(完整版)不等式知识点归纳大全

合集下载

(完整版)不等式知识结构及知识点

(完整版)不等式知识结构及知识点

o 不等式知识结构及知识点总结一.知识结构二.知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)a b b a >⇔>,a b b c a c >>⇒>a b a c b c>⇔+>+(同向可加性) (异向可减性)d b c a d c b a +>+⇒>>,db c a d c b a ->-⇒<>,④(可积性) bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性) (异向正数可除性)0,0a b c d ac bd >>>>⇒>0,0a b a b c d c d>><<⇒>⑥(平方法则) ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且0,1)a b n N n >>⇒>∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①,(当且仅当时取号).变形公式:()222a b ab a b R +≥∈,a b =""=o 22.2a b ab +≤②(基本不等式),(当且仅当时取到等号).2a b+≥()a b R +∈,a b =变形公式:用基本不等式求最值时(积定和最小,和定a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当3a b c ++()a b c R +∈、、时取到等号).a b c ==④(当且仅当时取到等号).()222a b c ab bc ca a b R ++≥++∈,a b c ==⑤(当且仅当时取到等号).3333(0,0,0)a b c abc a b c ++≥>>>a b c ==⑥(当仅当a=b 时取等号)(当仅当a=b 0,2b aab a b>+≥若则0,2b aab a b<+-若则时取等号)⑦其中规律:小于1同加则变大,大于ban b n a m a m b a b <++<<++<1(000)a b m n >>>>,,1同加则变小.⑧ 220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:,(当且1122a b a b --+≤≤+()a b R +∈,仅当时取号).(即调和平均几何平均算术平均平方平均).a b =""=≤≤≤ 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥++++≥1122(,,,).x y x y R ∈④二维形式的柯西不等式当且仅当22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈时,等号成立.ad bc =⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++o r21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使,αβ ,αβαβ⋅≤ βk 时,等号成立.k αβ=⑧排序不等式(排序原理):设为两组实数.是的任一排列,1212...,...n n a a a b b b ≤≤≤≤≤≤12,,...,n c c c 12,,...,n b b b 则(反序和乱序和12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++≤顺序和)≤当且仅当或时,反序和等于顺序和.12...n a a a ===12...n b b b ===⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任()f x 意两点有则称f(x)为凸(或1212,(),x x x x ≠12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131((;242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<等.*,1)k N k >∈>5、一元二次不等式的解法求一元二次不等式解集的步骤:20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩(时同理)<≤“或”规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,1a >()()()()f x g x aa f x g x >⇔>01a <<()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时, ⑵当时,1a >()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩01a <<()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:(0).(0)a a a a a ≥⎧=⎨-<⎩22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①②(0);x a a x a a ≤⇔-≤≤≥(0);x a x a x a a ≥⇔≥≤-≥或③④()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标20ax bx c ++>准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.a ∆14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时20ax bx c ++>0a =②当时 ⑵不等式的解集是全0,0;b c ⇒=>0a ≠00.a >⎧⇒⎨∆<⎩20ax bx c ++<体实数(或恒成立)的条件是:①当时②当时0a =0,0;b c ⇒=<0a ≠00.a <⎧⇒⎨∆<⎩⑶恒成立恒成立()f x a <max ();f x a ⇔<()f x a ≤max ();f x a ⇔≤⑷恒成立恒成立()f x a >min ();f x a ⇔>()f x a ≥min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线的同一侧的所有点的坐标代入0Ax By C ++=后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取Ax By C ++一特殊点(如原点),由的正负即可判断出或00(,)x y 00Ax By C ++0Ax By C ++>(表示直线哪一侧的平面区域.0)<即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观察的符号与不等式开口的符号,若同号,0Ax By C ++>(0)<B 或表示直线上方的区域;若异号,则表示直线上方的区域.即:同0Ax By C ++>(0)<号上方,异号下方.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数为常数)的最值:z Ax By =+(,A B 法一:角点法:如果目标函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,z Ax By =+x y 、则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应值,最大的那个数为目标函数的最大值,最小的那个数为目标函数的最小值z z z 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直0:0l Ax By +=线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,0l 0l (,)x y 将最优解代入目标函数即可求出最大值或最小值 .(,)x y z Ax By =+第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.z A z y x B B =-+zB①若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B >z Ax By =+z 大值,使直线的纵截距最小的角点处,取得最小值;z ②若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B <z Ax By =+z 小值,使直线的纵截距最小的角点处,取得最大值.z ⑷常见的目标函数的类型:①“截距”型: ②“斜率”型:或;z Ax By =+yz x =;y b z x a-=-③“距离”型:或 或22z x y =+z =22()()z x a y b =-+-z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.16. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注值?(一正、意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。

高中不等式全套知识点总结

高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。

一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。

2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。

3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。

二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。

2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。

3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。

三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。

2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。

四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。

2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。

高考不等式知识点总结

高考不等式知识点总结

高考不等式知识点总结高考数学中不等式是一个非常重要的知识点,占据着较大的比重。

下面是对高考数学中不等式知识点的完整总结:一、基本概念和性质1.不等关系:对于实数a和b,如果a=b,则称a等于b;如果a≠b,则称a不等于b。

当a不等于b时,可以断定a大于b(记作a>b),或者a小于b(记作a<b)。

2.不等式:不等式是由不等关系得到的等式,包括大于等于不等式(a≥b)和小于等于不等式(a≤b)。

3.基本性质:(1)若a>b且b>c,则a>c;(2) 若a>b且c>0,则ac>bc;(3) 若a>b且c<0,则ac<bc;(4)若a>b且c≥0,则a+c>b+c;(5)若a>b且c≤0,则a+c>b+c。

4.解不等式:与解方程类似,解不等式是指寻找满足不等式的解的过程。

5.不等式的性质:对于不等式两边同时加减一个相同的数,不等号方向不变;对于不等式两边同时乘除一个同号的数,不等号方向不变;对于不等式两边同时乘除一个异号的数,不等号方向改变。

二、一元一次不等式1.解一元一次不等式:求解一元一次不等式的关键是确定x的取值范围。

在解过程中,可以通过加减法、乘除法保持不等式不变。

2.不等式组:由多个不等式组成的方程组,称为不等式组。

求解不等式组的关键是确定每个不等式的集合和并集。

三、一元二次不等式1.解一元二次不等式:求解一元二次不等式的关键是确定不等式的根及开口方向。

可以根据系数的正负、零点的位置和变号法等来确定解的范围。

2.二次函数与一元二次不等式:通过对一元二次不等式的解法,可以进一步理解和应用二次函数的性质。

四、绝对值不等式1.绝对值不等式的性质:对于绝对值不等式,可以利用绝对值的性质将其拆分为多个实数的不等式。

2.解绝对值不等式的关键是分情况讨论。

将绝对值不等式中的绝对值拆分出来,分别讨论绝对值内外的情况,从而得到解的范围。

不等式知识点大全

不等式知识点大全

不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。

2.不等式的解集:解集是满足不等式的所有实数的集合。

3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。

二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。

2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。

三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。

2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。

2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。

2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。

2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。

七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。

2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。

八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。

2.布尔不等式:包括与或非不等式和限制条件不等式等。

3.等价不等式:等式两边取绝对值后变为不等式。

4.单调性不等式:利用函数单调性性质证明不等式。

5.导数不等式:利用函数的导数性质证明不等式。

6.积分不等式:利用积分性质及定积分的性质来推导不等式。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

不等式知识点汇总

不等式知识点汇总

不等式知识点汇总不等式是数学中的一个重要概念,它在解决各种数学问题和实际生活中的优化问题中都有着广泛的应用。

下面我们来对不等式的相关知识点进行一个汇总。

一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。

例如:3 < 5,x + 2 > 5,y 1 ≤ 3 等都是不等式。

二、不等式的基本性质1、对称性:如果 a > b,那么 b < a 。

2、传递性:如果 a > b 且 b > c,那么 a > c 。

3、加法性质:如果 a > b,那么 a + c > b + c 。

4、乘法性质:如果 a > b 且 c > 0,那么 ac > bc ;如果 a > b 且c < 0,那么 ac < bc 。

这些基本性质是解决不等式问题的基础,需要牢记并能够熟练运用。

三、一元一次不等式形如 ax + b > 0 或 ax + b < 0(其中a ≠ 0)的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:1、去分母(如果有分母)。

2、去括号。

3、移项:把含未知数的项移到一边,常数项移到另一边。

4、合并同类项。

5、系数化为 1:根据不等式的性质,将未知数的系数化为 1。

例如,解不等式 2x + 5 > 9 ,首先移项得到 2x > 9 5 ,即 2x >4 ,然后系数化为 1 ,得到 x > 2 。

四、一元二次不等式形如 ax²+ bx + c > 0 或 ax²+ bx + c < 0(其中a ≠ 0)的不等式叫做一元二次不等式。

解一元二次不等式通常需要先求出对应的一元二次方程的根,然后根据二次函数的图象来确定不等式的解集。

例如,对于不等式 x² 3x + 2 < 0 ,先解方程 x² 3x + 2 = 0 ,因式分解为(x 1)(x 2) = 0 ,解得 x = 1 或 x = 2 。

然后根据二次函数 y = x² 3x + 2 的图象,开口向上,与 x 轴的交点为 1 和 2 ,所以不等式的解集为 1 < x < 2 。

不等式知识点总结

不等式知识点总结

不等式知识点总结一、不等式的基本概念。

1. 不等式的定义。

- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。

例如:3x + 2>5,x - 1≤slant2x等。

2. 不等式的解与解集。

- 不等式的解:使不等式成立的未知数的值叫做不等式的解。

例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。

- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。

3. 解不等式。

- 求不等式解集的过程叫做解不等式。

例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。

二、不等式的基本性质。

1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。

例如5>3,那么3 < 5。

2. 性质2(传递性)- 如果a>b,b>c,那么a>c。

例如7>5,5>3,那么7>3。

3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。

例如3>1,那么3+2>1 + 2,即5>3。

- 推论:如果a>b,c>d,那么a + c>b + d。

例如4>2,3>1,那么4 + 3>2+1,即7>3。

4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。

例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。

(完整版)高考不等式知识点总结

(完整版)高考不等式知识点总结

第三章:不等式1、不等式的基本性质①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+ (同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号) ⑦ba nb n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:112a b a b --+≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβu r u r 是两个向量,则,αβαβ⋅≤u r u r u r u r当且仅当βu r 是零向量,或存在实数k ,使k αβ=u r u r 时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+==<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理) 规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时, ()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩ 规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥ 15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值:法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:yz x =或;y b z x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab ab ∈++()()值?(一正、二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。

(完整版)高考不等式知识点总结

(完整版)高考不等式知识点总结

第三章:不等式1、不等式的基本性质①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+ (同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>, ④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号) ⑦ba nb n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:112a b a b --+≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβu r u r 是两个向量,则,αβαβ⋅≤u r u r u r u r当且仅当βu r 是零向量,或存在实数k ,使k αβ=u r u r 时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+==<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理) 规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时, ()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩ 规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥ 15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线0Ax By C ++=的同一侧的所有点的坐标代入Ax By C ++后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取一特殊点00(,)x y (如原点),由00Ax By C ++的正负即可判断出0Ax By C ++>(或0)<表示直线哪一侧的平面区域.即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据0Ax By C ++>(或0)<,观察B 的符号与不等式开口的符号,若同号,0Ax By C ++>(或0)<表示直线上方的区域;若异号,则表示直线上方的区域⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数z Ax By =+(,A B 为常数)的最值:法一:角点法:如果目标函数z Ax By =+ (x y 、即为公共区域中点的横坐标和纵坐标)的最值存在,则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应z 值,最大的那个数为目标函数z 的最大值,最小的那个数为目标函数z 的最小值 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线0:0l Ax By += ,平移直线0l (据可行域,将直线0l 平行移动)确定最优解;第三步,求出最优解(,)x y ;第四步,将最优解(,)x y 代入目标函数z Ax By =+即可求出最大值或最小值 .第二步中最优解的确定方法:利用z 的几何意义:A z y x B B =-+,zB为直线的纵截距. ①若0,B >则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最大值,使直线的纵截距最小的角点处,z 取得最小值;②若0,B <则使目标函数z Ax By =+所表示直线的纵截距最大的角点处,z 取得最小值,使直线的纵截距最小的角点处,z 取得最大值. ⑷常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:yz x =或;y b z x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab ab ∈++()()值?(一正、二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。

《不等式及其性质》 知识清单

《不等式及其性质》 知识清单

《不等式及其性质》知识清单一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子叫做不等式。

例如:3 > 2 ,x + 1 < 5 ,2x ≥ 4 ,y 3 ≤ 0 等都是不等式。

二、不等式的类型1、一元一次不等式:含有一个未知数,并且未知数的次数是 1 的不等式。

形如 ax + b > 0 或 ax + b < 0 (其中a ≠ 0 )。

2、一元二次不等式:含有一个未知数,并且未知数的最高次数是2 的不等式。

例如:x² 3x + 2 > 0 。

3、简单的分式不等式:不等式的两边至少有一边是分式的不等式。

比如:\(\frac{x 1}{x + 2} > 0\)。

4、绝对值不等式:含有绝对值符号的不等式。

例如:| x |< 3 ,| 2x 1 |≥ 5 。

三、不等式的解与解集1、不等式的解:能使不等式成立的未知数的值。

比如在不等式 x + 2 > 5 中,当 x = 4 时,不等式成立,所以 4 就是这个不等式的一个解。

2、不等式的解集:一个不等式的所有解组成的集合。

不等式 x + 2 > 5 的解集是 x > 3 ,表示所有大于 3 的数都是这个不等式的解。

四、不等式的性质1、对称性:如果 a > b ,那么 b < a ;如果 b < a ,那么 a > b 。

简单来说,就是两个数的大小关系是相互的。

2、传递性:如果 a > b 且 b > c ,那么 a > c 。

比如 5 > 3 , 3 > 1 ,所以 5 > 1 。

3、加法性质:(1)如果 a > b ,那么 a + c > b + c 。

也就是说,在不等式两边同时加上同一个数,不等号方向不变。

例如:因为 2 > 1 ,所以 2 + 3 > 1 + 3 ,即 5 > 4 。

(2)如果 a < b ,那么 a c < b c 。

在不等式两边同时减去同一个数,不等号方向不变。

比如:5 < 7 ,所以 5 2 < 7 2 ,即 3 < 5 。

数学不等式关键知识点总结

数学不等式关键知识点总结

数学不等式关键知识点总结一、不等式的概念不等式是用来表示两个数之间大小关系的数学式子。

通常,我们用符号"<"、">"、"≤"、"≥"来表示不等式中的大小关系。

例如,"2 < 3"表示2小于3;"4 ≥ 2"表示4大于或等于2。

在不等式中,我们把不等号的左边称为不等式的左侧,右边称为不等式的右侧。

这里需要说明的是,不等式并不仅仅是单纯的数值比较,还可以是变量的比较。

二、不等式的解集解集是不等式的一个重要概念。

解集指的是满足不等式的所有可能的解的集合。

对于单变量不等式,解集通常用一个不等式表示出来,例如"-2 < x < 3"表示x的取值范围在-2和3之间;对于多变量不等式,解集通常用一个不等式组表示出来,例如"2x + 3y ≤ 6"和"x + y < 4"表示x和y的取值范围。

解集的求解是解决不等式问题的关键步骤之一。

三、不等式的性质1. 加法性质:不等式两边同时加上(减去)同一个数,不等号方向不变。

例如,若a > b,则a + c > b + c;若a < b,则a - c < b - c。

2. 乘法性质:不等式两边同时乘以(除以)同一个正数,不等号方向不变;不等式两边同时乘以(除以)同一个负数,不等号方向改变。

例如,若a > b 且c > 0,则ac > bc;若a > b 且c < 0,则ac < bc。

3. 联立性质:若a > b 且 c > d,则a + c > b + d。

四、不等式的解法解不等式的方法通常有图形法、代数法和参数法等。

其中,代数法是解不等式的主要方法之一,主要有以下几种方法:1. 直接法:适用于一次不等式的情况,通过对不等式进行简单的加法、减法、乘法、除法等操作,得到不等式的解集。

(完整版)基本不等式知识点

(完整版)基本不等式知识点

基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

高中不等式知识点大全总结

高中不等式知识点大全总结

高中不等式知识点大全总结一、基本不等式性质1. 两个数的比较:(1)当 a > b 时,a-b>0;(2)当 a < b 时,a-b<0;(3)当 a = b 时,a-b=0。

2. 不等式的四则运算:不等式有“加减乘除”运算律,即不等式两边都同时加减(乘除)同一个数,不等式依然成立。

3. 绝对值不等式:对于任何实数 a 和正实数 b,有|a| > b 的不等式解集是 a > b 或 a < -b。

4. 不等式的取反:若不等式 a > b 成立,则其取反 a < b 也成立;若不等式 a > b 不成立,则其取反 a < b 亦成立。

5. 不等式的合并:若不等式 a > b 和 c > d 同时成立,则其合并为 a + c > b + d 成立。

6. 不等式的分拆:若不等式 a + b > c + d 成立,则其分拆为 a > c - b + d 或 b > d - a + c 成立。

二、一元一次不等式一元一次不等式是指只含有一个未知数的一次函数不等式,通常具有形式 ax+b > 0 或ax+b < 0。

1. 解不等式的方法一元一次不等式的解法包括两种:一是化简法,即通过使用运算律化简不等式,然后求出不等式的解集;二是图解法,即将不等式用图形表示出来,然后求出不等式的解集。

2. 一元一次不等式组一元一次不等式组是由若干个一元一次不等式组成的系统。

解一元一次不等式组的方法同样包括化简法和图解法。

三、一元二次不等式一元二次不等式是指只含有一个未知数的二次函数不等式,通常具有形式 ax^2+bx+c > 0 或 ax^2+bx+c < 0。

1. 一元二次不等式的解法一元二次不等式的解法通常使用折线法和区间法。

折线法是利用二次函数的拐点和零点来求解不等式的解集;区间法是将一元二次不等式用图像表示出来,然后找出其零点和开口方向,从而求出解集。

不等式知识点归纳

不等式知识点归纳

不等式知识点归纳1.不等式的基本性质不等式的性质可分为单向性质和双向性质两类.在解不等式时,只能用双向性质; 在证明不等式时,既可用单向性质,也可用双向性质. (1)a b b a <⇔>对称性 (2)c a c b b a >⇒>>,传递性(3)c b c a b a+>+⇒>加法单调性(4)d b c a d c b a +>+⇒>>,同向不等式相加 (5)d b c a d c b a->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,. 或 c b c a >(乘法单调性)(7)bc ac c b a <⇒<>0, 或 c bca <(8)bd ac d c b a>⇒>>>>0,0(同向不等式相乘)(9)0,0a ba b c d c d>><<⇒>(异向不等式相除) 11(10),0a b ab a b >>⇒<(倒数关系)(11))1,(0>∈>⇒>>n Z n b a b a n n且平方法则(12))1,(0>∈>⇒>>n Z n b a b an n 且开方法则倒数性质①a>b,ab>0.11b a <⇒②a<0<b.11b a <⇒③a>b>0,0<c<d.d b c a >⇒ ④0<a<x<b 或a<x<b<0.a x b 111<<⇒ 有关分数的性质:若a>b>0,m>0,则①真分数的性质: ②假分数的性质:).(;0>--->++<m b m a mb a b m a m b a b ).(;0>---<++>m b m b m a b a m b m a b a比例的几个性质①比例基本性质:;②反比定理:;③更比定理:;④合比定理;;⑤分比定理:;⑥合分比定理:;⑦分合比定理:;⑧等比定理:若,,则.①,则.【说明】:(,糖水的浓度问题).【拓展】:.②,,则;2.比较大小:分类讨论1.作差比较法;2.作商比较法(常用于指数式或均为正数的两式).(1)作差法步骤:作差——变形——判断差的符号.作商法的步骤:作商——变形——判断商与1的大小.(2)两种方法的关键是变形.常用的变形技巧有因式分解、配方、有理化等,也可以等价转化为易于比较大小的两个代数式来达到目的. 1.比较法(1)作差比较法①理论依据:a >b ⇔a -b >0;a <b ⇔a -b <0.②证明步骤:作差→变形→判断符号→得出结论.(2)作商比较法①理论依据:b >0,ab >1⇒a >b ;b <0,ab >1⇒a <b .②证明步骤:作商→变形→判断与1的大小关系→得出结论.2.平方法、开方法、倒数法等3.用同向不等式求差的范围.c b y xd a cy d bx a d y c b x a -<-<-⇒⎩⎨⎧-<-<-<<⇒⎩⎨⎧<<<<4.倒数关系在不等式中的作用..110;110b a b a ab b a b a ab >⇒⎩⎨⎧<><⇒⎩⎨⎧>>5.不等式的解法: 注意“系数化正”附:化归方法在不等式中的具体运用:(1)异向化同向;(2)负数化正数;(3)减式化加式;(4)除式化乘式;(5)多项化少项;(6)高次化低次.注:1.求不等式的解集、定义域及值域时,结果一定要用集合或区间表示,不能用不等式表示. 2.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o,a<b<o.解不等式应遵守的原则:1.凡是x的系数为负数的因式首先要[ 即标准式]2.分式不等式不能两边同乘上公分母而约去分母,只能移项通分。

(完整版)基本不等式知识点和基本题型(最新整理)

(完整版)基本不等式知识点和基本题型(最新整理)

3、已知 x, y 0 , x 2 y 2xy 8 ,求 x 2 y 最小值;
变式 1:已知 a,b 0 ,满足 ab a b 3 ,求 ab 范围;
变式 2:(2010 山东)已知 x, y 0 , 1 1 1 ,求 xy 最大值;(提示:通分或三角换元) 2x 2 y 3
(2)若 x 0 ,则 x 1 2 (当且仅当 x 1 时取“=”) x
(3)若 ab 0 ,则 a b 2 (当且仅当 a b 时取“=”)
ba
(4)若 a, b R ,则 ab ( a b )2 a2 b2
2
2
(5)若 a, b R* ,则 1 ab a b a2 b2
基本不等式专题辅导
一、知识点总结
1、基本不等式原始形式
(1)若 a,b R ,则 a2 b2 2ab
(2)若 a, b R ,则 ab a 2 b2
2
2、基本不等式一般形式(均值不等式) 若 a, b R* ,则 a b 2 ab
3、基本不等式的两个重要变形
(1)若 a, b R* ,则 a b ab
4
的最小值;
n
题型六:分离换元法求最值(了解)
1、求函数 y x2 7x 10 (x 1) 的值域; x 1
变式:求函数 y x2 8 (x 1) 的值域; x 1
2、求函数 y
x2
的最大值;(提示:换元法)
2x 5
变式:求函数 y
x 1
的最大值;
4x 9
题型七:基本不等式的综合应用
此时 x y z
6
2
1 2 2 12 ( 2)2 22 3
,∴ x 2 , y 4 , z 4
3
3

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全

完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。

不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。

2.解分式不等式f(x)。

a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。

3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。

4.解含参不等式时,常常需要分类等价转化。

按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。

二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。

2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。

三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。

2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。

四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。

2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。

(完整版)不等式知识点归纳大全

(完整版)不等式知识点归纳大全

《不等式》知识点归纳一.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.二、 利用重要不等式ab b a 2≥+ 以及变式2()2a b ab +≤等求函数的最值时,务必注意a ,b +∈R (或a ,b 非负),且“等号成立”时的条件是积ab 或和a +b 其中之一应是定值(一正二定三等四同时).三、.2211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号)四、含立方的几个重要不等式(a 、b 、c 为正数):(,);五、最值定理(积定和最小) ①,则当时和有最小值(和定积最大)②若和,则当是积有最大值. 【推广】:③已知,,,,+∈R y x b a 若1=+by ax ,则有则y x 11+的最小值为:3333a b c abc++≥0ab c ++>等式即可成立时取等或0=++==c b a c b a 3a b c ++⇒3()3a b c abc ++≤3333a b c ++≤,0,x y x y >+≥由()xy P =定值x y =x y +,0,x y x y >+≥由()x y S +=定值x y =xy 214s 21111()()by ax ax by a b a b xy x y x y +=++=+++++=+≥④等式到不等式的转化:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________. 4)2()2(82)2(822y x y x y x y x xy +≤+-=⋅⇒+-=即0)42)(82(08)2(4)2(2≥-+++⇒≥-+++y x y x y x y x 解得4282≥+-≤+y x y x (舍)或故x +2y 的最小值是4 如果求xy 的最大值,则xy xy y x y x xy 22282)2(82≥-=+⇒+-=, 然后解关于xy 的一元二次不等式,求xy 的范围,进而得到xy 的最大值六、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径, “配方、函数单调性等”对放缩的影响).七、含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.八、不等式中的函数思想不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结

(完整版)高中数学不等式知识点总结高中数学中,不等式是一个重要的内容,它是解决数学问题的一种有力工具。

不等式是一种用于描述数值的大小关系的数学语句,它包含“大于”、“小于”、“大于等于”、“小于等于”等符号。

在数学考试中,不等式问题常常出现在基础知识和综合应用的部分,所以对不等式的学习是非常必要的。

下面我将为大家总结一下高中数学中关于不等式的知识点。

一、不等式的基本概念1. 不等式的定义:不等式是数值之间大小关系的表达式,由关系符号和数值构成。

2. 关系符号的含义:- 大于:表示前面的数比后面的数要大,如a>b。

- 小于:表示前面的数比后面的数要小,如a<b。

- 大于等于:表示前面的数比后面的数大或相等,如a≥b。

- 小于等于:表示前面的数比后面的数小或相等,如a≤b。

二、不等式的性质及常用规则1. 不等式的性质:- 若a>b,则-a<-b。

- 若a>b,则a+c>b+c。

- 若a>b,则ac>bc(当c为正数时)。

- 若a>b,则ac<bc(当c为负数时)。

- 若a>b,且c>0,那么a/c>b/c。

- 若a>b,且c<0,那么a/c<b/c。

2. 不等式的常用规则:- 加法规则:若a>b,则a+c>b+c。

- 减法规则:若a>b,则a-c>b-c。

- 乘法规则:若a>b(c>0),则ac>bc;若a<b(c<0),则ac<bc。

- 除法规则:若a>b(c>0),则a/c>b/c;若a<b(c<0),则a/c<b/c。

- 对称性:若a>b,则-b<-a。

三、一元一次不等式1. 一元一次不等式的解集表示法:- 解集用区间表示。

- 开区间:解集中的数不包括端点。

- 闭区间:解集中的数包括端点。

2. 不等式的性质应用举例:- 若a>0,则-1/a<0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ab p ( ) 3 《不等式》知识点归纳一.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2) 解分式不等式 f (x )> a (a ≠ 0)的一般解题思路是什么?(移项通分,分子分母分解因式,xg x);(3) 含有两个绝对值的不等式如何去绝对值?(一般是分类讨论、平方转化或换元转化);(4) 解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.二、 利用重要不等式 a + b ≥ 2 以及变式ab ≤ (a +b )2 等求函数的最值时,务必注意 a ,b2∈ R + (或 a ,b 非负),且“等号成立”时的条件是积 ab 或和 a +b 其中之一应是定值(一正二定三等四同时).三、.常用不等式有:≥ a + b≥ ≥ 2 (根据目标不等式左右的运算结构选用) 2 1 + 1a ba 、b 、c ∈ R , a 2 + b 2 + c 2 ≥ ab + bc + ca (当且仅当a = b = c 时,取等号) 四、含立方的几个重要不等式(a 、b 、c 为正数):a 3 +b 3 +c 3≥ 3abc ( a + b + c > 0等式即可成立, a = b = c 或a + b + c = 0时取等);≤a +b +c ⇒3a +b +c abc ≤( ) ≤ 3a 3 +b 3 +c 3 3五、最值定理(积定和最小) ① x , y > 0,由x + y ≥ 2,若积 xy = P (值值) ,则当 x = y 时和 x + y 有最小值2 ;(和定积最大)② x , y > 0,由x + y ≥ 2 1 s 2 . 4,若和 x + y = S (值值 ) ,则当 x = y 是积 xy 有最大值 【推广】:③已知a ,b , x , y ∈ R + , 若ax + by = 1 ,则有则 1 + 1的最小值为:x yab a 2 + b 2 2 3abc xy xyab a2xy xy⎨f (n) >, f (x)0 ⎨f (n) < 01 +1= (ax +by)(1+1) =a +b +by+ax≥a +b + 2 = ( + b )2x y x y x y④等式到不等式的转化:已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是.(x + 2 y)22xy = 8 - (x + 2 y) ⇒x ⋅ 2 y = 8 - (x + 2 y) ≤4(x + 2 y)2即4+ (x + 2 y) - 8 ≥ 0 ⇒ (x + 2 y+ 8)(x + 2 y- 4) ≥ 0解得x+2y≤-(8舍)或x + 2 y ≥ 4故x+2y 的最小值是 4如果求xy 的最大值,则2xy = 8 - (x + 2 y) ⇒x + 2 y = 8 - 2xy ≥ 2 ,然后解关于的一元二次不等式,求xy 的范围,进而得到xy 的最大值六、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径,“配方、函数单调性等”对放缩的影响).七、含绝对值不等式的性质:a、b 同号或有0 ⇔| a +b |=| a | + | b | ≥|| a | - | b ||=| a -b |;a、b 异号或有0 ⇔| a -b |=| a | + | b | ≥|| a | - | b ||=| a +b | .八、不等式中的函数思想不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。

本文就结合实例谈谈这类问题的一般求解策略。

一、函数法(1)一次函数f (x) =kx +b, x ∈[m, n] 有:f (x) > 0恒成立⇔⎧f (m) > 0⎩ < 0恒成立⇔⎧f (m) < 0⎩(2)一元二次函数f (x) =ax 2+bx +c > 0(a ≠ 0, x ∈R) 有:⎨∆ < 0 ⎨∆ < 0 ⎨max min ⎪ 1) f (x ) > 0 对 x ∈ R 恒成立⇔ ⎧a > 0;⎩ 2) f (x ) < 0 对 x ∈ R 恒成立⇔ ⎧a < 0.⎩(3) 不等式中 x 的取值范围有限制,则可利用根的分布解决问题。

例 1.设 f (x ) = x 2- 2mx + 2 ,当 x ∈[-1,+∞) 时, f (x ) ≥ m 恒成立,求实数m 的取值范围。

解:设 F (x ) = x 2 - 2mx + 2 - m ,则当 x ∈[-1,+∞) 时, F (x ) ≥ 0 当∆ = 4(m - 1)(m + 2) < 0即- 2 < m < 1时, F (x ) > 0 显然成立;当∆ ≥ 0 时,如图, F (x ) ≥ 0 恒成立的充要条件为:⎧⎪∆ ≥ 0 ⎪F (-1) ≥ 0 解得- 3 ≤ m ≤ -2 。

综上可得实数m 的取值范围为[-3,1) 。

⎪ - 2m - ⎩ 2≤ -1二、最值法:将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:(1) f (x ) > a 恒成立⇔ a <(2) f (x ) < a 恒成立⇔ a > f (x )minf (x )max例 2.已知两个函数 f (x ) = 8x 2 +16x - k 值 g (x ) = 2x 3 + 5x 2 + 4x ,其中k 为实数.(1) 若对任意的 x ∈ [- 3,3],都有 f (x ) ≤ g (x ) 成立,求k 的取值范围; (2) 若对任意的 x 1、x 2 ∈ [- 3,3],都有 f (x 1 ) ≤ g (x 2 ) ,求k 的取值范围.(3)若对于任意 x 1 ∈[-3, 3] ,总存在 x 0 ∈[-3, 3]使得 g (x 0 ) = f (x 1 ) 成立,求k 的取值范围. 解:(1) 令 F (x ) = g (x ) - f (x ) = 2x 3 - 3x 2 - 12x + k ,问题转化为 F (x ) ≥ 0 在 x ∈ [- 3,3]上恒成立,即 F (x )min ≥ 0 即可(2)由题意可知当 x ∈ [- 3,3]时,都有 f (x ) ≤ g (x ) .(3)于任意 x 1 ∈[-3, 3] ,总存在 x 0 ∈[-3, 3]使得 g (x 0 ) = f (x 1 ) 成立,等价于 f (x )的值 域是 g (x )的值域的子集,⎨g (1) ≤ 0⎨ f (-1) > 0三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。

这种方法本质也还是求最值,但它思路更清晰,操作性更强。

一般地有:1) f (x ) < g (a )(a 为参数)恒成立⇔ g (a ) >2) f (x ) > g (a )(a 为参数)恒成立⇔ g (a ) < f (x )maxf (x )max例 3:已知 f (x )是定义在[-1,1]上的奇函数,且 f (1)=1,若m , n ∈[-1,1], m + n ≠ 0值f (m ) + f (n ) > 0 , 若m + nf (x ) ≤ t 2 - 2at + 1 对于所有的 x ∈[-1,1], a ∈[-1,1] 恒成立,求实数 t 的取值范围.解:题不等式中有三个变量,因此可以通过消元转化的策略,先消去一个变量,容易证明f (x )是定义在[-1,1]上的增函数,故 f (x )在[-1,1]上的最大值为 f (1)=1,则 f (x ) ≤ t 2- 2at + 1 对于所有的 x ∈[-1,1], a ∈[-1,1] 恒成立⇔ 1 ≤ t 2 - 2at + 1 对于所有的 a ∈[-1,1] 恒成立,即2ta - t 2 ≤ 0 对于所有的 a ∈[-1,1] 恒成立,令 g (a ) = 2ta - t 2 ,只要⎧g (-1) ≤ 0, ⎩ ∴ t ≤ -2值 t ≥ 2值 t = 0 .四、变换主元法理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量进行“换位”思考,往往会使问题降次、简化。

例 4:,不等式 x 2 + (a - 4)x + 4 - 2a > 0 恒成立,求 x 的取值范围。

分析:题中的不等式是关于 x 的一元二次不等式,但若把a 看成主元,则问题可转化为一次不等式(x - 2)a + x 2 - 4x + 4 > 0 在a ∈[-1,1] 上恒成立的问题。

解:令 f (a ) = (x - 2)a + x 2 - 4x + 4 ,则原问题转化为 f (a ) > 0 恒成立( a ∈[-1,1] )。

当 x = 2 时,可得 f (a ) = 0 ,不合题意。

当 x ≠ 2 时,应有⎧ f (1) > 0 ⎩解之得 x < 1或x > 3。

故 x 的取值范围为(-∞,1) (3,+∞) 。

1 + a 22 五、数形结合法数学家华罗庚曾说过:“数缺形时少直观,形缺数时难入微”,这充分说明了数形结合思想的妙处,在不等式恒成立问题中它同样起着重要作用。

函数图象和不等式有着密切的联系:1) f (x ) > g (x ) ⇔ 函数 f (x ) 图象恒在函数 g (x ) 图象上方;2) f (x ) < g (x ) ⇔ 函数 f (x ) 图象恒在函数 g (x ) 图象下上方.例 5.设函数 f (x ) = -a +解:由题意得 f (x ) ≤ g (x ) ⇔, g (x ) = ax + a ,若恒有 f (x ) ≤ g (x ) 成立,试求实数 a 的取值范围.≤ ax + 2a ,令y 1 = ①, y 2 = ax + 2a ②.①可化为(x - 2)2 + y 2 = 4(0 ≤ x ≤ 4, y ≥ 0) ,它表示以(2,0)为圆心,211为半径的上半圆;②表示经过定点(-2,0),以 a 为斜率的直线,要使 f (x ) ≤ g (x ) 恒成立,只需①所表示的半圆在②所表示的直线下方就可以了(如图所示).当直线与半圆相切时就有| 2a + 2a | = 2 ,即 a = ±3 ,由图可知,要使 f (x ) ≤ g (x ) 恒成立,实数 a 的3取值范围是a ≥3 .3六、分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。

相关文档
最新文档