数控机床加工精度异常的常见原因及处理.
数控机床加工精度异常的常见原因及处理.
数控机床加工精度异常的常见原因及处理生产中经常会遇到数控机床加工精度异常的故障。
此类故障隐蔽性强、诊断难度大。
导致此类故障的原因主要有五个方面:(1)机床进给单位被改动或变化。
(2)机床各轴的零点偏置(NULL OFFSET)异常。
(3)轴向的反向间隙(BACKLASH)异常。
(4)电机运行状态异常,即电气及控制部分故障。
(5)机械故障,如丝杆、轴承、轴联器等部件。
此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。
1. 系统参数发生变化或改动系统参数主要包括机床进给单位、零点偏置、反向间隙等等。
例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。
机床修理过程中某些处理,常常影响到零点偏置和间隙的变化,故障处理完毕应作适时地调整和修改;另一方面,由于机械磨损严重或连结松动也可能造成参数实测值的变化,需对参数做相应的修改才能满足机床加工精度的要求。
2. 机械故障导致的加工精度异常一台THM6350卧式加工中心,采用FANUC0i-MA数控系统。
一次在铣削汽轮机叶片的过程中,突然发现Z轴进给异常,造成至少1mm的切削误差量(Z向过切)。
调查中了解到:故障是突然发生的。
机床在点动、MDI操作方式下各轴运行正常,且回参考点正常;无任何报警提示,电气控制部分硬故障的可能性排除。
分析认为,主要应对以下几方面逐一进行检查。
1)检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。
2)在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。
由此判断,机械方面可能存在隐患。
3)检查机床Z轴精度。
用手脉发生器移动Z轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给0.1mm),配合百分表观察Z轴的运动情况。
在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床Z轴运动的实际距离d=d1=d2=d3…=0.1mm,说明电机运行良好,定位精度良好。
影响数控机床加工精度的相关因素及改善对策
影响数控机床加工精度的相关因素及改善对策数控机床加工精度是指数控机床在加工过程中所实现的零件精度。
数控机床加工精度的高低直接影响着零件的质量和使用寿命。
影响数控机床加工精度的因素有很多,主要包括以下几个方面。
1. 数控机床本身的性能:数控机床本身的性能,包括它的加工精度、刚性、稳定性等,都是影响加工精度的重要因素。
如果数控机床的性能不好,就会直接影响到零件的加工质量。
2. 刀具磨损:刀具磨损是影响加工精度的重要因素之一。
当刀具磨损程度过大时,会使得切削力不稳定,从而影响零件的质量。
3. 加工参数设置:加工参数设置对于加工精度也有重要影响。
如果加工参数设置不当,就有可能导致零件加工精度不高,甚至出现加工误差。
4. 材料种类:加工材料的种类也是影响加工精度的重要因素。
不同材料的性质不同,因此在加工过程中需要采取不同的加工参数,以达到理想的加工效果。
为了改善数控机床加工精度,可以采取以下对策:1. 提高数控机床的刚性和稳定性。
这样可以保证数控机床在加工过程中的稳定性和准确性。
2. 做好刀具磨损检查和更换工作。
保证刀具处于良好的状态,这样能保证零件的加工精度。
3. 合理设置加工参数。
根据加工材料的不同特性,合理设置加工参数,能够达到理想的加工效果。
4. 选择合适的加工材料。
根据不同的加工要求,选择合适的加工材料,能够提高加工精度和零件质量。
总之,数控机床加工精度的提高需要综合考虑影响因素,采取相应的改善对策。
只有这样才能够确保零件的质量和寿命,提高企业的生产效率。
数控机床常见故障的诊断与排除
数控机床常见故障的诊断与排除数控机床是一种使用电子计算机来控制机床运动的一种较新的机床形式。
虽然数控机床具有高度自动化、精度高、生产效率高等优点,但也会遇到各种故障。
本文将介绍数控机床常见故障的诊断与排除方法。
一、机床加工精度降低1.刀具质量问题:检查刀具是否磨损、刃口损坏等问题,并及时更换或修复。
2.刀具切削参数问题:检查切削速度、进给速度、切削深度等参数是否正确。
3.工件固定不牢问题:检查工件夹紧装置是否松动或磨损,及时进行维护和修复。
4.主轴轴承问题:检查主轴轴承是否磨损,与专业人员一同进行检修和更换。
二、机床轴运动不正常1.伺服电机故障:检查伺服电机是否发生断路、短路等故障,及时修复或更换。
2.伺服控制器故障:检查伺服控制器是否正常运行,如有异常情况,及时进行维修或更换。
3.导轨滑块问题:检查导轨滑块是否磨损、卡滞等问题,及时进行维护和调整。
4.限位开关问题:检查限位开关是否工作正常,如有故障,及时修复或更换。
三、机床进给系统故障1.进给电机故障:检查进给电机是否正常工作,如有异常情况,及时维修或更换。
2.进给传动系统故障:检查进给传动系统是否出现松动、磨损等问题,及时进行维护和修复。
3.编码器问题:检查编码器是否损坏,及时更换。
4.进给速度设置问题:检查进给速度是否正确设置,如有误差,及时进行调整。
四、操作系统故障1.控制软件故障:检查控制软件是否正常运行,如有异常情况,及时修复或更新软件。
2.操作界面显示问题:检查操作界面是否显示正确,如有问题,及时联系专业人员进行维修。
3.数据传输问题:检查数据传输是否正常,如有异常情况,及时进行排查和修复。
五、液压系统故障1.液压油温过高:检查液压油温是否过高,及时更换液压油或检查冷却系统是否正常工作。
2.系统泄漏:检查液压系统是否存在泄漏现象,及时进行维修和修复。
3.液压缸故障:检查液压缸是否损坏或磨损,及时更换。
六、冷却系统故障1.冷却液温度过高:检查冷却系统是否正常工作,及时更换冷却液或修复冷却系统故障。
影响数控机床加工精度的相关因素及改善对策
影响数控机床加工精度的相关因素及改善对策
一、影响数控机床加工精度的相关因素
1.数控机床的性能和精度:数控机床的性能和精度是影响加工精度的重要因素。
数控
机床的刚性、动态特性、稳定性、热稳定性等性能直接影响其加工精度。
3.刀具和刀具系统:刀具和刀具系统的质量、刚性、精度和稳定性直接关系到数控机
床的加工精度。
刀具的选择、安装和使用对加工精度有着重要影响。
4.工件材料和切削参数:工件材料的硬度、韧性、热处理状态等特性将直接影响数控
机床的加工精度。
切削参数的选择和调整也对加工精度有着重要影响。
5.加工环境和工艺:加工环境的温度、湿度和工艺的合理性都会对数控机床的加工精
度产生影响。
加工环境的稳定和清洁度对数控机床的加工精度有着重要影响。
6.操作人员的技术水平:操作人员的技术水平和对数控机床的熟悉程度直接影响其加
工精度。
操作人员需要具备良好的操作技能和对数控机床的维护保养知识,从而保证数控
机床的加工精度。
2.提高数控系统的性能:使用高性能的数控系统,提高控制精度、反馈精度和稳定性,从而提高数控机床的加工精度。
5.改善加工环境和工艺:保证加工环境的稳定和清洁度,优化工艺流程,从而提高数
控机床的加工精度。
通过对数控机床加工精度的影响因素和改善对策的分析,可以更好地理解和把握数控
机床加工精度的提高方法,为实际生产中的加工提供更好的技术支持。
通过加强对数控机
床加工精度的改善对策的实施,可以提高数控机床的加工精度,从而提高产品质量,降低
加工成本,提高生产效率,为企业的发展提供更好的技术支持。
数控机床加工精度的影响因素及提高方法
数控机床加工精度的影响因素及提高方法数控机床加工精度是指机床在进行加工过程中所能达到的准确度和稳定性。
影响机床加工精度的因素非常多,下面将对影响因素和提高方法进行一些阐述。
1. 机床自身的优劣:机床的设计、制造和装配技术对加工精度有直接影响。
优质的机床在设计和制造过程中会注重减小传动误差、提高定位精度和重复定位精度等。
2. 机床的刚性和稳定性:机床的刚性和稳定性对加工精度起着决定性的作用。
刚性不足会导致机床在加工过程中出现振动和变形,从而影响加工精度。
3. 传动装置的精度和可靠性:传动装置的传动误差、反向间隙等都会影响加工精度。
传动装置的精度和可靠性越高,加工精度也越高。
4. 控制系统的精度:数控机床的控制系统对加工精度有直接影响。
控制系统的精度主要包括伺服系统的控制精度、编码器的精度以及数控系统的实时性等。
5. 刀具和夹具的精度:刀具和夹具的精度直接影响加工质量。
刀具和夹具的选择和安装都需要考虑其精度和稳定性。
1. 选用优质的机床:选择优质的机床是提高加工精度的基础。
优质的机床具有高精度、高刚性和高稳定性,能够更好地满足加工要求。
2. 优化加工工艺:通过优化加工工艺,合理设置切削参数和进给速度等,可以减小加工误差,提高加工精度。
4. 优化编程和加工过程:合理优化数控程序和加工过程,减小加工误差。
尽量避免急停和急转等情况,保证加工过程的平稳性和稳定性。
5. 定期进行机床维护和保养:定期进行机床的维护和保养,保证机床的正常运行和精度稳定性。
包括清洁、润滑和紧固等工作。
数控机床加工精度的提高需要从机床自身的优劣、刚性和稳定性、传动装置的精度和可靠性、控制系统的精度以及刀具和夹具的精度等方面进行综合考虑。
通过优化加工工艺、合理选择刀具和夹具、加强编程和加工过程的管理以及定期进行机床维护和保养等措施,可以有效提高数控机床的加工精度。
数控机床加工误差原因及对策分析
数控机床加工误差原因及对策分析数控机床是当今制造业的主要设备之一。
数控机床生产效率高,运行速度快,加工精度高,成品质量好,成本相对较低。
但是,在实际生产过程中,经常会出现加工误差,影响生产效率和成品质量。
因此,分析数控机床加工误差原因并寻找对策是很必要的。
本文将探讨数控机床加工误差的原因,以及如何通过改进措施来减少误差的发生。
一、误差的种类数控机床加工误差通常包括以下几种:1.轨迹误差。
轨迹误差是指数控机床加工时导致实际加工轨迹与期望轨迹之间的误差。
2.定位误差。
定位误差是指数控机床在加工中出现的位置偏差。
定位误差可能由机床本身、工件、刀具等方面的原因引起。
3.回转误差。
回转误差是指数控机床在进行旋转加工时出现的偏差。
回转误差通常由转台本身、传动系统和工件等原因引起。
4.表面误差。
表面误差是指数控机床加工表面的粗糙度、平整度、垂直度和平行度等参数上的误差。
二、误差产生的原因1.机床本身的精度。
数控机床的精度与质量直接相关,是影响加工质量的最重要因素。
如果机床本身的精度不高,则会直接导致加工误差的发生。
2.工具刃磨质量。
如果刀具的刃磨质量不好,切屑排出不畅等问题,也容易引起加工误差。
3.刀具稳定性。
刀具的稳定性是指在加工过程中刀具的稳定性,如果刀具不稳定,则极易引起加工误差的发生。
4.机床几何精度调整。
机床几何精度调整直接影响加工误差发生的概率,如果机床几何精度调整不当,则会引起加工误差的出现。
5.机床零部件磨损。
随着机床的使用,部件常会出现磨损,进而影响加工精度。
三、解决方案1.提高加工前的加工过程控制。
在加工前加强对加工过程的控制,可通过模具设计等预处理阶段减少误差出现的可能性。
2.注意刀具选择。
选择质量高的刀具,并保持刀具在加工过程中的稳定性。
3.指导及培训操作人员。
操作人员要具备相应的知识和技能,遵循正确的加工流程,熟练使用数控机床,能够及时发现和解决数控机床加工过程中的问题。
4.定期机床保养。
数控机床的加工精度误差分析与精度校正技巧
数控机床的加工精度误差分析与精度校正技巧数控机床是一种能够通过计算机控制实现自动加工的机床,近年来在制造业中得到广泛应用。
然而,由于各种因素的存在,数控机床在加工过程中难免会出现一些误差,影响加工精度。
因此,对数控机床的加工精度误差进行分析并采取相应的精度校正技巧是非常重要的。
首先,我们需要了解数控机床的加工精度误差来源。
主要有以下几个方面:机床本身的结构误差、传动系统的误差、加工工具的磨损、热变形以及切削力等因素。
这些误差会导致加工件的尺寸、形状和位置精度达不到要求。
针对数控机床的加工精度误差,我们可以采取一些校正技巧进行补偿,以提高加工精度。
首先,机床本身的结构误差是导致加工精度误差的关键因素之一。
我们可以通过测量与分析来确定机床的结构误差,并采取相应的校正措施。
例如,对于导轨的误差,可以采用精度更高的导轨进行更换或加工。
对于机床床身的热变形问题,可以通过加装冷却系统来控制温度,减少热变形对精度的影响。
其次,传动系统的误差也会对加工精度产生较大影响。
传动系统一般包括伺服电机、滚珠丝杠等,我们可以通过校正传动系统的参数来消除误差。
例如,通过伺服系统的自动校正功能来提高定位精度,或者根据测量结果对滚珠丝杠的间隙进行调整。
此外,加工工具的磨损也是加工精度误差的重要原因之一。
加工工具的磨损会导致切削力变化、切削温度上升,从而对加工精度产生负面影响。
我们可以通过定期更换加工工具或者采取合适的切削参数来控制加工工具的磨损,从而提高加工精度。
另外,热变形也是影响加工精度的重要因素。
随着机床的连续工作,温度会逐渐升高,导致机床的热变形。
我们可以通过在机床上安装温度传感器,监测温度的变化,然后根据变化的温度对加工精度进行校正。
此外,通过改进机床的散热系统,减少热量的积聚,也可以有效地降低热变形对加工精度的影响。
最后,我们还可以通过控制切削力来提高加工精度。
切削力对加工精度具有较大的影响,对切削力的控制可以通过调整切削参数(如切削速度、进给量等)来实现。
数控加工产生误差的根源及解决方案
数控加工产生误差的根源及解决方案数控加工是利用数控技术通过控制机床和刀具相对运动的方式,对工件进行加工的一种工艺。
虽然数控加工相对手工加工来说具有高精度、高效率、高一致性等优点,但是由于一些原因还是会在实际应用中产生一些误差,下面我们对数控加工误差的根源及解决方案进行详细介绍。
一、误差产生的根源1.机床本身问题机床是数控加工的基础,如果机床本身精度不高,则会直接影响到加工的精度。
例如机床的重复定位精度、圆度等问题都会导致数控加工中的误差。
2.编程和操作问题编程和操作的问题也是数控加工中产生误差的重要原因。
编写的程序是否符合实际加工的要求、操作人员能否正确的操作数控设备、调整数控设备的参数等都会影响加工的精度。
3.工件材料和加工工艺工件的材料和加工工艺也是数控加工中产生误差的原因之一。
因为不同的材料及加工工艺的选用,需要有不同的加工参数设置,否则加工出来的零件尺寸不稳定,而且不同的材料具有不同的热膨胀系数,会使得加工出来的工件产生偏差。
二、误差的解决方案1.提高机床精度如何提高机床精度呢?首先我们要选用性能稳定、精度高的数控机床。
同时,在加工过程中要注意定期检查机床的重复定位精度、圆形度等指标,及时进行维护和保养。
2.优化编程和操作流程软件程序的编写和操作过程是决定加工精度的重要环节之一,因此编写程序时要结合实际加工要求,同时要对操作流程进行规范化和标准化,让操作流程尽量简单,便于操作人员进行操作。
3.优化材料和加工工艺合理选用材料及加工工艺,是提高精度的重要环节之一,因此选择合适的加工工艺的同时,要注意材料的热膨胀系数等性质,以此来保证加工出来的工件符合设计要求。
总之,数控加工误差的根源较多,但只要我们能够从机器、人员和程序三个方面入手,针对性的进行优化,加工精度是能够得到不断提高的。
数控车床常见问题及解决方法
数控车床常见问题及解决方法数控车床是一种高精度、高效率的机床,广泛应用于各种加工领域。
然而,在使用过程中可能会遇到一些常见问题,下面我将就数控车床常见问题及解决方法进行总结。
1. 加工精度不达标:加工精度是数控车床的重要指标,如果出现精度不达标的情况,首先需要检查刀具磨损情况,如果刀具磨损较大,需要更换刀具。
其次,可以检查夹具的精度,如果夹具不稳定,会导致工件的位置不准确。
最后,可以调整数控系统的参数,例如提高伺服电机的控制精度,调整传动件的间隙等。
2. 加工过程中出现振动:振动是数控车床的常见问题,它不仅会降低加工精度,还会影响机床寿命。
首先,需要检查工件夹持情况,如果夹持不稳定,可以更换夹具或调整夹持方式。
其次,可以检查刀具的刃数和刃角,过大或过小的刃数和刃角都会引起振动。
最后,可以调整数控系统的参数,例如降低进给速度、提高切削速度等。
3. 加工出现毛刺或切痕:毛刺和切痕是数控车床加工中常见的表面缺陷问题,主要原因是刀具磨损或刀具的刃角不合适。
解决方法是定期更换刀具,保持刀具的锋利度。
另外,合理选择切削速度和进给速度也可以减少毛刺和切痕的产生。
4. 难以调试刀具位置:数控车床的刀具位置调试是加工中的重要环节,但有时会遇到难以调试的情况。
首先,可以检查刀具夹持的紧固情况,如果夹持不牢固,会导致刀具位置难以精确定位。
其次,可以使用刀具几何参数测量仪对刀具位置进行精确测量,然后根据测量结果进行调整。
最后,可以调整数控系统的参数,例如调整工件坐标系和刀具补偿值等。
5. 数控系统故障:数控系统是数控车床的核心部件,如果出现故障,会影响整个加工过程。
常见的故障包括电路板故障、伺服电机故障等。
解决方法是检查故障代码,并参考数控系统的故障排除手册进行排查。
如果无法解决,需要联系数控系统供应商或维修人员。
以上是数控车床常见问题及解决方法的相关参考内容,希望对使用数控车床的人员能够有所帮助。
在使用数控车床时,需要注意安全操作,定期保养和维护机床,以确保其正常工作和延长使用寿命。
数控机床加工精度异常诊断和处理
在使用数控机床加工的企业中,经常会遇到数控机床加工精度异常的情况,而且这些异常隐蔽性很强,给工作人员在诊断上增加了难度。
本文就来列举一些精度异常的产生原因及诊断方法,让大家对此有一定的了解。
在生产中,比较常见的精度异常情况主要有以下几个方面:(1)机床的进给单位被改动或者出现变化。
(2)机床各个轴零件偏置异常。
(3)轴的反向间隙异常。
(4)电极的运行状态(电气及控制部分)异常。
(5)机械(丝杠、轴承、轴联器等部件)故障。
(6)加工程序编制、刀具选择人为因素。
1.系统参数发生变化或改动机床的系统参数包括机床的进给单位,零点偏执以及反向间隙等等。
机床在出现故障修理的过程中,零件偏置与间隙变化可能会受到影响。
因此故障处理完毕后需要进行调整和修改。
另一方面,机械磨损严重、连接松动都有可能造成实测参数值的变化,需要进行修改才能满足精度要求。
拆卸检查可能会发现轴承有受损或者滚珠脱离情况发生,更换机床之后恢复正常。
2.机械故障导致的加工精度异常机床故障造成的加工精度异常主要原因有三种:一是电机有异常、二是机械方面有故障、三是丝杠存在间隙。
如果想要进一步精准诊断故障,需要将电机和丝杠脱离开。
对电机、机械方面进行检查,如果检查结果是电机运行正常,那么在对机械部分诊断中发现,用手盘动丝杠时,返回运动初始有非常明显的空缺感。
而正常情况下,应能感觉到轴承有序而平滑的移动。
3.机床电气参数未优化电机运行异常如果在加工过程中发现X轴的精度异常,检查后发现X轴存在间隙,而且在电机启动时有不稳定的现象发生。
这种情况产生的原因主要有两点,第一,丝杠反向间隙较大,另一种是机床的X轴电极工作异常。
解决方法主要是度电机进行调试。
对存在间隙进行补偿;或者调整伺服增益参数及脉冲抑制功能参数,消除X轴电极抖动,保证精度正常。
数控机床加工精度的影响因素及提高方法
数控机床加工精度的影响因素及提高方法数控机床加工精度是衡量机床性能和加工质量的重要指标之一。
机床加工精度的高低直接影响到加工零件的尺寸精度和表面质量。
正确理解数控机床加工精度的影响因素及提高方法,可以有效提高机床加工精度,满足不同的加工要求。
一、影响因素1. 机床本身的精度:机床加工精度的高低取决于机床本身精度的高低。
包括机床的机械结构精度、控制系统精度以及加工刀具等。
2. 工件加工材料的性质:工件的材料的硬度、韧性、温度等都会影响加工时的切削力、振动、温度变化等,从而影响机床加工精度。
3. 切削工艺参数:如切削速度、进给量、切削深度和切削方向等,都会对零件的尺寸和形状精度产生影响。
4. 加工环境:加工环境的湿度、温度、气压等也会对机床加工精度产生影响。
特别是在高温、潮湿的环境中长时间工作,会导致机床部件热膨胀和受潮,进而影响机床加工精度。
二、提高方法1. 优化机床结构:通过提高机床的机械结构精度,例如采用高刚性材料,优化结构设计,优化装配工艺等,以提高机床加工精度和稳定性。
2. 提高控制系统精度:控制系统是数控机床的重要组成部分。
通过对机床控制系统进行优化,提高控制精度、数据传输速率和控制方式等。
例如采用高精度伺服电机、编码器、传感器等辅助检测设备,提高机床的动态响应能力和精度。
3. 优化加工工艺:根据工件材料的特性,优化加工刀具的选型、切削工艺参数等,以确保加工过程中的稳定性和精度。
4. 控制加工环境:通过控制加工环境的温度、湿度、气压等条件,提高机床加工精度和稳定性。
综上所述,数控机床加工精度的影响因素和提高方法是相互关联的。
只有综合考虑机床结构、控制系统、加工工艺和加工环境等各个方面因素,才能最大限度的提高机床加工精度和稳定性,从而满足不同的加工要求。
影响数控机床加工精度的相关因素及改善对策
影响数控机床加工精度的相关因素及改善对策数控机床是现代制造业中最重要的设备之一,具有高效、精确和自动化的特点。
数控机床的加工精度受到许多因素的影响,因此需要采取相应的改善对策才能提高加工精度。
本文将探讨影响数控机床加工精度的相关因素,并提出改善对策。
数控机床的加工精度受到机床的结构刚度和热变形的影响。
结构刚度不足会导致机床在加工过程中发生弯曲和振动,进而影响加工精度。
热变形是指在加工过程中机床由于受热而发生形变,也会导致加工精度降低。
为了改善这些问题,可以采取以下对策:1. 提高机床的结构刚度。
可以通过采用高强度材料、增加结构件的截面尺寸和改进结构设计等方式来提高机床的结构刚度。
2. 控制机床的温升。
可以通过优化冷却系统、增加冷却剂的流量和改善冷却剂的循环等方式来控制机床的温升,从而减小热变形对加工精度的影响。
数控机床的加工精度还受到刀具和夹具的影响。
刀具的磨损和误差会导致加工精度降低,夹具的刚性和稳定性也会影响加工精度。
为了改善这些问题,可以采取以下对策:1. 定期检查和更换刀具。
定期对刀具进行检查,发现磨损和误差时及时更换,以保证切削的稳定性和精度。
2. 加强夹具的刚性和稳定性。
可以采用更牢固的夹具和提高夹具的刚性,减小夹具的变形和松动,从而提高加工精度。
1. 优化控制算法。
可以通过优化控制算法,提高控制系统的精度和响应速度,以达到提高加工精度的目的。
2. 定期维护和校准控制系统。
定期对控制系统进行维护和校准,确保其精度和稳定性,从而提高加工精度。
影响数控机床加工精度的因素包括机床的结构刚度和热变形、刀具和夹具的磨损和误差,以及控制系统的精度和稳定性等。
通过采取相应的改善对策,可以提高加工精度,并满足现代制造业对高精度加工的要求。
数控机床操作中的常见问题及解决方案
数控机床操作中的常见问题及解决方案在数控机床操作过程中,常常会遇到一些常见问题,这些问题可能会影响到机床的正常运行和加工效率。
本文将针对数控机床操作中的常见问题进行详细阐述,并提供解决方案。
一、加工精度不达标数控机床在加工过程中,如果出现加工精度不达标的情况,可能会导致产品质量不合格。
造成加工精度不达标的原因可能有很多,比如机床本身的精度不高、刀具磨损、工件夹持不稳等。
解决这些问题的方法包括:定期对机床进行维护保养,及时更换磨损严重的刀具,合理选择夹具和夹具方式等。
二、程序设置错误在进行数控机床操作时,如果程序设置错误,可能会导致加工出现偏差或者其他问题。
程序设置错误的原因可能是操作人员操作不当、程序编写错误等。
解决这些问题的方法包括:加强操作人员的技术培训,严格按照要求编写程序,并在操作前进行程序的验证和检查。
三、冷却液不足或不良在数控机床的加工过程中,冷却液的作用非常重要。
如果冷却液不足或者质量不良,可能会导致刀具过热、切削力增大等问题。
解决这些问题的方法包括:定期检查冷却液的量和质量,确保冷却液的使用符合规定。
四、刀具选择不当刀具是数控机床加工中非常重要的一环,刀具的选择不当可能会导致加工效率低下、刀具寿命缩短等问题。
解决这些问题的方法包括:根据工件材料和加工要求合理选择刀具,加强刀具的保养和管理,及时更换磨损严重的刀具。
五、进给速度过快或过慢在数控机床操作中,进给速度过快或过慢都会对加工效果产生不良影响。
解决这些问题的方法包括:根据工件材料和刀具情况合理设置进给速度,进行试切试车后再正式加工,及时调整进给速度。
综上所述,数控机床操作中的常见问题其实并不难解决,关键在于加强操作人员的技术培训,规范操作流程,定期对机床进行维护保养,合理选择刀具和冷却液,严格按照要求设置程序等,只有这样才能确保数控机床在工作中发挥出最佳的效果。
希望本文提供的解决方案对您有所帮助。
数控车床加工精度的影响因素与提高策略
数控车床加工精度的影响因素与提高策略数控车床是一种高精度加工工具,能够实现复杂零部件的加工,具有加工精度高、效率高、稳定性好等优点。
在实际加工过程中,由于各种因素的影响,数控车床的加工精度往往无法达到理想状态。
为了提高数控车床的加工精度,必须深入分析影响加工精度的因素,并制定相应的提高策略。
1. 数控系统的精度和稳定性数控系统是整个数控车床的控制核心,其精度和稳定性直接影响着加工精度。
如果数控系统的精度不高或者稳定性差,就会导致加工精度的波动和不稳定。
2. 机床的动态性能机床的动态性能是指在加工过程中,机床在运动、进给、回程等过程中的动态响应能力。
如果机床的动态性能不好,就会导致加工过程中的振动和变形,从而影响加工精度。
3. 刀具的选择和磨削刀具是数控车床加工的关键工具,其选择和磨削直接影响着加工精度。
如果选择的刀具不合适或者刀具磨削不到位,就会导致切削力不稳定,从而影响加工精度。
4. 工件材料和切削参数工件材料的硬度和切削参数的选择也是影响加工精度的重要因素。
如果工件材料过硬或者切削参数选择不当,就会导致切削力过大或者切屑排出不畅,从而影响加工精度。
5. 加工环境的稳定性加工环境的稳定性包括温度、湿度、气压等各种因素。
如果加工环境的稳定性不好,就会导致机床和刀具的稳定性受到影响,从而影响加工精度。
6. 操作人员的技术水平操作人员的技术水平直接影响着数控车床的加工精度。
如果操作人员技术水平不高或者操作不规范,就会导致加工精度的波动和不稳定。
以上就是影响数控车床加工精度的主要因素,下面我们将针对这些因素提出相应的提高策略。
二、提高数控车床加工精度的策略1. 提高数控系统的精度和稳定性要提高数控系统的精度和稳定性,首先需要选择高质量的数控系统,并严格按照操作手册进行安装和调试。
要注意对数控系统的维护和保养,及时清理内部灰尘和异物,保持系统的稳定性。
2. 改善机床的动态性能为了改善机床的动态性能,可以采取加固机床床身、改善导轨精度、提高伺服系统的响应速度等措施。
对数控机床随机性精度超差故障处理范文
对数控机床随机性精度超差故障处理范文对数控机床随机性精度超差故障进行处理是一项重要的工作,关系到机床的正常运行和加工质量的保证。
本文将从以下几个方面进行详细阐述:故障原因分析、故障处理策略、故障处理步骤和故障预防措施。
一、故障原因分析数控机床随机性精度超差故障的原因一般可归纳为以下几点:1. 机床结构刚度不足。
2. 机床运动传动系统的定位精度不高。
3. 机床工作环境的振动和干扰。
4. 刀具磨损导致切削精度下降。
5. 系统参数设置不合理。
二、故障处理策略对于数控机床随机性精度超差故障,我们可以采取以下策略进行处理:1. 针对机床结构刚度不足的问题,可以通过加强机床结构的设计和制造,提高刚度和稳定性。
2. 针对机床运动传动系统的定位精度问题,可以进行传动系统的调整和维护,确保定位精度在允许范围内。
3. 针对机床工作环境的振动和干扰问题,可以采取隔离措施,如加装减振器、使用阻尼材料等。
4. 针对刀具磨损导致切削精度下降的问题,可以定期更换刀具,并进行刀具的调整和维护。
5. 针对系统参数设置不合理的问题,可以通过参数优化和调整,使得系统参数适应当前工作状态。
三、故障处理步骤1. 了解故障现象和具体表现,进行故障定位。
通过观察和测量,确定随机性精度超差的故障原因。
2. 根据故障原因分析,制定具体的处理方案和策略。
可以结合现场实际情况和经验,找出最合适的处理方法。
3. 开始实施处理方案。
根据处理方案,逐步进行故障处理。
可以采用修复、更换、调整等方法,具体根据故障原因来确定。
4. 处理完毕后,进行功能测试和精度检测,验证故障是否已经解决。
如果未解决,可以进行进一步的故障排查和处理。
5. 对处理结果进行记录和总结。
将处理的结果和方法进行记录,为以后的故障处理提供参考和借鉴。
四、故障预防措施为了避免数控机床随机性精度超差故障的发生,我们可以采取以下预防措施:1. 定期检查和维护机床结构和传动系统,确保其刚度和定位精度在正常范围内。
数控机床的加工精度误差分析与修正方法
数控机床的加工精度误差分析与修正方法随着现代工业的快速发展,数控机床已成为传统机床加工的重要替代品。
然而,由于加工过程中产生的误差,数控机床的加工精度一直是制约工件质量的关键问题。
因此,对数控机床的加工精度误差进行分析和修正方法的研究,对于提高加工质量和生产效率具有重要意义。
本文将从数控机床加工精度误差的原因和影响、误差分析方法以及误差修正方法三个方面探讨该问题。
首先,我们来了解数控机床加工精度误差的原因和影响。
数控机床加工精度误差是由多种因素综合导致的。
首先,机床本身的结构刚度和工作台移动精度会影响加工精度。
其次,刀具直径、刀具偏心、刀具磨损等因素也会对加工精度产生影响。
此外,还有零件本身的工艺特性和热变形等因素需要考虑。
这些误差会直接影响到工件的尺寸精度、形状精度和位置精度,进而影响到整体加工质量。
其次,针对数控机床加工精度误差进行分析的方法有多种。
常见的分析方法包括几何误差、运动误差和热变形误差等。
几何误差是指由于机床结构、传动系统和加工过程中的松弛等因素引起的误差。
运动误差包括静态误差和动态误差。
静态误差是指机床在运动过程中由于扭矩、刚度、制动等因素引起的误差,动态误差则是指机床在高速运动时由于质量不平衡、悬臂负荷等因素引起的误差。
热变形误差是指由于机床加工过程中产生的热量导致机床结构发生形变而引起的误差。
通过对这些误差的分析,可以确定误差的大小和来源,进而采取相应措施进行修正。
最后,针对数控机床加工精度误差的修正方法有多种。
常见的修正方法包括刀补偿、补偿器调整、刀位调整、扩展补偿等。
刀补偿是指通过调整刀具的补偿量来补偿误差。
补偿器调整是指通过调整数控系统中的补偿器参数来进行误差修正。
刀位调整是指通过调整刀具的位置来进行误差修正。
扩展补偿是指通过增加补偿器来对误差进行补偿。
这些方法可以根据具体的误差情况和加工要求进行选择和应用,以实现更高的加工精度。
综上所述,数控机床的加工精度误差分析与修正方法对于提高加工质量和生产效率具有重要意义。
数控机床加工精度异常的诊断处理与预防
数控机床加工精度异常的诊断处理与预防当前,数控机床在生产制造行业得以普遍应用。
以航空制造业为例,生产活动离不开数控机床。
在实际应用中,机床可能发生多种多样的故障,其中加工精度异常是最为常见的问题。
在生产活动中,常有操作人员反映加工精度异常,不满足设计标准要求,直接影响车间正常的生产计划。
本文结合实际案例,探讨加工精度异常的形成原因,提出相应的诊断处理和预防方法。
1 数控机床加工精度异常的常见原因1.1 机械传动部件故障THM6350卧式加工中心,由宁江机床厂生产,数控系统采用FAGOR8055。
机床在铣削壳体时,Z轴进给异常造成过切,切削误差量为1mm。
现场调查发现,故障具有突发性,进给轴处于点动模式、MDI模式,能够正常进给,而且能正常回到参考点,不存在报警信息,因此电气硬件故障可以排除。
故障检查包括以下几点:(1)机床精度异常时的加工程序段,以刀具的长度补偿为重点,对加工时设定的坐标系进行再次计算,以检验准确性。
(2)处于点动模式下,对Z轴进行多次运动,此时听见Z轴出现异常声响,快速点动状态下,这个噪声更大,可以确定是机械系统出现故障。
(3)检查Z轴的运动精度,辅助应用手摇脉冲发生器,对Z轴进行移动,将手脉倍率定位为1×100挡,辅助利用百分表,分析Z轴的运动是否正常。
首先确定运动精度满足要求,然后朝着正向进行运动,在手脉变化的同时,Z轴运动距离始终为0.1mm,可见电机正常运动,定位满足精度要求。
反映到机床的运动位移量上,包括以下四个阶段:第一阶段,机床运动距离d1>d=0.1mm;第二阶段,电机进给量d-0.1mm>d2>d3;第三阶段,机床机构没有发生实质性的移动,表现为反向间隙;第四阶段,机床的运动距离与手脉的给定值数值相等。
说明机床运动正常,此时补偿反向间隙,表现出以下特征:第三阶段能补偿,第一、二、四阶段依然存在问题。
其中,第一阶段最为严重,加工精度偏差明显增大。
分析补偿过程可见,随着间隙补偿的增大,d1的移动距离也随之增大,两者具有正相关性。
解析数控机床9大精度故障原因及解决方案 - 副本
解析数控机床9大精度故障原因及解决方案导语:精度一直是衡量一台数控机床质量好坏的重要标准之一,而很多朋友的机床在使用了一段时间之后存在精度丢失,以下9招,让你的机床重新焕发活力!精度一直是衡量一台数控机床质量好坏的重要标准之一,而很多朋友的机床在使用了一段时间之后存在精度丢失,以下9招,让你的机床重新焕发活力!1、工件尺寸准确,表面光洁度差故障原因:刀具刀尖受损,不锋利;机床产生共振,放置不平稳;机床有爬行现象;加工工艺不好。
解决方案:刀具磨损或受损后不锋利,则重新磨刀或选择更好的刀具重新对刀;机床产生共振或放置不平稳,调整水平,打下基础,固定平稳;机械产生爬行的原因为拖板导轨磨损厉害,丝杠滚珠磨损或松动,机床应注意保养,上下班之后应清扫铁丝,并及时加润滑油,以减少摩擦;选择适合工件加工的冷却液,在能达到其他工序加工要求的情况下,尽量选用较高的主轴转速。
2、工件产生锥度大小头现象故障原因:机床放置的水平没调整好,一高一低,产生放置不平稳;车削长轴时,贡献材料比较硬,刀具吃刀比较深,造成让刀现象;尾座顶针与主轴不同心。
解决方案:使用水平仪调整机床的水平度,打下扎实的地基,把机床固定好提高其韧性;选择合理的工艺和适当的切削进给量避免刀具受力让刀;调整尾座。
3、驱动器相位灯正常,而加工出来的工件尺寸时大时小故障原因:机床拖板长期高速运行,导致丝杆和轴承磨损;刀架的重复定位精度在长期使用中产生偏差;拖板每次都能准确回到加工起点,但加工工件尺寸仍然变化。
此种现象一般由主轴引起,主轴的高速转动使轴承磨损严重,导致加工尺寸变化。
金属加工微信,内容不错,值得关注。
解决方案:用百分表靠在刀架底部,同时通过系统编辑一个固定循环程序,检查拖板的重复定位精度,调整丝杆间隙,更换轴承;用百分表检查刀架的重复定位精度,调整机械或更换刀架;用百分表检测加工工件后是否准确回到程序起点,若可以,则检修主轴,更换轴承。
4、工件尺寸与实际尺寸相差几毫米,或某一轴向有很大变化故障原因:快速定位的速度太快,驱动和电机反应不过来;在长期摩擦损耗后机械的拖板丝杆和轴承过紧卡死;刀架换刀后太松,锁不紧;编辑的程序错误,头、尾没有呼应或没取消刀补就结束了;系统的电子齿轮比或步距角设置错误。
影响数控机床加工精度的相关因素及改善对策
影响数控机床加工精度的相关因素及改善对策数控机床是现代制造业中不可或缺的设备之一,其加工精度直接决定着制造产品的质量。
然而,数控机床的加工精度不仅受制于机床本身的技术水平,还受到众多因素的影响。
本文将从以下四个方面阐述影响数控机床加工精度的因素及改善对策。
一、数控机床本身因素1.结构设计数控机床需要经过设计、加工和组装等工艺过程,其结构设计和制造质量直接影响加工精度。
比如,机床床身的刚性、质量,导轨的平整度、硬度,主轴的动态特性等都是影响加工精度的重要因素。
因此,在设计、加工和组装过程中,应注重机床各部分的结构合理性和质量。
2.控制系统控制系统是数控机床的关键之一,其精度和稳定性直接关系到数控机床的加工精度。
如果控制系统出现误差或不稳定的现象,则会直接导致机床的加工误差变大。
因此,控制系统的设计、制造和使用都需要高度的专业技术和严格的品质管理。
二、刀具及夹具因素数控机床的刀具和夹具对加工精度也有重要的影响。
如果刀具选择不当或磨损严重,夹具夹紧不稳等问题,都会导致机床的加工精度下降。
因此,在选择、使用和维护刀具及夹具时,应考虑其质量和稳定性,定期进行检查和更换。
三、材料及工件因素数控机床加工精度也受到材料和工件的影响。
材料的硬度、粘度、切削性等特性,以及工件形状、尺寸、表面粗糙度等都会影响加工精度。
因此,在选择材料和加工工件时,应考虑到机床加工的特性和要求,避免对加工精度的影响。
四、环境因素环境因素也对数控机床的加工精度产生重要影响。
比如,温度、湿度、振动、噪音等都会影响机床的运行稳定性和加工精度。
因此,在使用数控机床的过程中,还需要注意机床周围环境的调节和管理,保证机床稳定运行。
综上所述,影响数控机床加工精度的因素十分多样化,需要在各个方面进行考虑和改进。
提高数控机床加工精度的关键是要注重机床本身结构的合理性和质量、加强刀具和夹具的管理维护、选择合适的材料和工件,并注意机床周围环境的调节和管理。
影响数控车床加工精度的因素及应对措施
一、加工精度异常实例分析1.1 案例一1. 现象。
某采用Frank 系统的立式加工中心,在连杆模具加工过程中,垂线Z 轴进给异常,出现1mm 切削误差,即Z 方向过切。
2. 诊断与处理。
在手动输入数据方式下,各个轴运动正常,回参考点也正常,排除了电气控制部分的硬件故障。
随后检查故障发生时运行加工程序段,尤其是刀具补偿,坐标系的校对和计算。
在点动方式下,诊断Z 轴工况,发现Z 轴向上的工况存在噪音,尤其是快速点动时,噪音非常明显,据此可分析出可能存在机械方面的问题。
检查Z 轴精度,使用手摇脉冲发生器移动Z 轴,1*100 档位,结合百分表检查Z 轴工况。
当Z 轴保持正常运动状态后,正向运动每一步的实际距离都为0.1mm,说明定位精度良好。
而在反向运动时,发现运动距离出现波动,表现出反向间隙,无论怎么补偿都存在波动,而且在补偿中发现,间隙补偿越大,在反向运动初期阶段波动越大。
分析判断可能是电机存在异常,或是机械有故障,还可能是丝杠有间隙。
于是分离电机和丝杠分开检查,发现电机运动正常。
而检查机械部分时发现确实存在故障,拆开设备后发现轴承有磨损,且部分滚珠脱落。
更换后恢复。
1.2 案例二1. 现象。
同样是Frank 系统的加工中心,在X 轴上精度异常。
误差范围0.008~1.2mm。
2. 诊断与处理。
经检查工件坐标系已经按照要求设置好。
按照设置好的坐标系运行程序,记录运动后的机械坐标值,然后转为手动模式,输入数据运行程序,待运动结束记录坐标值,对比两个坐标值发现存在0.352mm 的距离误差。
反复进行比对试验,发现每次运动后的坐标值都不一样。
比对百分表发现记录的坐标值与实际位置误差基本相同。
认为可能是X 轴重复定位存在较大误差,进一步检查X 轴定位精度和反向间隙,并对于产生的误差进行补偿,发现不起作用,进而认为可能是系统参数或光栅尺存在故障,但是系统未给出报警信息,无法确定原因,因此,进一步检查发现,当X 轴去除使能后,垂直方向上的主轴箱下落,产生了误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控机床加工精度异常的常见原因及处理生产中经常会遇到数控机床加工精度异常的故障。
此类故障隐蔽性强、诊断难度大。
导致此类故障的原因主要有五个方面:(1)机床进给单位被改动或变化。
(2)机床各轴的零点偏置(NULL OFFSET)异常。
(3)轴向的反向间隙(BACKLASH)异常。
(4)电机运行状态异常,即电气及控制部分故障。
(5)机械故障,如丝杆、轴承、轴联器等部件。
此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。
1. 系统参数发生变化或改动系统参数主要包括机床进给单位、零点偏置、反向间隙等等。
例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。
机床修理过程中某些处理,常常影响到零点偏置和间隙的变化,故障处理完毕应作适时地调整和修改;另一方面,由于机械磨损严重或连结松动也可能造成参数实测值的变化,需对参数做相应的修改才能满足机床加工精度的要求。
2. 机械故障导致的加工精度异常一台THM6350卧式加工中心,采用FANUC0i-MA数控系统。
一次在铣削汽轮机叶片的过程中,突然发现Z轴进给异常,造成至少1mm的切削误差量(Z向过切)。
调查中了解到:故障是突然发生的。
机床在点动、MDI操作方式下各轴运行正常,且回参考点正常;无任何报警提示,电气控制部分硬故障的可能性排除。
分析认为,主要应对以下几方面逐一进行检查。
1)检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。
2)在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。
由此判断,机械方面可能存在隐患。
3)检查机床Z轴精度。
用手脉发生器移动Z轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给0.1mm),配合百分表观察Z轴的运动情况。
在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床Z轴运动的实际距离d=d1=d2=d3…=0.1mm,说明电机运行良好,定位精度良好。
而返回机床实际运动位移的变化上,可以分为四个阶段:①机床运动距离d1>d=0.1mm(斜率大于1);②表现出为d=0.1mm>d2>d3(斜率小于1);③机床机构实际未移动,表现出最标准的反向间隙;④机床运动距离与手脉给定值相等(斜率等于1),恢复到机床的正常运动。
无论怎样对反向间隙(参数1851)进行补偿,其表现出的特征是:除第③阶段能够补偿外,其他各段变化仍然存在,特别是第①阶段严重影响到机床的加工精度。
补偿中发现,间隙补偿越大,第①段的移动距离也越大。
分析上述检查认为存在几点可能原因:一是电机有异常;二是机械方面有故障;三是存在一定的间隙。
为了进一步诊断故障,将电机和丝杠完全脱开,分别对电机和机械部分进行检查。
电机运行正常;在对机械部分诊断中发现,用手盘动丝杠时,返回运动初始有非常明显的空缺感。
而正常情况下,应能感觉到轴承有序而平滑的移动。
经拆检发现其轴承确已受损,且有一颗滚珠脱落。
更换后机床恢复正常。
3. 机床电气参数未优化电机运行异常一台数控立式铣床,配置FANUC0-MJ数控系统。
在加工过程中,发现X轴精度异常。
检查发现X轴存在一定间隙,且电机启动时存在不稳定现象。
用手触摸X轴电机时感觉电机抖动比较严重,启停时不太明显,JOG方式下较明显。
分析认为,故障原因有两点,一是机械反向间隙较大;二是X轴电机工作异常。
利用FANUC系统的参数功能,对电机进行调试。
首先对存在的间隙进行了补偿;调整伺服增益参数及N脉冲抑制功能参数,X轴电机的抖动消除,机床加工精度恢复正常。
4. 机床位置环异常或控制逻辑不妥一台TH61140镗铣床加工中心,数控系统为FANUC18i,全闭环控制方式。
加工过程中,发现该机床Y轴精度异常,精度误差最小在0.006mm 左右,最大误差可达到1.400mm。
检查中,机床已经按照要求设置了G54工件坐标系。
在MDI方式下,以G54坐标系运行一段程序即“G90G54 Y80F100;M30;”,待机床运行结束后显示器上显示的机械坐标值为“-1046.605”,记录下该值。
然后在手动方式下,将机床Y轴点动到其他任意位置,再次在MDI方式下执行上面的语句,待机床停止后,发现此时机床机械坐标数显值为“-1046.992”,同第一次执行后的数显示值相比相差了0.387mm。
按照同样的方法,将Y轴点动到不同的位置,反复执行该语句,数显的示值不定。
用百分表对Y轴进行检测,发现机械位置实际误差同数显显示出的误差基本一致,从而认为故障原因为Y轴重复定位误差过大。
对Y轴的反向间隙及定位精度进行仔细检查,重新作补偿,均无效果。
因此怀疑光栅尺及系统参数等有问题,但为什么产生如此大的误差,却未出现相应的报警信息呢?进一步检查发现,该轴为垂直方向的轴,当 Y轴松开时,主轴箱向下掉,造成了超差。
对机床的PLC逻辑控制程序做了修改,即在Y轴松开时,先把Y轴使能加载,再把Y轴松开;而在夹紧时,先把轴夹紧后,再把Y轴使能去掉。
调整后机床故障得以解决。
数控机床加工精度异常的常见原因及处理生产中经常会遇到数控机床加工精度异常的故障。
此类故障隐蔽性强、诊断难度大。
导致此类故障的原因主要有五个方面:(1)机床进给单位被改动或变化。
(2)机床各轴的零点偏置(NULL OFFSET)异常。
(3)轴向的反向间隙(BACKLASH)异常。
(4)电机运行状态异常,即电气及控制部分故障。
(5)机械故障,如丝杆、轴承、轴联器等部件。
此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。
1. 系统参数发生变化或改动系统参数主要包括机床进给单位、零点偏置、反向间隙等等。
例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。
机床修理过程中某些处理,常常影响到零点偏置和间隙的变化,故障处理完毕应作适时地调整和修改;另一方面,由于机械磨损严重或连结松动也可能造成参数实测值的变化,需对参数做相应的修改才能满足机床加工精度的要求。
2. 机械故障导致的加工精度异常一台THM6350卧式加工中心,采用FANUC0i-MA数控系统。
一次在铣削汽轮机叶片的过程中,突然发现Z轴进给异常,造成至少1mm的切削误差量(Z向过切)。
调查中了解到:故障是突然发生的。
机床在点动、MDI操作方式下各轴运行正常,且回参考点正常;无任何报警提示,电气控制部分硬故障的可能性排除。
分析认为,主要应对以下几方面逐一进行检查。
1)检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。
2)在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。
由此判断,机械方面可能存在隐患。
3)检查机床Z轴精度。
用手脉发生器移动Z轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给0.1mm),配合百分表观察Z轴的运动情况。
在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床Z轴运动的实际距离d=d1=d2=d3…=0.1mm,说明电机运行良好,定位精度良好。
而返回机床实际运动位移的变化上,可以分为四个阶段:①机床运动距离d1>d=0.1mm(斜率大于1);②表现出为d=0.1mm>d2>d3(斜率小于1);③机床机构实际未移动,表现出最标准的反向间隙;④机床运动距离与手脉给定值相等(斜率等于1),恢复到机床的正常运动。
无论怎样对反向间隙(参数1851)进行补偿,其表现出的特征是:除第③阶段能够补偿外,其他各段变化仍然存在,特别是第①阶段严重影响到机床的加工精度。
补偿中发现,间隙补偿越大,第①段的移动距离也越大。
分析上述检查认为存在几点可能原因:一是电机有异常;二是机械方面有故障;三是存在一定的间隙。
为了进一步诊断故障,将电机和丝杠完全脱开,分别对电机和机械部分进行检查。
电机运行正常;在对机械部分诊断中发现,用手盘动丝杠时,返回运动初始有非常明显的空缺感。
而正常情况下,应能感觉到轴承有序而平滑的移动。
经拆检发现其轴承确已受损,且有一颗滚珠脱落。
更换后机床恢复正常。
3. 机床电气参数未优化电机运行异常一台数控立式铣床,配置FANUC0-MJ数控系统。
在加工过程中,发现X轴精度异常。
检查发现X轴存在一定间隙,且电机启动时存在不稳定现象。
用手触摸X轴电机时感觉电机抖动比较严重,启停时不太明显,JOG方式下较明显。
分析认为,故障原因有两点,一是机械反向间隙较大;二是X轴电机工作异常。
利用FANUC系统的参数功能,对电机进行调试。
首先对存在的间隙进行了补偿;调整伺服增益参数及N脉冲抑制功能参数,X轴电机的抖动消除,机床加工精度恢复正常。
4. 机床位置环异常或控制逻辑不妥一台TH61140镗铣床加工中心,数控系统为FANUC18i,全闭环控制方式。
加工过程中,发现该机床Y轴精度异常,精度误差最小在0.006mm 左右,最大误差可达到1.400mm。
检查中,机床已经按照要求设置了G54工件坐标系。
在MDI方式下,以G54坐标系运行一段程序即“G90G54 Y80F100;M30;”,待机床运行结束后显示器上显示的机械坐标值为“-1046.605”,记录下该值。
然后在手动方式下,将机床Y轴点动到其他任意位置,再次在MDI方式下执行上面的语句,待机床停止后,发现此时机床机械坐标数显值为“-1046.992”,同第一次执行后的数显示值相比相差了0.387mm。
按照同样的方法,将Y轴点动到不同的位置,反复执行该语句,数显的示值不定。
用百分表对Y轴进行检测,发现机械位置实际误差同数显显示出的误差基本一致,从而认为故障原因为Y轴重复定位误差过大。
对Y轴的反向间隙及定位精度进行仔细检查,重新作补偿,均无效果。
因此怀疑光栅尺及系统参数等有问题,但为什么产生如此大的误差,却未出现相应的报警信息呢?进一步检查发现,该轴为垂直方向的轴,当 Y轴松开时,主轴箱向下掉,造成了超差。
对机床的PLC逻辑控制程序做了修改,即在Y轴松开时,先把Y轴使能加载,再把Y轴松开;而在夹紧时,先把轴夹紧后,再把Y轴使能去掉。
调整后机床故障得以解决。