反函数的导数、反三角函数的导数教案1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反函数的导数、反三角函数的导数教案1
教学目的
1(通过复习提问使学生巩固反函数的概念;
2(使学生掌握反函数求导法则及其推导方法;
3(使学生会用反函数求导公式推导并熟练掌握四个反三角函数的求导公式( 教学重点和难点
反函数的求导法则和四个反三角函数的求导公式是本节课的重点(本节课的难点是反函数的求导(
教学过程
一、复习提问
1(什么叫函数 y,f(x)的反函数,
(请一名学生回答(因为反函数是高中一年级所学内容,学生已经生疏,可能答得不好,可由其他学生补充或纠正,最后教师应准确地给学生讲述反函数概念(另外,上一节课应布置学生预先复习反函数概念()
-1 如果给定函数y,f(x)的对应关系f是一一对应,那么f的逆对应f所确定的函数x,
-1 f(y)就叫做函数y,f(x)的反函数(
-1 强调指出:这里所说的函数关系f应是一一对应,否则就没有逆对应f,也就不可
-1能有反函数x,f(y)(
2(下列函数有反函数吗,若有请写出它的反函数表示式:
n (1)y,2x,3;(2)y,x(n为正整数)(
(请一名学生板演()
n为偶数时,函数关系不是一一对应,故没有反函数(
二、引入新课
为求反函数的导数,自然会想到互为反函数的两个函数的导数之间有无关系,如果有,其规律是什么,为此,我们先就提问第2题的两个实例进行探讨(
(1)求y,2x,3的导数(
x y',2(
n (2)求函数y,x(n为奇数)的导数
xn-1 y',nx(
观察:由(1)可见
那么(2)是否也有同样的规律呢,不妨试一试:
讲解新课
如果Δy?0,上等式显然成立(
事实上,当Δx?0时,一定有Δy?0(为什么,请学生思考并回答)(否则不等至此,我们可以肯定上面所提出的反函数的求导法则如下:
或记作
2(几何解释(图2,7):
由导数的几何意义可知
x y',tanα,x',tanβ( y
3(反三角函数的导数
有了反函数的求导法则,我们就可以求得反三角函数的导数了( 由反函数的求导法则有
因此我们得到公式:
追问:在(3)处为什么要陈述这些条件,没有这些条件可以吗,
因为导数y'应是x的函数,因此必须将y还原为x的表达式( x 用类似的方法,可求得另外三个反三角函数的求导公式:
(这三个公式的证明由学生课下完成()
追问:题目所给的条件x,0,在解题过程中用于何处,
例4 求y,arctan2x的导数(
四、课堂练习
求下列函数的导数:
(请两名学生分别板演1、2两题和3、4两题,其余学生做在课堂练习本上(最后教师带领全体学生订正学生所做练习题()
五、小结
1(反函数求导法则:
2(根据反函数求导法则求得四个反三角函数的求导公式:
这里要注意两点:(1)反正弦函数和反余弦函数的导数不包括x,,1和x,1两个点;(2)反正弦函数的导数与反余弦函数的导数只差一个符号;反正切函数与反余切函数的导数也只差一个符号(
六、布置作业
1(试证明后三个反三角函数的求导公式(
2(求下列函数的导数:
3(求下列函数的导数: