函数与方程ppt新

合集下载

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程

x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究

一次函数与方程、不等式(共15张PPT)

一次函数与方程、不等式(共15张PPT)

04 综合练习与提高
综合练习题一
总结词
理解一次函数与方程、不等式之间的 关系
详细描述
通过解决一系列的练习题,理解一次 函数与方程、不等式之间的关系,掌 握将实际问题转化为数学模型的方法 。
综合练习题二
总结词
掌握一次函数的图像和性质
详细描述
通过绘制一次函数的图像,理解函数的增减性、截距等性质,掌握利用图像解决实际问题的技巧。
一次函数与不等式的实际应用
一次函数与不等式在实际生活中有着 广泛的应用。例如,在购物时,我们 可以通过比较商品的价格和折扣率来 选择最划算的购买方案,这需要用到 一元一次不等式的知识。
另外,在生产活动中,我们可以通过 控制生产成本和产量之间的关系来制 定最优的生产计划,这也需要用到一 元一次不等式R。
02 一次函数与方程
一次函数与一元一次方程的关系
一次函数是形如$y = kx + b$的函数,其中$k$和$b$是常数, 且$k neq 0$。一元一次方程是只含有一个变量的方程,其形式 为$ax + b = 0$,其中$a$和$b$是常数,且$a neq 0$。
一次函数与方程、不等式(共15张 ppt)
目录
• 一次函数的基本概念 • 一次函数与方程 • 一次函数与不等式 • 综合练习与提高 • 总结与回顾
01 一次函数的基本概念
一次函数的定义
一次函数
一般形式为y=kx+b(k≠0),其 中x为自变量,y为因变量,b为截 距,k为斜率。
线性函数
特殊的一次函数,形式为y=kx+b (k≠0,b=0)。
一次函数在实际问题中的应用
一次函数可以用于解决实际问题,如路程、速度和时间问题、价格和销售问题等。

新教材人教版B版必修一 函数与方程 课件(10张)

新教材人教版B版必修一   函数与方程   课件(10张)

x m, 其中m>0.若
x m,
存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是
. 解题导引
解析 f(x)的大致图象如图所示:
若存在b∈R,使得方程f(x)=b有三个不同的根,只需A点在B点的下 方,即4m-m2<m,又m>0,所以m>3. 答案 (3,+∞)
2
∴f(1)·f(2)<0,
根据零点存在性定理知f(x)=ln
x-
2 x2
的零点所在的区间为(1,2).故选B.
答案 B
考向二 函数零点的应用
例2 (2017江西赣州一模,11)已知函数f(x)=|2x-2|+b的两个零点分别为x
1,x2(x1>x2),则下列结论正确的是 ( )
A.1<x1<2,x1+x2<2
第三步,计算f(x1): (i)若f(x1)=0,则x1就是函数的零点; (ii)若f(a)·f(x1)<0,则令b=x1(此时零点x0∈(a,x1)); (iii)若f(x1)·f(b)<0,则令a=x1(此时零点x0∈(x1,b)); 第四步,判断是否达到精确度ε,即若|a-b|<ε,则得到零点近似值a(或b);否 则,重复第二、三、四步.
与方程的根
1.函数的零点
(1)函数零点的定义:对于函数y=f(x),把使① f(x)=0 的实数x叫做函数
y=f(x)的零点.
(2)三个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与② x轴
有交点⇔函数y=f(x)有③ 零点 .
2.函数零点存在性定理
注意 零点存在性定理只能判断函数在某区间上是否存在零点,并不能 判断零点的个数,但如果函数在区间上是单调函数,则该函数在区间上 至多有一个零点. 3.二分法 (1)对于区间[a,b]上连续不断的,且f(a)·f(b)<0的函数y=f(x),通过不断地把 函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点, 从而得到零点近似值的方法,叫做二分法. (2)用二分法求函数f(x)零点近似值的步骤 第一步,确定区间[a,b],验证④ f(a)·f(b)<0 ,给定精确度ε; 第二步,求区间(a,b)的中点x1;

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .

[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.

沪科版数学九年级上册21.3二次函数与一元二次方程 课件(共24张PPT)

沪科版数学九年级上册21.3二次函数与一元二次方程  课件(共24张PPT)
第21章 二次函数与反比例函数
21.3 二次函数与一元二次方程
学习目标
学习重难点
重点
难点
1.理解二次函数与一元二次方程(不等式)的关系.2.能运用二次函数及其图象、性质确定方程的解.3.了解用图象法求一元二次方程的近似根的方法.
二次函数图象、性质确定方程的解.
二次函数与一元二次方程(不等式)的关系.
D
C
3.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,求k的取值范围.解:当k=3时,函数y=2x+1是一次函数.∵一次函数y=2x+1与x轴有一个交点,∴k=3;当k≠3时,y=(k-3)x2+2x+1是二次函数.∵二次函数y=(k-3)x2+2x+1的图象与x轴有交点,∴Δ=b2-4ac≥0.∵b2-4ac=22-4(k-3)=-4k+16,∴-4k+16≥0. ∴k≤4且k≠3.综上所述,k的取值范围是k≤4.
归纳小结
1.二次函数与一元二次方程的关系: 一般地,关于x的一元二次方程 的根,就是二次函数 的值为0时自变量x的值,也就是函数 的图像与x轴交点的横坐标.2.二次函数 与x轴交点个数的确定. 可有一元二次方程的根的判别式来表示判定二次函数图象与x轴的交点的情况,由根与系数的关系来解决相关问题.在函数问题中,往往需要解方程:反过来也可以利用函数图象解方程.
思 考: 如何利用二次函数求一元二次方程的近似解.例:求一元二次方程x2+2x-1=0的根的近似值(精确到 0.1). 分析:一元二次方程x²+2x-1=0的根就是抛物线y=x²+2x-1与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.
想一想:观察下列二次函数,图象与x轴有公共点吗? 如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此你能得出相应的一元二次方程的根吗?(1) y=x2+x-2.(2)y=x2-6x+9.(3)y=x2-x+1.

第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)

第07讲函数与方程(课件)-2024年高考数学一轮复习(新教材新高考)
范围是________.
【答案】 −∞, −1
2
当 < 0时,令′ = 0,解得 = 0或 = − ,
【解析】因为 = 3 + 3 2 − 4,所以′ = 3 2 + 6 = 3 + 2
当 = 0时,有 = 3 2 − 4 = 0,解得 = ± 2 3,
公共点.
N
Q
Z
R
N
(3)函数零点存在定理
如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有
f(a)f(b)<0
(a,b) 内至少有一个零点,即存
__________,那么,函数y=f(x)在区间
在c∈(a,b),使得 f(c)=0 ,这个c也就是方程f(x)=0的解.
2.二分法
2
−∞, −
=
2
2
2
−∞, −
2

当 ∈ 0, − ,′ > 0, 在区间 0, − 上单调递增;
当 > 0时,由′ = 0,解得 = 0或 = − ,
2
且有 0 = −4, −
> 0,
, 存在一个正数零点,所以不符合题意;
2 3
,0
3
2
2 3
3
2024
高考一轮复习
第07讲 函数与方程
导师:稻壳儿
目录
C
O
N
T
E
01
考情分析
N
T
S
02
03
04
网络构建
知识梳理
题型归纳
真题感悟
01
考情分析
考点要求
考题统计
考情分析

人教版数学九年级上册22.2 二次函数和一元二次方程课件(共55张PPT)

人教版数学九年级上册22.2  二次函数和一元二次方程课件(共55张PPT)
当已知二次函数 y 值,求自变量 x值时,可以看作是解对应的一 元二次方程.相反地,由解一元二次方程,又可看作是二次函数值 为0时,求自变量x的值
例如,已知二次函数 y = -x2+4x 的值为3,求自变量 x 的值, 可以解一元二次方程-x2+4x=3 ( 即x2-4x+3=0 ). 反过来,解方程 x2-4x+3=0 又可以看作已知二次函数 y = x2-4x+3 的值为0,求自 变量x的值,还可以看做y = -x2+4x 和y=3的交点
x
-1
-2
-3
-4 -5
当x1=x2=-3时,函数值为0.
二、利用一元二次方程讨论二次函数与x轴的交点
思考
问题1 不解方程,判断下列一元二次方程根的情况. (1)x2+x-2=0; ∵∆ = b2-4ac=9>0,∴方程有两个不相等的实数根. (2)x2-6x+9=0; ∵∆ = b2-4ac=0,∴方程有两个相等的实数根. (3)x2-x+1=0. ∵∆ = b2-4ac=-3<0,∴方程有没有实数根.
公共点的坐标.
(1)y=x2+x-2;
y
两个(-2,0),(1,0)
2 1
-2 -1 O 1 2 x
-1
-2
(2)y=x2-6x+9;
y 4
一个(3,0)
3
2
1
-1 O 1 2 3 4
x
(3)y=x2-x+1
y 4
没有公共点
3
2 1
-1 O 1 2
x
二次函数图象与x轴的公共点我们也可以通过平移来观察,发现最多有两 个公共点,最少没有公共点.
O

第八节 函数与方程 课件(共31张PPT)

第八节 函数与方程 课件(共31张PPT)

答案:C
2.函数 f(x)=4cos2 x2·cosπ2-x-2sin x-|ln(x+1)| 的零点个数为________.
解析:f(x)=2(1+cos x)sin x- 2sin x-|ln(x+1)|=sin 2x-|ln(x+ 1)|,x>-1,函数 f(x)的零点个数即为 函数 y1=sin 2x(x>-1)与 y2=|ln(x+1)|(x>-1)的图象的 交点个数.分别作出两个函数的图象如图所示,可知有两 个交点,则 f(x)有两个零点.
x2-2x,x≤0, 1.已知函数 f(x)=1+1x,x>0, 则函数 y=f(x)+
3x 的零点个数是( )
A.0 B.1
C.2 D.3
解析:令 f(x)+3x=0,
则xx≤2-02,x+3x=0或x1>+01x,+3x=0,
解得 x=0 或 x=-1,
所以函数 y=f(x)+3x 的零点个数是 2.
的取值范围是( )
A.a<-1
B.a>1
C.-1<a<1 D.0≤a<1 解析:令 f(x)=2ax2-x-1, ①当 a=0 时,-x-1=0,x=-1 不合适. ②a≠0 时,f(0)·f(1)<0,a>1.验证若 f(0)=0,此式不成立; 当 f(1)=0 时,2a-1-1=0.
a=1,方程另一根为-12(不合题意),故 a>1,选 B. 答案:B
考点 2 判断函数零点个数
[例 1] (1)函数 f(x)=x-2+1+x-ln2x,,xx≤>00,的零点个数
为( )
A.3
B.2
C.7
D.0
(2)已知函数 y=f(x)是周期为 2 的周期函数,且当 x∈

《二次函数与一元二次方程》参考PPT课件

《二次函数与一元二次方程》参考PPT课件

有两个不相 等的实数根
b2 – 4ac > 0
只有一个交点 有两个相等的 实数根
b2 – 4ac = 0
没有交点
没有实数根
b2 – 4ac < 0 16
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
7.一元二次方程 3 x2+x-10=0的两个根是x1-2 , x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交点坐
标是__(_-2_,_0)_(_5/_3,. 0)
19
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
20.5 m
6
0m
0s
4s
(4)当 h = 0 时, 20 t – 5 t 2 = 0 t2-4t =0 t 1 = 0,t 2 = 4 当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
7
二次函数与一元二次方程的关系(1)
已知二次函数,求自变量的值
2.若抛物线 y = ax2+bx+c= 0,当 a>0,c<0时,图
象与x轴交点情况是( C )
A. 无交点
B. 只有一个交点
C. 有两个交点 D. 不能确定
17
3. 如果关于x的一元二次方程 x2-2x+m=0有两
个相等的实数根,则m=_1__,此时抛物线 y=x2- 2x+m与x轴有_1_个交点.

新教材高中数学第四章指数函数与对数函数函数的零点与方程的解课件新人教A版必修第一册ppt

新教材高中数学第四章指数函数与对数函数函数的零点与方程的解课件新人教A版必修第一册ppt

.
探索点三 函数零点所在区间问题
【例 3】 (1)函数 g(x)=2x+5x 的零点 x0 所在的一个
区间是 (
)
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
解析:因为函数 g(x)=2x+5x 在 R 上单调递增,
且 g(-1)=2-1-5<0,g(0)=1>0,
所以 g(-1)·g(0)<0,
-
解析:令 f(x)=
得 x-2=0 或 ln x=0,解得 x=2 或 x=1.
故函数 f(x)的零点为 1 和 2.
e,0和-2
-, > ,
(2)函数 f(x)=
的零点是
- -, ≤
≤ ,
-
=
,
解析:由 f(x)=0,得

- - = ,
≥ ,
< ,


= ,
| -| =
-
< ,
< ,
≥ ,
整理,得


- = - = - = ,
解得 x=1 或 x=4.故选 A.
答案:A
x
(2)方程 3 +log2x=0 在区间

,1

上的实数根的个数为 1 .
解析:方法 1 方程 3x+log2x=0 可化为 3x=-log2x=lo x.设
所以函数 g(x)在区间(-1,0)上存在唯一的零点,
故选 B.
答案:B
(2)若 x0 是方程( )x= 的解,则 x0 属于区间 (
A.( ,1)
B.( , )

一次函数与二元一次方程的关系PPT课件

一次函数与二元一次方程的关系PPT课件
3.以方程2x+3y=5的解为坐标的点是否都在函数y 2 x 5 的 33
图像上?为什么?
[知识拓展] (1)以二元一次方程的解为坐标的点组成的集合 是它对应的一次函数所在的直线;一次函数图像 上任意一点的坐标是它对应的方程的一组解. (2)二元一次方程组的解是由它对应的两个一次 函数图像的交点坐标;两个一次函数图像的交点 坐标是其对应的二元一次方程组的解.
1.以二元一次方程ax+by=c的解为坐标所构成的直线,是不是一次 函数 y a x c 的图像?请说明理由.
bb 2.你认为二元一次方程和一次函数有什么联系与区别?
总结:以二元一次方程的解为坐标的点都在与它相应的一 次函数的图像上;反过来,一次函数图像上的点的坐标都是 与它相应的二元一次方程的解.
不等式的关系即可求解.
解:(1)两直线相交时交点的坐标是
y x 1,
y
2
x
2,
的解,即
x y
1, 0,
所以交点的坐标是(1,0),图像用两点法画 即可. y1=-x+1的图像与坐标轴的交点为 (0,1),(1,0),y2=2x-2的图像与坐标轴的交 点为(0,-2),(1,0),直接连线即可.如图所示.
1则.若直二线元y=一-3次x+方a和程y组=2x-43bxx的2y交y点ab,坐, 的标解为为
(
x m, y n. C)
2
A.(n,m) B.(m,m) C.(m,n) D.(n,n)
检测反馈
解析:二元一次方程组的解就是两个方程对应直线的交点坐标.故选C.
2.如图所示的是函数y=kx+b与y=mx+n的图像,求方程组 的点关于原点对称的点的坐标是 ( D )

4.5.1 函数的零点与方程的解 课件(共38张PPT) 高一数学人教A版(2019)必修第一册

4.5.1 函数的零点与方程的解 课件(共38张PPT) 高一数学人教A版(2019)必修第一册
函数零点的定义
函数零点、方程的根、函数的图象与x轴交点的关系
函数的零点存在定理
1.在二次函数 中,ac<0,则其零点的个 数为( ) A.1 B.2 C.3 D.不存在
2.若 不是常数函数且最小值为1,则 的零点个数( )
A.0
B.1
C.0或1
D.不确定
解:
x
1
2
3
4
5
6
7
8
9
f(x)
-4
-1.306 9
1.098 6
3.386 3
5.609 4
7.791 8
9.945 9
12.079 4
14.197 2
方法一
f(x)=lnx+2x-6
从而f(2)·f(3)<0,∴函数f(x)在区间(2,3)内有零点.
10
8
6
4
2
-2
-4
5
1
2
3
4
6
x
y
O
y=-2x+6
y=lnx
6
O
x
1
2
3
4
y
即求方程lnx+2x-6=0的根的个数,即求lnx=6-2x的根的个数,即判断函数y=lnx与函数y=6-2x的交点个数.
如图可知,只有一个交点,即方程只有一根,函数f(x)只有一个零点.
方法二:
函数零点
方程的根
图象交点
转化
1.求方程2-x =x的根的个数,并确定根所在的区间[n,n+1](n∈Z).
x
y
如图,
若函数y=5x2-7x-1在区间[a,b]上的图象 是连续不断的曲线,且函数y=5x2-7x-1在(a, b)内有零点,则f(a)·f(b)的值( ) A.大于0 B.小于0 C.无法判断 D.等于0

人教版八年级数学下册 第十九章 19.2.3 一次函数与方程、不等式 第一课时 课件 (共26张PPT)

人教版八年级数学下册 第十九章 19.2.3 一次函数与方程、不等式 第一课时 课件 (共26张PPT)

(1)途中乙发生了什么事,
P
(2)他们是相遇还是追击; 12
(3)他们几时相遇。
10
8
D E
AB
0
0.5
1 1.2
t
1.右图中的两直线l1 、l2 的交点坐标可以看作
y 2x 1
y 4
l1
3
2
l2 1
-1 0 -1
1 2 3 4x
x 2y 2 2.解方程组 2x y 2
问 经过多长时间两人相遇 ?
你明白他的想法吗?
设同时出发后t 时相遇, 则 20 t 30 t 150
用他的方法做一做,看 看和你的结果一致吗?
t=3
求出s与t之间的关系式,联立解方程组
A、B 两地相距150千米,甲、
对于乙,s 是t
乙两人骑自行车分别从A、B 两地相
的一次函数,
向而行。假设他们都保持匀速行驶, 则他们各自到A 地的距离s (千米) 都
120千米,即乙的
B 两地同时相向而行。假设他 小彬 速度是 30千米/时,
们都保持匀速行驶,则他们各
自到A地的距离s(千米)都是骑 车时间t(时)的一次函数.
1 时后乙距A地120千米, 2 时后甲距A地 40千米.
2 时后甲距A 地 40千米, 故甲的速度是 20千米/时,
由此可求出甲、乙两人的 速度, 以及 ……
2
4
6
所以方程
x 2 y 2 2x y 2
-6
的解是 x 2 。
y
2
一、二元一次方程的解与相应的一次函数图象上点 对应。
以方程 x+y=3 的解为坐标的所有点组成的图形
就是 一次函数 y=3-x 的图象.

(用)二次函数与一元二次方程、不等式的关系课件-新版.ppt

(用)二次函数与一元二次方程、不等式的关系课件-新版.ppt
2、若一元二次方程ax2+bx+c=0与二次函数 y=ax2+bx+c之间的互相转化的关系。体现了数 形结合的思想。
探究三:你的图象与x轴的交点坐标是什么?
根据 y x2 2x 3 图象回答下列问题.
• 当 x 取何值时,y<0?
y
• 当 x 取何值时,y>0?
• 能否用含有x的不等式来 描述两个问题?
§21.3 二次函数与一元 二次方程、不等式的关系
温故知新

(1)、一次函数y=-3x+6的图象与x轴的交 点为(2,0);与 y 轴的交点为 (0,6) 。 (2)、一元一次方程-3x+6=0的根为__X__=_2___
y
你能说说 (1)与 (2)之间 的联系吗?
6
o2 x
方法与规律: 一次函数y=kx+b的图象与
-4
-5
九、如何求当x为何值时,y>0,y=0,y<0
y
x1
x2 x
0
y
O
x1
x2 x
当x=x1或x=x2时,y=0 当x<x1或x>x2时,y<0 当x1<x<x2时,y>0
x轴的交点的横坐标就是一元一次方程
kx+b=0的根
探究
探究1、求二次函数图象y=x2-3x+2与x轴的交 点A、B的坐标。
y 解:∵A、B在轴上,
∴它们的纵坐标为0, ∴令y=0,则x2-3x+2=0
x1 OA
x2 B
解得:x1=1,x2=2;
∴A(1,0) , B(2,0)
你发现方程 x2-3x+2=0 的解x1、x2与A、B的 坐标有什么联系?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1方程的根与函数的零点
等价关系 判断函数零点或相 应方程的根的存在性 例题分析 课堂练习 小结 布置作业
思考:一元二次方程
ax2+bx+c=0(a≠0)的根与二次函数 y=ax2+bx+c(a≠0)的图象有什么关系?
观察函数与x轴的交点与对应方程根的关系:
方程
函数
函 数 的 图 象
x2-2x-3=0 x2-2x+1=0 y= x2-2x-3 y= x2-2x+1
x2-2x+3=0 y= x2-2x+3
y
.
2
..yLeabharlann ..1.-1 0 1 2 3
-1
-2 -3
. -4
2
x 1. . . -1 0 1 2 x
y
.5 .4
. .
3 2
.
1
-1 0 1 2 3 x
方程的实数根
函数的图象 与x轴的交点
x1=-1,x2=3 (-1,0)、(3,0)
x1=x2=1 (1,0)
(1)-x2+3x+5=0; (2)2x(x-2)=-3; (3)x2 =4x-4;
1(1) -x2+3x+5=0
对了,你真棒!
1(1)解:令f(x)=-x2+3x+5, 作出函数f(x)的图象,如下:
它与x轴有两个交点,所以
y
8.
6.
.
4
方程-x2+3x+5=0有两个不
2
相等的实数根。
.
.
-2 -1 0 1 2 3 4 x
因为f(1)=1>0,f(1.5)=-2.875<0, 所以f(x)= -x3-3x+5在区间(1, 1.5) 上有零点。又因为f(x)是(-∞,+∞) 上的减函数,所以在区间(1, 1.5)上有 且只有一个零点。
.y .
5
.4
3
2.
1
0 1 23 x
-1
.
2(2) f(x)=2x ·ln(x-2)-3
2(2)解:作出函数的图象,如下:
因为f(3)=-3<0,f(4)≈2.545>0,所以f(x)=
2x ·ln(x-2)-3在区间(3,4)上有零点。又因为
f(x) =2x ·ln(x-2)-3是(2,+∞)上的增函数,
所以在区间(3,4)上有且只有一个零点。
.
y
.
2
1
0 1 2 34 5 x
-1
-2 -3
无实数根 无交点
判别式△ = b2-4ac
△>0
△=0
方程ax2 +bx+c=0 两个不相等
有两个相等的
(a≠0)的根
的实数根x1 、x2 实数根x1 = x2
△<0 没有实数根
函数y= ax2 +bx +c(a≠0)的图象
y
x1 0
x2 x
y 0 x1 x
y
0
x
函数的图象 与 x 轴的交点
(x1,0) , (x2,0)
如 y x2 2x 3 的零点有-1,3.
y x2 2x 1 的零点有1. y x2 2x 3 没有零点. y 2x 5 的零点有 5 .
2
y ln x 的零点有1.
函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数
y=f(x)的零点。 等价关系
不断的一条曲线,并且有f(a)·f(b)<0,那么,函
数y=f(x)在区间(a,b) 内有零点,即存在c∈(a,b),
使得f(c)=0,这个c也就是方程f(x)=0的根。
注:只要满足上述两个条件,就能判断函数在指定 区间内存在零点。
y
..
y
. .
a0 b x
a0 b x
练习:
1.利用函数图象判断下列方程有没有根,有几个根:
方程f(x)=0有实数根
函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
观察二次函数f(x)=x2-2x-3的图象:
y
.
.
2
我们发现:
.1
.
函数 f (x) x2 2x 3在区间[2,0]上有零点,
-2 -1 0 1 -1
2
34
x
在区间 [2,4] 上有零点.
-2 -3
. -4
对了,你真棒!
1(3)解:x2 =4x-4可化为x2-4x
y
+4=0,令f(x)= x2-4x+4,作出 . 6
.
函数f(x)的图象,如下:
5
.4
.
它与x轴只有一个交点,所以 方程x2 =4x-4有两个相等的实 数根。
3 2
1
. -1 0 1 2 3 4 x
2(1) f(x)= -x3-3x+5
2(1)解:作出函数的图象,如下:
1(2) 2x(x-2)=-3
对了,你真棒!
1(2)解:2x(x-2)=-3可化为 2x2-4x+3=0,令f(x)= 2x2-4x
y
.. 5
+3 , 作出函数f(x)的图象,如下: 3 . 4 .
它与x轴没有交点,所以方程
2 1
.
2x(x-2)=-3无实数根。
-1 0 1 2 3 x
1(3) x2 =4x-4
请计算:f (2) f (0), f (2) f (4)
即:f (2) f (0) 0 ,函数在(2,0)上有零点;
f (2) f (4) 0 ,函数在(2,4)上有零点.
思考: 任意画几个函数图象,观察图象看是否有同样的结果?
y
.
0 a.
bx
如果函数y=f(x)在区间[a,b]上的图象是连续
.
.
小结与思考
函数零点的定义
等价关系 函数的零点或相应方程的 根的存在性以及个数的判断
布置作业:
本节课后习题 第1,2题
(x1,0)
没有交点
二次函数的图象与x轴的交点与相应的一元二次方程的 根的关系,即
y ax2 bx c(a 0)与x轴的交点的横坐标即为方程 ax2 bx c 0(a 1)的根.可以推广到一般情形,为此先 给出函数零点的概念.
函数的零点:
对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x) 的零点.
相关文档
最新文档