《概率与统计》习题答案(复旦大学)
概率论与数理统计复旦大学出版社第二章课后答案(供参考)
概率论与数理统计习题二答案1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为(2) 当0x <时,{}()0F x P X x =≤=当01x ≤<时,{}{}22()035F x P X x P X =≤===当12x ≤<时,{}{}{}34()0135F x P X x P X P X =≤==+==当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为分布函数3次射击中至少击中2次的概率为 4.(1) 设随机变量X 的分布律为{}!kP x k ak λ==,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为{}aP x k N==, k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知故 ea λ-=(2) 由分布律的性质知即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b(1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+(2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+==31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑道,根据题意有 即2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松定理近似计算查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则故 13p =所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率;(2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】设B 表示指示灯发出信号(1) 设X 表示5次独立试验中A 发生的次数,则~(5,0.3)X B 。
概率论与数理统计复旦大学出版社第一章课后参考答案
精心整理第一章1.见教材习题参考答案.2.设A ,B ,C 为三个事件,试用A ,B ,C(1)A 发生,B ,C 都不发生; (2)A ,B ,C 都发生; (3)A ,B ,C (4)A ,B ,C 都不发生; (5)A ,B ,C(6)A ,【解】(1(B C (4)ABC B C (5)ABC ∪ABC ∪ABC ABC =AB BC AC3..4.设A ,?B )=0.3,求P (.【解】P 5.设A ,(A )=0.6,P (B )=0.7,(1AB (2AB【解】(1)()0.6AB P A ==,()P AB 取到最大值为(2)当()()()0.3P A P B P A B =+-= 6.设A ,B ,P (C )=1/3P (AC )至少有一事件发生的概率. )=0, 由加法公式可得=14+14+13?112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少? 【解】设A 表示“取出的13张牌中有5张黑桃,3张红心,3张方块,2张梅花”,则样本空间Ω中样本点总数为1352n C =,A 中所含样本点533213131313k C C C C =,所求概率为8.(1)求五个人的生日都在星期日的概率;(2)求五个人的生日都不在星期日的概率; (3)求五个人的生日不都在星期日的概率. 【解】(1)设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故P (A 1)=517=(17)5(亦可用独立性求解,下同) (2)设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3)设A 3={五个人的生日不都在星期日}P (A 3)=1?P (A 1)=1?(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1)n (2)n(3)n .【解】(1样本空间Ω,所求概率为;(P (2)次为正品m 件的排(3n 次抽取中此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为 11..见教材习题参考答案.12.50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱},样本空间Ω中样本点总数为350C ,A 中所含样本点13103k C C =,因此,所求概率为133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互不相容.样本空间Ω中样本点总数为37n=C ,2A 中所含样本点数为2143C C ,3A 中所含样本点数为34C ,故所求概率为232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1)两粒都发芽的概率; (2)至少有一粒发芽的概率; (3)恰有一粒发芽的概率.【解】设2)0.7A =212)A A A =15.(1)问正好在第6次停止的概率;(2)问正好在第6次停止的情况下,第【解】(151次正面,(1)(P 16.0.7【解】设175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率. 【解】设A 表示“4只鞋子中至少有两只鞋子配成一双”,从5双不同的鞋子中任取4只,取法总数为410C ,A 表示“4只鞋子中没有配对的鞋子”,A 中所含基本事件数为4111152222C C C C C ,所求概率为 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率. 【解】设A ={下雨},B ={下雪}.(1)()0.1()0.2()0.5P AB P B A P A ===(2)()()()()0.30.50.10.7P A B P A P B P AB =+-=+-= 19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故或在缩减样本空间中求,此时样本点总数为7.20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】设A ={此人是男人},B ={此人是色盲},则A ={此人是女人},显然A ,A 是样本空间的一个划分,且1()()P A P A ==,由贝叶斯公式得21.【解】 部分所示22.(1(2【解】区域”.(1)(2)设B 23.P 【解】()()()()()P B A B P A B P A P B P AB ==+- 24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新 球}。
(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)
概率论与数理统计习题答案详解版(廖茂新复旦版)习题一1. 设A,B,C 为三个事件,用A,B,C 的运算式表示下列事件:(1)A 发生而B与 C 都不发生;(2)A,B,C 至少有一个事件发生;(3)A,B,C 至少有两个事件发生;(4)A,B,C 恰好有两个事件发生;(5)A,B至少有一个发生而 C 不发生;(6)A,B,C 都不发生.解:(1)A BC或 A B C或 A (B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C )∪(AC B )∪(BC A).(5)(A∪B)C.(6) A B C 或ABC.2. 对于任意事件A,B,C,证明下列关系式:(1)(A+B)(A+B )( A + B)( A + B )= ;(2)AB+A B +A B+A B AB= AB;(3)A-(B+C)= (A-B)-C. 证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发生但B不发生的概率;(2)A,B 都不发生的概率;(3)至少有一个事件不发生的概率.解(1)P(A B )=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(AB)=P( A B)=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB )=1-P(AB)=1-0.1=0.9.4.调查某单位得知。
购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。
求下列事件的概率。
(1)至少购买一种电器的;(2)至多购买一种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10 把钥匙中有 3 把能打开门,今任意取两把,求能打开门的概率。
解:8/156. 任意将10 本书放在书架上。
其中有两套书,一套 3 本,另一套4 本。
《概率论与数理统计》(复旦大学出版社)第一章习题答案
概率论与数理统计习题及答案习题一1.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C(1)A发生,B,C都不发生;(2)A与B发生,C(3)A,B,C都发生;(4)A,B,C(5)A,B,C都不发生;(6)A,B,C(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3..4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,(1)在什么条件下P(AB(2)在什么条件下P(AB【解】(1)当AB=A时,P(AB)取到最大值为0.6.(2)当A∪B=Ω时,P(AB)取到最小值为0.3.6.设A,B,C为三事件,且P(A)=P(B)=1/4,P(C)=1/3且P(AB)=P(BC)=0,P(AC)=1/12,求A,B,C至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC )=14+14+13-112=347.52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率; (3) 求五个人的生日不都在星期日的概率. 【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5(亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5(3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)59..见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率. (1) n 件是同时取出的; (2)n (3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C m n m nM N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P nN 种,n 次抽取中有m次为正品的组合数为C m n 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n mN M --种,故P (A )=C P PP m m n mn M N M n N--由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n mM N Mn N--可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n mn n P A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为MN,则取得m 件正品的概率为()C 1m n mm n M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11..见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少? 【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A ==13.7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率. 【解】 设A i ={恰有i 个白球}(i =2,3),显然A 2与A 3互斥.213434233377C C C 184(),()C 35C 35P A P A ====故 232322()()()35P A A P A P A =+=14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=15.3次正面才停止.(1) 问正好在第6次停止的概率;(2) 问正好在第6次停止的情况下,第5次也是出现正面的概率.【解】(1) 223151115()()22232p C == (2) 1342111C ()()22245/325p ==16.0.7及0.6,每人各投了3次,求二人进球数相等的概率.【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.32076175双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故()6/86()()7/87P AB P B A P A ===或在缩减样本空间中求,此时样本点总数为7.6()7P B A =20.5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯21.9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图题22图【解】设两人到达时刻为x,y,则0≤x,y≤60.事件“一人要等另一人半小时以上”等价于|x-y|>30.如图阴影部分所示.22301604P==22.0,1)中随机地取两个数,求:(1)两个数之和小于65的概率;(2)两个数之积小于14的概率.【解】设两数为x,y,则0<x,y<1.(1)x+y<65.11441725510.68125p=-==(2) xy=<14.1111244111d d ln242xp x y⎛⎫=-=+⎪⎝⎭⎰⎰23.P(A)=0.3,P(B)=0.4,P(A B)=0.5,求P(B|A∪B)【解】0.70.510.70.60.54-==+-24.15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有3()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =∙+∙+∙+∙0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人? 【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯27.【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知11112()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯29..统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故} 则由贝叶斯公式得()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯30.0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯= 31.0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤ 故 n ≥11 至少必须进行11次独立射击. 32.P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B =亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B = 故A 与B 相互独立. 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率. 【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得3()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7 =0.45835.25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求: (1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率. 【解】(1) 310110C(0.35)(0.65)0.5138k k k k p -===∑(2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”; (3) C =“恰有两位乘客在同一层离开”; (4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型:224619()C ()()1010P A =(2) 6个人在十层中任意六层离开,故6106P ()10P B =(3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++(4) D=B .故6106P ()1()110P D P B =-=-37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率: (1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率; (2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率. 【解】 (1) 111p n =-(2) 23!(3)!,3(1)!n p n n -=>-(3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.[0,a ]【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y ax y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n--=== 40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3). 【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====.41.对任意的随机事件A ,B ,CP (AB )+P (AC )-P (BC )≤P (A). 【证】 ()[()]()P A P A BC P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+- 42.3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C = 故 2211()[1C ]22n n n P A =- 44.n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22n n n P A =- 45.n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数.显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反)=(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反)因此P (甲正>乙正)=12 46.Sure -thing ):若P (A |C )≥P (B |C ),P (A |)≥P (B |),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥ 即有 ()()P AC P BC ≥同理由 (|)(|),P A C P B C ≥得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+=47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k k i k ki j k i i i n P A n nP A A nn P A A A n --==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个.显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk k i n i ki j n i j n n k n i i i n i i i n n n n i ni S P A n n n S P A A n n S P A A A n S P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)k k n n k n n n n n n n--=---++-- 故所求概率为 121121()1C (1)C (1)n k i i n n i P A n n =-=--+--+111(1)C (1)n nk n n n+---- 48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1.【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品}由题知 (),()m n P B P B m n m n==++ 1(|),(|)12r P A B P A B == 则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+ 121212r r r m m m n m n m nm n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
《概率与统计》习题答案(复旦大学)
习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.【解】故所求分布律为X345P0.10.30.62.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X表示取出的次品个数,求:(1)X的分布律;(2)X的分布函数并作图;(3).【解】故X的分布律为X012P(2)当x<0时,F(x)=P(X≤x)=0当0≤x<1时,F(x)=P(X≤x)=P(X=0)=当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=当x≥2时,F(x)=P(X≤x)=1故X的分布函数(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X表示击中目标的次数.则X=0,1,2,3.故X的分布律为X0123P0.0080.0960.3840.512分布函数4.(1)设随机变量X的分布律为P{X=k}= ,其中k=0,1,2,…,λ>0为常数,试确定常数a.(2)设随机变量X的分布律为P{X=k}=a/N,k=1,2,…,N,试确定常数a.【解】(1)由分布律的性质知故(2) 由分布律的性质知即.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1)两人投中次数相等的概率;(2)甲比乙投中次数多的概率.【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7)(1)+(2)=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场需配备N条跑道,则有即利用泊松近似查表得N≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X表示出事故的次数,则X~b(1000,0.0001)8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率P{X=4}.【解】设在每次试验中成功的概率为p,则故所以.9.设事件A在每一次试验中发生的概率为0.3,当A发生不少于3次时,指示灯发出信号,(1)进行了5次独立试验,试求指示灯发出信号的概率;(2)进行了7次独立试验,试求指示灯发出信号的概率.【解】(1)设X表示5次独立试验中A发生的次数,则X~6(5,0.3)(2) 令Y表示7次独立试验中A发生的次数,则Y~b(7,0.3)10.某公安局在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为(1/2)t的泊松分布,而与时间间隔起点无关(时间以小时计).(1)求某一天中午12时至下午3时没收到呼救的概率;(2)求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1)(2)11.设P{X=k}= , k=0,1,2P{Y=m}= , m=0,1,2,3,4分别为随机变量X,Y的概率分布,如果已知P{X≥1}= ,试求P{Y≥1}.【解】因为,故.而故得即从而12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X为2000册书中错误的册数,则X~b(2000,0.001).利用泊松近似计算,得13.进行某种试验,成功的概率为,失败的概率为.以X表示试验首次成功所需试验的次数,试写出X的分布律,并计算X取偶数的概率.【解】14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1)在1月1日,保险公司总收入为2500×12=30000元.设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为由于n很大,p很小,λ=np=5,故用泊松近似,有(2) P(保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P(保险公司获利不少于20000)即保险公司获利不少于20000元的概率约为62%15.已知随机变量X的密度函数为f(x)=Ae|x|, ∞<x<+∞,求:(1)A值;(2)P{0<X<1}; (3) F(x).【解】(1)由得故.(2)(3) 当x<0时,当x≥0时,故16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数为f(x)=求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率;(3)F(x).【解】(1)(2)(3) 当x<100时F(x)=0当x≥100时故17.在区间[0,a]上任意投掷一个质点,以X表示这质点的坐标,设这质点落在[0,a]中任意小区间内的概率与这小区间长度成正比例,试求X的分布函数.【解】由题意知X~∪[0,a],密度函数为故当x<0时F(x)=0当0≤x≤a时当x>a时,F(x)=1即分布函数18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至少有两次的观测值大于3的概率.【解】X~U[2,5],即故所求概率为19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布.某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布律,并求P{Y≥1}.【解】依题意知,即其密度函数为该顾客未等到服务而离开的概率为,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所需时间X服从N(50,42).(1)若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些?(2)又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1)若走第一条路,X~N(40,102),则若走第二条路,X~N(50,42),则++故走第二条路乘上火车的把握大些.(2)若X~N(40,102),则若X~N(50,42),则故走第一条路乘上火车的把握大些.21.设X~N(3,22),(1)求P{2<X≤5},P{4<X≤10},P{|X|>2},P{X>3};(2)确定c使P{X>c}=P{X≤c}.【解】(1)(2) c=322.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率.【解】23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少?【解】故24.设随机变量X分布函数为F(x)=(1)求常数A,B;(2)求P{X≤2},P{X>3};(3)求分布密度f(x).【解】(1)由得(2)(3)25.设随机变量X的概率密度为f(x)=求X的分布函数F(x),并画出f(x)及F(x).【解】当x<0时F(x)=0当0≤x<1时当1≤x<2时当x≥2时故26.设随机变量X的密度函数为(1)f(x)=ae|x|,λ>0;(2) f(x)=试确定常数a,b,并求其分布函数F(x).【解】(1)由知故即密度函数为当x≤0时当x>0时故其分布函数(2) 由得b=1即X的密度函数为当x≤0时F(x)=0当0<x<1时当x≥2时F(x)=1故其分布函数为27.求标准正态分布的上分位点,(1)=0.01,求;(2)=0.003,求,.【解】(1)即即故(2)由得即查表得由得即查表得28.设随机变量X的分布律为X 2 1 0 1 3 Pk1/5 1/6 1/5 1/15 11/30求Y=X2的分布律.【解】Y可取的值为0,1,4,9故Y的分布律为Y0 1 4 9Pk1/5 7/30 1/5 11/3029.设P{X=k}=( )k, k=1,2,…,令求随机变量X的函数Y的分布律.【解】30.设X~N(0,1).(1)求Y=eX的概率密度;(2)求Y=2X2+1的概率密度;(3)求Y=|X|的概率密度.【解】(1)当y≤0时,当y>0时,故(2)当y>1时故(3)当y≤0时当y>0时故31.设随机变量X~U(0,1),试求:(1)Y=eX的分布函数及密度函数;(2)Z=2lnX的分布函数及密度函数.【解】(1)故当时当1<y<e时当y≥e时即分布函数故Y的密度函数为(2)由P(0<X<1)=1知当z≤0时,当z>0时,即分布函数故Z的密度函数为32.设随机变量X的密度函数为f(x)=试求Y=sinX的密度函数.【解】当y≤0时,当0<y<1时,当y≥1时,故Y的密度函数为33.设随机变量X的分布函数如下:试填上(1),(2),(3)项.【解】由知②填1。
概率论与数理统计复旦大学出版社第三章课后规范标准答案
概率论与数理统计 习题三 答案1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1.2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1,2.3.设二维随机变量(,)X Y 的联合分布函数为ππsin sin ,0,0(,)220,x y x y F x y ⎧≤≤≤≤⎪=⎨⎪⎩ 其它求二维随机变量(,)X Y 在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin4346362(31).4=--+=-g g g g题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(,)X Y 的分布密度(34)e ,0,0(,)0,x y A x y f x y -+⎧>>=⎨⎩ 其他求:(1) 常数A ;(2) 随机变量(,)X Y 的分布函数;(3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12 (2) 由定义,有 (,)(,)d d y xF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(,)X Y 的概率密度为(6),02,24(,)0,k x y x y f x y --<<<<⎧=⎨⎩ 其它(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18k =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83x x x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它求:(1) X 与Y 的联合分布密度;(2) {}P Y X ≤.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的概率密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其它 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它 所以(,),()*()X Y f x y X Y f x f y 独立5515e 25e ,00.2,00.20,y yx y --⎧⨯=<<>⎪=⎨⎪⎩ 其它(2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-5500-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(,)X Y 的联合分布函数为42(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧-->>=⎨⎩其他 求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(,)X Y 的概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -≤≤≤≤⎧=⎨⎩其他 求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01y x y x x x ⎧-=-≤≤⎪=⎨⎪⎩⎰ 0, 其它 Y 的边缘概率密度为()(,)d Y f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01y x x y y y y ⎧-=-+≤≤⎪=⎨⎪⎩⎰ 0, 其它题8图题9图9.设二维随机变量(,)X Y 的概率密度为e ,0(,)0y x yf x y -⎧<<=⎨⎩, 其它求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰e d e ,00,y x x y x +∞--⎧=>⎪=⎨⎪⎩⎰ 其它Y 的边缘概率密度为()(,)d Y f y f x y x +∞-∞=⎰0e d e ,00,yy x x y y --⎧=>⎪=⎨⎪⎩⎰ 其它题10图10.设二维随机变量(,)X Y 的概率密度为22,1(,)0cx y x y f x y ⎧≤≤=⎨⎩, 其它(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212242121=(1),11480,x x ydy x x x ⎧--≤≤⎪=⎨⎪⎩⎰ 其它()(,)d Y f y f x y x +∞-∞=⎰522217d ,01420,x y x y y ⎧=≤≤⎪=⎨⎪⎩ 其它 11.设随机变量(,)X Y 的概率密度为1,,01(,)0,y x x f x y ⎧<<<⎪=⎨⎪⎩ 其它求条件概率密度()Y X f y x ,()X Y f x y .题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 的可能取值为:1,2,3;Y 的可能取值为3,4,5. X 与Y 的联合分布律及边缘分布律如下表:3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量的联合分布律为 2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXY XY故X 与Y 不独立.14.设X 与Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为/21e ,0,()20,.y Y y f y -⎧>⎪=⎨⎪⎩其他(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥即 2X Y ≥, 从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰22211/2200121d e d 1e d 212d 12[(1)(0)]20.1445.xx y x x y xx πππ---==-==Φ-Φ=⎰⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求/Z X Y =的概率密度.【解】因为X 和Y 相互独立,所以X 与Y 的联合概率密度为62210,1000,1000(,)0,x y f x y x y ⎧>>⎪=⎨⎪⎩ 其它如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()(,)d d d d d d yz Z zx x y y zzF z f x y x y x y y x x y x y +∞≥≥===⎰⎰⎰⎰⎰⎰ 33610231010=d 2z zy y zy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()(,)d d d d d d zy Z xx y y zzF z f x y x y x y y x x y x y +∞≥≥===⎰⎰⎰⎰⎰⎰336231010101=d 12y y zy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zF z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设取到的四只电子元件寿命为i X (i =1,2,3,4),则2~(160,20)i X N ,从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<gg g 44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为()(),0,1,2,3,P X k p k k ===L()(),0,1,2,3,P Y r q r r ===L证明随机变量Z =X +Y 的分布律为()()()ik P Z i p k q i k ===-∑,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,}ik P Z i P X k Y i k =====-∑,{}{}ik X Y P X k P Y i k ===-∑g 相互独立0()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑002200(){}2)ki ki n i k i n k ii kk n k k n ki ki P X i P Y k i n n p q p qi k i n n n p qp q i k i k n m m n i k i k =---+=--=====-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑g (提示:组合计数公式方法二:参见第四章。
概率论与数理统计复旦大学出版社第二章课后答案
概率论与数理统计习题二答案1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 【解】X 的可能取值为3,4,5,其取不同值的概率为{}{}{}24333555C 1330.1,40.3,50.6C C C P X P X P X =========故所求分布律为2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<. 【解】X 的可能取值为0,1,2,其取不同值的概率为{}{}{}3122113213213333151515C C C C C 221210,1,2.C 35C 35C 35P X P X P X =========(2) 当0x <时,{}()0F x P X x =≤=当01x ≤<时,{}{}22()035F x P X x P X =≤===当12x ≤<时,{}{}{}34()0135F x P X x P X P X =≤==+==当2x ≥时,{}{}{}{}()0121F x P X x P X P X P X =≤==+=+== 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)02235353312(1)(1)(1)2235341(12)(2)(1)(2)10.3535P X F P X F F P X P X P X P X F F P X ≤==<≤=-=-=≤≤==+<≤=<<=--==--=3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X 表示3次射击中击中目标的次数.则X 的可能取值为0,1,2,3,显然~(3,0.8)X b 其取不同值的概率为{}{}{}{}312322330(0.2)0.008,1C 0.8(0.2)0.0962C (0.8)0.20.384,3(0.8)0.512P X P X P X P X ============ 分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩3次射击中至少击中2次的概率为{}{}{}2230.896P X P X P X ≥==+==4.(1) 设随机变量X 的分布律为{}!kP x k ak λ==,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为{}aP x k N==, k =1,2,…,N , 试确定常数a . 【解】(1) 由分布律的性质知{}01e !kk k P X k a a k λλ∞∞======∑∑故 e a λ-=(2) 由分布律的性质知{}111N Nk k aP X k a N======∑∑即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率. 【解】设X 、Y 分别表示甲、乙投中次数,则~(3,0.6)X b ,~(3,0.7)Y b(1) {}{}{}{}{}0,01,12,23,3P X Y P X Y P X Y P X Y P X Y ====+==+==+==33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++22223333C (0.6)0.4C (0.7)0.3(0.6)(0.7)+0.32076=(2) {}{}{}{}1,02,03,0P X Y P X Y P X Y P X Y >===+==+== {}{}{}2,13,13,2P X Y P X Y P X Y +==+==+==12322333C 0.6(0.4)(0.3)C (0.6)0.4(0.3)=++33221233(0.6)(0.3)C (0.6)0.4C 0.7(0.3)+ 31232233(0.6)C 0.7(0.3)(0.6)C (0.7)0.3++=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则~(200,0.02)X b ,设机场需配备N 条跑道,根据题意有{}0.01P X N ><即 2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松定理近似计算2000.02 4.np λ==⨯={}4420011e 4e 40.01!!k kk N k N P X N k k --∞=+=+>≈≈<∑∑查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)(2)1(0)(1)P X P X P X ≥=-=-=0.10.11e0.1e --=--⨯8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】设B 表示指示灯发出信号(1) 设X 表示5次独立试验中A 发生的次数,则~(5,0.3)X B 。
概率论和数理统计 复旦版课后答案
习题四1.设随机变量X 的分布律为X -1 0 1 2 P1/8 1/2 1/8 1/4求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差. 【解】设任取出的5个产品中的次品数为X ,则X 的分布律为 X 0 12345P5905100C 0.583C = 1410905100C C 0.340C = 2310905100C C 0.070C = 3210905100C C 0.007C = 4110905100C C 0C = 5105100C 0C =故 ()0.58300.34010.07020.0073E X =⨯+⨯+⨯+⨯+⨯+⨯0.501,= 52()[()]iii D X x E X P ==-∑222(00.501)0.583(10.501)0.340(50.501)00.432.=-⨯+-⨯++-⨯=3.设随机变量X 的分布律为X -1 0 1Pp 1 p 2 p 3且已知E (X )=0.1,E (X 2)=0.9,求P 1,P 2,P 3. 【解】因1231P P P ++=……①,又12331()(1)010.1E X P P P P P =-++=-= ……②,222212313()(1)010.9E X P P P P P =-++=+= ……③由①②③联立解得1230.4,0.1,0.5.P P P ===4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?【解】记A ={从袋中任取1球为白球},则(){|}{}Nk P A P A X k P X k ===∑ 全概率公式1{}{}1().NNk k k P X k kP X k N Nn E X N N========∑∑5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X - 因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 8.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<.,0,0,10,其他x y x k试确定常数k ,并求E (XY ). 【解】因11(,)d d d d 1,2xf x y x y x k y k +∞+∞-∞-∞===⎰⎰⎰⎰故k =2 1()(,)d d d 2d 0.25xE XY xyf x y x y x x y y +∞+∞-∞-∞===⎰⎰⎰⎰.9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他 求E (XY ).【解】方法一:先求X 与Y 的均值12()2d ,3E X xx x ==⎰ 5(5)5()e d5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令 由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩ 其他于是11(5)2(5)552()2ed d 2de d 6 4.3y y E XY xy x x y x x y y +∞+∞----===⨯=⎰⎰⎰⎰10.设随机变量X ,Y 的概率密度分别为f X (x )=⎩⎨⎧≤>-;0,0,0,22x x x e f Y (y )=⎩⎨⎧≤>-.0,0,0,44y y y e求(1) E (X +Y );(2) E (2X -3Y 2). 【解】22-200()()d 2e d [e]e d xx x X X xf x x x x x x +∞+∞+∞--+∞-∞==-⎰⎰⎰201e d .2x x +∞-==⎰401()()d 4e d y .4yY E Y y f y y y +∞+∞--∞==⎰⎰ 22242021()()d 4e d .48y Y E Y y f y y y y +∞+∞--∞====⎰⎰从而(1)113()()().244E X Y E X E Y +=+=+=(2)22115(23)2()3()23288E X Y E X E Y -=-=⨯-⨯= 11.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≥-.0,0,0,22x x cx xke求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由222()d ed 12k x cf x x cx x k+∞+∞--∞===⎰⎰得22c k =. (2) 222()()d()2ed k x E X xf x x x k x x +∞+∞--∞==⎰⎰22220π2e d .2k x kx x k+∞-==⎰(3) 222222201()()d()2e .kxE X x f x x x k x k+∞+∞--∞==⎰⎰故 222221π4π()()[()].24D X E X E X k k k⎛⎫-=-=-= ⎪ ⎪⎝⎭ 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,3.为求其分布律,下面求取这些可能值的概率,易知9{0}0.750,12P X === 39{1}0.204,1211P X ==⨯= 329{2}0.041,121110P X ==⨯⨯= 3219{3}0.005.1211109P X ==⨯⨯⨯= 于是,得到X 的概率分布表如下: X 0 1 2 3 P0.7500.2040.0410.005由此可得()00.75010.20420.04130.0050.301.E X =⨯+⨯+⨯+⨯=22222222()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.E X D X E X E X =⨯+⨯+⨯+⨯==-=-=13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为f (x )=⎪⎩⎪⎨⎧≤>-.0,0,0,414x x xe为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和 -200元/41/411{100}{1}e d e4x P Y P X x +∞--==≥==⎰1/4{200}{1}1e.P Y P X -=-=<=- 故1/41/41/4()100e (200)(1e )300e 20033.64E Y ---=⨯+-⨯-=-= (元).14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2,i =1,2,…,n ,记∑==n i i S X n X 12,1,S 2=∑=--n i i X X n 12)(11. (1) 验证)(X E =μ,)(X D =n2σ;(2) 验证S 2=)(11122∑=--ni i X n X n ;(3) 验证E (S 2)=σ2.【证】(1) 1111111()()().n nn i i i i i i E X E X E X E X nu u n n n n ===⎛⎫===== ⎪⎝⎭∑∑∑22111111()()n nn i i i i i i i D X D X D X X DX n nn ===⎛⎫== ⎪⎝⎭∑∑∑ 之间相互独立 2221.n n nσσ==(2) 因222221111()(2)2nnnniii ii i i i i XX X X X X X nX X X ====-=+-=+-∑∑∑∑2222112nnii i i X nX X nX X nX ===+-=-∑∑故22211()1ni i S X nX n ==--∑.(3) 因2(),()i i E X u D X σ==,故2222()()().i i i E X D X EX u σ=+=+ 同理因2(),()E X u D X nσ==,故222()E X u nσ=+.从而222221111()()[()()]11n ni i i i E s E X nX E X nE X n n ==⎡⎤=-=-⎢⎥--⎣⎦∑∑221222221[()()]11().1ni i E X nE X n n u n u n n σσσ==--⎡⎤⎛⎫=+-+=⎢⎥ ⎪-⎝⎭⎣⎦∑15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )= -1,计算:Cov (3X -2Y +1,X +4Y -3). 【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=⨯+⨯--⨯=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为f (x ,y )=221,1,π0,.x y ⎧+≤⎪⎨⎪⎩其他试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设22{(,)|1}D x y x y =+≤.2211()(,)d d d d πx y E X xf x y x y x x y +∞+∞-∞-∞+≤==⎰⎰⎰⎰ 2π1001=cos d d 0.πr r r θθ=⎰⎰同理E (Y )=0. 而 C o v (,)[()][()](,X Y x E x y E Y f x y x y+∞+∞-∞-∞=--⎰⎰222π1200111d d sin cos d d 0ππx y xy x y r r r θθθ+≤===⎰⎰⎰⎰, 由此得0XY ρ=,故X 与Y 不相关. 下面讨论独立性,当|x |≤1时,22121112()d 1.ππx X x f x y x ---=-⎰当|y |≤1时,22121112()d 1ππy Y y f y x y ---=-⎰. 显然()()(,).X Y f x f y f x y ≠故X 和Y 不是相互独立的.17.设随机变量(X ,Y )的分布律为-1 0 1-1 0 11/8 1/8 1/8 1/8 0 1/8 1/8 1/8 1/8验证X 和Y 是不相关的,但X 和Y 不是相互独立的.【解】联合分布表中含有零元素,X 与Y 显然不独立,由联合分布律易求得X ,Y 及XY 的分布律,其分布律如下表X -1 01 P38 28 38Y -11P38 28 38XY -11P28 48 28由期望定义易得E (X )=E (Y )=E (XY )=0. 从而E (XY )=E (X )·E (Y ),再由相关系数性质知ρXY =0, 即X 与Y 的相关系数为0,从而X 和Y 是不相关的. 又331{1}{1}{1,1}888P X P Y P X Y =-=-=⨯≠==-=- 从而X 与Y 不是相互独立的.18.设二维随机变量(X ,Y )在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov (X ,Y ),ρXY . 【解】如图,S D =12,故(X ,Y )的概率密度为题18图2,(,),(,)0,x y D f x y ∈⎧=⎨⎩其他. XY()(,)d d DE X xf x y x y =⎰⎰11001d 2d 3x x x y -==⎰⎰22()(,)d d DE X x f x y x y =⎰⎰11201d 2d 6xx x y -==⎰⎰从而222111()()[()].6318D XE X E X ⎛⎫=-=-= ⎪⎝⎭同理11(),().318E Y D Y == 而 1101()(,)d d 2d d d 2d .12xDDE XY xyf x y x y xy x y x xy y -====⎰⎰⎰⎰⎰⎰所以1111Cov(,)()()()123336X Y E XY E X E Y =-=-⨯=- . 从而1Cov(,)1362()()111818XY X Y D X D Y ρ-===-⨯19.设(X ,Y )的概率密度为f (x ,y )=1ππsin(),0,0,2220.x y x y ,⎧+≤≤≤≤⎪⎨⎪⎩其他求协方差Cov (X ,Y )和相关系数ρXY . 【解】π/2π/21π()(,)d d d sin()d .24E X xf x y x y x x x y y +∞+∞-∞-∞==+=⎰⎰⎰⎰ππ2222201ππ()d sin()d 2.282E X x x x y y =+=+-⎰⎰从而222ππ()()[()] 2.162D XE X E X =-=+-同理 2πππ(),() 2.4162E Y D Y ==+- 又 π/2π/2π()d sin()d d 1,2E XY x xy x y x y =+=-⎰⎰故 2ππππ4C o v (,)()()()1.2444X Y E X Y E X E Y -⎛⎫⎛⎫=-=--⨯=- ⎪ ⎪⎝⎭⎝⎭222222π4Cov(,)(π4)π8π164.πππ8π32π8π32()()2162XY X Y D X D Y ρ-⎛⎫- ⎪--+⎝⎭===-=-+-+-+- 20.已知二维随机变量(X ,Y )的协方差矩阵为⎥⎦⎤⎢⎣⎡4111,试求Z 1=X -2Y 和Z 2=2X -Y 的相关系数.【解】由已知知:D (X )=1,D (Y )=4,Cov(X ,Y )=1.从而12()(2)()4()4Cov(,)1444113,()(2)4()()4Cov(,)414414,D Z D X Y D X D Y X Y D Z D X Y D X D Y X Y =-=+-=+⨯-⨯==-=+-=⨯+-⨯=12Cov(,)Cov(2,2)Z Z X Y X Y =--2Cov(,)4Cov(,)Cov(,)2Cov(,)2()5Cov(,)2()215124 5.X X Y X X Y Y Y D X X Y D Y =--+=-+=⨯-⨯+⨯=故121212Cov(,)5513.26()()134Z Z Z Z D Z D Z ρ===⨯21.对于两个随机变量V ,W ,若E (V 2),E (W 2)存在,证明:[E (VW )]2≤E (V 2)E (W 2).这一不等式称为柯西许瓦兹(Couchy -Schwarz )不等式. 【证】令2(){[]},.g t E V tW t R =+∈显然22220()[()][2]g t E V tW E V tVW t W ≤=+=++222[]2[][],.E V t E VW t E W t R =++∀∈可见此关于t 的二次式非负,故其判别式Δ≤0, 即2220[2()]4()()E VW E W E V ≥∆=- 2224{[()]()()}.E VW E V E W =-故222[()]()()}.E VW E V E W ≤22.假设一设备开机后无故障工作的时间X 服从参数λ=1/5的指数分布.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机.试求该设备每次开机无故障工作的时间Y 的分布函数F (y ).【解】设Y 表示每次开机后无故障的工作时间,由题设知设备首次发生故障的等待时间X ~E (λ),E (X )=1λ=5.依题意Y =min(X ,2).对于y <0,f (y )=P {Y ≤y }=0. 对于y ≥2,F (y )=P (X ≤y )=1.对于0≤y <2,当x ≥0时,在(0,x )内无故障的概率分布为 P {X ≤x }=1 -e -λx ,所以F (y )=P {Y ≤y }=P {min(X ,2)≤y }=P {X ≤y }=1 -e -y/5.23.已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品.从甲箱中任取3件产品放乙箱后,求:(1)乙箱中次品件数Z 的数学期望;(2)从乙箱中任取一件产品是次品的概率. 【解】(1) Z 的可能取值为0,1,2,3,Z 的概率分布为33336C C {}C k kP Z k -==, 0,1,2,3.k = Z =k 0 1 2 3P k120 920 920120因此,19913()0123.202020202E Z =⨯+⨯+⨯+⨯= (2) 设A 表示事件“从乙箱中任取出一件产品是次品”,根据全概率公式有3(){}{|}k P A P Z k P A Z k ====∑191921310.202062062064=⨯+⨯+⨯+⨯= 24.假设由自动线加工的某种零件的内径X (毫米)服从正态分布N (μ,1),内径小于10或大于12为不合格品,其余为合格品.销售每件合格品获利,销售每件不合格品亏损,已知销售利润T (单位:元)与销售零件的内径X 有如下关系T =⎪⎩⎪⎨⎧>-≤≤<-.12,5,1210,20,10,1X X X 若若若 问:平均直径μ取何值时,销售一个零件的平均利润最大?【解】(){10}20{1012}5{12}E T P X P X P X =-<+≤≤->{10}20{1012}5{12(10)20[(12)(10)]5[1(12)]25(12)21(10) 5.P X u u P u X u u P X u uu u u u u u =--<-+-≤-≤--->-=-Φ-+Φ--Φ---Φ-=Φ--Φ--故2/2d ()125(12)(1)21(10)(1)0(()e ),d 2x E T u u x u ϕϕϕπ-=-⨯---⨯-= 令这里得 22(12)/2(10)/225e 21eu u ----=两边取对数有2211ln 25(12)ln 21(10).22u u --=--解得 125111ln 11ln1.1910.91282212u =-=-≈(毫米)由此可得,当u =10.9毫米时,平均利润最大.25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤.,0,0,2cos 21其他πx x 对X 独立地重复观察4次,用Y 表示观察值大于π/3的次数,求Y 2的数学期望.(2002研考)【解】令 π1,,3(1,2,3,4)π0,3i X Y i ⎧>⎪⎪==⎨⎪≤⎪⎩X .则41~(4,)i i Y Y B p ==∑.因为ππ{}1{}33p P X P X =>=-≤及π/30π11{}cos d 3222x P X x ≤==⎰,所以111(),(),()42,242i i E Y D Y E Y ===⨯=2211()41()()22D YE Y EY =⨯⨯==-,从而222()()[()]12 5.E Y D Y E Y =+=+=26.两台同样的自动记录仪,每台无故障工作的时间T i (i =1,2)服从参数为5的指数分布,首先开动其中一台,当其发生故障时停用而另一台自动开启.试求两台记录仪无故障工作的总时间T =T 1+T 2的概率密度f T (t ),数学期望E (T )及方差D (T ). 【解】由题意知:55e ,0,()0,0t i t f t t -⎧≥=⎨<⎩. 因T 1,T 2独立,所以f T (t )=f 1(t )*f 2(t ).当t <0时,f T (t )=0;当t ≥0时,利用卷积公式得55()5120()()()d 5e 5e d 25e tx t x t T f t f x f t x x x t +∞-----∞=-==⎰⎰故得525e ,0,()0,0.t T t t f t t -⎧≥=⎨<⎩ 由于T i ~E (5),故知E (T i )=15,D (T i )=125 (i =1,2) 因此,有E (T )=E (T 1+T 2)=25.又因T 1,T 2独立,所以D (T )=D (T 1+T 2)=225.27.设两个随机变量X ,Y 相互独立,且都服从均值为0,方差为1/2的正态分布,求随机变量|X -Y |的方差.【解】设Z =X -Y ,由于2211~0,,~0,,22X N Y N ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭且X 和Y 相互独立,故Z ~N (0,1).因22()()(||)[(||)]D X Y D Z E Z E Z -==-22()[()],E Z E Z =-而22/21()()1,(||)||e d 2πz E Z D Z E Z z z +∞--∞===⎰ 2/2022e d π2πz z z +∞-==⎰, 所以 2(||)1πD X Y -=-. 28.某流水生产线上每个产品不合格的概率为p (0<p <1),各产品合格与否相互独立,当出现一个不合格产品时,即停机检修.设开机后第一次停机时已生产了的产品个数为X ,求E (X )和D (X ).【解】记q =1 -p ,X 的概率分布为P {X =i }=q i -1p ,i =1,2,…,故12111()().1(1)i ii i q p E X iq p p q p q q p ∞∞-=='⎛⎫'===== ⎪--⎝⎭∑∑ 又221211121()()i i i i i i E X i qp i i q p iq p ∞∞∞---=====-+∑∑∑2232211()12112.(1)ii q pq q pq p q p pq q p q p p p∞=''⎛⎫''=+=+⎪-⎝⎭+-=+==-∑所以 22222211()()[()].p pD XE X E X p p p--=-=-=题29图29.设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域上服从均匀分布.(如图),试求随机变量U =X +Y 的方差. 【解】D (U )=D (X +Y )=D (X )+D (Y )+2Cov(X ,Y )=D (X )+D (Y )+2[E (XY ) -E (X )·E (Y )]. 由条件知X 和Y 的联合密度为2,(,),(,)0,0.x y G f x y t ∈⎧=⎨<⎩ {(,)|01,01,G x y x y x y =≤≤≤≤+≥从而11()(,)d 2d 2.X xf x f x y y y x +∞-∞-===⎰⎰因此11122300031()()d 2d ,()2d ,22X E X xf x x x x E X x x =====⎰⎰⎰22141()()[()].2918D XE X E X =-=-=同理可得 31(),().218E Y D Y ==1115()2d d 2d d ,12xGE XY xy x y x x y y -===⎰⎰⎰⎰541Cov(,)()()(),12936X Y E XY E X E Y =-=-=- 于是 1121()().18183618D U D X Y =+=+-= 30.设随机变量U 在区间[ -2,2]上服从均匀分布,随机变量X =⎩⎨⎧->-≤-,U ,U 1,11,1若若 Y =⎩⎨⎧>≤-.1,11,1U ,U 若若试求(1)X 和Y 的联合概率分布;(2)D (X +Y ).【解】(1) 为求X 和Y 的联合概率分布,就要计算(X ,Y )的4个可能取值( -1, -1),( -1,1),(1, -1)及(1,1)的概率.P {x = -1,Y = -1}=P {U ≤ -1,U ≤1} 112d d 1{1}444x x P U ---∞-=≤-===⎰⎰P {X = -1,Y =1}=P {U ≤ -1,U >1}=P {∅}=0, P {X =1,Y = -1}=P {U > -1,U ≤1}11d 1{11}44x P U -=-<≤==⎰21d 1{1,1}{1,1}{1}44x P X Y P U U P U ===>->=>=⎰. 故得X 与Y 的联合概率分布为(1,1)(1,1)(1,1)(1,1)(,)~1110424X Y ----⎡⎤⎢⎥⎢⎥⎣⎦. (2) 因22()[()][()]D X Y E X Y E X Y +=+-+,而X +Y 及(X +Y )2的概率分布相应为202~111424X Y -⎡⎤⎢⎥+⎢⎥⎣⎦, 24()~1122X Y ⎡⎤⎢⎥+⎢⎥⎣⎦. 从而11()(2)20,44E X Y +=-⨯+⨯= 211[()]042,22E X Y +=⨯+⨯=所以22()[()][()] 2.D X Y E X Y E X Y +=+-+= 31.设随机变量X 的概率密度为f (x )=x-e21,( -∞<x <+∞)(1) 求E (X )及D (X );(2) 求Cov(X ,|X |),并问X 与|X |是否不相关? (3) 问X 与|X |是否相互独立,为什么?【解】(1)||1()e d 0.2x E X x x +∞--∞==⎰ 2||201()(0)e d 0e d 2.2x xD X x x x x +∞+∞---∞=-==⎰⎰(2) Cov(,|)(||)()(||)(||)X X E X X E X E X E X X =-=||1||e d 0,2x x x x +∞--∞==⎰所以X 与|X |互不相关.(3) 为判断|X |与X 的独立性,需依定义构造适当事件后再作出判断,为此,对定义域-∞<x <+∞中的子区间(0,+∞)上给出任意点x 0,则有0000{}{||}{}.x X x X x X x -<<=<⊂<所以000{||}{} 1.P X x P X x <<<<<故由00000{,||}{||}{||}{}P X x X x P X x P X x P X x <<=<><<得出X 与|X |不相互独立.32.已知随机变量X 和Y 分别服从正态分布N (1,32)和N (0,42),且X 与Y 的相关系数ρXY = -1/2,设Z =23YX +. (1) 求Z 的数学期望E (Z )和方差D (Z ); (2) 求X 与Z 的相关系数ρXZ ;(3) 问X 与Z 是否相互独立,为什么? 【解】(1) 1().323X Y E Z E ⎛⎫=+=⎪⎝⎭ ()2Cov ,3232XY X Y D Z D D ⎛⎫⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11119162Cov(,),9432X Y =⨯+⨯+⨯⨯ 而1Cov(,)()()3462XY X Y D X D Y ρ⎛⎫==-⨯⨯=- ⎪⎝⎭所以 1()146 3.3D Z =+-⨯= (2) 因()()11Cov(,)Cov ,Cov ,Cov ,3232X Y X Z X X X X Y ⎛⎫=+=+ ⎪⎝⎭ 119()(6)3=0,323D X =+⨯-=- 所以Cov(,)0.()()XZ X Z D X D Z ρ==(3) 由0XZ ρ==,得X 与Z 不相关.又因1~,3,~(1,9)3Z N X N ⎛⎫ ⎪⎝⎭,所以X 与Z 也相互独立.33.将一枚硬币重复掷n 次,以X 和Y 表示正面向上和反面向上的次数.试求X 和Y 的相关系数XY ρ.【解】由条件知X +Y =n ,则有D (X +Y )=D (n )=0.再由X ~B (n ,p ),Y ~B (n ,q ),且p =q =12, 从而有 ()()4nD X npq D Y ===所以 0()()()2()()XY D X Y D X D Y D X D Y ρ=+=++ 2,24XY n nρ=+ 故XY ρ= -1. 34.设随机变量X 和Y 的联合概率分布为-1 0 10 10.07 0.18 0.15 0.08 0.32 0.20试求X 和Y 的相关系数ρ.【解】由已知知E (X )=0.6,E (Y )=0.2,而XY 的概率分布为YX -1 0 1 P 0.080.720.2所以E (XY )= -0.08+0.2=0.12Cov(X ,Y )=E (XY ) -E (X )·E (Y )=0.12 -0.6×0.2=0 从而XY ρ=035.对于任意两事件A 和B ,0<P (A )<1,0<P (B )<1,则称ρ=())()()()()()(B P A P B P A P B P A P AB P ⋅-为事件A 和B 的相关系数.试证:(1) 事件A 和B 独立的充分必要条件是ρ=0;(2) |ρ|≤1. 【证】(1)由ρ的定义知,ρ=0当且仅当P (AB ) -P (A )·P (B )=0.而这恰好是两事件A 、B 独立的定义,即ρ=0是A 和B 独立的充分必要条件. (2) 引入随机变量X 与Y 为1,,0,A X A ⎧⎪=⎨⎪⎩若发生若发生;1,,0,B Y B ⎧⎪=⎨⎪⎩若发生若发生.由条件知,X 和Y 都服从0 -1分布,即01~1()()X P A P A ⎧⎨-⎩ 01~1()()Y P B P B ⎧⎨-⎩从而有E (X )=P (A ),E (Y )=P (B ),D (X )=P (A )·P (A ),D (Y )=P (B )·P (B ),Cov(X ,Y )=P (AB ) -P (A )·P (B )所以,事件A 和B 的相关系数就是随机变量X 和Y 的相关系数.于是由二元随机变量相关系数的基本性质可得|ρ|≤1. 36. 设随机变量X 的概率密度为YXf X (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-.,0,20,41,01,21其他x x令Y =X 2,F (x ,y )为二维随机变量(X ,Y )的分布函数,求:(1) Y 的概率密度f Y (y ); (2) Cov(X ,Y ); (3)1(,4)2F -. 解: (1) Y 的分布函数为2(){}{}Y F y P Y y P X y =≤=≤.当y ≤0时, ()0Y F y =,()0Y f y =; 当0<y <1时,3(){}{0}{0}4Y F y P y X y P y X P X y y =-≤≤=-≤<+≤≤=, 3()8Y f y y=;当1≤y <4时, 11(){10}{0}24Y F y P X P X y y =-≤<+≤≤=+ 1()8Y f y y=;当y ≥4时,()1Y F y =,()0Y f y =. 故Y 的概率密度为3,01,81()0,14,80,.Y y y f y y y ⎧<<⎪⎪⎪=⎨≤<⎪⎪⎪⎩其他(2) 0210111()()d d d 244+X E X =xf x x x x x x ∞∞=+=⎰⎰⎰--, 02222210115()()()d d d )246+X E Y =E X =x f x x x x x x ∞∞=+=⎰⎰⎰--, 02233310117()()()d d d 248+X E XY =E Y =x f x x x x x x ∞∞=+=⎰⎰⎰--, 故 Cov(X,Y ) =2()()()3E XY E X E Y =⋅-.(3) 2111(,4){,4}{,4}222F P X Y P X X -=≤-≤=≤-≤ 11{,22}{2}22P X X P X =≤--≤≤=-≤≤-11{1}24P X =-≤≤-=.习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}. 【解】设i X 表每次掷的点数,则41ii X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯=从而 22291735()()[()].6212i ii D X E X E X ⎛⎫=-=-= ⎪⎝⎭又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i ii i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形.而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8. 现要求n ,使得1{0.760.84}0.9.nii XP n=≤≤≥∑即10.80.760.80.840.8{}0.90.80.20.80.20.80.2ni i X n n n n nP n n n =---≤≤≥⨯⨯⨯⨯⨯⨯∑由中心极限定理得0.840.80.760.80.9,0.160.16n n n n n n --⎛⎫⎛⎫Φ-Φ≥ ⎪ ⎪⎝⎭⎝⎭整理得0.95,10n ⎛⎫Φ≥⎪ ⎪⎝⎭查表 1.64,10n ≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==1400.95{0}().42m P X m P X m -⎛⎫=≤≤=≤=Φ⎪⎝⎭查表知1401.64,42m -= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k kV,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量201205205~(0,1).10010020201212kk VV Z N =-⨯-⨯==⨯⨯∑近似的于是205105205{105}1010020201212V P V P ⎧⎫⎪⎪-⨯-⨯⎪⎪>=>⎨⎬⎪⎪⨯⨯⎪⎪⎩⎭1000.3871(0.387)0.348,102012V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⨯⎪⎪⎩⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而301000.2{30}1{30}11000.20.8P X P X -⨯⎛⎫≥=-<≈-Φ ⎪⨯⨯⎝⎭1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少? (2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少? 【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩ 第人治愈其他令1001.ii X X ==∑(1) X ~B (100,0.8),1001751000.8{75}1{75}11000.80.2i i P X P X =-⨯⎛⎫>=-≤≈-Φ ⎪⨯⨯⎝⎭∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7),1001751000.7{75}1{75}11000.70.3i i P X P X =-⨯⎛⎫>=-≤≈-Φ ⎪⨯⨯⎝⎭∑ 51()1(1.09)0.1379.21=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故12050130{20} 6.895 6.89547.547.5P X ϕϕ-⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭ 6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T = 故3503005{350}111(0.913)0.1814.300030P T -⎛⎫⎛⎫>≈-Φ=-Φ=-Φ= ⎪ ⎪⎝⎭⎝⎭9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时). 【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,ni i P T =≥⨯=∑即3068100.05.10n n ⨯-⎛⎫≈Φ ⎪⎝⎭故102448244.80.95,1.64,272.10n n n n n--⎛⎫=Φ=≈ ⎪⎝⎭所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率. 【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2 P0.05 0.80.15易知E (X i =1.1),D (X i )=0.19,i =1,2,…,400. 而400iiX X=∑,由中心极限定理得400400 1.1400 1.1~(0,1).4000.19419iiXX N -⨯-⨯=⨯⨯∑近似地于是450400 1.1{450}1{450}1419P X P X -⨯⎛⎫>=-≤≈-Φ⎪⨯⎝⎭1(1.147)0.13=-Φ= (2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普拉斯中心极限定理得3404000.8{340(2.5)0.9938.4000.80.2P Y -⨯⎛⎫≤≈Φ=Φ= ⎪⨯⨯⎝⎭11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515) 要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有5000100000.515{5000}(3)1(3)0.00135.100000.5150.485P X -⨯⎛⎫≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入? (2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件90010000.9{}.10000.90.190nn S m m S --⨯⎛⎫≤=≤ ⎪⨯⨯⎝⎭ 由中心极限定理知:10000.9{}1{}10.95.10000.90.1n n m P m S P S m -⨯⎛⎫≤=-<≈-Φ≥ ⎪⨯⨯⎝⎭从而 9000.05,90m -⎛⎫Φ≤⎪⎝⎭ 故9001.65,90m -=- 所以 m =900-15.65=884.35≈884人 (2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.900{}0.95.90n M P S M -⎛⎫≤≈Φ= ⎪⎝⎭查表知90090M -=1.65,M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求: (1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”. 于是所求概率为1120100000.006{120}100000.0060.994100000.0060.994P X ϕ-⨯⎛⎫=≈⎪⨯⨯⨯⨯⎝⎭21(60/59.64)230.181116011e 59.6459.64259.640.0517e 0ϕπ--⎛⎫== ⎪⎝⎭=⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60” 于是所求概率为60100000.0060100000.006{060}100000.0060.994100000.0060.994P X -⨯-⨯⎛⎫⎛⎫≤≤≈Φ-Φ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭60(0)0.5.59.64⎛⎫=Φ-Φ-≈ ⎪⎝⎭14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考) 【解】令Z =X -Y ,有()0,()()()()2()() 3.XP E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤==15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数. (1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.kk k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得301000.2141000.2{1430}1000.20.81000.20.8P X -⨯-⨯⎛⎫⎛⎫≤≤≈Φ-Φ ⎪ ⎪⨯⨯⨯⨯⎝⎭⎝⎭(2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知: ()50,i E X = ()5,i D X = ()50,n E T n = ()5.n D T n = 依中心极限定理,当n 较大时,50~(0,1)5n T n N n-近似地,故箱数n 取决于条件 50500050{5000}55n n T n n P T P nn --⎧⎫≤=≤⎨⎬⎩⎭1000100.977(2).n n -⎛⎫≈Φ>=Φ⎪⎝⎭因此可从1000102nn->解出n <98.0199, 即最多可装98箱.习题六1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100~(0,1)/X Z N nμσ-=即 60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】4~(0,1)5/X Z N n-=2.2 4.2 6.2 4.2(2.2 6.2)()55P X P n Z n --<<=<<2(0.4)10.95,n =Φ-=则Φ(0.4n )=0.975,故0.4n >1.96,即n >24.01,所以n 至少应取253.设某厂生产的灯泡的使用寿命X ~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=10021000~(8)100/3/X X t t S nμ--==10621000(1062)()( 1.86)0.05100/3P X P t P t ->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1)/X Z N nμσ-=,由P (|X -μ|>4)=0.02得P |Z |>4(σ/n )=0.02,故410210.02σ⎡⎤⎛⎫-Φ=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦,即4100.99.σ⎛⎫Φ=⎪ ⎪⎝⎭ 查表得4102.33,σ=所以 4105.43.2.33σ== 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本,S 2为其样本方差,且P (S 2>a )=0.1,求a 之值.【解】2222299~(9),()0.1.1616S a P S a P χχχ⎛⎫=>=>= ⎪⎝⎭查表得914.684,16a= 所以 14.6841626.105.9a ⨯== 6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量Y =∑∑==-ni ii i XX n 62512)15(,n >5服从何种分布? 【解】2522222211~(5),~(5)i nii i i XX X n χχχ====-∑∑且12χ与22χ相互独立. 所以2122/5~(5,5)/5X Y F n X n =--7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310),Y ~N (20,315),且X 与Y 相互独立. 则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),0.5X YZ N -= 所以0.3(||0.3)||2[1(0.424)]0.5P X Y P Z Φ⎛⎫->=>=- ⎪⎝⎭2(10.6628)0.6744.=-=8.设总体X ~N (0,σ2),X 1,…,X 10,…,X 15为总体的一个样本.则Y =()21521221121022212X X X X X X ++++++ 服从 分布,参数为 .【解】~(0,1),iX N σi =1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++ 所以Y ~F 分布,参数为(10,5).9.设总体X ~N (μ1,σ2),总体Y ~N (μ2,σ2),X 1,X 2,…,1n X 和Y 1,Y 2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = . 【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑ 则122222112211()(1),()(1),n n ij i j XX n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X ~N (μ,σ2),X 1,X 2,…,X 2n (n ≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y =∑=+-+ni i n iX X X12)2(,求EY .【解】令Z i =X i +X n +i , i =1,2,…,n .则Z i ~N (2μ,2σ2)(1≤i ≤n ),且Z 1,Z 2,…,Z n 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则 21111,222nn i ii i X X Z Z nn =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f (x )=x-e 21 (-∞<x <+∞),X 1,X 2,…,X n 为总体X 的简单随机样本,其样本方差为S 2,求E (S 2).解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是 22222220()()()()1()()d e d 021()()d e d e d 2,2xx x E S D X E X E X E X xf x x x x E X x f x x x x x x +∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S =.习题七1.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p的矩法估计.【解】1(),(),E X np E X A X ===因此np =X。
概率论与数理统计复旦大学出版社第三章课后答案
概率论与数理统计 习题三 答案1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1.X 和Y 的联合分布律如下表:222⨯⨯222⨯⨯2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1,2.324C 35= 324C 35= 3224C 35= 113224C C 12C 35= 1324C 2C 35= 224C 35= 213224C C 6C 35= 2324C 3C 35=3.设二维随机变量(,)X Y 的联合分布函数为ππsin sin ,0,0(,)220,x y x y F x y ⎧≤≤≤≤⎪=⎨⎪⎩ 其它求二维随机变量(,)X Y 在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin0sin sin0sin4346362(31).4=--+=-题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(,)X Y的分布密度(34)e,0,0(,)0,x yA x yf x y-+⎧>>=⎨⎩ 其他求:(1)常数A;(2)随机变量(,)X Y的分布函数;(3)P{0≤X<1,0≤Y<2}.【解】(1)由-(34)00(,)d d e d d112x yAf x y x y A x y+∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A=12(2)由定义,有(,)(,)d dy xF x y f u v u v-∞-∞=⎰⎰(34)340012e d d(1e)(1e)0,0,0,0,y y u vx yu v y x-+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y≤<≤<12(34)3800{01,02}12e d d(1e)(1e)0.9499.x yP X Yx y-+--=<≤<≤==--≈⎰⎰5.设随机变量(,)X Y的概率密度为(6),02,24(,)0,k x y x yf x y--<<<<⎧=⎨⎩ 其它(1)确定常数k;(2)求P{X<1,Y<3};【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18k =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.542127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它求:(1) X 与Y 的联合分布密度;(2) {}P Y X ≤.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的概率密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其它 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其它 所以(,),()*()X Y f x y X Y f x f y 独立5515e 25e ,00.2,00.20,y yx y --⎧⨯=<<>⎪=⎨⎪⎩ 其它(2) 5()(,)d d 25ed d yy xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.x y x x y x-==-+≈⎰⎰⎰7.设二维随机变量(,)X Y 的联合分布函数为42(1e )(1e ),0,0,(,)0,.x y x y F x y --⎧-->>=⎨⎩其他 求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(,)X Y 的概率密度为4.8(2),01,0,(,)0,.y x x y x f x y -≤≤≤≤⎧=⎨⎩其他 求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01y x y x x x ⎧-=-≤≤⎪=⎨⎪⎩⎰ 0, 其它 Y 的边缘概率密度为()(,)d Y f y f x y x+∞-∞=⎰12y4.8(2)d 2.4(34),01y x x y y y y ⎧-=-+≤≤⎪=⎨⎪⎩⎰ 0, 其它题8图 题9图9.设二维随机变量(,)X Y 的概率密度为e ,0(,)0y x yf x y -⎧<<=⎨⎩, 其它求边缘概率密度.【解】X 的边缘概率密度为()(,)d X f x f x y y +∞-∞=⎰e d e ,00,y x x y x +∞--⎧=>⎪=⎨⎪⎩⎰ 其它Y 的边缘概率密度为()(,)d Y f y f x y x +∞-∞=⎰0e d e ,00,yy x x y y --⎧=>⎪=⎨⎪⎩⎰ 其它题10图10.设二维随机变量(,)X Y 的概率密度为22,1(,)0cx y x y f x y ⎧≤≤=⎨⎩, 其它(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y+∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212242121=(1),11480,x x ydy x x x ⎧--≤≤⎪=⎨⎪⎩⎰ 其它()(,)d Y f y f x y x +∞-∞=⎰522217d ,01420,y y x y x y y -⎧=≤≤⎪=⎨⎪⎩⎰ 其它 11.设随机变量(,)X Y 的概率密度为1,,01(,)0,y x x f x y ⎧<<<⎪=⎨⎪⎩ 其它求条件概率密度()Y X f y x ,()X Y f x y .题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y .(1) 求X 与Y 的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 的可能取值为:1,2,3;Y 的可能取值为3,4,5. X 与Y 的联合分布律及边缘分布律如下表:3 4 5{}i P X x =13511C 10= 3522C 10= 3533C 10= 610 23511C 10= 3522C 10= 310 3 02511C 10= 110{}i P Y y =110 310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13.设二维随机变量(,)X Y 的联合分布律为 2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.032 5 8 P {Y=y i }0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38YXXY XY(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠===故X 与Y 不独立.14.设X 与Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为/21e ,0,()20,.y Y y f y -⎧>⎪=⎨⎪⎩其他(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥即 2X Y ≥, 从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰22211/2200121d e d 1e d 212d 12[(1)(0)]20.1445.xx y x x y xx πππ---==-==-Φ-Φ=⎰⎰⎰ 15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求/Z X Y =的概率密度.【解】因为X 和Y 相互独立,所以X 与Y 的联合概率密度为62210,1000,1000(,)0,x y f x y x y ⎧>>⎪=⎨⎪⎩ 其它如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()(,)d d d d d d yz Z zx x y y zzF z f x y x y x y y x x y x y +∞≥≥===⎰⎰⎰⎰⎰⎰ 33610231010=d 2z zy yzy +∞⎛⎫-= ⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()(,)d d d d d d zy Z xx y y zzF z f x y x y x y y x x yx y +∞≥≥===⎰⎰⎰⎰⎰⎰ 336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即 11,1,2(),01,20,.Z z z zF z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故 21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他 16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设取到的四只电子元件寿命为i X (i =1,2,3,4),则2~(160,20)i X N ,从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥之间独立34{180}{180}P X P X ≥≥ 1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为()(),0,1,2,3,P X k p k k === ()(),0,1,2,3,P Y r q r r ===证明随机变量Z =X +Y 的分布律为()()()ik P Z i p k q i k ===-∑,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以 {}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是{}{,}ik P Z i P X k Y i k =====-∑,{}{}ik X Y P X k P Y i k ===-∑相互独立0()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑002200(){}2)ki ki n i k i n k ii kk n k k n ki ki P X i P Y k i n n p q p qi k i n n n p qp q i k i k n m m n i k i k =---+=--=====-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭+⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑(提示:组合计数公式方法二:参见第四章。
(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)
(完整版)概率论与数理统计习题答案详解版(廖茂新复旦版)概率论与数理统计习题答案详解版(廖茂新复旦版)习题⼀1.设A,B,C为三个事件,⽤A,B,C的运算式表⽰下列事件:(1)A发⽣⽽B与C都不发⽣;(2)A,B,C⾄少有⼀个事件发⽣;(3)A,B,C⾄少有两个事件发⽣;(4)A,B,C恰好有两个事件发⽣;(5)A,B⾄少有⼀个发⽣⽽C不发⽣;(6)A,B,C都不发⽣.解:(1)A CB或A-B-C或A-(B∪C).(2)A∪B∪C.(3)(AB)∪(AC)∪(BC).(4)(AB C)∪(AC B)∪(BC A).(5)(A∪B)C.(6)CY或CBA IA.B2.对于任意事件A,B,C,证明下列关系式:(1)(A+B) (A+B)(A+ B)(A+B)= ?;(2)AB+A B +A B+A B AB-= AB;(3)A-(B+C)=(A-B)-C.证明:略.3.设A,B为两事件,P(A)=0.5,P(B)=0.3,P(AB)=0.1,求:(1)A发⽣但B不发⽣的概率;(2)A,B都不发⽣的概率;(3)⾄少有⼀个事件不发⽣的概率.解(1)P(A B)=P(A-B)=P(A-AB)=P(A)-P(AB)=0.4;(2) P(B A)=P(BA )=1-P(A∪B)=1-0.7=0.3;(3) P(A∪B)=P(AB)=1-P(AB)=1-0.1=0.9.4.调查某单位得知。
购买空调的占15%,购买电脑占12%,购买DVD 的占20%;其中购买空调与电脑占6%,购买空调与DVD 占10%,购买电脑和DVD占5%,三种电器都购买占2%。
求下列事件的概率。
(1)⾄少购买⼀种电器的;(2)⾄多购买⼀种电器的;(3)三种电器都没购买的.解:(1)0.28, (2)0.83, (3)0.725.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。
解:8/156.任意将10本书放在书架上。
其中有两套书,⼀套3本,另⼀套4本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解】(1) 由 知 故 即密度函数为 当x≤0时 当x>0时 故其分布函数 (2) 由 得 b=1 即X的密度函数为 当x≤0时F(x)=0 当0<x<1时 当1≤x<2时 当x≥2时F(x)=1 故其分布函数为 27.求标准正态分布的上 分位点, (1) =0.01,求 ; (2) =0.003,求 , . 【解】(1) 即 即 故 (2) 由 得 即 查表得 由得 即 查表得 28.设随机变量X的分布律为 X -2 -1 0 1 3 Pk 1/5 1/6 1/5 1/15 11/30 求Y=X2的分布律. 【解】Y可取的值为0,1,4,9 故Y的分布律为
(2) =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概 率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑 道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于 0.01(每条跑道只能允许一架飞机降落)? 【解】设X为某一时刻需立即降落的飞机数,则X~b(200,0.02),设机场 需配备N条跑道,则有 即 利用泊松近似 查表得N≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段 出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故 的次数不小于2的概率是多少(利用泊松定理)? 【解】设X表示出事故的次数,则X~b(1000,0.0001) 8.已知在五重贝努里试验中成功的次数X满足P{X=1}=P{X=2},求概率 P{X=4}.
Y 0 1 4 9 Pk 1/5 7/30 1/5 11/30 29.设P{X=k}=( )k, k=1,2,…,令 求随机变量X的函数Y的分布律. 【解】 30.设X~N(0,1). (1) 求Y=eX的概率密度; (2) 求Y=2X2+1的概率密度; (3) 求Y=|X|的概率密度. 【解】(1) 当y≤0时, 当y>0时, 故 (2) 当y≤1时 当y>1时 故 (3) 当y≤0时 当y>0时 故 31.设随机变量X~U(0,1),试求: (1) Y=eX的分布函数及密度函数; (2) Z=-2lnX的分布函数及密度函数. 【解】(1) 故 当时 当1<y<e时 当y≥e时 即分布函数
故Y的密度函数为 (2) 由P(0<X<1)=1知 当z≤0时, 当z>0时, 即分布函数 故Z的密度函数为 32.设随机变量X的密度函数为 f(x)= 试求Y=sinX的密度函数. 【解】 当y≤0时, 当0<y<1时,
当y≥1时, 故Y的密度函数为 33.设随机变量X的分布函数如下: 试填上(1),(2),(3)项. 【解】由 知②填1。 由右连续性 知 ,故①为0。 从而③亦为0。即 34.同时掷两枚骰子,直到一枚骰子出现6点为止,求抛掷次数X的分布 律. 【解】设Ai={第i枚骰子出现6点}。(i=1,2),P(Ai)= .且A1与A2相互独立。 再设C={每次抛掷出现6点}。则 故抛掷次数X服从参数为 的几何分布。 35.随机数字序列要多长才能使数字0至少出现一次的概率不小于0.9? 【解】令X为0出现的次数,设数字序列中要包含n个数字,则 X~b(n,0.1) 即 得 n≥22 即随机数字序列至少要有22个数字。
(2) c=3 22.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在 10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】 23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若 要求P{120<X≤200}≥0.8,允许σ最大不超过多少? 【解】 故 24.设随机变量X分布函数为 F(x)= (1) 求常数A,B; (2) 求P{X≤2},P{X>3}; (3) 求分布密度f(x). 【解】(1)由 得 (2) (3) 25.设随机变量X的概率密度为 f(x)= 求X的分布函数F(x),并画出f(x)及F(x). 【解】当x<0时F(x)=0 当0≤x<1时 当1≤x<2时 当x≥2时 故 26.设随机变量X的密度函数为 (1) f(x)=ae-l|x|,λ>0; (2) f(x)= 试确定常数a,b,并求其分布函数F(x).
(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X,则X~b(2500,0.002),则所求概率为 由于n很大,p很小,λ=np=5,故用泊松近似,有 (2) P(保险公司获利不少于10000) 即保险公司获利不少于10000元的概率在98%以上 P(保险公司获利不少于20000) 即保险公司获利不少于20000元的概率约为62% 15.已知随机变量X的密度函数为 f(x)=Ae-|x|, -∞<x<+∞, 求:(1)A值;(2)P{0<X<1}; (3) F(x). 【解】(1) 由 得 故 . (2) (3) 当x<0时, 当x≥0时, 故 16.设某种仪器内装有三只同样的电子管,电子管使用寿命X的密度函数 为 f(x)= 求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F(x). 【解】 (1) (2) (3) 当x<100时F(x)=0 当x≥100时 故 17.在区间[0,a]上任意投掷一个质点,以X表示这质点的坐标,设这 质点落在[0,a]中任意小区间内的概率与这小区间长度成正比例,试
36.已知 F(x)= 则F(x)是( )随机变量的分布函数. (A) 连续型; (B)离散型; (C) 非连续亦非离散型. 【解】因为F(x)在(-∞,+∞)上单调不减右连续,且 ,所以F(x)是一个分布函数。 但是F(x)在x=0处不连续,也不是阶梯状曲线,故F(x)是非连续亦 非离散型随机变量的分布函数。选(C) 37.设在区间[a,b]上,随机变量X的密度函数为f(x)=sinx,而在[a,b]外, f(x)=0,则区间 [a,b]等于( ) (A) [0,π/2]; (B) [0,π]; (C) [-π/2,0]; (D) [0, ]. 【解】在 上sinx≥0,且 .故f(x)是密度函数。 在 上 .故f(x)不是密度函数。 在 上 ,故f(x)不是密度函数。 在 上,当 时,sinx<0,f(x)也不是密度函数。 故选(A)。 38.设随机变量X~N(0,σ2),问:当σ取何值时,X落入区间(1,3) 的概率最大? 【解】因为 利用微积分中求极值的方法,有 得 ,则 又 故 为极大值点且惟一。 故当 时X落入区间(1,3)的概率最大。 39.设在一段时间内进入某一商店的顾客人数X服从泊松分布P(λ),每 个顾客购买某种物品的概率为p,并且各个顾客是否购买该种物品相互 独立,求进入商店的顾客购买这种物品的人数Y的分布律. 【解】 设购买某种物品的人数为Y,在进入商店的人数X=m的条件下, Y~b(m,p),即 由全概率公式有
P{X=k}= , 其中k=0,1,2,…,λ>0为常数,试确定常数a. (2) 设随机变量X的分布律为 P{X=k}=a/N, k=1,2,…,N, 试确定常数a. 【解】(1) 由分布律的性质知 故 (2) 由分布律的性质知 即 . 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X、Y表示甲、乙投中次数,则X~b(3,0.6),Y~b(3,0.7) (1) +
习题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X的分布律. 【解】.6 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只, 作不放回抽样,以X表示取出的次品个数,求: (1) X的分布律; (2) X的分布函数并作图; (3) . 【解】 故X的分布律为 X 0 1 2 P (2) 当x<0时,F(x)=P(X≤x)=0 当0≤x<1时,F(x)=P(X≤x)=P(X=0)= 当1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)= 当x≥2时,F(x)=P(X≤x)=1 故X的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击 中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概 率. 【解】 设X表示击中目标的次数.则X=0,1,2,3. 故X的分布律为 X 0 1 2 3 P 0.008 0.096 0.384 0.512 分布函数 4.(1) 设随机变量X的分布律为
求X的分布函数. 【解】 由题意知X~∪[0,a],密度函数为 故当x<0时F(x)=0 当0≤x≤a时 当x>a时,F(x)=1 即分布函数 18.设随机变量X在[2,5]上服从均匀分布.现对X进行三次独立观测,求至 少有两次的观测值大于3的概率. 【解】X~U[2,5],即 故所求概率为 19.设顾客在某银行的窗口等待服务的时间X(以分钟计)服从指数分布 .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5 次,以Y表示一个月内他未等到服务而离开窗口的次数,试写出Y的分布 律,并求P{Y≥1}. 【解】依题意知 ,即其密度函数为 该顾客未等到服务而离开的概率为 ,即其分布律为 20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通 拥挤,所需时间X服从N(40,102);第二条路程较长,但阻塞少,所 需时间X服从N(50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把 握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大 些? 【解】(1) 若走第一条路,X~N(40,102),则 若走第二条路,X~N(50,42),则 ++ 故走第二条路乘上火车的把握大些. (2) 若X~N(40,102),则 若X~N(50,42),则 故走第一条路乘上火车的把握大些. 21.设X~N(3,22), (1) 求P{2<X≤5},P{-4<X≤10},P{|X|>2},P{X>3}; (2) 确定c使P{X>c}=P{X≤c}. 【解】(1)