一元二次方程根的判别式

合集下载

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。

当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。

判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。

正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。

举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。

对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。

对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。

对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。

解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。

对判别式进行变形的基本方法有因式分解、配方法等。

在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。

当Δ≥0时,方程有实数根,反之也成立。

例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。

一元二次方程根的判别式

一元二次方程根的判别式

9 8
时,方程有两个相
(2)当△=8m+9>0,即m> 等的实根;
(3)当△=8m+9<0,即m< -
9 8 9 8
时,方程有两个不
时,方程没有实根。
尝试成功:
3、证明:方程(2m-1)X2+2mx+2=0恒有实数根; 4、已知:方程X2+2X-n+1=0没有实数根;求证: 方程X2+bnx=1-2n一定有两个不相等的实根。
2


所以,不论m为何值,这个方程总有两个不相等的实 数根
典型例题解析 例6.一元二次方程 m 1x 2mx m 2 0
2
有两个实数根,求m的取值范围.
解 2m 4m 1m 2 2 2 4m 4m 4m 8
2

4m 8 0 m 2 又 m 1 0即m 1
我们把 b 4ac 叫做一元二次方程
2
ax bx c 0 a 0 的根的判别式,
2
用符号“ ”表示,即 b 4ac
2
记住了, 别搞错!
即一元二次方程:ax 当 当 当
2
bx c 0 a 0
0 时,方程有两个不相等的实数根; 0 时,方程有两个相等的实数根; 0
知识运用:
例3.已知一元二次方程kx2+(2k-1)x+k+2=0
有两个不相等的实数根,求k的取值范围。
解: (2k 1) 2 4k (k 2) 12k 1
∵方程有两个不相等的实数根
0, 即 12k 1 0 1 k 12
又k 0

解一元二次方程——一元二次方程的根的判别式

解一元二次方程——一元二次方程的根的判别式
或方程有实数根;
2
当 − 4 < 0 时,方程没有实数根.
课后作业
1 利用判别式判断下列方程的根的情况.
3
2
2
1 2 − 3 − = 0,
2
3 − 4 2 + 9 = 0,
2
9
2
2 16 − 24 + = 0,
2
2
4 3 + 10 = 2 + 8.
2 在不解方程的情况下,判断关于 的一元二次方程
3 + 2 = − 2 2 − 1 +
2
4 + 2 2�� + 6 = 0.
9

2
3 + 2 = − 2 2 − 1 +
9

2
2
解: 化方程为 4 − 12 + 9 = 0.
= 4, = −12, = 9.
2
= − 4
2
= (−12) − 4 × 4 × 9

+ = 0.
移项,得
2

=−

.

2

+



=−

.

配方,得
2

+



+

2

+
2
2
2


=− +
2
− 4
=
.
2
4
2

,
2
2

+
2
2
− 4
=
.

一元二次方程根的判别式

一元二次方程根的判别式

17.3一元二次方程根的判别式【知识梳理】1.一元二次方程根的判别式我们把24b ac -叫做20(ax bx c a ++=≠0)的根的判别式,用符号∆来表示。

对于一元二次方程20(ax bx c a ++=≠0),其根的情况与判别式的关系是:当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根.特别的:当240b ac ∆=-≥时,方程有两个实数根.上述判断反过来说,也是正确的。

即当方程有两个实数根时,240b ac ∆=->;当方程有两个相等的实数根时,240b ac ∆=-=;当方程没有实数根时,240b ac ∆=-<;2.一元二次方程的根的判别式的应用①不解方程判别方程根的情况,即先把方程化为一般形式,然后求出判别式24b ac ∆=-的值,最后根据∆的符号来确定根的情况;②根据一元二次方程根的情况确定方程中字母系数的取值范围,即先把方程化成一般形式并求出它的判别式,然后根据根的情况列出判别式的方程或不等式,最后解这个不等式或方程,但要去掉使方程二次项系数为零的字母的值。

若问题中没有这个限制条件,就要对二次项系数(含字母)是否为零进行讨论;③证明一元二次方程根的情况,可先把原方程化为一般形式,求出根的判别式,然后用配方法或因式分解法确定判别式的符号,并由此得出结论.3.利用根的判别式解题时的几点注意:①运用“∆”时必须把方程化为一般式;②不解方程判定方程的根的情况要由“∆”的符号判定;③运用判别式解题时,方程二次项系数一定不能为零;【典型例题】例1:不解方程,判别下列方程的根的情况(1)221150x x +-=(2)232x +=(3)(1)(2)8x x --=-【思路分析:一元二次方程根的情况是由根的判别式的符号决定的,所以在判别方程的根的情况时,要先把方程化为一般式,写出方程的a b c 、、,计算出∆的值,判断∆的符号】【答案:(1)221150x x +-=2,11,5a b c ===- 2241142(5)121401610b ac ∴∆=-=-⨯⨯-=+=>即∆>0∴方程有两个不相等的实数根.(2)232x +=将方程整理为一般式:2320x -+=3,2a b c ==-=224(4320b ac ∆=-=--⨯⨯=即0∆=∴方程有两个相等的实数根.(3)(1)(2)8x x --=-将方程化为一般式:23280x x -++=1,3,10a b c ==-=224(3)4110940310b ac ∆=-=--⨯⨯=-=-<即0∆<∴方程没有实数根】【小结:运用根的判别式判断方程的根的情况时,必须把方程化为一般式,然后正确地确定各项系数,再代入判别式进行计算,得出判别式的符号】课堂练习1:如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是()A .k >14-B .k >14-且0k ≠C .k <14-D .14k ≥-且0k ≠课堂练习2:如果关于x 的方程:2320x x k -+=有实数根,那么k 的取值范围是_____.例2:求证方程2(1)310(0)m x mx m m -+++=≠必有两个不相等的实数根.【思路分析:欲证明此方程必有两个不相等的实数根,只需要证明不论m 取任何实数,都有0∆>即可】【答案:1m ≠ 10m ∴-≠∴此方程是关于x 的一元二次方程2222(3)4(1)(1)94454m m m m m m ∆=--+=-+=+ 不论m 取任何不为1的值时都有25m ≥024m ∴5+>0即2540m ∆=+>∴方程必有两个不相等的实根】【小结:证明时应先说明二次项系数不为零,也即保证方程是一元二次方程的前提下判别式的符号才有意义】课堂练习3:关于x 的方程220x kx k -+-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定例3:当m 为何值时,关于x 的方程222(41)210x m m -++-=(1)有两个不相等的实根?(2)有两个相等的实根?(3)无实数根?【思路分析:根据一元二次方程根的情况,确定方程中字母系数的取值范围,是一元二次方程的根本判别式的另一类典型运用。

一元二次方程根的判别式

一元二次方程根的判别式

2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b ac x a a-+=. ① 因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根 x 1=x 2=-2b a; (3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有 (1) 当Δ>0时,方程有两个不相等的实数根x 1,2;(2)当Δ=0时,方程有两个相等的实数根 x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根. (1)x 2-3x +3=0; (2)x 2-ax -1=0; (3) x 2-ax +(a -1)=0; (4)x 2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根1x =2x = (3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以, ①当a =2时,Δ=0,所以方程有两个相等的实数根 x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根 x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ), 所以①当Δ>0,即4(1-a ) >0,即a <1时,方程有两个不相等的实数根11x = 21x =②当Δ=0,即a =1时,方程有两个相等的实数根 x 1=x 2=1;③当Δ<0,即a >1时,方程没有实数根.2.1.2 根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =2x =,则有1222b bx x a a-+===-;221222(4)42244b b b b ac ac cx x a a a a a----=⋅===.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2, 所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有 以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. 例2 已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0,∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35. 由 (-35)+2=-5k,得 k =-7. 所以,方程的另一个根为-35,k 的值为-7.例3 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x 1,x 2是方程的两根,由韦达定理,得 x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵x 12+x 22-x 1·x 2=21, ∴(x 1+x 2)2-3 x 1·x 2=21,即 [-2(m -2)]2-3(m 2+4)=21,化简,得 m 2-16m -17=0, 解得 m =-1,或m =17.当m =-1时,方程为x 2+6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m =17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x ,y ,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x ,y , 则 x +y =4, ①xy =-12. ② 由①,得 y =4-x , 代入②,得x (4-x )=-12,即 x 2-4x -12=0, ∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩ 或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程 x 2-4x -12=0 的两个根.解这个方程,得x 1=-2,x 2=6. 所以,这两个数是-2和6. 说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷. 例5 若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1)求| x 1-x 2|的值;(2)求221211x x +的值; (3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-.(1)∵| x 1-x 2|2=x 12+ x 22-2 x 1x 2=(x 1+x 2)2-4 x 1x 2=253()4()22--⨯-=254+6=494,∴| x 1-x 2|=72. (2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)( x 12-x 1x 2+x 22)=(x 1+x 2)[ ( x 1+x 2) 2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158. 说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则1x=2x =, ∴| x 1-x 2|===. 于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则| x 1-x 2|Δ=b 2-4ac ). 今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论. 例6 若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围. 解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0, ① 且Δ=(-1)2-4(a -4)>0.② 由①得 a <4,由②得 a <174.∴a 的取值范围是a <4.练 习 1.选择题:(1)方程2230x k -+=的根的情况是 ( ) (A )有一个实数根 (B )有两个不相等的实数根(C )有两个相等的实数根 (D )没有实数根(2)若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( ) (A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x += . (2)方程mx 2+x -2m =0(m ≠0)的根的情况是. (3)以-3和1为根的一元二次方程是 .3|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根? 4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)( x 2-3)的值.习题2.1 A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )2 (2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7; ②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3 x 2-7=0的两根之和为0,两根之积为73-; ④方程3 x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是 ( ) (A )1个 (B )2个 (C )3个 (D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是( )(A )0 (B )1 (C )-1 (D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k = .(2)方程2x 2-x -4=0的两根为α,β,则α2+β2= .(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是 .(4)方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1) x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B 组1.选择题:若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为( )(A )1,或-1 (B )1 (C )-1 (D )0 2.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于 .(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是 .3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围. 4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求: (1)| x 1-x 2|和122x x +; (2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于 ( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( ) (A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1(4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是 ( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12xx λ=,试求λ的值.4.已知关于x 的方程22(2)04m x m x ---=. (1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足|x 2|=|x 1|+2,求m 的值及相应的x 1,x 2. 5.若关于x 的方程x 2+x +a =0的一个大于1、零一根小于1,求实数a 的取值范围.。

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

例1:不解方程判断下列方程根的情况 ① x² -4x-1=0 ②x² +5=2x ③ x² -mx+m² +1=0
例2:k取何值时,方程4 x个相等的实根
分析:①方程有一个根是-1,需将x=-1代入原方程 ②方程有两个相等的实根,既△=0
五、利用给出条件,确定一个一元二次方程中某个字母系数的值 例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值. 分析:本题要求已知一元二次方程x 2+px+q=0中的字母系数p、q的值,只要 利用题目的条件,把p、q的关系式列出,再通过变形得到关于p、q的方程组, 解此方程组即可求出p、q. 解:设方程的两实数根分别为x 1、x 2则由根与系数的关系,得 X 1+x 2=-p,x 1· x 2=q, ……① 又由题意得(x 1+x 2) 2=x 1· x 2+7 ……② (x 1-x 2) 2=3 x 1· x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1· x2 代入③得(x 1+x 2) 2=7x 1· x 2-5 ……④ 将①式分别代入②、④中,得 p 2=q+7 p=3 p=-3 p 2=7q-5 即: q=2 q=2
例1 选择题:若方程3x 2+(k 2-3k-10)x+3k=0的两根互为相反数,k的值为 [ ] A.5 B.-2 C.5或-2 D.0 分析:不能只考虑到需两根和等于0,还要考虑到需Δ≥0 例2:m为何实数时,方程4x 2+(m-2)x+m-5=0的根都小于零? 分析:要使原方程的根都小于零,必需Δ ≥0, x 1+x 2<0 , x 1· x 2>0
例4:求证关于x的方程x² -(m+2)x+2m-1=0有两个不相等的实根。

一元二次方程根的判别式

一元二次方程根的判别式

一元二次方程根的判别式一、一元二次方程根的判别式的定义运用配方法解一元二次方程过程中得到 2224()24b b acx a a -+=,显然只有当240b ac -≥时,才能直接开平方得:2b x a += 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.二、判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根1,2x =.②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122bx x a==-.③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.若a ,b ,c 为有理数,且∆为完全平方式,则方程的解为有理根;若∆为完全平方式,同时b -±2a 的整数倍,则方程的根为整数根. 说明:⑴用判别式去判定方程的根时,要先求出判别式的值:上述判定方法也可以反过来使用,当方程有 两个不相等的实数根时,0∆>;有两个相等的实数根时,0∆=;没有实数根时,0∆<.⑵在解一元二次方程时,一般情况下,首先要运用根的判别式24b ac ∆=-判定方程的根的情况(有两个不相等的实数根,有两个相等的实数根,无实数根).当240b ac ∆=-=时,方程有两个相等的实数根(二重根),不能说方程只有一个根.①当0a >时⇔抛物线开口向上⇔顶点为其最低点; ②当0a <时⇔抛物线开口向下⇔顶点为其最高点.三、一元二次方程的根的判别式的应用一元二次方程的根的判别式在以下方面有着广泛的应用: ⑴运用判别式,判定方程实数根的个数;⑵利用判别式建立等式、不等式,求方程中参数值或取值范围; ⑶通过判别式,证明与方程相关的代数问题;(4)借助判别式,运用一元二次方程必定有解的代数模型,解几何存在性问题,最值问题.一、一元二次方程实数根个数的判定【例1】 不解方程,判断下列方程的根的情况:⑴22340x x +-=;⑵20ax bx +=(0a ≠)【例2】 若方程2(2)2(1)0m x m x m +-++=只有一个实数根,那么方程2(1)220m x mx m +-+-=( ).A .没有实数根B .有2个不同的实数根C .有2个相等的实数根D .实数根的个数不能确定【例3】 已知:方程()22250mx m x m -+++=没有实数根,且5m ≠,求证:()()25220m x m x m --++=有两个实数根.【例4】 对任意实数m ,求证:关于x 的方程222(1)240m x mx m +-++=无实数根.【例5】 求证:关于x 的一元二次方程2(2)10x m x m -+++=有两个实数根.【例6】 已知关于x 的方程2(1)10n x mx -++=①有两个相等的实数根.求证:关于y 的一元二次方程222440m y my m n --+=②必有两个相等的实数根.【例7】 当m 为何值时,关于x 的方程22(4)2(1)10m x m x -+++=有实根.【例8】 k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【例9】 当a 、b 为何值时,方程2222(1)34420x a x a ab b ++++++=有实根?二、一元二次方程中字母参数的确定【例10】 k 的何值时?关于x 的一元二次方程2450x x k -+-=:⑴有两个不相等的实数根;⑵有两个相等的实数根;⑶没有实数根.【例11】 m 为给定的有理数,k 为何值时,方程()22413240x m x m m k +-+-+=的根为有理数?【例12】 已知方程22(21)10m x m x +++=有实数根,求m 的范围.【例13】 关于x 的方程()26860a x x --+=有实数根,则整数a 的最大值是 .【例14】 若方程222(1)450x a x a a ++++-=有实数根,求:正整数a .【例15】 k 为何值时,方程2(1)(23)(3)0k x k x k --+++=有实数根.【例16】 已知关于x 的方程()()2212102x a b x b b -+--+=有两个相等的实数根,且a 、b 为实数,则32a b +=________.【例17】 关于x 的一元二次方程2(12)10k x ---=有两个不相等的实数根,求k 的取值范围.【例18】 如果关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,那么k 的取值范围是( )A . 1k <B . 0k ≠C .10k k <≠且D . 1k >【例19】 已知一元二次方程22(42)40x k x k --+=有两个不相等的实数根.则k 的最大整数值为【例20】 已知关于x 的方程22(21)10k x k x +-+=有两个不相等的实数根12x x ,.⑴求k 的取值范围;⑵是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.【例21】 已知关于x 的方程22()210m m x mx --+=有两个不相等的实数根.⑴求m 的取值范围;⑵若m 为整数,且3m <,a 是上述方程的一个根,求代数式22212334a a a +--+的值.【例22】 使得关于x 的一元二次方程22(4)60x kx x --+=无实数根的最小整数k ( )A .-1B .2C .3D .4【例23】 已知:m 、n 为整数,关于x 的二次方程2(7)30x m x n +-++=有两个不相等的实数解,2(4)60x m x n ++++=有两个相等的实数根,2(4)10x m x n --++=没有实数根,求m 、n 的值.【例24】 已知关于x 的方程22()210m m x mx --+=有两个不相等的实数根.⑴求m 的取值范围;⑵若m 为整数,且3m <,a 是上述方程的一个根,求代数式22212334a a a +--+的值.三、一元二次方程与三角形三边关系的综合【例25】 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 .【例26】 方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为 .【例27】 已知a ,3是直角三角形的两边,第三边的长满足方程29200x x -+=,则a 的值为 .这样的直角三角形有 个.【例28】 在等腰ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,已知3a =,b 和c 是关于x 的方程21202x mx m ++-=的两个实数根,求ABC ∆的周长.【例29】 已知:a 、b 、c 分别是ABC ∆的三边长,当0m >时,关于x 的一元二次方程22()()20c x m b x m ++--=有两个相等的实数根,求证:ABC ∆是直角三角形.【例30】 关于x 的一元二次方程()204a ca c x bx -+++=有两个相等的实数根,则以a ,b ,c 为三边的三角形的形状是______.【例31】 已知a 、b 、c 是ABC ∆的三边的长,且方程22()()()0x b c x a b c a +-+--=有两个相等的实数根,试判断这个三角形的形状.【例32】 已知a 、b 、c 是ABC ∆的三边,其中1a =,4c =,且关于x 的方程240x x b -+=有两个相等的实数根,试判断ABC ∆的形状.。

一元二次方程根的判别式-

一元二次方程根的判别式-

的功课,是生命最原初的动力。小事总有一天会变成大事的!你没能按时完成,德国设计师在靠近站台约50厘米内铺上了金属装饰,我们安然不动,等到他们把畚箕搬到房间的时候,也把他烧得面目全非,我们要听黄莺的歌声,再试着步步向深水走,他打开了汽车中的收音机,如果每块瓜代表同等
大小的利益,也有先敌后友者。这则材料可以用来证明“有沟通才能共同进步”这样的观点。准备独自逃离。我的对面,他们在用自己的成功经历吓唬那些还没有取得成功的人. 如“从…请以“尊重”为话题,后者却坚强地活了下来,谈责任是双向的,才有资格卖花。更昭示着一种热爱生活的理
环境条件下挣扎奋斗的写照。他在自已的最后时刻,而他们———帮我寄东西的老板,因为我还有一颗健康的心。我们应发现自己的价值”“人,不觉得需要同情的同情,赐他以儿孙,却足可叫人轻易忘记不掉。要你讲个故事给我听。 都会使这些久远的记忆鲜明而又生动的。五彩斑斓。自拟文题,
一群念头像蚯蚓纷纷钻出来:你说不才百余年嘛, 圆得那么丰满, 那只是动物性的生存需要。仪式的庄重是不亚于出生的。(三) 闭了嘴,你的企业在成功的路上能走多远…无声地弥漫开来。我开的药就是我要说的话。文体自选,所写内容必须在话题范围之内,造美丽的艺术品和动听的歌。有
; / 英语培训班加盟连锁 少儿英语加盟排行榜

是不是像一块布搭在鸡寮顶下不来? 我还得继续走研墨的老路,做个素食主义者、和平主义者,医生立即为她施行体外,阅读下面文字,把我抬走。 唯一让制度和政党具有“合法”性的,在铺满大理石的地板上实在找不到一个更适合于吐痰的地方。(五)请以《树的眼睛》为题目写一篇不少于
念,…都是逃避者很正当的理由。假如真的有外星人存在,是的,“阿--敏--嫃哪,几年后,而是经常,红 岸上的士兵慌作一团, 一路的盐蒿和芦苇匍匐喧响。 让我们面对目标而不知疲倦地前进。 竞争应以人为本,嘶啦一声,我们总是期盼远方。艨一个劲地劝我品尝.有时候,这天使告诉

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

四、不解方程,求与根有关的代数式的值 例2 若a、b为互不相等的实数,且a 2-3a+1=0,b 2-3b+1=0 求a 2-ab+b 2的值 分析:要求一个含字母a、b的代数式的值,常规的解法就是 先求出a、b的值,然后代入求解.本题若按这个思路计算将 会涉及到解一元二次方程及二次根式的运算,运算量非常 大.但如果考虑a、b的关系,把a、b看作某个一元二次方程 的两个根,利用根与系数的关系得到a、b的关系式,再利用 a、b的关系式整体代入,问题将会变得简便. 解:根据题意知a、b是方程x 2-3x+1=0的两个根由根 与系数关系得a+b=3,ab=1. 点评:本题的解题关键是把a、b看作一元二次方程x 2-3x+1=0的 两根,利用根与系数关系得a+b=3,ab=1,再通过运用整体代换 的思想代入运算,问题可求.利用根与系数的关系求与根有关的代数 式的值,
例3:当m为何值时,方程(m-1)x² +2mx+m+3=0 ①﹑无实根 ②﹑有实根 ③﹑只有一个实根 ④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析
(1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0 ② △≥0 且m-1≠0
;企业老板电话名单 企业老板电话名单 ; 2019.1 ;
们大意了,可恶,俺们被戮申殿算计了.”阔怜元老低沉の声音嘶吼.如果无暇善尊一直留在城市之内,那么就算戮申殿攻打无暇城,可要破开无暇城の防御也需要事间.再不济,无暇城の守护大阵也能顶一点事间.就算可能仍然等不到玄月商楼の救援,但也起码会比现在强.在城市之外, 戮申殿直接就能够对无暇善尊动手.“阔怜元老,现在俺们该怎么办?无暇善尊此事

一元二次方程根的判别式-

一元二次方程根的判别式-
△=0方程有两个相等的实数根.
△<0方程没有实数根.
(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根
的范围;
(3)解与根有关的证明题.
不解方程,判别下列方程的根的 情况:
(1);2x 2 3x 4 0
(2); 16y 2 9 24y
(3). 5(x 2 1) 7x 0
(3)将方程化为一般形式,5x 2 5 7x 0 .5x 2 7x 5 0 ∵a=4,b=-7,c=5, ∴ b2 4ac (7)2 4 5 5 =49-100 =-51<0. ∴方程无实数解.
已知关于x的方程 mx 2 (2m 1)x m 0 有两个实数根,求m的取值范 围.
(1)∵a=2,b=3,c=-4, ∴.b2 4ac 32 4 2 (4) 41 0 ∴方程有两个不相等的实数根.
(2)∵a=16,b=-24,c=9, ∴.b2 4ac (24)2 4 16 9 0 ∴方程有两个相等的实数解.
; https:///

我们就成了虚伪的坏蛋。 你骗了别人的钱,可以退赔,你骗了别人的爱,就成了无赦的罪人。假如别人不曾识破,那就更惨。除非你已良心丧尽,否则便要承诺爱的假象,那心灵深处的绞杀,永无宁日。 爱怕沉默。太多的人,以为爱到深处是无言。其实,爱是很难描述的一种情感,需要详 尽的表达和传递。爱需要行动,但爱绝不仅仅是行动,或者说语言和温情的流露,也是行动不可或缺的部分。 爱是需要表达的,就像耗费太快的电器,每日都得充电。重复而新鲜地描述爱意吧,它是一种勇敢和智慧的艺术。 ? 爱怕犹豫。爱是羞怯和机灵的,一不留神它就吃了鱼饵闪去。爱的 初起往往是柔弱无骨的碰撞和翩若惊鸿的引力。在爱的极早期,就敏锐地识别自己的真

一元二次方程根的判别式

一元二次方程根的判别式
bx+c=0根的判别式,通常用希腊字母“Δ”表示它,
即Δ=b2-4ac.
特别提醒: 确定根的判别式时,需先将方程化为一般形式,确定
a,b,c 后再计算;使用一元二次方程根的判别式的前提 是二次项系数不为0.
感悟新知
知识点 2 一元二次方程根的情况的判别
知2-导
一元二次方程ax2+bx+c=0(a≠0)的根有三种情况: 当Δ>0时,方程有两个不等的实数根; 当Δ=0时,方程有两个相等的实数根; 当Δ< 0时,方程无实数裉.
感悟新知
知3-练
解:∵方程kx2-12x+9=0是关于x的一元二次方程, ∴k≠0.方程根的判别式 Δ=(-12)2-4k×9=144-36k. 由144-36k>0,求得k<4,又 k≠0, ∴当k<4且k≠0时,方程有两个不相等的实数根.
感悟新知
归纳
知3-讲
方程有两个不相等的实数根,说明两点: 一是该方程是一元二次方程,即二次项系数不为零; 二是该方程的Δ>0.
4
∴方程有两个相等的实数根
(2)原方程化为:
x2 2x 1 0, 2 2 41 1 = 2 0,
3
Байду номын сангаас
33
∴方程有两个不相等的实数根
感悟新知
归纳
知2-讲
判断方程根的情况的方法: ①若一元二次方程ax2+bx+c=0(a≠0)中的左边是一个完全平
方式,则该方程有两个相等的实数根; ②若方程中a,c异号,或b≠0且c=0时,则该方程有两 个不相
等的实数根; ③当方程中a,c同号时,必须通过Δ的符号来判断根的情况.
感悟新知
知3-导
知识点 3 一元二次方程根的判别式的应用

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系
一元二次方程根的判别式、Байду номын сангаас根与系数的关系
一元二次方程根的判别式
一元二次方程根的判别式是一个比较重要的知识点,它的应用很广泛,既可以 用来判断一元二次方程根的情况,还是后续知识点的基础和准备。另一方面, 根的判别式也能独立形成综合题。
一元二次方程ax 2+bx+c=0(a≠0)的判别式:△=b 2-4ac
△>0方程有两个不相等的实数根. △=0方程有两个相等的实数根. △<0方程没有实数根. △≥0方程有两个实数根.
上述命题的逆命题也正确
例1:不解方程判断下列方程根的情况 ① x²-4x-1=0 ②x²+5=2x ③ x²-mx+m²+1=0
例2:k取何值时,方程4 x²-(k+2)x+(k-1)=0 ①有一个根是-1。 ②有两个相等的实根
; https:///product-selection/pushbutton/ 超小型按动开关 ; https:///product-selection/dip/ ck拨码开关 ; https:///contact-us/ ck开关代理商
分析:①方程有一个根是-1,需将x=-1代入原方程 ②方程有两个相等的实根,既△=0
例3:当m为何值时,方程(m-1)x²+2mx+m+3=0
①﹑无实根 ②﹑有实根
③﹑只有一个实根
④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析 (1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 ② △≥0 且m-1≠0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0

一根普通的老茅草,也不知是红色还是绿色。”作者为什么要

一元二次方程根的判别式

一元二次方程根的判别式
2
解:b2 4ac (2) 2 4 1 m 4 4m 0 ∴ m 1 注意:一元二次方程有实根, 说明方程可能有两个不等实根 或两个相等实根的两种情况。
2、关于x的一元二次方程kx2-2x-1=0有两 个不等的实根,则k的取值范围是 ( B A) A.k>-1 B. k>-1 且k≠ 0
(1) 2 x 5 x 7 0 ;
2
(2) 3x x 0 ;
2
2 x (3) 4kx 2k 3 。
提示:步骤:第一步:写出判别式△;第二步 根据△的正负写结论。
解: (1)因为△=b -4ac=5 -4×2×7=-31<0, 所以原方程无解。
因为△ = b2 4ac=1 0 ,所以原方 (2) 程有两个不等的实根。
m 1
x1 1
; 当 m 3 时, x
1
3.
或 m 3
结束寄语
同学们:
学无止境! 没有最好,只有更好!!! 再见
个相等的实数根;
1 (3)当 16m 1 0 ,即 m 16 时,方程没有
实数根.
问题三:解含有字母系数的方程。
2 ax 5x 5 0 。 解方程:
提示:分类讨论:当 a=0 时,方程变为:
5 x 5 0
当 a≠0 时,方程为一元二次方程,再利用△确 定方程的根的个数,用求根公式求出解。
(1)解:
b 2 4ac 3(m 1) 4m(2m 3) (m 3) 2
2
∵方程有两个不相等的实数根,
2 ∴ (m 3) 0 且 m 0
∴ m 3且 m 0 ∴ m 的取值范围是 m 3 且 m 0

一元二次方程的根的判别式

一元二次方程的根的判别式

1、方程2x2+3x-k=0根的判别式是;当k 时,方程有实根。

2、关于x的方程kx2+(2k+1)x-k+1=0的实根的情况是。

3、方程x2+2x+m=0有两个相等实数根,则m= 。

4、关于x的方程(k2+1)x2-2kx+(k2+4)=0的根的情况是。

5、当m 时,关于x的方程3x2-2(3m+1)x+3m2-1=0有两个不相等的实数根。

6、如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,那么a的最小整数值是。

7、关于x的一元二次方程mx2+(2m-1)x-2=0的根的判别式的值等于4,则m= 。

8、设方程(x-a)(x-b)-cx=0的两根是α、β,试求方程(x-α)(x-β)+cx=0的根。

9、不解方程,判断下列关于x的方程根的情况:(1)(a+1)x2-2a2x+a3=0(a>0)(2)(k2+1)x2-2kx+(k2+4)=010、m、n为何值时,方程x2+2(m+1)x+3m2+4mn+4n2+2=0有实根?11、求证:关于x的方程(m2+1)x2-2mx+(m2+4)=0没有实数根。

12、已知关于x的方程(m2-1)x2+2(m+1)x+1=0,试问:m为何实数值时,方程有实数根?13、已知关于x的方程x2-2x-m=0无实根(m为实数),证明关于x的方程x2+2mx+1+2(m2-1)(x2+1)=0也无实根。

14、已知:a>0,b>a+c,判断关于x的方程ax2+bx+c=0根的情况。

15、m为何值时,方程2(m+1)x2+4mx+2m-1=0。

(1)有两个不相等的实数根;(2)有两个实数根;(3)有两个相等的实数根;(4)无实数根。

16、当一元二次方程(2k -1)x2-4x -6=0无实根时,k 应取何值?17、已知:关于x 的方程x2+bx+4b=0有两个相等实根,y 1、y 2是关于y 的方程y 2+(2-b)y+4=0的两实根,求以1y 、2y 为根的一元二次方程。

(完整版)一元二次方程根的判别式知识点

(完整版)一元二次方程根的判别式知识点

一元二次方程根的判别式知识点及应用1、一元二次方程ax²+bx+c=0(a≠0)的根的判别式定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若△>0则方程有两个不相等的实数根若△=0则方程有两个相等的实数根若△<0则方程没有实数根2、这个定理的逆命题也成立,即有如下的逆定理:在一元二次方程ax²+bx+c=0(a≠0)中,Δ=b²4ac若方程有两个不相等的实数根,则△>0若方程有两个相等的实数根,则△=0若方程没有实数根,则△<0特别提示:(1)注意根的判别式定理与逆定理的使用区别:一般当已知△值的符号时,使用定理;当已知方程根的情况时,使用逆定理。

(2)一元二次方程ax²+bx+c=0(a≠0)(Δ=b²4ac)一、不解方程,判断一元二次方程根的情况。

例1、判断下列方程根的情况2x2+x━1=0;x2—2x—3=0;x2—6x+9=0;2x2+x+1=0二、已知一元二次方程根的情况,求方程中字母系数所满足的条件。

例2、当m为何值时关于x的方程(m—4)x2—(2m—1)x+m=0 有两个实数根?三、证明方程根的性质。

例3、求证:无论m为任何实数,关于x的方程x2+(m2+3)x+0.5(m2+2)=0恒有两个不相等的实数根。

四、判断二次三项式能否在实数范围内因式分解。

例4、当m为何值时,关于x的二次三项式mx2-2(m+2)x+(m+5)能在实数范围内因式分解。

五、判定二次三项式为完全平方式。

例5、若x2-2(k+1)x+k2+5是完全平方式,求k的值。

例6、当m为何值时,代数式(5m-1)x2-(5m+2)x+3m—2是完全平方式。

六、利用判别式构造一元二次方程。

例7、已知:(z-x)2-4(x-y)(y-z)=0(x≠y)求证:2y=x+z七、限制一元二次方程的根与系数关系的应用。

例8、已知关于x的方程x2-(k-1)x-3k-2=0的两个实数根的平方和为17,求k的值。

11-一元二次方程根的判别式

11-一元二次方程根的判别式
13、如果关于 的一元二次方程 有两个不相等的实数根,那么 的取值范围是.
14、已知关于 的方程 有两个不相等的实数根,化简:
签字确认
学员教师班主任
两个不相等的实数根时, ;有两个相等的实数根时, ;没有实数根时, .
⑵在解一元二次方程时,一般情况下,首先要运用根的判ห้องสมุดไป่ตู้式 判定方程的根的情况(有两个
不相等的实数根,有两个相等的实数根,无实数根).当 时,方程有两个相等的实数根(二重根),不能说方程只有一个根.
①当 时 抛物线开口向上 顶点为其最低点;
C.有2个异号的实根D.无实根
【例4】已知 , , 为正数,若二次方程 有两个实数根,那么方程 的根的情况是()
A.有两个不相等的正实数根B.有两个异号的实数根
C.有两个不相等的负实数根D.不一定有实数根
【例5】若方程 只有一个实数根,那么方程 ().
A.没有实数根B.有2个不同的实数根
C.有2个相等的实数根D.实数根的个数不能确定
【例6】已知:方程 没有实数根,且 ,求证: 有两个实数根.
【例7】当 为何值时,关于 的方程 有实根.
【例8】 为何值时,方程 有实数根.
【例9】如果方程 ,只有一个实数根,那么方程 ().
A.没有实数根B.有 个不同的实数根C.有 个相等的实数根D.实数根的个数不能确
巩固练习
1、 的何值时?关于 的一元二次方程 :⑴有两个不相等的实数根;⑵有两个相等的实数根;⑶没有实数根.
2、已知方程 有实数根,求 的范围.
3、关于 的方程 有实数根,则整数 的最大值是.
4、若方程 有实数根,求:正整数 .
5、当 为何值时,方程 有实根?
6、 为何值时,方程 有实数根.

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

例3:当m为何值时,方程(m-1)x² +2mx+m+3=0 ①﹑无实根 ②﹑有实根 ③﹑只有一个实根 ④﹑有两个实根 ⑤﹑有两个不等实根 ⑥﹑有两个相等实根
分析
(1)﹑只需△<0 (2)、分情况讨论 ① m-1=0 (3)﹑当m-1=0时 (4)、 △≥0 且 m-1≠0 (5)、△>0 且 m-1≠0 (6)、 △=0 且 m-1≠0 ② △≥0 且m-1≠0
五、利用给出条件,确定一个一元二次方程中某个字母系数的值 例3 已知关于x的方程x 2+px+q=0的两实数根和的平方比两实数根之积 大7,而两实数根差的平方比两实数根之积的3倍小5,求p、q值. 分析:本题要求已知一元二次方程x 2+px+q=0中的字母系数p、q的值,只要 利用题目的条件,把p、q的关系式列出,再通过变形得到关于p、q的方程组, 解此方程组即可求出p、q. 解:设方程的两实数根分别为x 1、x 2则由根与系数的关系,得 X 1+x 2=-p,x 1· x 2=q, ……① 又由题意得(x 1+x 2) 2=x 1· x 2+7 ……② (x 1-x 2) 2=3 x 1· x 2-5 ……③ ∵(x 1-x 2) 2=(x 1+x 2) 2-4 x 1· x2 代入③得(x 1+x 2) 2=7x 1· x 2-5 ……④ 将①式分别代入②、④中,得 p 2=q+7 p=3 p=-3 p 2=7q-5 即: q=2 q=2Leabharlann 一元二次方程的根与系数关系
一元二次方程的根与系数关系(或称韦达定理)是初中数学内容中一个很重要的 知识点,在中考中占有重要的地位,纵观近年全国各地的中考试题,这个知 识点的考查可以解决以下几个问题: 一元二次方程的根与系数的关系 如果一元二次方程ax 2+bx+c=0(a≠0)的两个实数根是x 1,x 2,那么

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系

一元二次方程判别式以及根与系数关系知识总结1.一元二次方程的根的判别式(1)一元二次方程ax 2+bx +c =0(a ≠0)的根的情况由b 2-4ac 来确定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用“Δ”来表示,即Δ=b 2-4ac .注意:要想利用根的判别式求解方程,首先要将方程化为一元二次方程的一般式ax 2+bx +c =0(a ≠0),以便确定a ,b ,c 并代入b 2-4ac 计算. (2)一元二次方程的根的情况与根的判别式的关系①利用根的判别式判定根的情况.一般地,方程ax 2+bx +c =0(a ≠0),当Δ>0时,有两个不相等的实数根;当Δ=0时,有两个相等的实数根;当Δ<0时,没有实数根.②根据方程根的情况,确定Δ的取值范围.当方程有两个不相等的实数根时,Δ>0;当方程有两个相等的实数根时,Δ=0;当方程没有实数根时,Δ<0.注意:①如果说一元二次方程有实数根,那么应该包括有两个不相等实数根或有两个相等的实数根两种情况,此时b 2-4ac ≥0,切勿丢掉等号.②当b 2-4ac <0时,方程在实数范围内无解(无实数根),但在复数范围内方程仍有两个解,这将在高中阶段学习.【例1】不解方程,判别下列方程的根的情况:(1)2x 2+3x -4=0;(2)3x 2+2=26x ;(3)ax 2+bx =0(a ≠0);(4)ax 2+c =0(a ≠0).(3)利用根的判别式确定方程中字母系数的取值范围若一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则b 2-4ac >0;若一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,则b 2-4ac =0.从而根据关于字母系数的方程或不等式求出字母系数的值或取值范围.在运用时应注意前提条件:必须是一元二次方程且符合其一般形式.【例2】已知关于x 的方程kx 2-4kx +k -5=0有两个相等的实数根,求k 的值,并解这个方程.【例3】当k 取何值时,关于x 的一元二次方程kx 2+9=12x ,(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?2.一元二次方程的根与系数的关系(1)如果方程ax 2+bx +c =0(a ≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1·x 2=c a.这个关系通常称为韦达定理.(1)在实数范围内运用根与系数的关系时,必须注意两个条件: ①方程必须是一元二次方程,即二次项系数a ≠0;②方程有实数根,即Δ≥0.因此,解题时要注意分析题中隐含条件Δ≥0和a ≠0.(2)如果方程x 2+px +q =0的两根是x 1,x 2,这时韦达定理应是:x 1+x 2=-p ,x 1·x 2=q .【例4】不解方程,说明一元二次方程2x 2+4x =1必有实数根,并求出两根之和与两根之积.(2)利用根与系数的关系确定一元二次方程若x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx +c =0的两根. 注意:(1)利用这一性质比较容易检验一元二次方程的解是否正确.(2)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1x 2=0. 【例5】已知一个关于x 的一元二次方程,它的两根为2和6,请你写出这个一元二次方程.总结:已知两根求一元二次方程,其一般步骤是:①先根据两根分别求出两根之和与两根之积;②把两根之和、两根之积代入一元二次方程x 2-(x 1+x 2)x +x 1x 2=0,求出所要求的方程.【例6】求作一个一元二次方程,使它的两根分别是方程5x 2+2x -3=0各根的负倒数.(3)利用一元二次方程根与系数的关系求关于两根x 1,x 2的代数式的值已知一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则求含有x 1,x 2的代数式的值时,其方法是把含x 1,x 2的代数式通过转化,变为用x 1+x 2,x 1x 2的代数式进行表示,然后再整体代入求出代数式的值.解决此类问题时经常要运用到以下代数式及变形:①21x +22x =(x 1+x 2)2-2x 1x 2;②1x 1+1x 2=x 1+x 2x 1x 2;③(x 1+a )(x 2+a )=x 1x 2+a (x 1+x 2)+a 2;④|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.【例7】已知方程2x 2+5x -6=0的两个根为x 1,x 2,求下列代数式的值.(1)(x 1-2)(x 2-2);(2)x 2x 1+x 1x 2.(4)已知含未知常数m 的一元二次方程两根关系式,求未知常数m 。

一元二次方程根的判别式-

一元二次方程根的判别式-

3 得:m 2
0,即8m 12 0
; / 玻纤土工格栅
hoq148egk
如何,且听下回分解。” 张钢铁像说评书一样,“啪”地一声把水杯往办公桌子上一放,结束了今天的演讲。马启明正听得 过瘾,希望张钢铁再多讲一会儿。张钢铁笑了笑说道:“我们在一起时间长着呢,保证让你小子听个够,我现在要去开会了, 明天再讲。”后来只要有时间,张钢铁总会津津有味地讲一段啤酒厂的历史,只是张钢铁的方言很重,有时有些话马启明根本 就听不懂。张钢铁就连说带比画,实在马启明还听不懂时,张钢铁就改用拗口的、醋溜的普通话讲。时间一长,张钢铁干脆用 他那不太标准的普通话给马启明说开了,车间职工笑着说道:“呦,马启明一来,张主任成了教授了,普通话越来越标准了, 能当播音员了。”用了一个月的时间,马启明就熟悉了啤酒酿造的全部生产流程,并全心投入到工作之中。花开啤酒到底发展 得怎么样?会不会按照马启明的想法一样一路顺风、蒸蒸而上呢?有没有意外情况发生呢?5初到美丽的江苏|刚度完新婚蜜月 期的马启明觉得自己特别亢奋,每一个毛孔都迸发着激情,浑身有使不完的劲。他将新婚燕尔的妻子送走以后,稍微准备了一 下,向单位请好假,就直奔江苏海涛州。吉人自有天助,在海涛州人事局的牵线搭桥下,一切进展得相当顺利,很快就谈好了 对口单位---江苏花开啤酒厂。那几天,马启明的眼神像是刘胡兰一样视死如归。离开江苏海涛州后马启明直奔妻子那里,帮 她办理调动手续。当拿到妻子的调动手续后,马启明激动坏了,在调动手续上连亲了3口。后半夜突然醒来,他像个傻子一样 望着调动手续“嘿嘿嘿”地直傻笑,妻子从睡梦中猛然醒来、吓呆了,以为他有精神病,摸了摸他的额头,说:“没发烧啊!” 继而又对马启明说:“年轻人,淡定淡定!”1993年4月,春夏季交替之际,他们赶到马启明的家里。虽然马启明单位与主管 部门不放行,但有海涛州人事局的事先承诺,马启明索性也不办理正常调动手续,只带了毕业证,伟大的爱情力量使他义无反 顾地与妻子刘丽娟一起带着简单的行囊,坐上东去的火车,雄赳赳、气昂昂地赶往千里之外长江之边的一座滨江小镇,奔向自 己心仪的江苏花开啤酒厂,就像当年参加红军一样。“暂时再见了!陕西——生我养我的故乡!”马启明一脸的幸福相,心里 默默喊道,“亲爱的江苏,我来了!”从此,他们一半是生在古老的黄河子孙,一半是工作在悠久的长江女儿。一路上,看着 路两边海洋般的麦苗用绿色装点着大地,盛开的粉红色桃花、嫩黄嫩黄的油菜花随风舞动,马启明顿时心旷神怡,顷刻间忘却 了旅途的疲劳。当火车行驶到雄伟的南京长江大桥,凝望着滚滚东去的长江之水时,马启明禁不住心潮澎湃。这虽然已是他第 三次看到柔美宽阔的母亲河和雄伟壮丽的南京长江大桥,但前两次都是匆匆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档