非线性控制系统的分析
自动控制原理第七章

2013-12-13
<<自动控制原理>>第七章
9
4、非线性系统不适用叠加原理
在线性系统中,若干个信号作用于系统上,我们可以分 别求单独信号作用的响应,然后再叠加就可以求出总的响应。
这给分析综合线性系统带来了很大方便。通常在典型输入函
<<自动控制原理>>第七章
22
2013-12-13
<<自动控制原理>>第七章
23Leabharlann 二、相平面图的分析 1.线性系统奇点的类型 假设奇点在相平面的原点上, f ( x, x) 是解析函数,可用泰勒 级数将其在原点附近展开:
f ( x, x) f ( x, x) f ( x, x) f ( x, x) x 0 x 0 x x 0 x g ( x, x ) x x x 0 x 0 x 0 其中,g ( x, x) 是包含 x, x 二次以上的项,在原点附近,x, x 都很小,g ( x, x) 可以忽略。注意到在奇点处有
即
dx d ( x) dx dx
表示在 ( x, x) 点和 ( x, x) 点相轨迹曲线的斜率大小相等,符 号相反,故关于 x 轴对称。
2013-12-13 <<自动控制原理>>第七章 14
若 f ( x, x)是 x 的奇函数,即 f ( x, x) f ( x, x)
2013-12-13
<<自动控制原理>>第七章
17
c.系统的状态沿相轨迹曲线转移的方向
非线性系统的分析与控制

非线性系统的分析与控制一、引言非线性系统是指系统的输入与输出之间存在着非线性关系的一类系统。
非线性系统由于其复杂性和多样性,已经成为了现代自动控制与系统工程中的一个热门研究领域。
非线性系统的分析与控制是目前自动控制领域研究的重点之一。
本文主要介绍非线性系统的分析和控制方法。
二、非线性系统的描述非线性系统是指系统输入和输出之间存在非线性关系的系统。
非线性系统可以用数学模型来描述。
常见的一些非线性数学模型有:常微分方程、偏微分方程、差分方程、递推方程等。
非线性系统的特性可以归纳为以下几个方面:1.非线性系统的输入和输出之间存在非线性关系,即输出不是输入的线性函数。
2.非线性系统的行为不稳定,其输出随时间而变化。
3.非线性系统的行为是确定的,但是通常不能被解析地表示。
4.一些非线性系统可能会表现出周期性或者混沌现象。
三、非线性系统的分析方法对非线性系统进行分析是了解和掌握其行为的前提。
主要的分析方法有线性化法和相平面法。
1.线性化法线性化法是将非线性系统在某一特定点附近展开成一系列的一阶或者二阶泰勒级数,然后用线性系统来代替非线性系统,进而对非线性系统进行分析。
线性化法的优点是简单易行,但是必须要求非线性系统在特定点附近的行为与线性系统相似,否则线性化法就失效了。
2.相平面法相平面法通过画出非线性系统的相图来表示系统的行为,较常用的是相轨线和极点分析法。
相轨线是用非线性系统的相图来描述其行为。
相图是将系统的状态表示为一个点,它的坐标轴与系统的每个状态变量相关。
极点分析法则是在相平面上找出使系统输出输出的状态点,然后找出与这些状态点相关的所有极点,以确定出系统的稳定性。
四、非线性系统的控制方法目前,非线性系统的控制方法主要包括反馈线性化控制、自适应控制、滑动模式控制和模糊控制等。
1.反馈线性化控制反馈线性化控制方法以线性控制理论为基础,将非线性系统通过反馈线性化方法转化为等效的线性控制系统,以便使用线性控制理论进行控制。
非线性控制系统分析课件

非线性系统的行为复杂,难以用线性 系统的理论和方法进行分析和设计。
分类与比较
分类
根据非线性的性质,非线性控制系统可以分为连续时间非线性控制系统和离散时间非线性控制系统。
比较
连续时间非线性控制系统和离散时间非线性控制系统在分析和设计上有较大的差异。
常见非线性控制系统示例
描述:以下是一些常见的非线性控制系 统示例,包括电气系统、机械系统、化 工系统等。
非线性控制系统设
04
计
控制器设计
线性化设计方法
将非线性系统在平衡点附近线性 化,然后利用线性系统的设计方 法进行控制器设计。
反馈线性化设计方
法
通过引入适当的非线性反馈,将 非线性系统转化为线性系统,然 后进行控制器设计。
滑模控制设计方法
利用滑模面的设计,使得系统状 态在滑模面上滑动,并利用滑模 面的性质进行控制器设计。
相平面法
总结词
一种通过绘制相平面图来分析非线性系统动态特性的方法。
详细描述
相平面法通过将系统的状态变量绘制在二维平面上,直观地展示系统的动态行为,如极限环、分岔等。这种方法 适用于具有两个状态变量的系统。
平均法
总结词
一种通过将非线性系统的动态特性平均 化来简化分析的方法。
VS
详细描述
平均法通过在一定时间范围内对非线性系 统的动态特性进行平均,将非线性系统简 化为一个平均化的线性系统。这种方法适 用于具有周期性激励的非线性系统。
线性系统稳定性分析方法
通过求解特征方程或使用劳斯-赫尔维茨判 据等方法,可以判定线性系统的稳定性。
非线性系统稳定性分析
要点一
非线性系统的特性
非线性系统不具有叠加性和时不变性,其响应会受到初始 状态和输入信号的影响。
自动控制原理第七章非线性控制系统的分析

这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
线性与非线性控制系统的性能比较与分析

线性与非线性控制系统的性能比较与分析引言:控制系统是指通过一系列的输入和输出信号间的相互关系来实现对被控对象的控制。
其中,线性控制系统和非线性控制系统是两种常见的控制系统类型。
本文将对线性控制系统和非线性控制系统的性能进行比较与分析,以帮助读者更好地了解两者的优劣之处。
一、线性控制系统的性能:1. 频率响应特性:线性控制系统的频率响应特性较为简单,可以使用传统的频率域分析方法进行系统的设计和分析。
例如,可以使用Bode图和Nyquist图等工具评估系统的幅频和相频特性,进一步优化系统的性能。
2. 稳定性分析:线性控制系统的稳定性分析相对较为简单,可以通过分析系统传递函数的根位置来判断系统的稳定性。
常见的稳定性准则包括Routh-Hurwitz准则和Nyquist稳定性判据等。
这使得线性控制系统的设计与分析更加便捷。
3. 控制性能指标:线性控制系统可以使用传统的性能指标来评估其控制性能。
常用的性能指标有超调量、调节时间和稳态误差等。
这些指标可以帮助工程师在系统设计过程中更好地优化系统的性能。
二、非线性控制系统的性能:1. 非线性特性:与线性控制系统相比,非线性控制系统具有更为复杂的特性。
由于非线性元件的存在,系统的频率响应不再是简单的幅频和相频特性。
因此,频域分析方法在非线性系统的设计和分析中会遇到困难。
2. 稳定性分析:非线性控制系统的稳定性分析比线性控制系统更为复杂,常常需要使用数值方法进行分析。
例如,可以使用Lyapunov稳定性准则来评估非线性系统的稳定性。
此外,也需要考虑系统的局部和全局稳定性。
3. 控制性能指标:非线性控制系统的性能评估相对复杂。
由于系统的非线性特性,传统的性能指标可能不再适用。
因此,需要根据实际情况选择相应的性能指标来评估非线性控制系统的性能。
三、线性与非线性控制系统性能比较与分析:1. 频率响应:线性控制系统的频率响应特性较为直观,可以使用传统的频域分析方法进行判断和优化。
非线性控制系统的分析课件.ppt

法求解有困难时,可用图解法绘制。
▪ 对于式(9.2-1)xf(x,x),令 x1x、 x2x ,
▪
有 x 2f(x1、 x2),所以 可得 dx2 f (x1、x2)
d d x t2d dx x1 2d d x t1x2d dx x1 2f(x1、 x2)
(9.2-5)
▪
dx1
x2
式(9.2-5)是关于
y
-b 0
k
x
b
a.
b.
图9.1-4 齿轮传动及其间隙特性
y(x)k[xs g x)n b](|y/kx|b y (x)0、 y(x)C |y/kx|b
▪ 系统中若有间隙特性元件,不仅会使系统的输出产生相位滞后,导致 系统稳定裕量的减小,使动态性能恶化,容易产生自振;而且间隙区 会降低定位精度、增大非系线统性控静制差系统。的分析课件
▪ 由于相平面只能表示 x(t ) 和 x(t ) 两个独立变量,所以相 平面法只能用来研究一、二阶线性或非线性系统。
▪ 2)相轨迹的绘制方法
▪ (1)二阶线性系统的相轨迹 ▪ (2)相轨迹的绘制
非线性控制系统的分析课件
j
[s]
2 1
0
a.
j 1 [s]
0
2
d.
x2
j
x2
1
[s]
x1
0
0
0
稳定 节点
x
(
t
)
和 x (t ) 的一阶微分方程,即二阶非线性
系统的相轨迹方程。
▪
由式(9.2-5),令
dx2 f (x1,x2)
dx1
x2
,即有
▪
f (x1, x2 )
(9.2-6)
非线性控制系统分析教学课件

详细描述
智能控制
要点一
总结词
智能控制是一种基于人工智能的控制方法,通过模拟人类 的决策和推理过程来实现对系统的优化和控制。
要点二
详细描述
智能控制采用人工智能技术,如专家系统、神经网络、模 糊逻辑等,实现对系统的优化和控制。智能控制具有自学 习、自适应和自组织能力,能够处理复杂的非线性系统和 不确定性问题。
03
状态观测是非线性控制 系统的重要技术,用于 估计系统状态变量的值。
04
通过观测系统的输出信 号,可以估计系统状态 变量的值,用于控制和 观测目的。
CHAPTER
非线性控制系统的分析与设 计
描述函数法
总结词
详细描述
相平面法
总结词 详细描述
反馈线性化方法
总结词 详细描述
滑模控制方法
总结词
一种用于处理非线性控制系统不确定性 的方法
VS
详细描述
滑模控制方法是一种通过设计滑模面和滑 模控制器,使得系统状态在滑模面上滑动 并达到期望目标的方法。它利用滑模面的 设计,使得系统对不确定性具有鲁棒性, 能够有效地处理非线性系统中的不确定性 和干扰。
CHAPTER
非线性控制系统的应用实例
无人机控制系 统
机器人控制系 统
机器人控制系统是另一个重要的非线 性控制系统应用,它涉及到机器人的 运动学、动力学和轨迹规划等方面。
汽车控制系统需要处理各种非线性特性和耦合效应,如发动机的燃烧过 程、底盘的悬挂系统和转向系统等,以确保汽车的安全性、稳定性和舒
适性。
汽车控制系统的设计需要运用非线性控制理论和方法,如状态反馈控制、 鲁棒控制等,以提高汽车的动态性能和燃油经济性。
航天器控制系 统
非线性系统的分析和控制

非线性系统的分析和控制非线性系统是指其输入和输出之间不符合线性关系的系统,这种系统常见于生命科学、经济学、工程学以及实际应用中的复杂系统中。
非线性系统的分析和控制是科学技术领域长期以来的研究热点之一,随着计算机技术和控制理论的发展,一些传统的控制方法已经无法有效地处理非线性系统。
如何对非线性系统进行有效的建模并进行控制,一直是控制理论领域的难题之一。
非线性系统的数学特性在进行非线性系统的分析和控制之前,我们需要了解它的数学特性。
通常,非线性系统具有以下特征:1. 非线性系统的响应与输入存在非线性关系,即系统响应不是简单地随着输入线性变化的。
2. 非线性系统可能存在多个平衡状态,即一种变化处于平衡状态的状态对应多个输入。
3. 非线性系统的动力学特性可能十分复杂,存在混沌和震荡等现象。
对于非线性系统,我们通常采用数学模型来描述其动态特性和响应。
非线性系统的建模是非常复杂的,通常采用状态空间模型或微分方程来描述,这样可以比较容易地掌握系统动态特性。
对于一些复杂的非线性系统,需要采用数值计算方法来分析其特性。
非线性系统的控制方法针对非线性系统的控制,传统的 PID 控制方法或者模型预测控制等经典控制方法已经不再适用。
针对非线性系统的复杂性和不确定性,需要采用先进的非线性控制技术。
现代的非线性控制方法主要可以分为如下几种:1. 自适应控制自适应控制通常采用基于反馈控制的方法,通过实时监控系统响应情况来调节控制器的参数和结构,以适应非线性系统的变化。
自适应控制的优点是可以自动适应非线性系统的动态特性,但其监控过程可能会引入不必要的噪声,需仔细考虑控制系统的稳定性和易用性。
2. 非线性模型预测控制非线性模型预测控制(NMPC) 通常采用优化方法来设计控制器,其基本思想是通过预测未来状态来确定最优的控制序列。
NMPC的主要优点是具有非线性系统的预测能力,能够预测系统的响应变化,但其计算开销较大,需要较高的计算资源和算法设计。
第八章 非线性控制系统分析

8.2 常见非线性特性及其对系统运动的影响
一、饱和特性 y 斜率k 斜率 -a 0 a x
x>a ka y = kx x ≤a − ka x < −a
对系统的影响: 对系统的影响: 1.使系统开环增益下降,对动态响应的平稳性有利; 使系统开环增益下降,对动态响应的平稳性有利; 使系统开环增益下降 2.使系统的快速性和稳态跟踪精度下降。 使系统的快速性和稳态跟踪精度下降。 使系统的快速性和稳态跟踪精度下降
3.逆系统法 逆系统法 运用内环非线性反馈控制,构成伪线性系统,并以 运用内环非线性反馈控制,构成伪线性系统, 此为基础,设计外环控制网络。该方法应用数学工具直 此为基础,设计外环控制网络。 接研究非线性控制问题,不必求解非线性系统的运动方 接研究非线性控制问题, 程,是非线性系统控制研究的发展方向。 是非线性系统控制研究的发展方向。
二、死区特性 y 斜率k 斜率 -△ 0
△
x
0 x ≤∆ y= k[ x − ∆sign( x)] x > ∆
对系统的影响: 对系统的影响: 1.使系统产生稳态误差; 使系统产生稳态误差; 使系统产生稳态误差 2.当系统输入端存在小扰动信号时,在系统动态过程的 当系统输入端存在小扰动信号时, 当系统输入端存在小扰动信号时 稳态值附近,死区的作用可减小扰动信号的影响。 稳态值附近,死区的作用可减小扰动信号的影响。
三、间隙特性 y c 斜率k 斜率 -h 0 h -c 对系统的影响: 对系统的影响:
k ( x − h) y = k ( x + h) x c sign ( x)
ɺ y>0 ɺ y<0 ɺ y=0
增大系统的稳态误差,降低系统的稳态精度, 增大系统的稳态误差,降低系统的稳态精度,使过 渡过程振荡加剧,甚至造成系统的不稳定。 渡过程振荡加剧,甚至造成系统的不稳定。 一般来说,间隙特性对系统总是有害的, 一般来说,间隙特性对系统总是有害的,应该消除 或消弱它的影响。 或消弱它的影响。
非线性控制系统分析(《自动控制原理》课件)

出发的相轨迹曲线互不相交. 如果在相平面上某些点的
d x/ dx 0/ 0, 即曲线在这一点上的斜率不定, 可有无穷多
条相轨迹通过这一点, 称这一点为系统的平衡点, 或叫奇
点.
在相平面的上方(如下图) ,
由于
x
0所以
x总是朝大的
x
A(x0 ,
x0 )
方向变化, 故相轨迹上的点总是按图 中箭头所指从左向右移动. 在相平面
u0
0
u(t) u(t) G(s) c(t)
u0
上图中, 大方框表示一具有理想继电特性的非线性环节, G(s) 表示非线性系统中线性部分的传递函数.
非线性的特性是各种各样的, 教材图及 表给出了一些工程上常见的典型非线性特性.
7-2非线性控制系统的特征
非线性控制系统有如下两个基本特征: (1)非线性控制系统的基本数学模型是非线性微分方程 (2)非线性控制系统的性能不仅与系统本身的结构和参
0
x
的下方,
由于
x
0
所以
x
总是朝小的
方向变化, 故相轨迹上的点总是按图中箭
箭头所指从右向左移动. 在 x 轴上, 由于
x 0, 即 x不变化, 达到最大值或最小值, 故相轨迹曲线
与 x 轴的交点处的切线总垂直于x 轴.
2. 相轨迹作图法
先以线性系统为例, 说明相轨迹曲线的画法.
(1)解析法
数有关, 还与系统的初始状态及输入信号的形式和大小 有关.
由于非线性控制系统的基本数学模型是非线性微分 方程, 而从数学上讲, 非线性微分方程没有一个统一的 解法, 再由于第二个特征, 对非线性控制系统也没有一 个统一的分析和设计的方法, 只能具体问题具体对待.
非线性系统的分析与控制方法

非线性系统的分析与控制方法现今,非线性现象随处可见,涉及到的领域包括工程学、物理学、化学、生物学、经济学等。
与此同时,为了满足人类日益增长的需求,我们需要分析与控制这些非线性系统,使其达到我们所希望的状态。
本文将探讨分析与控制非线性系统的常见方法,涵盖了数学模型、稳定性分析、反馈控制等方面的内容。
1. 数学模型一个非线性系统通常可以利用微分方程表达。
微分方程可以是常微分方程或者偏微分方程,这取决于物理系统的特性。
使用数学模型可以对非线性系统进行分析与控制,比如进行数值计算,对系统进行仿真或者进行数值优化。
数学建模可以使用不同的方法,比如解析法、数值法和近似法等。
在实际应用中,通常使用形式化方法来描述系统的行为。
形式化方法涉及到一些形式的逻辑体系来描述现实问题。
它们通常适用于非线性系统的分析、验证和控制,其中一些常见的方法有:模型检验、定理证明和模型检查等。
2. 稳定性分析稳定性分析是对非线性系统的一个重要分析方法,它涉及到系统是否能够维持其稳定性。
稳定性分析包括局部稳定性分析和全局稳定性分析。
局部稳定性分析关注系统是否能够询问某种程度的扰动,而全局稳定性分析关注系统在无论多大的扰动下是否能保持稳定。
通常情况下,对于一个非线性系统,可以通过对其相应线性化系统的特征值进行分析来评估系统是否稳定。
如果相应线性化系统的特征值的实部都为负,则该非线性系统是局部稳定的。
如果相应线性化系统的特征值的实部都为负,并且没有虚部,则非线性系统是全局稳定的。
相反,如果相应线性化系统的特征值具有正实部,那么原始的非线性系统是不稳定的。
3. 反馈控制反馈控制是对非线性系统的适当信息反馈的一种方法,用于实现所需的稳态或动态目标。
在这种方法中,系统的输出信号与输入信号之间存在一定的误差。
通过将该误差反馈到控制器中,可以对系统进行优化,使其达到所需要的目标。
反馈控制方法最常见的类型是Proportional-Integral-Derivative (PID)控制器,它涉及到根据系统的误差信号进行比例反馈(P 项)、积分反馈(I项)和微分反馈(D项)。
131209第8章非线性控制系统分析

非线性系统的数学模型是非线性微分方程;但至今为止 非线性微分方程没有成熟的解法;
8.2 几种典型的非线性特性
饱和特性 死区特性 间隙特性 继电器特性 变增益特性
(1)饱和特性(如运算放大器,学习效率等)
1. 对系统而言,饱和特性往往促使系统稳 定,但会减小放大系数,从而导致稳定 精度降低。 2. 饱和特性的例子是放大器,许多执行元 件也具有饱和特性。例如伺服电机。 3. 实际上,执行元件一般兼有死区和饱和 特性。
y1 ( t )
4M
sin t
理想继电特性的描述函数:
4M N ( A) 0 A
一般继电特性的描述函数:
2M mh 2 h 2 2M h N ( A) 1 ( ) 1 ( ) j ( m 1) 2 A A A A ( A h)
可能不稳定—发散、衰减等
3. 自振运动— 非线性系统特有的运动形式,产生自持振荡 4. 发生频率畸变—频率响应的复杂性 — 跳频响应,倍/分频 响应,组合振荡
非线性控制系统的分析方法
小扰动线性化
非线性系统研究方法 仿真方法
全数字仿真 半实物仿真 相平面法 描述函数法 波波夫法 反馈线性化法 微分几何方法
h 0 理想继电特性: m 1 死区继电特性: m 1 纯滞环继电特性:
4M N ( A) A
4M h N ( A) 1 A A
2
2
4M 4 Mh h N ( A) 1 j A A2 A
一般而言,描述函数 N(A)是A的函数,与频率无关 非线性环节为单/非单值函数时,N(A)是实/复数,虚部为/不为0
在小误差信号时具有较小的增益,从而提高系统的相对稳定性。 同时抑制高频低振幅噪声,提高系统响应控制信号的准确度。
非线性控制系统的分析

第8章 非线性控制系统的分析重点与难点一、基本概念1. 线性与非线性系统的联系与区别控制系统在不同程度上都存在着非线性。
有些系统可以在工作点附近把它线性化,然后按线性系统来处理(如三级管放大器电路),但当系统含有本征非线性特性(如死区特性、继电器特性等)时,就不能用线性化的方法处理。
死区特性将使系统出现较大的稳态误差。
饱和特性将降低系统的超调量,有时还会引起稳定振荡。
间隙特性可使系统的振荡加剧,静差也会增大,有时会使系统不稳定。
继电器特性会出现低速爬行、蠕动及响应不平滑等现象。
与线性系统相比,非线性系统与线性系统的本质差别可以概括为以下三点: (1)线性系统可以使用叠加原理,而非线性系统不能使用叠加原理;(2)线性系统的稳定性与初值、输入无关,而非线性系统的稳定性与初值、输入有关; (3)线性系统可以写出通解形式,而非线性系统无法写出通解形式。
2. 相平面分析法以x ,x为坐标的平面就叫相平面,系统的某一状态对应于相平面上的一点。
相平面上的点随时间变化的轨迹叫相轨迹。
对应于二阶线性定常系统的相轨迹,可以对非线性系统进行分析,这种分析方法称为相平面分析法。
二阶线性定常系统的相轨迹如表8-1所示。
3. 极限环非线性系统存在着稳定的振荡状态,在相平面图上可表示为一个孤立的封闭相轨迹。
所有附近的相轨迹都渐近地趋向这个封闭的相轨迹,或离开该封闭的相轨迹,该相轨迹称为极限环。
极限环分为稳定和不稳定等四种形式,如表8-2所示。
非线性系统可能没有极限环,也可能存在多个极限环。
在相平面图形上,一个稳定的极限环就对应于一个自振状态。
4. 相平面做图法I —等倾线法令dx xd a / =,即),(x x f a =。
对于a 的不同取值,由),(x x f a =可得到x 与x 的不同关系式,而且在曲线),(xx f a =上,均具有相同的斜率a 。
给出一组a ,就可近似描绘出相平面图形。
表8-1 二阶线性系统022的相轨迹表8-2 极限环基本形式5. 相平面做图法II —δ方法给),(x x f x=两边同加x 2ω,得令 x x x f x x22),(ωω+=+ 22),(),(ωωδx x xf xx +=得 22),(ωδωx x x x=+ 因此 21212)(d x x=-+⎪⎭⎫ ⎝⎛δω式中 21122121111)( ),(δωδδ-+==x x d xx 利用上式就可得点],[11xx 邻域内的相平面图形。
非线性控制系统的稳定性分析与控制

非线性控制系统的稳定性分析与控制第一章引言1.1 研究背景随着科学技术的不断发展,非线性控制系统在各个领域中得到了广泛应用,包括航空航天、自动化控制、机器人技术等等。
与线性控制系统相比,非线性控制系统具有更强的适应性和稳定性,能够应对各种复杂的控制问题。
然而,非线性控制系统的分析和控制具有一定的挑战性,因此需要进行稳定性分析和控制方法的研究。
1.2 研究目的本文的主要目的是探讨非线性控制系统的稳定性分析与控制方法,为相关领域的研究和应用提供指导和参考。
第二章非线性控制系统基础知识2.1 非线性系统的定义与特点非线性系统是指系统的输出与输入之间存在非线性关系的系统。
与线性系统相比,非线性系统的行为更加复杂,具有多变性、不确定性和时变性等特点。
2.2 非线性控制系统的建模非线性控制系统的建模是研究非线性系统的基础,常用的建模方法有物理建模、数学模型、仿真建模等。
第三章非线性控制系统的稳定性分析3.1 Lyapunov稳定性分析方法Lyapunov稳定性分析方法是一种常用的非线性控制系统稳定性分析方法,通过构建Lyapunov函数来判断系统的稳定性。
3.2 极限环与周期解极限环和周期解是非线性控制系统中常见的稳定性现象,通过分析系统的周期运动特征,可以判断系统的稳定性。
第四章非线性控制系统的稳定性控制方法4.1 反馈线性化反馈线性化是一种常用的非线性控制系统稳定性控制方法,通过将非线性系统转化为等效的线性系统,并设计线性控制器来实现系统的稳定。
4.2 滑模控制滑模控制是一种基于滑模面的稳定性控制方法,通过设计滑模面和滑模控制器,实现非线性系统的稳定控制。
第五章非线性控制系统的应用与展望5.1 航空航天领域中的应用非线性控制系统在航空航天领域中具有广泛的应用,如飞行器稳定性控制、飞行轨迹规划等。
5.2 机器人技术中的应用非线性控制系统在机器人技术中也得到了广泛应用,如机器人路径规划、姿态估计等。
5.3 发展趋势与展望随着科技的进步和需求的不断增长,非线性控制系统的研究和应用前景十分广阔,未来可以进一步探索非线性控制系统的稳定性分析和控制方法,以应对更加复杂的控制问题。
第八章非线性控制系统的分析

会有意引入或增大死区。
3.间隙特性(滞环特性)
间隙特性的静特性曲线如图8.4所示,其数学表达式为
(8.3)
式中,a为间隙宽度,K为比例系数(线性段斜率),(t)=dx(t)/dt。
ሶ
8.1
非线性控制系统概述
间隙特性是一种非单值特性,表现为正向特性与反向特性不是重叠在一起,而是在输入—输出曲线上出现
性具有明显的饱和非线性。
上述伺服电动机的非线性是因为使用的磁性材料具有非线性,
因此当输入电压超过一定数值时,伺服电动机的输出转矩就出现饱和现
象。实际上,由于伺服电动机还存在摩擦力矩和负载力矩,因此只有当
输入电压达到一定数值时,伺服电动机才会转动,即存在不灵敏区。所
以,伺服电动机的实际静特性是同时具有不灵敏区与饱和的非线性特性。
2.死区(不灵敏区)特性
死区特性的静特性曲线如图8.3所示,其数学表达式为
(8.2)
式中,a为死区宽度,K为线性输出斜率。
死区特性的特点是,当系统或环节有输入信号,但尚未超过数值a时,
无相应的信号输出。
死区特性在控制系统中也较为常见,一般的测量元件和执行机构都具
图8.3
死区特性
图8.4
间隙特性
有死区特性。当死区很小或对系统性能不会产生不利影响时,可以忽略不计。
现的这种周期运动即为自激振荡。自激振荡是非线性控制系统特有的,是非线性控制理论研究的重要问题。
8.1
非线性控制系统概述
8.1.4
非线性控制系统的分析与设计方法
描述非线性控制系统的基本数学模型是非线性微分方程,对非线性控制系统进行分析的重点是系统稳定性
非线性控制系统的稳定性与性能分析

非线性控制系统的稳定性与性能分析1. 引言非线性控制系统是一类常见的实际控制系统,与线性控制系统相比,其具有更加复杂的动力学特性和行为表现。
因此,对于非线性控制系统的稳定性与性能分析有着重要的研究价值。
本文将从理论和实践两个方面,对非线性控制系统的稳定性与性能进行分析与探讨。
2. 非线性系统的稳定性分析2.1 Liapunov稳定性Liapunov稳定性是描述非线性控制系统稳定的一个重要理论概念。
其基本思想是通过构造一个Liapunov函数,通过函数的变化率判断系统是否稳定。
文章将详细介绍Liapunov函数的构造方法,并给出非线性系统稳定性的判据。
2.2 极均衡点分析对于非线性控制系统,极均衡点是系统处于平衡状态时的一个重要点。
通过对极均衡点的分析,可以推导出非线性系统的稳定性条件。
本文将介绍通过线性化和Jacobian矩阵等方法,分析非线性系统极均衡点的稳定性条件。
2.3 Lyapunov指数分析Lyapunov指数是一种用来评估非线性系统稳定性的量化指标。
文章将介绍Lyapunov指数的定义和计算方法,并说明其在非线性控制系统中的应用,并分析其与Liapunov稳定性的关系。
3. 非线性系统的性能分析3.1 鲁棒性分析鲁棒性是描述非线性控制系统抵抗干扰和参数变化能力的一个重要性能指标。
文章将介绍鲁棒性的概念和评估方法,重点讨论鲁棒性设计对非线性系统性能的影响。
3.2 动态性能指标分析与线性控制系统类似,非线性系统也需要考虑其动态性能。
文章将介绍各种常见的动态性能指标,如上升时间、调节时间和超调量等,并说明如何用这些指标来评估非线性系统的性能。
3.3 匹配与追踪性能分析对于非线性控制系统,匹配性能和追踪性能是两个重要的性能指标。
文章将分别介绍匹配性能和追踪性能的概念,并给出相应的分析方法和评估指标。
4. 非线性系统的稳定性与性能分析实例4.1 倒立摆控制系统倒立摆是一个常见的非线性控制系统实例。
自动控制原理第八章非线性控制系统分析

第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。
本质非线性和非本质非线性。
典型非线性特性。
非线性系统的特点。
两种分析非线性系统的方法——描述函数法和相平面法。
(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。
谐波线性化的概念。
描述函数定义和求取方法。
描述函数法的适用条件。
(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。
借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。
(5)相平面法的基本概念非线性系统的数学模型。
相平面法的概念和内容。
相轨迹的定义。
(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。
(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。
(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。
用相平面法分析非线性系统,非线性系统相轨迹的组成。
改变非线性特性的参量及线性部分的参量对系统稳定性的影响。
2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。
8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。
应用线性系统控制理论,能够方便地分析和设计线性控制系统。
如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。
线性系统控制理论不能很好地分析非线性系统。
因非线性特性千差万别,无统一普遍使用的处理方法。
非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。
非线性系统:含有非线性环节的系统。
非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章非线性控制系统的分析
自测题
1. 变增益控制系统结构图及其非线性元件G N的输入输出特性分别如T图8-1和8-2所示,该系统开始处于零初始状态,若输入信号r(t)=R⨯1(t),且R>e0,kK<1/4T<K,试绘出系统相平面图,并分析变增益放大器对系统的影响。
T图 8-1 T图 8-2
2. 设非线性系统如T图8-3所示,输入为单位斜坡函数,试在e
e
-平面上作出相轨迹。
T图 8-3
3.具有非线性阻尼的控制系统结构图如T图8-4所示,假设系统开始处于静止状态,系统常数为K=4,K0=1,e0=0.2。
试分析在速度输入函数r(t)=0.5+0.1t作用下的根轨迹。
·
43·
·44·
y
T 图 8-4
4. 非线性系统结构图如T 图8-5所示,a =0.5,K =8,T =0.5s ,K 1=0.5,要求:
(1)当开关打开时,e (0)=2,0)0( e
的相轨迹; (2)当开关闭合时,绘制相同初始条件的相轨迹,并说明测速反馈的作用。
T 图 8-5
5. 将T 图8-6和8-7所示非线性系统简化成典型结构形式,并写出线性部分的传递函数。
T 图 8-6
T 图 8-7
6. 根据已知的非线性描述函数,求T 图8-8所示各种非线性的描述函数。
·45·
(a) (b)
T 图8-8
7. 已知系统的结构图如T 图8-9所示,K =4,M =1,k =1,r (t )=1(t ),c(0)=0,
0)0(=c。
在e e - 平面上画出相轨迹,并画出c (t )的曲线,且说明运动情况(若有稳态误差,则计算其值,若有振荡,则计算振荡周期)。
T 图 8-9
8. 系统结构图如T 图8-10所示,试将其归化为一个非线性环节和一个线性部分串联的典型结构。
T 图 8-10
9. 在T 图8-11所示系统中,
(1)确定使系统稳定的开环放大倍数K ; (2)分析滞环宽度h 对极限环工作周期的影响;
·46·
(3)试提出一个可实现的设计方案,使K 为确定数值(如K =10)时系统能稳定工作。
T 图 8-11
10. 一非线性系统如T 图8-12所示,且知非线性元件的描述函数A
M
A N π4)(=
,初始条件h c =)0(,0)0(=c
,要求: (1)用描述函数法求解系统的自激振荡周期; (2)再用解析法求解系统的自激振荡周期;
(3)求用描述函数法所得计算结果的误差(设用解析法所得结果为精确值)。
T 图 8-12
11. 已知非线性系统结构图如T 图8-13所示,图中非线性环节的描述函数为
)()(02
6
>++=
A A A A N ,试用描述函数法确定: (1)该非线性系统稳定、不稳定以及产生周期运动时,线性部分的K 值范围: (2)判断周期运动的稳定性,并计算稳定周期运动的振幅与频率。
T 图 8-13
M a t lab 在非线性系统分析中的应用
本节主要介绍四种最常见的非线性环节的仿真模型。
·47·
1.饱和非线性特性
M 图8-2所示的饱和非线性环节的数学描述为
⎪⎩
⎪
⎨⎧≥<<--≤-=s
u s s u s u
s u s x 根据上述关系,由M ATLAB 编写的饱和非线性函数为 f unct io n x = sa tu ra t io n (u ,s) if (abs(u ) > = s)
if(u > 0) x = s;
e ls e x = -s; M 图 8-1 饱和非线性环节 en d e ls e x = u ; en d
2. 死区非线性特性
M 图8-2所示死区非线性环节的数学描述为
⎪⎩
⎪
⎨⎧≥-<<--≤+=s
u s u s u s s u s u x 0
根据上述关系,由M ATLAB 编写的死区非线
性函数为
f unct io n x = d e adzo ne (u ,s)
if (abs(u ) > = s)
if(u > 0) x = u - s;
M 图 8-2 死区非线性环节 e ls e x = u + s;
en d e ls e x = 0; en d
3. 滞环非线性特性
M 图8-3所示滞环非线性环节的数学描述为
·48·
⎪⎩
⎪
⎨⎧-<<+>>-=其他
且且])1[(00)(00)()(T k x x u s
kT u x u
s kT u kT x 根据上述关系,由M ATLAB 编写的滞环非线 性函数为
f unct io n [x ,u 1] = ba c klash(u 1,u ,x 1,s) if (u > u 1)
if((u - s) > = x 1)x = u – s;e ls e x = x 1;en d
e ls e i
f (u < u 1)
if((u + s) < = x 1)x = u + s;e ls e x = x 1;en d M 图 8-3 滞环非线性环节 e ls e x = x 1; en d en d u 1 = u ;
其中 ,u 1和u 分别为可k -1时刻和k 时刻的输入量,x 1和x 分别为k -1和k 时刻的输出量。
4.继电器非线性特性
如M 图8-4所示的继电器非线性环节的 数学描述为
⎩⎨
⎧<->=0
u s
u s
x 根据上述关系,由M ATLAB 编写的继
电器非线性函数为
f unct io n x = si gn (u ,s)
if(u > 0) x = s;en d M 图 8-4继电器非线性环节 if(u < 0) x = -s;en d
以上几种非线性环节的共同点是只需要一个参数s 就能反映出该环节的非线性特点,不过要注意到,各种非线性环节的放大倍数均假定为1,若不为1,则将其设法合入其前后的线性环节中。