非线性控制系统的分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章非线性控制系统的分析
自测题
1. 变增益控制系统结构图及其非线性元件G N的输入输出特性分别如T图8-1和8-2所示,该系统开始处于零初始状态,若输入信号r(t)=R⨯1(t),且R>e0,kK<1/4T T图 8-1 T图 8-2 2. 设非线性系统如T图8-3所示,输入为单位斜坡函数,试在e e -平面上作出相轨迹。 T图 8-3 3.具有非线性阻尼的控制系统结构图如T图8-4所示,假设系统开始处于静止状态,系统常数为K=4,K0=1,e0=0.2。试分析在速度输入函数r(t)=0.5+0.1t作用下的根轨迹。 · 43· ·44· y T 图 8-4 4. 非线性系统结构图如T 图8-5所示,a =0.5,K =8,T =0.5s ,K 1=0.5,要求: (1)当开关打开时,e (0)=2,0)0( e 的相轨迹; (2)当开关闭合时,绘制相同初始条件的相轨迹,并说明测速反馈的作用。 T 图 8-5 5. 将T 图8-6和8-7所示非线性系统简化成典型结构形式,并写出线性部分的传递函数。 T 图 8-6 T 图 8-7 6. 根据已知的非线性描述函数,求T 图8-8所示各种非线性的描述函数。 ·45· (a) (b) T 图8-8 7. 已知系统的结构图如T 图8-9所示,K =4,M =1,k =1,r (t )=1(t ),c(0)=0, 0)0(=c 。在e e - 平面上画出相轨迹,并画出c (t )的曲线,且说明运动情况(若有稳态误差,则计算其值,若有振荡,则计算振荡周期)。 T 图 8-9 8. 系统结构图如T 图8-10所示,试将其归化为一个非线性环节和一个线性部分串联的典型结构。 T 图 8-10 9. 在T 图8-11所示系统中, (1)确定使系统稳定的开环放大倍数K ; (2)分析滞环宽度h 对极限环工作周期的影响; ·46· (3)试提出一个可实现的设计方案,使K 为确定数值(如K =10)时系统能稳定工作。 T 图 8-11 10. 一非线性系统如T 图8-12所示,且知非线性元件的描述函数A M A N π4)(= ,初始条件h c =)0(,0)0(=c ,要求: (1)用描述函数法求解系统的自激振荡周期; (2)再用解析法求解系统的自激振荡周期; (3)求用描述函数法所得计算结果的误差(设用解析法所得结果为精确值)。 T 图 8-12 11. 已知非线性系统结构图如T 图8-13所示,图中非线性环节的描述函数为 )()(02 6 >++= A A A A N ,试用描述函数法确定: (1)该非线性系统稳定、不稳定以及产生周期运动时,线性部分的K 值范围: (2)判断周期运动的稳定性,并计算稳定周期运动的振幅与频率。 T 图 8-13 M a t lab 在非线性系统分析中的应用 本节主要介绍四种最常见的非线性环节的仿真模型。 ·47· 1.饱和非线性特性 M 图8-2所示的饱和非线性环节的数学描述为 ⎪⎩ ⎪ ⎨⎧≥<<--≤-=s u s s u s u s u s x 根据上述关系,由M ATLAB 编写的饱和非线性函数为 f unct io n x = sa tu ra t io n (u ,s) if (abs(u ) > = s) if(u > 0) x = s; e ls e x = -s; M 图 8-1 饱和非线性环节 en d e ls e x = u ; en d 2. 死区非线性特性 M 图8-2所示死区非线性环节的数学描述为 ⎪⎩ ⎪ ⎨⎧≥-<<--≤+=s u s u s u s s u s u x 0 根据上述关系,由M ATLAB 编写的死区非线 性函数为 f unct io n x = d e adzo ne (u ,s) if (abs(u ) > = s) if(u > 0) x = u - s; M 图 8-2 死区非线性环节 e ls e x = u + s; en d e ls e x = 0; en d 3. 滞环非线性特性 M 图8-3所示滞环非线性环节的数学描述为 ·48· ⎪⎩ ⎪ ⎨⎧-<<+>>-=其他 且且])1[(00)(00)()(T k x x u s kT u x u s kT u kT x 根据上述关系,由M ATLAB 编写的滞环非线 性函数为 f unct io n [x ,u 1] = ba c klash(u 1,u ,x 1,s) if (u > u 1) if((u - s) > = x 1)x = u – s;e ls e x = x 1;en d e ls e i f (u < u 1) if((u + s) < = x 1)x = u + s;e ls e x = x 1;en d M 图 8-3 滞环非线性环节 e ls e x = x 1; en d en d u 1 = u ; 其中 ,u 1和u 分别为可k -1时刻和k 时刻的输入量,x 1和x 分别为k -1和k 时刻的输出量。 4.继电器非线性特性 如M 图8-4所示的继电器非线性环节的 数学描述为 ⎩⎨ ⎧<->=0 u s u s x 根据上述关系,由M ATLAB 编写的继 电器非线性函数为 f unct io n x = si gn (u ,s) if(u > 0) x = s;en d M 图 8-4继电器非线性环节 if(u < 0) x = -s;en d 以上几种非线性环节的共同点是只需要一个参数s 就能反映出该环节的非线性特点,不过要注意到,各种非线性环节的放大倍数均假定为1,若不为1,则将其设法合入其前后的线性环节中。