实验二 离散时间信号与系统的Z变换分析

合集下载

第七章离散时间信号与系统的Z域分析总结

第七章离散时间信号与系统的Z域分析总结
当 z > a 时,这是无穷递缩等比级数。
1 z X ( z) = 此时, = 1 − az −1 z − a
z > a 收敛域:
0
j Im[ z ]
a
*收敛域一定在模最大的极点 所在的圆外。
Re[ z ]
信号与系统
第7章 离散时间信号与系统的z域分析
13 /82
3.左边指数序列 x(n) = −b nu (−n − 1)
的形式 ,其中x2+Ax+B是实数范围内的不可约 多项式,而且k是正整数。这时称各分式为原 分式的“部分分式”。
信号与系统
第7章 离散时间信号与系统的z域分析
19 /82
M X ( z ) 通常, 可表成有理分式形式: b z −i ∑ i B( z ) = i =0N X ( z) = A( z ) 1 + ∑ ai z −i
z −n < ∞
n1 ≤ n ≤ n2 ;
信号与系统
第7章 离散时间信号与系统的z域分析
7 /82
因此,当时,只要,则 n= z − n 1/ z n , ≥0 同样,当时,只要,则 n <= 0 z z ,
n −n
z≠0 z≠∞ z
z −n < ∞
−n
<∞
所以收敛域至少包含,也就是除 0< z <∞ “有限平面” z= (0, ∞) z 。 ∞外的开域,即所谓
9 /82
(3)左边序列
x(n), n ≤ n2 x ( n) = n > n2 0,
X ( z)
n = −∞
= x ( n) z ∑ ∑ x ( n) z
−n n = −∞
n2

数字信号处理第2章

数字信号处理第2章

Z变换与拉氏变换的关系:
这一关系实际上是通过 到了Z平面。
若将Z平面用极坐标表示
标表示
,代入
将S平面的函数映射
,S平面用直角坐 ,得:
上述关系表明: z 的模 r 仅与 s 的实部 相对应, z 的幅角 则仅与 s 的虚部 对应。
映射关系:
Z变换与拉氏变换的关系
0 0,2 (S平面实轴映射到Z平面的正实轴)
解:
,求它的傅立叶变换。
其幅度谱和相位谱分别为:
典型例题
❖ 例2 已知序列的傅立叶变换如下,求它的反变换。
解:
显然序列 h(n)不是绝对可和的,而是平方可和 的 ,但其依然存在傅立叶变换。 Parseval定理
典型例题
❖ 例3 证明复指数序列 x(n) e j0n 的傅立叶变换为:
证:根据序列的傅立叶反变换定义,利用冲击函 数 的性质,有:
即序列绝对可和
某的有 立些序些叶既列序变不,列换满若虽依足引然然绝入不存对频满在可 域足。和的以见的冲上后条击条例件函件。也数,不但满满,足足其平平傅方方立可可叶和和变条,换件其傅
也存在。如
、某些周期序列,见后例。
序列傅立叶变换的定义
5.常用序列的傅立叶变换
序列
(n)
傅立叶变换
1
1
典型例题
❖ 例1 已知
A形k(式k=求0,X取1(…:z),N)B,(此z) A( z )

为了方bi 便z i通常利用
i0
N
1 ai z i
X(z)/z的
i 1
若序列为因果序列,且N≥M,当X(z)的N个极点都是单
极点时,可以展开成以下的部分分式的形式:
则其逆Z变换为:

离散时间信号与系统的复频域分析——z变换ppt

离散时间信号与系统的复频域分析——z变换ppt

其他特 VIP专享精彩活动

VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
6.6.1 数字滤波器的概念
与模拟滤波器相对应,在离散系统中 广泛应用数字滤波器。它的作用是利用离 散时间系统的特性对输入信号波形或频谱 加工处理。或者说,把输入的数字信号通 过一定的运算关系变成所需要的输出数字 信号。
数字滤波器一般可以用两种方法来实 现:一种方法是用数字硬件装配成一台专 门的设备,这种设备称为数字信号处理机; 另一种方法就是将所需要的运算编制成程 序利用计算机软件来实现。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
第6章 离散时间信号与系统的复 频域分析——z变换
6.1 z 变 换 的 定 义 6.2 常 用 序 列 的 z 变 换 6.3 z 变 换 的 性 质 6.4 逆 z 变 换 6.5 离散系统的z域分析 6.6 数 字 滤 波 器 6.7 用MATLAB进行z域分析

离散时间信号及其Z变换

离散时间信号及其Z变换

离散时间信号及其Z变换离散时间信号是信号与时间变量在一系列离散时间点上取值的函数,它在数字信号处理中有着重要的应用。

离散时间信号与连续时间信号类似,也可以通过不同的数学工具进行分析和处理。

其中,Z变换是离散时间信号的重要工具之一。

离散时间信号是在一系列离散时间点上取值的函数,这些离散时间点可以是整数、实数或复数。

离散时间信号通常用序列表示,即按一定顺序排列的值的集合。

离散时间信号可以是有限长度的,也可以是无限长度的。

离散时间信号在很多领域都有广泛的应用,包括通信、控制系统、数字图像处理等。

在通信系统中,信号可以是传输数据的形式,例如音频信号、视频信号等。

在控制系统中,离散时间信号可以作为控制信号,用于调整系统的状态和输出。

在数字图像处理中,图像可以被表示为二维离散时间信号,通过对其进行处理,可以实现图像的增强、压缩等功能。

Z变换是一种重要的工具,能够将离散时间信号从时域转换到复频域。

Z变换本质上是一种数学变换,它将离散时间信号转换为复平面上的函数。

Z变换的定义是通过对离散时间信号的每个样本点进行加权求和得到。

离散时间信号的Z变换可以表示为:X(z) = ∑[x(n) * z^(-n)] (n从负无穷到正无穷)其中,X(z)是离散时间信号X(n)的Z变换,x(n)是离散时间信号X(n)在时间点n上的取值,z是复平面上的变量。

通过Z变换,我们可以将离散时间信号转换到复频域,从而可以进行频域分析和处理。

在Z平面上,可以通过观察X(z)的性质来分析离散时间信号的频域特性,例如振幅谱、相位谱等。

我们还可以通过对Z变换进行逆变换,将离散时间信号恢复到时域。

Z变换的性质包括线性性、平移性、时域乘法、频域卷积等。

这些性质使得Z变换在信号处理中有着广泛的应用。

通过Z变换,我们可以分析离散时间系统的稳定性、频率响应、脉冲响应等。

此外,Z变换还可以用来设计离散时间系统,例如数字滤波器的设计等。

总结来说,离散时间信号及其Z变换在数字信号处理中起着重要的作用。

离散时间信号、系统和Z变换

离散时间信号、系统和Z变换

冲激信号的强度压缩到原信号的1/2。
第二章信号分析和处理基础
设时域离散系统的输入为x(n),经过规定的运算,系统输出序 列用 y(n) 表示。设运算关系用 T [· ] 表示,输出与输入之间关 系用下式表示:
y(n)=T[x(n)]
其框图如图所示:
在时域离散系统中,最重要的是线性时不变系统,因为很多物 理过程可用这类系统表征。
e j(ω +2πM)n= e jω n,
0 0
M=0,〒1,〒2…
复指数序列具有以2π为周期的周期性。
指数信号
表达式:
f (t ) K e
直流(常数) 指数衰减
指数增长
t
f (t )
0
K
a0 a0 a0
0 0
O
t
重要特性:其对时间的微分和积分仍然是指数形式。
通常把 称为指数信号的时间常数,记作,代表 信号衰减速度,具有时间的量纲。
设输入为x1(n)和x2(n)时,输出分别为y1(n)和y2(n),即: T[ax1(n)] =3ax1(n)+4;
例2 已知f(t)的波形如图所示,试画出f(-3t-2)的波形
1.5 1 0.5 0 -4 1.5 1 0.5 0 -4 1.5 1 0.5 0 -4 1.5 1 0.5 0 -4
f(t)
-3
-2
-1
0 f(t-2)
1
2
3
4
-3
-2
-1
0
1 f(3t-2)
2
3
4
-3
-2
-1
0
1 f(-3t-2)
2
列就是时域离散信号。 实际信号处理中,这些数字序列值按顺序放在存贮器中,此时 nT 代表

第八章-Z变换与离散系统z域分析

第八章-Z变换与离散系统z域分析

第八章:Z 变换§8.1 定义、收敛域(《信号与系统》第二版(郑君里)8.1,8.2,8.3)定义(Z 变换): ♦序列()x n 的双边Z 变换:()(){}()nn X z x n x n z+∞-=-∞∑Z(8-1)♦序列()x n 的单边Z 变换:()(){}()0n n X z x n x n z +∞-=∑Z(8-2)注:1)双边:()()()()10nnn n n n X z x n zx n zx n z +∞-∞+∞---=-∞=-===+∑∑∑(8-3)为Laurent 级数,其中,()1nn x n z-∞-=-∑是Laurent 级数的正则部,()0nn x n z+∞-=∑是主部。

2)z 是复平面上的一点图8-13)对因果序列:单边Z 变换=双边Z 变换。

♦定义(逆Z 变换):对双边Z 变换()()nn X z x n z+∞-=-∞=∑()1C1d 2j m z X z z π-⎰(1C 12j m n z x π+∞-=-∞⎡=⎢⎣∑⎰ ()C 12j m n x n z π+∞=-∞⎡=⎢⎣∑⎰由Cauchy 定理,有1C d 0,2j m n z z m nπ--=⎨≠⎩⎰ (8-4)其中,C 为包围原点的闭曲线,()()1C1d 2j m x m z X z z π-∴=⎰上式= 定义:()()(){}11C1d 2j n x n z X z z X z π--==⎰Z(8-5)注:(8-4)的求解:j z re θ=,j d j d z r e θθ=,则有()()21110C 2011d 2j 2j 1102j m n m n m n j j m n m n z z r e rje d m n r e d m nπθθπθθππθπ--------==⎧==⎨≠⎩⎰⎰⎰,,图8-2 柯西定理证明示意图收敛域: ♦定义(收敛域):对有界()x n ,使()()nn X z x n z+∞-=-∞=<∞∑一致的z 的集合。

实验-Z变换、零极点分析

实验-Z变换、零极点分析

(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

信号与系统第8章 离散时间系统的z域分析

信号与系统第8章 离散时间系统的z域分析

零状态响应为
Yf
(z)
(1 z 1 z 2 ) 2 3z 1 z 2
1 1 z 1
1/ 6 0.5 5 / 6 1 z1 1 z1 1 0.5z1
yf [k] Z 1{Yf (z)}{1/ 6 0.5(1)k (5/ 6)(0.5)k}u[k]
y[k] yx[k] yf [k] {1/ 6 3.5(1)k (4 / 3)(0.5)k}u[k]
离散时间信号与系统的Z域分析
• 离散时间信号的Z域分析 • 离散时间系统的Z域分析 • 离散时间系统函数与系统特

离散时间信号的Z域分析
• 理想取样信号的拉普拉斯变换 • 单边Z变换定义 • 单边Z变换的收敛域 • 常用序列的Z变换 • 单边Z变换的性质 • Z反变换
理想取样信号的拉普拉斯变换
fs (t) f (t) (t kT) f (kT) (t kT)
Re(z)
三、常用序列的Z变换
1) Z{ (k)} 1, z 0
2) 3)
Z{u(k)} 1 1 z
Z{aku(k)}
1 , 1
1 a
z
z
1
1 z
a
4)
Z{e
j0k
u(k
)}
1
e
1
j0
z
1
z z e j0
5)
Z{e-
j0k u (k
)}
1
1 e- j0
z
1
z z e- j0
z e j0 z e j0
解代数方程
二阶系统响应的z域求解
y[k] a1 y[k 1] a2 y[k 2] b0 f [k] b1 f [k 1] k 0
初始状态为y[1], y[2] 对差分方程两边做Z变换,利用

离散系统Z变换分析法02

离散系统Z变换分析法02

3.闭环 Z 传递函数的结构图1
闭环 Z 传递函数的结构图2
2.5.4 过渡过程特性
与连续系统用传递函数分析过渡过程类 似,可以用 Z传递函数来分析离散系统的过 渡过程特性。 • 分析离散系统的过渡过程特性的步骤: • • 1)Y(Z)=GC(Z)R(Z)


2)由Y(Z)求出y(kT)
例题12 例题12
2. 开环 Z 传递函数 • 线件离散系统的开环 Z传递函数 跟连续系统的开环传递函数具有类似 的特性。
串联环节的Z传递函数
例题9
z az , G2 ( z ) = , 设图2 − 10 a)中G1 ( z ) = ( − aT z −1 z −e 试求开环Z传递函数G ( z )。 z az 解:G ( z ) = G1 ( z )G2 ( z ) = z − 1 z − e − aT az 2 = ( z − 1)( z − e − aT )
(1)离散系统稳定的充要条件(时域) 设:系统差分方程
c(k ) + a1c(k − 1) + a2 c(k − 2) + L + an c(k − n) = b0 r (k ) + b1r (k − 1) + L + b0 r (k − m)
系统齐次方程
ቤተ መጻሕፍቲ ባይዱ
c(k ) + a1c(k − 1) + a2 c(k − 2) + L + an c(k − n) = 0
−1 −1 −Ts
1 1 )( − )] s s+a
= 1(t ) − 1(t − T ) − e − at + e − a ( t −T ) 对y (t )采样,离散化后,得 y (kT ) = 1(kT ) − 1(kT − T ) − e −akT + e − a ( kT −T ) 则 HG ( z ) = Z [ y (kT )] z 1 z 1 1 − e − aT = − − − = − aT − aT z −1 z −1 z − e z−e z − e −aT

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字

南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。

在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。

实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。

数字信号处理实验报告

数字信号处理实验报告

《数字信号处理》—实验指导数字信号处理课程组电子与信息工程学院班级:姓名:学号:综合评定:成绩:指导教师签字:实验一 典型离散信号及其MATLAB 实现一、实验目的1. 掌握MATLAB 语言的基本操作,学习基本的编程功能。

2. 掌握MATLAB 产生常用离散时间信号的编程方法。

3. 掌握MATLAB 计算卷积的方法。

二、实验原理(一)MATLAB 常用离散时间信号1. 单位抽样序列:⎩⎨⎧=01)(n δ 00≠=n n在MATLAB 中可以利用zeros()函数实现。

;1)1();,1(==x N zeros x如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n kn2.单位阶跃序列:⎩⎨⎧01)(n u<≥n n 在MATLAB 中可以利用ones()函数实现。

);,1(N ones x =3.正弦序列:)/2sin()(ϕπ+=Fs fn A n x在MATLAB 中:)/***2sin(*1:0fai Fs n f pi A x N n +=-=4.复正弦序列:n j e n x ϖ=)(在MATLAB 中:)**ex p(1:0n w j x N n =-=5.指数序列:na n x =)(在MATLAB 中:na x N n .^1:0=-=6.y=fliplr(x)——信号的翻转; y=square(x)——产生方波信号y=sawtooth(x)——产生锯齿波信号; y=sinc(x)——产生sinc 函数信号。

(二)离散时间信号的卷积由于系统的零状态响应是激励与系统的单位取样响应的卷积,因此卷积运算在离散时间信号处理领域被广泛应用。

离散时间信号的卷积定义为∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(可见,离散时间信号的卷积运算是求和运算,因而常称为“卷积和”。

MATLAB 求离散时间信号卷积和的命令为conv ,其语句格式为y=conv(x,h)其中,x 与h 表示离散时间信号值的向量;y 为卷积结果。

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。

离散时间系统是指信号的取样点在时间上离散的系统。

而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。

Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。

Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。

通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。

系统的传递函数是指系统的输出与输入之间的关系。

在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。

通过Z变换可以对离散时间系统进行频域分析。

频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。

频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。

Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。

其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。

这个性质说明Z变换对线性系统是可加性的。

2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。

这个性质说明Z变换对系统的时移(时延)是敏感的。

3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。

离散时间信号与系统的Z域分析

离散时间信号与系统的Z域分析

《信号与系统》课程实验报告变换。

zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。

例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。

零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。

(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。

由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。

(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。

Z变换及离散时间系统分析

Z变换及离散时间系统分析

Z变换及离散时间系统分析Z变换是一种将离散时间信号转换为复平面上的函数的数学工具。

它在离散时间系统的分析和设计中起着重要的作用。

本文将介绍Z变换的定义、性质,以及如何利用Z变换分析离散时间系统。

1.Z变换的定义:Z变换可以将离散时间信号转换为复平面上的函数。

假设有一个离散时间信号x[n],经过Z变换得到的函数为X(z)。

其定义为:X(z)=Z{x[n]}=∑(x[n]*z^(-n))其中,z是复变量,n为离散时间点。

2.Z变换的性质:Z变换具有许多重要的性质,其中一些性质与连续时间傅里叶变换类似,另一些则是离散时间系统的特有性质。

(1)线性性质:如果x1[n]和x2[n]是离散时间信号,a和b是常数,则有:Z{a*x1[n]+b*x2[n]}=a*X1(z)+b*X2(z)(2)平移性质:如果x[n]的Z变换是X(z),那么x[n-m]的Z变换是z^(-m)*X(z)。

这意味着在离散时间域上的平移,在Z变换域上相当于乘以z的负幂次。

(3)初值定理和终值定理:如果x[n]的Z变换是X(z),则有:x[0] = lim(z->∞) X(z)x[-1] = lim(z->0) X(z)(4)共轭对称性:如果x[n]的Z变换是X(z),那么x*[n](x[n]的共轭)的Z变换是X*(z)(X(z)的共轭)。

(5)频率抽样定理:如果x(t)是带限信号,那么它的频谱可以通过对x[n]进行离散化来获得,即X(jω)=X(e^(jωT)),其中T是采样间隔。

3.离散时间系统的分析:利用Z变换,可以对离散时间系统进行分析和设计。

通常,我们可以将离散时间系统看作是一个线性差分方程,通过对该差分方程进行Z变换,可以得到系统的传输函数H(z)。

离散时间系统的输入输出关系可以表示为:Y(z)=H(z)*X(z)其中,Y(z)为输出信号,X(z)为输入信号,H(z)为系统的传输函数。

通过分析传输函数H(z),我们可以确定系统的稳定性、频率响应、相位特性等。

离散信号与系统的Z变换分析

离散信号与系统的Z变换分析

一.实验目的1.学会使用MATLAB 表示信号的方法并绘制信号波形 2.掌握使用MATLAB 进行信号基本运算的指令二.实验内容1. 求出下列离散序列的Z 变换① 1122()()cos()()k k f k k πε= ② 223()(1)()()k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④[]4()(1)()(5)f k k k k k εε=---2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。

①2121()2z z F z z z ++=+- ②22341111()1F z z z z z =++++③2342(36)()z z F z z++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用① 122344()()()z H z z z +=++ ② 221()0.81z H z z -=+ 4. 已知描述离散系统的差分方程为:() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-请绘出系统的幅频和相频特性曲线,并说明系统的作用。

三.程序及仿真分析2(1)syms k zFz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/2*charfcn[0](k)+1/2*(-2)^k+1(2)syms k zFz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)(3)syms k zFz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)(4)syms k zFz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k3.(1)A=[1 7/6 1/3];B=[4 0 4];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')(2) A=[1 0 0.81];B=[1 0 -1];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线'4.A=[1 -1.2 0.35];B=[1 0.25 0];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')四.实验总结。

武汉工程大学matlab实验二离散时间信号的分析实验【范本模板】

武汉工程大学matlab实验二离散时间信号的分析实验【范本模板】

武汉工程大学数字信号处理实验报告二专业班级:14级通信03班学生姓名:秦重双学号:1404201114实验时间:2017年5月3日实验地点:4B315指导老师: 杨述斌实验一离散时间信号的分析实验一、实验目的①认识常用的各种信号,理解其数学表达式和波形表示。

②掌握在计算机中生成及绘制数值信号波形的方法。

③掌握序列的简单运算及计算机实现与作用。

④理解离散时间傅里叶变换、Z变换及它们的性质和信号的频域特性。

二、实验设备计算机,MATLAB语言环境。

三、实验基础理论1、序列的相关概念离散时间信号用一个称为样本的数字序列来表示。

一般用{x[n]}表示,其中自变量n的取值范围是﹣∞到﹢∞之间的整数。

为了表示方便,序列通常直接用x[n]表示。

离散时间信号可以是一个有限长序列,也可以是一个无限长序列。

有限长(也称为有限时宽)序列仅定义在有限的时间间隔中:﹣∞≤N1 ≤N2 ≤+∝。

有限长序列的长度或时宽为N=N1 -N2+1。

满足x[n+kN]=x[n](对于所有n)的序列称为周期为N的周期序列,其中N取任意正整数;k取任意整数;2、常见序列常见序列有单位取样值信号、单位阶跃序列、矩形序列、斜变序列、单边指数序列、正弦序列、复指数序列等。

3、序列的基本运算序列的基本运算有加法、乘法、倒置(反转)、移位、尺度变换、卷积等。

4、离散傅里叶变换的相关概念5、Z变换的相关概念四.实验内容与步骤1、知识准备认真复习以上基础理论,理解本实验所用到的实验原理。

2、离散时间信号(序列)的产生利用MATLAB语言编程和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形,以加深对离散信号时域表示的理解。

①单位取样值信号Matlab程序x=0;y=1;stem(x,y);title('单位样值’);axis([—2,2,0,1]);②单位阶跃序列Matlab程序n0=0;n1=—5;n2=5;n=[n1:n2];x=[(n—n0)>=0];stem(n,x);xlabel('n');ylabel(’x(n)’);title(’单位阶跃序列’);③指数序列、正弦序列Matlab程序n=[0:10];x=(1/3)。

第8章 z变换离散时间系统的z变换分析

第8章 z变换离散时间系统的z变换分析
1 z Z[u( n)] u( n)z z -1 1 z z 1 n 0 n 0
-n -n
收敛域 为 z >1
3. 斜变序列
间接求 解方法 已知 两边对(z -1)求导
两边乘(z -1)

同理,两边再求导,得

4. 指数序列
x(n) a n u(n)
运用留数定理来进行运算。又称为留数法,即
f (n) Res[F ( z )z n1 ]z pm
m
略!
二、幂级数展开法(长除法)
F ( z ) f (n)z n f (0) f (1)z 1 f ( 2)z -2
n 0


一般为变量z的有理分式,可用长除法,

s = 2,
例题 解
求x(n) = ?


见P60~61,表8-2、8-3、8-4(逆z变换表) 作业:P103,8-5 (1)(2)
8.5 z变换的基本性质
一、线性 若 x(n) ←→ X(z) y(n) ←→ Y(z)

Rx1 < |z| < Rx2 Ry1 < |z| < Ry2
ax(n) + by(n) ←→ aX(z) + bY(z)
F ( z ) f (0) f (1) z 1 f (2) z 2
所以
f (0) 0, f (1) 1, f (2) 0, f (3) 3, f (4) 4,
重点!
三、部分分式展开法
一般Z变换式是有理函数
以下研究因果序列的逆变换,即
X(z) (|z|>R) ← Z → x(n)
对于N阶LTI离散系统的差分方程:

实验Z变换、零极点分析

实验Z变换、零极点分析

1. 学会运用MATLAB 求离散时间信号的z 变换和z 反变换;一、 实验原理及实例分析(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。

解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。

解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1) 如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。

第10章 离散时间信号与系统的Z域分析

第10章 离散时间信号与系统的Z域分析
例: 已知 f (n) a 解
n m 1
n
n
u (m 1),
m 1
n
求f(n)的双边Z变换F(z)。
u (m 1) u (m 1)
m
n
z 1 u ( n 1) z z 1 z 1
1
|z|>1
根据部分和性质,则
z u (m 1) m u (m 1) ( z 1) 2 m 1
x( n)un
4 4 x( n 2)u( n) 4 x ( n 2)u( n)
1O 1
n
1O 1
n
1O 1
n
xn mun, xn mun较xnun的长度有所增减。
若x(n)为双边序列,并 x(n)U(n) X(z),则
1 n x(n m)U (n) z X ( z ) x(n) z n m m
12
4、时域卷积定理:

f1 (n) F1 ( z )
f 2 ( n) F2 ( z )
R x1 Z R x 2
R y1 Z R y 2
则 f1 (n) * f 2 (n) F1 ( z ) F2 ( z )
max( R x 1 , R y 1 ) z min( R x 2 , R y 2 )

f ( n) z n
收敛域
不同f(n)的z变换,由于收敛域不同,可能对应于相同的z变换,故在
确定z变换时,必须指明收敛域。
例:
a n f1 (n) 0
n n 0
n0 n0
a z
n n 0 n
j Im( z )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 离散时间信号与系统的Z 变换分析一、 实验目的1、熟悉离散信号Z 变换的原理及性质2、熟悉常见信号的Z 变换3、了解正/反Z 变换的MATLAB 实现方法4、了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换和拉氏变换之间的关系5、了解利用MATLAB 实现离散系统的频率特性分析的方法二、 实验原理1、正/反Z 变换Z 变换分析法是分析离散时间信号与系统的重要手段。

如果以时间间隔s T 对连续时间信号f (t)进行理想抽样,那么,所得的理想抽样信号()f t δ为:()()*()()*()Ts s k f t f t t f t t kT δδδ∞=-∞==-∑理想抽样信号()f t δ的双边拉普拉斯变换F δ (s)为:()()*()()s ksT st s s k k F s f t t kT e dt f kT e δδ∞∞∞---∞=-∞=-∞⎡⎤=-=⎢⎥⎣⎦∑∑⎰ 若令()()s f kT f k = ,s sT z e = , 那么()f t δ的双边拉普拉斯变换F δ (s)为:()()()sT s k z e k F s f k z F z δ∞-==-∞==∑则离散信号f (k )的Z 变换定义为:()()k k F z f k z ∞-=-∞=∑从上面关于Z 变换的推导过程中可知,离散信号f (k )的Z 变换F(z)与其对应的理想抽样信号()f t δ的拉氏变换F δ (s)之间存在以下关系:()()sT s z e F s F z δ==同理,可以推出离散信号f (k )的Z 变换F(z)和它对应的理想抽样信号()f t δ的傅里叶变换之间的关系为 ()()j Ts z e F j F z δωΩ==如果已知信号的Z 变换F(z),要求出所对应的原离散序列f (k ),就需要进行反Z 变换,反Z 变换的定义为: 11()()2k f k F z z dz j π-=⎰其中,C 为包围1()k F z z-的所有极点的闭合积分路线。

在MATLAB 语言中有专门对信号进行正反Z 变换的函数ztrans( ) 和itrans( )。

其调用格式分别如下: F=ztrans( f ) 对f(n)进行Z 变换,其结果为F(z)● F=ztrans(f,v) 对f(n)进行Z 变换,其结果为F(v)● F=ztrans(f,u,v) 对f(u)进行Z 变换,其结果为F(v)● f=itrans ( F ) 对F(z)进行Z 反变换,其结果为f(n)● f=itrans(F,u) 对F(z)进行Z 反变换,其结果为f(u)● f=itrans(F,v,u ) 对F(v)进行Z 反变换,其结果为f(u)注意: 在调用函数ztran( )及iztran( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w )等进行说明,即要将这些变量说明成符号变量。

例①.用MATLAB 求出离散序列()(0.5)()k f k k ε= 的Z 变换MATLAB 程序如下:syms k zf=0.5^k; %定义离散信号Fz=ztrans(f) %对离散信号进行Z 变换运行结果如下:Fz =2*z/(2*z-1)例②.已知一离散信号的Z 变换式为2()21z F z z =- ,求出它所对应的离散信号f (k) MATLAB 程序如下:syms k zFz=2* z/(2*z-1); %定义Z 变换表达式fk=iztrans(Fz,k) %求反Z 变换运行结果如下:fk =(1/2)^k例③:求序列()(1)(4)f k k t εε=---的Z 变换.clc;clear allsyms nhn=sym('kroneckerDelta(n, 1) + kroneckerDelta(n, 2)+ kroneckerDelta(n, 3)') Hz=ztrans(hn)Hz=simplify(Hz) 2、离散系统的频率特性同连续系统的系统函数H (s)类似,离散系统的系统函数H (z )也反映了系统本身固有的特性。

对于离散系统来说,如果把其系统函数H (z )中的复变量z 换成s j T j e e ωΩ=(其中s T ω=Ω),那么所得的函数()j H e ω就是此离散系统的频率响应特性,即离散时间系统的频率响应为:()()()()j j j j z e H e H e e H z ωωωϕω===其中, ()j H e ω称为离散系统的幅频特性,()ϕω称为系统的相频特性。

同连续系统一样,离散时间系统的幅频特性也是频率的偶函数,相频特性也是频率的齐函数。

由于j e ω是频率ω的周期函数,所以离散系统的频率响应特性也是频率ω的周期函数,其周期为2π,或者角频率周期为2T sT πΩ=。

实际上,这就是抽样系统的抽样频率,而其中的T 则是系统的抽样周期。

频率响应呈现周期性是离散系统特性区别于连续系统特性的重要特点。

因此,只要分析()j H e ω在2ωπ≤范围内的情况,便可分析出系统的整个频率特性。

()j H e ω函数来表示离散系统的频率响应特性, ()j H e ω表示幅频特性,而相频特性仍用()ϕω来表示。

应该特别注意的是,虽然这里的变量ω仍然称为频率变量,但是它已经不是原来意义上的角频率概念,而实际上是表示角度的概念。

我们称之为数字频率。

它与原来角频率的关系为:s T ω=Ω。

也就是说,根据离散系统的系统函数H (z ),令其中的j z e ω=,并且代入0~2π范围内不同的频率值(实际上是角度值),就可以逐个计算出不同频率时的响应,求出离散系统的频率响应特性。

再利用离散系统频率特性的周期性特点(周期为2π),求出系统的整个频率特性。

离散系统的幅频特性曲线和相频特性曲线能够直观地反映出系统对不同频率的输入序列的处理情况。

在函数()j H e ω随ω的变换关系中,在ω=0附近,反映了系统对输入信号低频部分的处理情况,而在ω=π附近,则反映了系统对输入信号高频部分的处理情况。

一般来说,分析离散系统频率响应特性就要绘制频率响应曲线,而这是相当麻烦的。

虽然可以通过几何矢量法来定性画出频率响应特性曲线,但一般来说这也是很麻烦的。

值得庆幸的是,MATLAB 为我们提供了专门用于求解离散系统频率响应的函数freqz() ,其调用格式如下:● [H ,w]=freqz(B,A,N) 其中,B 和A 分别是表示待分析的离散系统的系统函数的分子,分母多项式的向量,N 为正整数,返回向量H 则包含了离散系统频率响应函数()j H e ω在0~π范围内的N 个频率等分点的值。

向量ω则包含0~π范围内的N 个频率等分点。

在默认情况下N=512。

● [H ,w]=freqz(B,A,N,'whole') 其中,B ,A 和N 的意义同上,而返回向量H 包含了频率响应函数()j H e ω在0~2π范围内N 个频率等分点的值。

由于调用freqz()函数只能求出离散系统频率响应的数值,不能直接绘制曲线图,因此,我们可以先用freqz()函数求出系统频率响应的值,然后再利用MATLAB 的abs()和angle()函数以及plot()命令,即可绘制出系统在0~π或0~2π范围内的幅频特性和相频特性曲线。

例①.若离散系统的系统函数为0.5()z H z z-=,请用MATLAB 计算0~π频率范围内10个等分点的频率响应()j H e ω的样值。

MATLAB 程序如下:A=[1 0]; %分母多项式系数向量B=[1 -0.5]; %分子多项式系数向量[H,w]=freqz(B,A,10) %求出对应0~π范围内10个频率点的频率响应样值运行结果如下:H =0.50000.5245 + 0.1545i0.5955 + 0.2939i0.7061 + 0.4045i0.8455 + 0.4755i1.0000 + 0.5000i1.1545 + 0.4755i1.2939 + 0.4045i1.4045 + 0.2939i1.4755 + 0.1545iw =0.31420.62830.94251.25661.57081.88502.19912.51332.8274例②.用MATLAB计算前面离散系统在0~2π频率范围内200个频率等分点的频率响应值,并绘出相应的幅频特性和相频特性曲线。

MATLAB程序如下:A=[1 0];B=[1 -0.5];[H,w]=freqz(B,A,200);[H,w]=freqz(B,A,200,'whole'); %求出对应0~2π范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线subplot(2,1,2);plot(w,HX) %画出相频特性曲线运行结果如下:运行结果分析:从该系统的幅频特性曲线可以看出,该系统呈高通特性,是一阶高通滤波器。

三、 实验内容1. 求出下列离散序列的Z 变换① 1122()()cos()()k kf k k πε= ② 223()(1)()()k f k k k k ε=- ③ 3()()(5)f k k k εε=--④ []4()(1)()(5)f k k k k k εε=---2. 已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。

①2121()2z z F z z z ++=+- ②22341111()1F z z z z z=++++ ③2342(36)()z z F z z++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用 ① 122344()()()z H z z z +=++ ② 221()0.81z H z z -=+ 4. 已知描述离散系统的差分方程为:() 1.2(1)0.35(2)()0.25(1)y k y k y k e k e k --+-=+-请绘出系统的幅频和相频特性曲线,并说明系统的作用。

四、 预习要求1、 熟悉正反z 变换的意义及用MATLAB 软件实现的方法2、熟悉离散系统的频率响应特性及用MATLAB软件实现的方法3、编写MATLAB程序五、实验报告要求1、简述实验目的及实验原理2、计算相应z变换或反z变换的理论值,并与实验结果进行比较3、记录离散系统的频率响应特性曲线,分析系统作用4、写出程序清单5、收获与建议%参考程序%三 1.①clc;clear allsyms k zf1=0.5^k*cos(k*pi/2); %定义离散信号Fz1=ztrans(f1) %对离散信号进行Z变换% 实验二 1.②f2=k*(k-1)*(2/3)^k; %定义离散信号Fz2=ztrans(f2) %对离散信号进行Z变换% 实验二 1.③f3=sym('kroneckerDelta(n, 1) + kroneckerDelta(n, 2)+ kroneckerDelta(n, 3)')Fz3=ztrans(f3)Fz3=simplify(Fz3)% 实验二 1.④f4=k*(k-1)*sym('kroneckerDelta(k, 1) + kroneckerDelta(k, 2)+ kroneckerDelta(k, 3)'); %定义离散信号Fz4=ztrans(f4)Fz4=simplify(Fz4)。

相关文档
最新文档