历届全国大学生高等数学竞赛真题及答案非数学类
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前三届高数竞赛预赛试题(非数学类)
(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书
及相关题目,主要是一些各大高校的试题。)
2009年 第一届全国大学生数学竞赛预赛试卷
一、填空题(每小题5分,共20分)
1.计算=--++⎰⎰y x y
x x y
y x D
d d 1)
1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.
解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11
10
det d d =⎪⎪⎭
⎫ ⎝
⎛-=, v u u v u u u y x y x x y
y x D D d d 1ln ln d d 1)
1ln()(⎰⎰⎰⎰--=
--++
⎰⎰⎰⎰----=---=10
2
1
00
0d 1)ln (1ln d )d ln 1d 1ln (
u u
u u u u u u u u v v u
u
v u u u u u ⎰
-=1
2
d 1u u
u (*) 令u t -=1,则2
1t u -=
dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,
⎰+--=0
1
42d )21(2(*)t
t t
⎰
+-=10
42d )21(2t t t 1516513
2
21
053=⎥⎦⎤⎢⎣⎡+-=t t t
2.设)(x f 是连续函数,且满足⎰
--
=20
22d )(3)(x x f x x f , 则=)(x f ____________.
解: 令⎰
=
20
d )(x x f A ,则23)(2--=A x x f ,
A A x A x A 24)2(28d )23(20
2-=+-=--=
⎰
,
解得34=
A 。因此3
103)(2
-=x x f 。 3.曲面22
22
-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面22
22
-+=y x z 在
)
,(00y x 处的法向量为
)
1),,(),,((0000-y x z y x z y x ,故
)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知
0000002),(2,),(2y y x z x y x z y x ====,
即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在
)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面
22
22-+=y x z 平行平面
022=-+z y x 的切平面方程是0122=--+z y x 。
4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则
=2
2d d x
y
________________. 解: 方程29ln )
(y y f e xe
=的两边对x 求导,得
29ln )()()(y e e y y f x e y y f y f '=''+
因)
(29ln y f y
xe
e =,故
y y y f x
'=''+)(1
,即))(1(1y f x y '-=
',因此 2
222)](1[)())(1(1d d y f x y y f y f x y x y '-'
''+'--=''=
3
22
23
2)](1[)](1[)())(1(1)](1[)(y f x y f y f y f x y f x y f '-'--''='--'-''= 二、(5分)求极限x
e
nx x x x n
e e e )(
lim 20+++→ ,其中n 是给定的正整数. 解 :因
x
e
nx x x x x e nx x x x n
n e e e n e e e )1(lim )(lim 2020-++++=+++→→ 故
nx
n e e e e x
e n n e e e A nx
x x x nx x x x -+++=-+++=→→ 2020lim lim
e n n n e n ne e e e nx x x x 2
1
212lim 20+=+++=+++=→
因此
e n A x
e
nx x x x e e n
e e e 2
1
20)(lim +→==+++
三、(15分)设函数)(x f 连续,⎰
=10
d )()(t xt f x g ,且A x
x f x =→)
(lim
,A 为常数,
求)(x g '并讨论)(x g '在0=x 处的连续性.