优路径往往与实际目标有着较大 的差异,算法的性能比较糟糕。
2 算法流程
信息素更新
(1)在算法初始化时,问题空间中所有的边上的信息素都被初始
化为0。
(2)算法迭代每一轮,问题空间中的所有路径上的信息素都会发 生蒸发,我们为所有边上的信息素乘上一个小于1的常数。信息素 蒸发是自然界本身固有的特征,在算法中能够帮助避免信息素的 无限积累,使得算法可以快速丢弃之前构建过的较差的路径。
引入这种额外的信息素强化手段有助于更好地引导蚂蚁搜索的偏向, 使算法更快收敛。
3.2 基于排列的蚂蚁系统
基于排列的蚂蚁系统(rank-based Ant System,ASrank)在AS 的基础上给蚂蚁要释放的信息素大小加上一个权值,进一步加大各边信 息素量的差异,以指导搜索。在每一轮所有蚂蚁构建完路径后,它们将 按照所得路径的长短进行排名,只有生成了至今最优路径的蚂蚁和排名
第3讲 蚁群优化算法
Contents
1 基本原理 2 算法流程 3 改进版本 4 相关应用 5 参数设置
1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
自然界蚂蚁群体在寻找食物的过程中,通过一种被 称为信息素(Pheromone)的物质实现相互的 间接通信,从而能够合作发现从蚁穴到食物源的最 短路径。
2 算法流程
路径构建 信息素更新
2 算法流程
例5.1 给出用蚁群算法求解一个四城市的TSP问题的执 行步骤,四个城市A、B、C、D之间的距离矩阵如下
3 1 2
W

dij

3 1
5
5
4 2
2 4 2
假设蚂蚁种群的规模m=3,参数=1,=2,r=0.5。
0.35
k 1 3
AC (1 r) AC

k AC

0.5 0.3
(1/12)
0.16
k 1
…… 如此,根据公式(5.2)依次计算出问题空间内所有边更 新后的信息素量。
2 算法流程
解:
步骤4: 如果满足结束条件,则输出全局最优结果并结束 程序,否则,转向步骤2.1继续执行。
k 1
k (i,
j)

(C0k,)1,
if (i, jΒιβλιοθήκη Rk otherwise m是蚂蚁个数;r是信息素的蒸发率,规定0<r≤1。k (i, j) 是第k
只蚂蚁在它经过的边上释放的信息素量,它等于蚂蚁k本轮构建路 径长度的倒数。Ck表示路径长度,它是Rk中所有边的长度和。
B

C D
: :
BC BD

BC

BD

0.31 0.31
(1/ 5)2 (1/ 4)2

0.012 0.019
p(C) 0.012 /(0.012 0.019) 0.39
p(D) 0.019 /(0.012 0.019) 0.61
2 算法流程
解:
步骤2.2:为每只蚂蚁选择下城市。我们仅 以蚂蚁1为例,当前城市i=A,可访问城市集 合J1(i) ={B, C, D}。计算蚂蚁1选择B,C,D作 为下一访问城市的概率:
A

CB
: :
AB AC

AB

AC
0.31 (1/ 3)2 0.31 (1/1)2
通过对这种群体智能行为的抽象建模,研究者提出 了蚁群优化算法(Ant Colony Optimization, ACO),为最优化问题、尤其是组合优化问题的 求解提供了一强有力的手段。
1 基本原理
自然界蚂蚁觅食行为
蚁群优化算法
觅食空间
蚁群


蚁巢到食物的一条路径

找到的最短路径

蚂蚁信间息的素通信
if j Jk (i)
uJk (i)

0,
otherwise
对于每只蚂蚁k,路径记忆向量Rk按照访问顺序记录了所有k已经经 过的城市序号。设蚂蚁k当前所在城市为i,则其选择城市j作为下一 个访问对象的概率如上式。Jk(i)表示从城市i可以直接到达的、且又
不在蚂蚁访问过的城市序列Rk中的城市集合。(i, j)是一个启发式信 息,通常由 (i, j)=1/dij直接计算。(i, j)表示边(i, j)上的信息素量。
蚂蚁系统(Ant System,AS)是最基本的ACO算法, 是以TSP作为应用实例提出的。
2 算法流程
路径构建—— 伪随机比例选择规则(random proportional)

pk
(i,
j)


(i, j) (i, j)
(i,u) (i,u) ,
m
(i, j) (1 r) (i, j) k (i, j) eb (i, j),
k 1
k
(i,
j)

(C0k,
)1,
if (i, j) Rk otherwise
,
b (i,
j)

(C0b, )1,
if (i, j)在路径Tb上 otherwise
2 算法流程
Company Logo
路径构建—— 伪随机比例选择规则(random proportional)

pk
(i,
j)


(i, j) (i, j)
(i,u) (i,u) ,
if j Jk (i)
uJk (i)

0,
otherwise
3.3 最大最小蚂蚁系统
最大最小蚂蚁系统(MAX-MIN Ant System, MMAS)在基本AS算法的基础上进行了四项改进:
2 算法流程
ACO基本要素
路径构建
每只蚂蚁都随机选择 一个城市作为其出发 城市,并维护一个路 径记忆向量,用来存 放该蚂蚁依次经过的 城市。蚂蚁在构建路 径的每一步中,按照 一个随机比例规则选 择下一个要到达的城 市。
信息素更新
当所有蚂蚁构建完路 径后,算法将会对所 有的路径进行全局信 息素的更新。注意, 我们所描述的是AS 的ant-cycle版本,更 新是在全部蚂蚁均完 成了路径的构造后才 进行的,信息素的浓 度变化与蚂蚁在这一 轮中构建的路径长度 相关。
2 算法流程
解:
步骤1:初始化。首先使用贪心算法得到路径 (ACDBA),则Cnn=f(ACDBA)=1+2+4+3=10。
求得0=m/Cnn=3/10=0.3。初始化所有边上的信 息素ij=0。
2 算法流程
Company Logo
解:
步骤2.1:为每只蚂蚁随机选择出发城市, 假设蚂蚁1选择城市A,蚂蚁2选择城市B, 蚂蚁3选择城市D。
问题的搜索空间 搜索空间的一组有效解
一个有效解 问题的最优解 信息启素发浓式度搜变索量
1 基本原理
1:走哪条路比较好呢? 嗯,先自己瞧瞧,
再感受下兄弟们的气息
2:天哪,我一定是走错路了, 好远,得产生少点信息素
4、5:好强的信息素浓度, 跟上跟上
3:(得意……) 我这么快就到了, 产生多点信息素, 兄弟们不跟我跟谁?
用轮盘赌法则选择下城市。假设产生的随机数 q=random(0,1)=0.67,则蚂蚁1将会选择城市D。
用同样的方法为蚂蚁2和3选择下一访问城市,假设 蚂蚁2选择城市C,蚂蚁3选择城市C。
2 算法流程
解:
步骤2.4:实际上此时路径已经构造完毕,蚂蚁1构建 的路径为(ABDCA)。蚂蚁2构建的路径为(BDCAB)。 蚂蚁3构建的路径为(DACBD)。
,
b
(i,
j)

(C0b, )1,
if (i, j)在路径Tb上 otherwise
权值(w−k)对不同路径的信息素浓度差异起到了一个放大的作用,
相关文档
最新文档