DFMEA设计失效模式影响及后果分析
(DFMEA)汽车行业设计失效模式分析
性能下降
随着使用时间的增加,发动机性能可能会逐渐下 降,导致汽车动力不足、加速缓慢等问题。这可 能是由于发动机内部零件磨损、燃油系统堵塞或 点火系统故障等原因引起的。
振动过大
发动机振动过大可能会对车辆的舒适性和稳定性 产生不良影响,同时也会增加零部件的磨损和疲 劳破坏。振动过大的原因可能包括发动机平衡性 差、零部件松动或损坏等。
不断更新表格,以反 映产品设计的更改和 改进。
确保表格内容完整、 准确,为后续分析提 供基础数据。
绘制设计流程图
01 详细绘制产品设计的流程图,包括各个组件的相 互关系和作用。
02 明确各个设计阶段的输入和输出,以便更好地理 解设计的整体流程。
03 分析流程图,找出可能存在的设计缺陷和失效模 式。
优化方法
采用先进的优化算法和仿真技术,对设计方案进行多目标优化。
优化过程
充分考虑制造工艺、材料特性等因素,确保优化方案的可行性。
提高制造质量
制造工艺
采用先进的制造工艺,提高零部件和整车的制造 精度和质量。
质量控制
建立严格的质量控制体系,确保每个环节的制造 质量符合要求。
质量检测
采用多种质量检测手段,如无损检测、功能检测 等,确保产品合格率。
03
基于影响评估,为每个故障模式制定相应的改进措施
和优先级。
03 汽车行业中的设计失效模 式
发动机系统
总结词
发动机系统是汽车的核心部分,其设计失效模式 主要表现在性能下降、过热、振动过大等方面。
过热
发动机过热是常见的失效模式之一,可能导致拉 缸、润滑油变质等严重后果。过热的原因可能包 括冷却系统故障、发动机负荷过大、散热器堵塞 等。
传动系统
DFMEA(Design Failure Mode and Effects Analysis,设计失效模式及后果分析)
DFMEA出自 MBA智库百科(/)DFMEA(Design Failure Mode and Effects Analysis,设计失效模式及后果分析)目录[隐藏]• 1 什么是DFMEA• 2 DFMEA基本原则• 3 DFMEA与PFMEA的关系• 4 形式和格式(Forms and Formats)• 5 我们应在何时进行设计失效模式及后果分析?• 6 我们应在什么时间进行设计失效模式及后果分析?•7 我们应在什么时间进行设计失效模式及后果分析?•8 我们应在什么时间进行设计失效模式及后果分析?•9 由谁进行设计失效模式及后果分析?•10 怎样进行设计失效模式及后果分析?•11 怎样进行设计失效模式及后果分析?•12 怎样进行设计失效模式及后果分析?•13 怎样进行设计失效模式及后果分析?•14 DFMEA的案例分析[1]o14.1 实施DFMEA存在的困难o14.2 实施DFMEA的准备工作o14.3 实施DFMEA的流程•15 相关条目•16 参考文献[编辑]什么是DFMEADFMEA是指设计阶段的潜在失效模式分析,是从设计阶段把握产品质量预防的一种手段,是如何在设计研发阶段保证产品在正式生产过程中交付客户过程中如何满足产品质量的一种控制工具。
因为同类型产品的相似性的特点,所以的DFMEA阶段经常后借鉴以前量产过或正在生产中的产品相关设计上的优缺点评估后再针对新产品进行的改进与改善。
[编辑]DFMEA基本原则DFMEA是在最初生产阶段之前,确定潜在的或已知的故障模式,并提供进一步纠正措施的一种规范化分析方法;通常是通过部件、子系统/部件、系统/组件等一系列步骤来完成的。
最初生产阶段是明确为用户生产产品或提供服务的阶段,该阶段的定义非常重要,在该阶段开始之前对设计的修改和更正都不会引起严重的后果,而之后对设计的任何变更都可能造成产品成本的大幅提高。
DFMEA应当由一个以设计责任工程师为组长的跨职能小组来进行,这个小组的成员不仅应当包括可能对设计产生影响的各个部门的代表,还要包括外部顾客或内部顾客在内。
DFMEA失效模式结果分析
目的
生產品設計開發初期, 分析產品潛在失效 模式與相關產生原因提出未來分析階段 注意事項, 建立有效的质量控制計劃
失效的定義 失效的定義
失效 :
– 在規定條件下(環境、操作、時間)不能完成既定
功能。
– 在規定條件下, 產品參數值不能維持在規定的上
下限之間。
– 產品在工作範圍內, 導致零組件的破裂、斷裂、
13)分 13) 分級
這個欄位用來區分任何對零件、子系統或系 統、將要求附加於制程管制的特殊產品特性 (如關鍵的、主要的、次要的)。 任何項目被認為是要求的特殊过程控制, 將 被以適當的特征或符號列入設計FMEA的分 级欄位內, 並將於建議措施欄位被提出。 每一個於設計FMEA列出的項目, 將在过程 FMEA的特殊过程管制中被列出。
12)嚴重度( 12) 嚴重度(S)
严重度是潜在失效模式发生时对下序零 件、子系统、系统或顾客影响后果的严 重程度(列于前一栏中)的评价指标。 严重度仅适用于后果 要减少失效的严重度级别数值,光能通 过修改设计来实现,严重度的评估分为1 到10级。
严重度的等级
严重度 评定准则:后果的严重度 无警告的 这是一种非常严重的失效形式,它是在没有任何失效预兆的情 10 严重危害 况下影响到行车安全和/或不符合政府法规 有警告的 这是一种非常严重的失效形式,是在具有失效预兆的前提下所 9 严重危害 发生的,并影响到行车安全和/或不符合政府法规 很高 车辆/系统不能运行,丧失基本功能 8
推荐的评估准则
(设计小组对评定准则和分级规则应意见一致,即使因为个别产品分析作 了修改也应一致) 失效发生可能性 可能的失效率 频度数 很高:失效几乎是不可避免的 ≥1/2 1/3 高:反复发生的失效 1/8 1/20 1/80 中等:偶尔发生的失效 1/400 1/2000 低:相对很少发生的失效 1/15000 1/150000 极低:失效不太可能发生 ≤1/1500000 10 9 8 7 6 5 4 3 2 1
电池管理系统BMS潜在失效模式及后果分析(DFMEA)
外部供电低于系统供电最 小电压
系统供电不足无法运行
5 ☆ 电源输入范围不满足指标要求
在指标范围内,选择宽范围输入 的电源模块
3
老化试验
3
45
23 BMS数据存储
数据存储
无法正常存储历史数据
历史数据无法正常保存和 分析
2 ☆ 存储芯片损坏
采用汽车级元器件设计 老化测试
3 老化试验 2 12
24
电源模块 符合技术要求
10
设计验证
1
70
34
绝缘电阻检测 功能
在充电、放电状态下对车 身与电池负极之间的电阻 进行实时检测
在充电、放电状态下,绝 缘采样值跳变
绝缘电阻检测阻值不准,造 成漏电检测误报,影响车 辆行驶
7
☆
平衡桥式绝缘方案设计中绝缘采集 回路滤波电容容值100NF偏小
新电路修改为10UF,功能要充分 进行环境实验验证,包括充电、 放电、高低温实验等
BMS温度采集电路分压电阻损坏或
温度传感器损坏
高低温测试
1 温度采集功能 温度进行实时检测,并且
7☆
精度符合技术要求
温度采集显示温度一直保 持不变,且显示数值与实 际不符
温度采集功能失效,导致 BMS无法检测到温度
BMS与温度传感器接触不良
老化测试 震动测试
2 震动试验 3 42
对电池总电压进行实时检 电池电压采集不到
对接触器失去部分控制, 导致其闭合后不能断开
电源系统一直和负载连 接,使电池一直处于放电 状态
6
高压回路接触器 对接触器实现完全控制, 对接触器失去部分控制导 电源系统和负载失去连
控制功能
包括闭合与断开
DFMEA - 产品设计失效模式及后果分析
文件编号作成部门文件作成批核序号No.项目/功能/要求Item/Functions/Requirements潜在的失效模式PotentialFailure Mode潜在的失效后果Potential Effectsof Failure Modeon End Product*严重度数SEV级别Class潜在失效原因/机理PotentialCause/Mechanism ofFailure频度O潜在失效控制/预防Precaution ofPotential Failure控测度数D风险顺序指数RPN建议的措施Rec.负责部门Dep.与其它部件无法组装9产品过长,整体较为单薄,受外力易变形2CAE分析,结构合理化236建议机壳厚度≥2mm研发部供应商与主体内部机身无法组装使用10产品过长,整体较为单薄,受外力易变形2CAE分析,结构合理化240建议设计机壳厚度均匀.增加加强筋.研发部供应商与手柄组立松手柄使用手感差2与后柄配合圆柱及槽位过松1CAE分析,结构合理化24与内部机身无法组立生产作业困难8壳体变形2CAE分析,结构合理化464建议设计考虑内部空间足够位,组装不被干涉研发部生产部本体外观不良(夹线,气纹等)影响外观4模具进料口设计不良4改良模具进料口及MF模流分析232螺丝柱裂使用寿命短6螺丝柱过细及成型不良4优化结构及控制成型条件,进料监控248建议螺丝柱厚度足够,螺丝与孔配合适当研发部供应商本体变形xxxxxx科技有限公司产品名称/型号编制日期最新修订日期版本本体(设计)DFMEA 设计失效模式及后果分析1*严重度数SEV高于或等于5的需要填写后面的建议措施。
3- DFMEA设计失效模式及影响分析
AIAG&VDA FMEA培训教材之DFMEA设计失效模式及影响分析七步法七步法关系图系统子系统单元子系统单元零件元素零件元素功能功能功能功能功能功能失效失效失效失效失效失效失效后果失效后果失效模式失效原因失效原因严重度(S)发生度(O)探测度(D)现行防范措施现行发现措施较低的O值较低的D值推荐防范措施推荐发现措施AP较低的AP系统系统系统系统分析失效分析和风险降低1.规划和准备3.功能分析4.失效分析5.风险分析6.优化2.结构分析7. 结果文件化风险沟通FMEA结果文件化七步法七步法第一步:规划和准备目的:是根据正在开发的分析类型(即系统)来定义FMEA 中包含和不包含的内容。
例如,系统、子系统或组件。
DFMEA 规划和准备的工具:框(边界)图•需要谁加入团队?FMEA 团队•什么时候?FMEA 时间•我们为什么在这里?FMEA 意图•我们该如何分析?FMEA 工具•需要完成哪些工作?FMEA 任务◆设计FMEA规划和准备的主要目标是:✓新开发的产品和过程;✓定义对设计的哪些方面进行分析;✓形成项目计划;✓确定应用于确定范围的相关经验教训和参考资料;✓定义团队职责。
设计FMEA步骤一:规划和准备▪分析范围应在项目开始时确定,以确保实施的方向和关注点一致;▪FMEA团队应关注导致风险项的根本原因和针对风险项采取措施的有效性;▪聚焦风险越高的问题越应深入讨论,关于低风险问题,最好避免冗长的讨论;▪风险矩阵是一个很好的识别风险高低的有效辅助工具范围定义的辅助方法:▪原理图▪物料清单(BOM )▪以前类似产品的FMEA▪危害分析与风险评估(HARA )▪威胁分析与风险评估(TARA )▪可制造性和装配设计(DFM/A )▪以往质量问题(场内故障,现场故障,类似产品的保修和保单索赔)▪QFD 质量功能展开▪法规要求▪技术要求▪客户需求/期望(外部和内部客户)▪要求规范▪功能模型▪风险矩阵▪框(边界)图▪参数(P )图▪接口矩阵▪Focus矩阵FMEA实施之前,必须清晰理解并确定产品需求,通过VOC,QFD,法律法规,行业/企业标准,客户需求清单等整体识别产品需求。
DFMEA设计失效模式及后果分析
设计评审
3
设计评审
中间开口、 开孔或边沿 无尖角、无
尖边缘
中间开口、开孔 或边沿有尖角、
尖边缘
外观不良,易产生飞边,并导致 后期修整困难
6
圆柱、卡扣 座、安装筋 等结构强度
足够
圆柱、卡扣座、 安装筋等结构强 加强筋少、矮,壁厚太薄 度不够,易断裂
6
安装方便
安装困难 效率低、拆卸不方便
8 SC 材料不合格 2
耐高温性 不耐高温性 性能下降、强度下降发粘异臭味 8 SC 材料不合格 2
耐热循环性 能良好
耐热循环性能差 易变形、早期失效
耐振动性性 能良好
耐振动性性能差
易变形、断裂、脱落
振动性耐久 振动性耐久性能
性能良好
差
易断裂、早期失效
耐气候老化 耐气候老化性能
性能良好
差
变色、早期失效
试验验证
3
将窄、细、薄等部位加强
设计评审
3
将要求明确的告知造粒车间
试验验证
4
增加定位点
设计评审
3
将要求明确的告知造粒车间
试验验证
4
设计定位面、槽、柱等结构
设计评审
5
图样评审、数模验证
2
设计评审
2
设计评审
2
在三维数模进行面分析
设计评审
壁厚不能超过本体壁厚的1/3,最大不 3 能超过1/2。必须超过时,须对根部进
6
产品易于涂 装
产品难涂装 外观不良
6
尽量避免嵌 件结构 嵌件数量多
效率低、不安全、易损伤模具或 产品
6
嵌件不脱落 、不转动
DFMEA失效模式分析报告
度
O
现行控制
探
测
度
D
RPN
建议
方法
责任
及目
的完
毕日
期
方法成果
防止
探测
采用的方法
S
O
D
RP
N
PCBA
EPON各项
指标合客
户规定
陶瓷电容(C1 C23C24C60源自C46..)影响产品性能、寿命
1
1
1.元器件一致性局限性 2 器件破损
2
1.元件降额使用,最小确保元件使用降额 90%2.规定全部器件严格测试
2
6
无
光模块
(U17)
影响产品性能
3
3
2
零件承认产品试作产品验证
3
54
无
LED灯(LED1-LDE5)
影响产品性能
2
3
1
零件承认产品试作产品验证
3
18
无
PCBA
EPON 各项指标合客户规定
FLASH(U30)
影响产品性能
2
1
1.元器件
一致性局
限性 2.器
件破损
2
1.元件降额使用,最小确保元件使用降额 90%2.规定全部器件严格测试
设计失效模式分析
DESIGNFMEA
产品名称:
NAME:
日期:
DATE:
客户产品型号:
CUSTOMERTYPENO:
批准
Approvedby
审核
Checkedby
拟 制
Madeby
产品EP401M潜在失效模式及后果分析
(设计FMEA)
子系统
功效规定
DFMEA——设计失效模式和后果分析(一)
DFMEA——设计失效模式和后果分析(一)本期开始,详细和大家聊一聊DFMEA——设计失效模式和后果分析。
DFMEA英文全拼Design Failure Mode and Effects Analysis,中文直译为设计失效模式后果分析,是前面说的FMEA在设计阶段的应用。
DFMEA是一种可靠性设计的重要方法,其评价和分析的对象是最终的产品以及每个与之相关的系统、子系统和零部件。
通过实施DFMEA,可以在设计开发过程中更好地减少和降低风险。
同FMEA一样,DFMEA 是一份动态的文件,它应在设计概念初期启动,在产品变更或开发阶段获得补充信息时进行更新,在产品生产设计放行前完成,最终成为后续重新设计时的经验来源。
为了有效地完成DFMEA,在开展实施时要带领小组开展工作,及时识别客户需求,充分考虑制造、装配和可服务性:确定工作小组DFMEA需要由承担设计职责的设计工程师领导的具有代表性的多学科或跨功能小组进行开发和维护。
负责设计的工程师能够按照预期直接地、主动地联系所有相关部门的小组成员,各位成员所负责的领域应包括,但不限于装配、制造、设计、分析、试验、可靠性、材料、质量、服务和供方,以及下一个较高阶或低阶的组装或系统、子系统或零组件设计部门。
识别顾客需求实施DFMEA过程中,充分识别顾客的需求是十分重要的。
通过对顾客需求的解析,可以有效地确定不同顾客的关注重点对设计和功能的影响;制造、装配和可服务性考虑DFMEA的设计应充分考虑制造、装配和服务过程中全部因为设计原因发生的潜在失效模式和要因。
这些失效模式的影响可能通过设计的优化而减轻。
如通过DFMEA不能减轻相关影响时,可以在PFMEA或后续的风险分析中进行控制。
DFMEA实施的主旨不应仅仅依靠过程控制去克服潜在设计弱点,但它可以充分考虑在制造和装配过程中增加技术和物理限制,更好的识别和控制风险。
DFMEA 的开展应聚焦于交付于最终顾客产品、过程或服务的设计。
失效模式及后果分析程序 - 新版2019(DFMEA)
1.0目的在产品设计阶段,预先发现、评价产品可能潜在的失效与后果,及早找出能够避免或减少这些潜在失效发生的措施,并将此过程文件化,为以后的设计提供经验与参考。
2.0范围适用于产品设计中的设计失效模式及后果分析。
3.0职责3.1多方论证小组:负责制订DFMEA的各项内容及相关改进措施,建立纠正措施优先体系;当有新的失效模式出现时及时更改DFMEA。
3.2工艺部:主导多方论证小组分析并制订所有潜在失效模式及后果。
3.3各部门:参与DFMEA的制订和评估,相关纠正和预防措施的执行。
4.0定义4.1DFMEA:(Design Failure Mode& Effects Analysis)设计失效模式及后果分析.4.2顾客:顾客对DFMEA而言通常指“终端顾客”或“使用者”,但顾客也可能是法律法规要求4.3MSA:Measurement System Analysis(测量系统分析)包括准确性、线性、重复性、再现性、稳定性。
5.0流程无6.0内容6.1DFMEA制订说明:6.1.1工程部主导成立多方论证小组(即APQP策划小组);并确定DFMEA的实施项目。
多方论证小组根据客户的要求和生产加工情况,在APQP总进度中明确DFMEA项目的实施进度要求。
6.1.2多方论证小组组织品质部、工程部、生产部等相关部门的人员对整个生产流程进行评定。
6.1.3工程部针对过程失效模式和后果分析,确定相关过程的“严重度(S)”、“频度(O)”、“探测度(D)”,并通过S、O、D值的排列组合“措施优先级(AP)”,进行改进,编制DFMEA。
6.2在针对措施优先级(AP)行动时,需考虑以下因素:6.2.1严重度数高的(≥ 9)必须实施;6.2.2措施优先级(AP)为高(H)的优先实施;6.2.3措施优先级(AP)为中(M),但是易于实施,成本投入少的,优先实施。
6.2.4客户,项目小组,或者公司高层,在文件化的时候,提出采取改进措施的,给予实施;6.3工程部针对新产品、新材料、新技术应提交相关DFMEA资料。
DFMEA设计失效模式及影响分析
创建设计清单
总结词
列出产品设计的所有组件和子系统
详细描述
根据设计目标,列出产品设计的所有组件和子系统,包括硬件、软件、机械、电子等部分,为后续分 析提供基础。
确定设计需求
总结词
明确各组件和子系统的功确其功能需求、性能指标和设计约束等,以确保产 品设计的合理性和可靠性。
DFMEA有助于发现潜在的设计缺陷和安全 隐患,从而采取措施避免对用户造成伤害 或损失。
降低产品开发成本
提高客户满意度
在产品设计阶段发现问题并进行改进,可 以避免在生产或测试阶段才发现问题而导 致的成本增加和时间延误。
通过提高产品质量和可靠性,增强客户对 产品的信任和满意度。
DFMEA的步骤和流程
制定改进措施
根据分析结果,制定相应的改进措施,并进 行实施。
分析评估
对每个失效模式进行严重度、频度和探测度 的评估,确定改进措施的优先级。
跟踪与验证
对改进措施进行跟踪和验证,确保问题得到 有效解决。
02 DFMEA的七个分析步骤
确定设计目标
总结词
明确产品的设计目的和预期功能
详细描述
在开始DFMEA分析之前,需要明确产品的设计目标,包括产品的主要功能、性能指标和适用范围等,以确保后 续分析的针对性和有效性。
随着人工智能技术的发展,未来 可能会有更加智能化的DFMEA工 具出现,能够自动识别和分析失 效模式。
与其他工具集成
DFMEA可以与其他设计工具和方 法集成,形成一个完整的设计流 程,提高设计的效率和可靠性。
跨学科应用
DFMEA不仅可以在机械、电子等 领域应用,也可以扩展到其他领 域,如生物医学、软件工程等。
和安全性。
03 失效模式分析
DFMEA设计潜在失效模式及后果分析
7
項目
潛在失 潛在失效
潛在原因/ 8 現行設計控制
建議行動 責任與目標
行動結果
效模式 之效應 功能
失效機制
嚴 重 性
等 級
發 預防性 生 頻 率
探測性
風 難險 檢優 度先
數
完成日期 已採取行動 風
嚴發難險 重生檢優 性度度先
數
9
10
11
12 13
14
15
16
17 18 19
20
21
22
8
FMEA表格
0.010 / 1000
發生度
10 9 8 7 6 5 4 3 2 132
FMEA表格
• 現行設計控制
➢ 現有的設計控制可以預防或驗證出該失效模式 及/或失效原因
➢ 一般可分為下 2 種設計控制
1.
的控制 2.
的控制
預防該失效模式/效 應/原因/機制出現 或減低出現頻次
用分析或測試方式, 可以失效模式/效應 /原因/機制出現前 偵查出來
➢ 是量度失效的風險指數 ➢ 數值愈高,代表風失效風險愈高 ➢ 應在設計發展過程前盡早完成控制
37
FMEA表格
• 建議行動
➢ RPN排序完成後,應該對排序最高的、 極為重要的項目首先採取行動
➢ 建議先處理高於 100分風險度的項目 ➢ 不論RPN指數為多少,應對一些高嚴重
性(S)的項目多加留意,例如S=9, 10
➢ 應根據公司過住的記錄,自行訂立指標 ➢ 設計小組對 評定準則和分級規則應意見
一致,即使因為個別產品分析作了修改也 應一致
31
發生度(O)的提議指標
失效發生的可能性
很高: 持續的ห้องสมุดไป่ตู้效 高: 反複發生的失效 中等: 偶然發生的失效
DFMEA潜在设计失效模式及后果分析
DFMEA潜在设计失效模式及后果分析DFMEA(Design Failure Mode and Effects Analysis)是一种用于识别、评估和预防潜在设计失效模式及其后果的方法。
该方法广泛运用于产品设计和制造过程中,目的是通过系统性地考虑可能的设计失效模式和相关后果,来指导和改进设计过程,确保产品的质量和可靠性。
以下是一篇关于DFMEA的详细分析,内容超过1200字。
一、概述DFMEA是一种结构化的方法,通过识别和评估设计失效模式及其潜在后果,来指导设计过程中的改进和决策。
它的主要步骤包括确定设计失效模式、评估模式严重性、识别模式原因和成功预防措施。
通过这些步骤,可以提前识别和解决设计中的潜在问题,减少后期发现缺陷和故障的风险,提高产品的质量和可靠性。
二、DFMEA的主要步骤1. 确定设计失效模式(Design Failure Mode)在这一步骤中,团队需要分析和列举可能的设计失效模式。
失效模式是指设计中可能出现的问题或缺陷,可能导致产品无法满足预定的性能要求。
例如,材料强度不足、尺寸偏差过大、安装不当等等。
通过系统分析设计,可以识别出各种可能的失效模式。
2. 评估模式严重性(Severity)在这一步骤中,团队需要对每个设计失效模式进行评估其严重性。
严重性评估是指确定失效模式对产品功能、性能和可靠性的影响程度。
评估的标准包括安全性、可用性、性能、可靠性等。
根据评估结果,可以确定哪些失效模式对产品质量和可靠性的影响最大。
3. 识别模式原因(Causes)在这一步骤中,团队需要对每个设计失效模式进行分析,找出导致该失效模式发生的根本原因。
原因可以是设计参数选择不当、材料质量问题、制造过程中的错误等等。
通过识别原因,可以找到解决相应失效模式的关键点,从而提出改进的设计方案。
4. 成功预防措施(Preventive Actions)在这一步骤中,团队根据识别出的失效模式和原因,制定相应的预防措施。
DFMEA设计潜在失效模式及后果分析
DFMEA设计潜在失效模式及后果分析DFMEA(Design Failure Modes and Effects Analysis),即设计潜在失效模式及后果分析,是一种质量管理工具,用于对设计中的潜在失效模式和其对产品或流程的各个层面产生的影响进行评估和分析,以便提前采取事先规划的措施,从而最大程度地降低或避免失效发生,并确保产品或流程全面符合相关要求。
DFMEA主要用于新产品开发过程中,可以有效降低产品研制周期和成本,并最大程度地减少失败的风险。
在DFMEA过程中,团队会对设计中的每一个部分进行评估,并确定潜在失效模式,分析失效的严重程度、频率和探测难度等,再根据失效程度进行优先确认。
最终,团队会合作制定消除或减轻潜在失效模式的措施,以确保设计和生产的成功。
DFMEA流程一般包括以下六个步骤:第一步,确定设计对象。
包括需要进行DFMEA的产品或流程等。
第二步,构建流程选择。
在这一步中,团队将制定具体的流程,以便能够在DFMEA中对每个过程进行评估和分析。
第三步,确定失效模式。
通过对设计的产品或流程的每一个部分进行审查和评估,识别出可能存在的失效模式。
第四步,分析失效效果。
在这一步中,团队考虑每个潜在失效模式的可能造成的实际效果,分析失效对顾客、公司、维护等方面的影响。
第五步,确定严重程度、频率和探测难度。
通过对每个潜在失效模式的影响进行评估,以便确定其对顾客、公司和维护方面的影响程度、发生的频率和探测难度。
第六步,确定纠正和预防措施。
通过对失效模式的分析和评估,确定有效的改进方案,以预防或消除潜在的失效模式。
DFMEA对于企业来说,具有很多的好处。
首先,它可以提前发现设计中的问题,降低产品故障率,提高产品的可靠性,减少客户抱怨和售后服务次数;其次,它可以帮助企业降低产品开发和生产成本,减少成本浪费;还可以帮助企业提高品质和声誉,提升客户满意度。
总之,DFMEA是一种非常有用的工具,可以有效地降低新产品开发过程中的风险,提高产品的质量和信誉,为企业的成功创造坚实的基础。
DFMEA 设计失效模式及影响分析
© CHERY CONFIDENTIAL
奇瑞汽车工程研究院CAE部
第三部分
DFMEA工作表
© CHERY CONFIDENTIAL
奇瑞汽车工程研究院CAE部
表头信息
系统 子系统 部件 设计责任人 核心小组
• 分析环境和系统之间的交互作用,建立 鲁棒性的设计,作为改进的一部分。
© CHERY CONFIDENTIAL
奇瑞汽车工程研究院CAE部
第二部分
设计FMEA概述
© CHERY CONFIDENTIAL
奇瑞汽车工程研究院CAE部
DFMEA简介
设计FMEA 是设计工程师/小组采用 的分析技术,其目的在于确保潜在失效 模式及其原因和机制已经考虑和确定, 以对设计过程提供支持,并通过以下途 径降低失效风险。
© CHERY CONFIDENTIAL
奇瑞汽车工程研究院CAE部
最佳实践的FMEA
• 在恰当时间作FMEA ; • 考虑所有的“白噪声”因子(Noise
Factor); • 在DFMEA 时,用P-图和接触面矩阵图研
究设计交互作用; • 从系统水平上开始FMEA,把信息和要求
展开至零件和过程的FMEA 。
应力冲击、电冲击、疲劳、磨损 、材质问题、腐蚀
老化、变色、变质、表面保护层剥落、侵蚀、腐蚀、正常磨损、积碳、 发卡等
自然磨损、老化和环境诱发
松脱型失效模式
松矿、松动、脱落、脱焊等
紧固件、焊接件出现问题
失调型失效模式 阻漏型失效模式 功能型失效模式
其它失效模式
间隙不适、流量不当、压力不当、电压不符、电流偏值、行程失调、间 隙过大或过小等
设计潜在失效模式及影响(DFMEA)的分析理解与应用
课程回顾
一.FMEA背景知识 二.实施FMEA的原因 三.实施FMEA的步骤
谢 谢!
1.FMEA基本知识—常规的设计思路
当前是怎么设计的 ? 可能会发生哪些问题 ? 这些问题会导致什么后果 ? 当前采用什么办法控制 ?
效果如何 ? 还需要做什么 ?
过去发生过 什么问题? 还会发生什 么问题? 经验积累
设计实准际则上 这设就计是经F验MEA !
冗余设计 工程计算 试验确认
进一步分 析试验确 认设计修 改
E D
B A
G
C
H
F
实施实例——活塞DFMEA
• 活塞组的边界图
3)接 口 矩 阵
• 接口矩阵是用适当的方法表示系统接口相关 性的工具。用以显示接口所表示的组件、零 部件之间的关系是正相关的还是负相关的。
实施实例——活塞DFMEA
• 活塞组的接口矩阵
4)P 图
• P图是用于确定和描述噪声控制因素和错误状 态的健壮性工具。
干扰因子
输入信号
系统描述 控制因子
理想功能 错误状态
实施实例——活塞组DFMEA
2.FMEA 实施流程
确定分析对象
鉴别故障模式
故障影响
鉴别故障原因
严重度
频度
风险顺序数 接下页
预先控制措施 探测度
2.FMEA 实施流程
接上页
是否要 纠正?
是
确定纠正措施
确定责任人和完 成日期
纠正措施效果判 定
是否满
S/D FMEA
设计潜在失效模式及影响 的分析理解与应用
主要内容
一.FMEA背景知识 二.为什么要实施FMEA? 三.如何实施FMEA?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DFMEA设计失效模式影响及后果分析DFMEA设计失效模式阻碍及后果分析由谁进行设计失效模式及后果分析?由对设计具有阻碍的各部门代表组成的跨部门小组进行供应商也能够参加切不要不记得客户小组组长应是负责设计的工程师跨职能部门小组5-9人,来自:系统工程零部件设计工程试验室材料工程工艺过程工程装备设计制造质量治理如何样进行设计失效模式及后果分析?提要组建跨职能部门设计失效模式及后果分析DFMEA小组列出失效模式、后果和缘故评估the severity of the effect (S) 阻碍的严峻程度the likelihood of the occurrence (O) 可能发生的机会and the ability of design controls to detect failure modes and/or their cau ses (D) 探测出失效模式和/或其缘故的设计操纵能力如何样进行设计失效模式及后果分析?提要Calculate the risk priority number (RPN) to prioritize corrective actio ns 运算风险优先指数(RPN)以确定应优先采取的改进措施如何样进行设计失效模式及后果分析?提要Plan corrective actions 制订纠正行动打算Perform corrective actions to improve the product 采取纠正行动,提升产品质量Recalculate RPN 重新运算风险优先指数(RPN)如何样进行设计失效模式及后果分析?提要先在草稿纸上进行分析;当小组达成一致意见后,再将有关信息填在设计失效模式及后果分析FMEA表上use fishbone and tree diagrams liberally 充分利用鱼骨图和树形图trying to use the FMEA form as a worksheet leads to confusion and mes sed-up FMEAs 若将FMEA表当做工作单使用,就会造成纷乱,使FMEA 一塌糊涂建议1. 组建一个小组并制订行动打算绝不能由个人单独进行设计失效模式及后果分析,因为:由个人进行会使结果显现偏差进行任何活动,都需要得到其他部门的支持应指定一个人(如组长)保管设计失效模式及后果分析FMEA表格应将小组成员的姓名和部门填入设计失效模式及后果分析FMEA表格2. 绘制产品功能结构图一种图示方法,其中包括:用块表示的各种组件(或特性)用直线表示的各组件之间的相互关系适当的详细程度结构图3. 列出每个组件的功能功能系指该组件所起的作用以下列形式讲明功能:V erb + Object + Qualifier动词+宾语+修饰词例如:insulates core 使型芯绝缘assures terminal position in connector 确保端子与接头连接到位protects tang from smashing, etc. 防止柄脚被压碎,等Don't forget auxiliary functions as well a primary functions 不要不记得差不多功能和辅助功能Often, components work together to perform a function 通常,多个组件一起行使某一功能Hint: Use the Block Diagram! 提示:利用结构图!4. 列出质量要求a customer want or desire 客户的期望或要求could seriously affect customer perception 有可能严峻阻碍客户的看法could lead to a customer complaint 有可能导致客户投诉Hint: Use QFD 提示:使用质量功能展开5. 列出潜在的失效模式a defect, flaw, or other unsatisfactory condition in the product that is caused by a design weakness 由设计缺陷造成的产品缺陷、瑕疵或其它令人不中意的情形典型的失效模式- breaks- cracks破裂断裂- corrodes- sticks腐蚀粘结- unseats- deforms/melts未到位变形/熔化提示从前两个步骤做起:功能质量要求AIAG将失效模式定义为产品不能实现其设计意图的一种方式。
本教材所列第5个步骤中的提示通过列举功能和质量要求,扼要阐述了设计意图。
注明“无功能”的中间步骤则是指设计意图无法实现。
用你自己的话,对下列情形举例讲明:failure = no function失效=无功能failure = not enough function失效=功能不强failure = too much function失效=功能过强同样:failure = no quality requirement, etc.失效=无质量要求,等具体讲明每种情形发生的方式:使用“技术”术语具体讲明采纳工程技术判定和/或分析参考历史资料,如顾客户埋怨等“组件或特性,导致无功能”例如:线束夹+螺钉+车身面板上的孔眼功能=固定线束无功能=夹子不能将线束固定在车身面板上,失效模式:夹子在弯头处显现裂纹或断裂夹子从固定孔眼中脱落功能不足=夹子不能将线束夹紧,失效模式:夹子太大夹子未锁定功能过强=夹子将线束夹得过紧,失效模式:夹子的金属边夹破了电线夹子对不齐6. 推导各种失效模式的潜在后果失效的结果(衍生物)有可能后果最终客户或中间客户政府法规,或系统层次中的某一部分顾客的埋怨是有用的信息来源其后果可能是:功能完全丧失,或性能或质量下降许多失效模式有不止一种阻碍!提示:从你在上面所提到的“无功能”情形动身失效的后果通常表现为从直截了当后果到对客户的最终后果等一系列连锁反应建议对每一种失效模式建立这种关系链,并记录在失效模式及后果分析F MEA表上运用树形图(故障树)6. 讲明无功能=夹具不能将电线固定住失效模式:夹具弯曲处显现裂缝后果:线束松脱可能缠住或绊住可能丧失电气功能功能不足=夹子不能将电线夹紧失效模式:线束松动后果:线束发出咔嗒声客户感受到嗓音功能过强=夹子将线束夹的过紧失效模式:夹具不对中后果:使线束变形有可能使接头移位有可能使电气系统丧失功能6. 失效的后果如果阻碍了安全或对政府法规的符合性,就应如实讲清。
7. 评估每种后果的严峻性AIAG严峻性评估标准是针对车辆发生的失效制订的。
它有助于将那个表格转换成你的特定产品的术语。
严峻性打分:Severity Rating (S):9-10 unsafe 不安全7-8 loss of primary function 丧失差不多功能5-6 discomfort 不舒服、不方便2-4 noticeable 具有明显的阻碍1 no effect 无阻碍严峻性列表AIAG Severity Table阻碍的严峻性Severity of Effect (S):10 unsafe or out of compliance, with no warning to the customer 不安全或不符合法规,未警告客户9 unsafe or out of compliance, but a warning is given 不安全或不符合法规,但发出了警告8 inoperable 不能操作7 operable, but at reduced performance 可操作,但性能降低6 comfort or convenience item is inoperable 舒服方便的项目不能操作5 comfort or convenience item is operable, but at reduced performance 舒服方便的项目能操作,但性能降低4 noticeable by most customers 绝大多数客户感受明显3 noticeable by average customer 一样客户感受明显2 noticeable by discriminating customer 辨别能力强的客户感受明显1 no effect 无阻碍0 THERE IS NO SCORE OF ZERO. 无零分7a. Classify special product characteristics 专门产品特性分类如果阻碍到安全或违反法规(严峻性为9或10分)而且发生率或探测性(occurrence or detection)评分也专门高(如3分以上)...这些产品特性须专门加以操纵。
Control Plan 操纵打算8. 确定每种失效模式的潜在缘故形成失效模式的设计缺陷是造成失效的缘故是产品设计后所固有的与产品的使用有关许多失效模式是多种缘故造成的!将导致失效的条件文件化例如:应力超过强度考虑“可预见的对产品的错误使用”如用一根20A保险丝代替10A保险丝此外,还应考虑产品的使用寿命失效通常是由一系列的事件造成的,从直截了当缘故到最终缘故等建议为每一种失效模式建立这种链并记录到失效模式及后果分析表可利用故障树或鱼刺图加以阐述因果图例如:线束夹子失效模式:夹具弯曲处断裂缘故:弯曲半径太小,无法承担较大的应力<< 设计标准不明确振动<< 安装方向不对<< 受到空间限制设计失效模式及后果侧重于设计缺陷。
然而有时在失效的“设计”缘故与“过程”缘故之间并无明显区别。
示例:即使所有加工尺寸都符合规格,但累积公差仍有可能造成一小部分零部件失效。
这实际上属于设计缺陷。
如果确信某项设计专门易受过程变差的阻碍,就应将此也视为一种设计缺陷,并应列入设计失效模式及后果分析中。
9. 评估每种失效缘故显现的可能性如果依据现有设计进行生产的话利用历史资料注重改进考虑产品使用寿命利用可靠性模型,与类似的产品进行比较。
Occurrence Rating (O):发生率评分(0):9-10 failure is almost inevitable 失效几乎是不可幸免的7-8 repeated failures likely 有可能重复失效4-6 occasional failures likely 有可能偶然失效2-3 relatively few failures 专门少失效1 failure is unlikely 不可能失效O ccurrence Rating (O):发生率评分(0)AIAG Occurrence Table 发生率表10 > 1 in 22项发生1次failure is almost inevitable 失效几乎是不可幸免的9 1 in 33项发生1次-8 1 in 88项发生1次repeated failures likely 有可能重复失效7 1 in 2020项发生1次-6 1 in 8080项发生1次occasional failures likely 有可能偶然失效5 1 in 400400项发生1次-4 1 in 20002000项发生1次-3 1 in 15,00015,000项发生1次relatively few failures 专门少失效2 1 in 150,000150,000项发生1次-1 < 1 in 1,500,0001,500,000项发生1次failure is unlikely 不可能失效Be conservative in assigning numbers. 在评分时应持保守态度No clue? Assume a score of 10 to "flag" the RPN. 没有线索如何办?可评10分“标明”风险顺序数RPN。