概率统计的matlab求解
matlab在概率统计中的计算
![matlab在概率统计中的计算](https://img.taocdn.com/s3/m/6738b8e29b89680203d825a2.png)
4.1 计算组合数、验证概率的频率定义,计算古典概率
4.1.1 计算nk.
P
P
使用语句n^k
4
第4章 概率统计
例如计算 511
N=5^11 N=
48828125
如计算 5−2.8
N=5^(-2.8) N=
0.0110
4.1.2 计算组合数 Cnk
计算组合数 Cnk 时,使用语句nchoosek(n,k).
1
MATLAB6.0数学手册
光驱:8倍速以上; 内存:至少64MB,但推荐128MB以上; 硬盘:视安装方式不同要求不统一,但至少留1GB用于安装(安装后未必有1GB); 显卡:8位; MATLAB 6对软件的要求 Windows95 、Window98、Windows NT或Windows2000; Word97或word2000等,用于使用MATLAB Notebook; Adobe Acrobat Reader 用于阅读MATLAB的PDF的帮助信息。 MATLAB 6的安装和其它应用软件类似,可按照安装向导进行安装,这里不再赘述。 MATLAB的启动和退出 与常规的应用软件相同,MATLAB的启动也有多种方式,首先常用的方法就是双击桌面的 MATLAB图标,也可以在开始菜单的程序选项中选择MATLAB组件中的快捷方式,当然也可 以在MATLAB的安装路径的子目录中选择可执行文件“MATLAB.exe”。 启动MATLAB后,将打开一个MATLAB的欢迎界面,随后打开MATLAB的桌面系统(Desktop) 如图2-1所示。
在MATLAB命令行操作中,有一些键盘按键可以提供特殊而方便的编辑操作。比如:“↑” 可用于调出前一个命令行,“↓”可调出后一个命令行,避免了重新输入的麻烦。当然下 面即将讲到的历史窗口也具有此功能。 历史窗口(Command History) 历史命令窗口是MATLAB6新增添的一个用户界面窗口,默认设置下历史命令窗口会保留自 安装时起所有命令的历史记录,并标明使用时间,以方便使用者的查询。而且双击某一 行命令,即在命令窗口中执行该命令。 当前目录窗口(Current Directory )
如何在Matlab中进行概率统计分析
![如何在Matlab中进行概率统计分析](https://img.taocdn.com/s3/m/7be67cf5a0c7aa00b52acfc789eb172ded639982.png)
如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。
Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。
本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。
一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。
Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。
例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。
在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。
Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。
二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。
Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。
下面以一个示例来说明如何使用Matlab进行描述性统计分析。
假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。
Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。
常见的概率分布包括正态分布、指数分布、泊松分布等。
下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。
Matlab中的概率统计分析
![Matlab中的概率统计分析](https://img.taocdn.com/s3/m/c03d10cff71fb7360b4c2e3f5727a5e9846a2765.png)
Matlab中的概率统计分析概率统计分析是一门重要的统计学分支,可应用于各行各业。
在数据科学领域中,通过概率统计分析,我们可以对数据集进行探索性分析、建模以及预测。
Matlab作为一种流行的科学计算软件,提供了丰富的工具和函数来进行概率统计分析。
本文将介绍一些常见的概率统计分析方法以及它们在Matlab中的应用。
一、描述统计分析描述统计分析是通过对数据进行总结和可视化,来了解数据的分布和特征。
Matlab提供了多种函数和工具来进行描述统计分析。
例如,我们可以使用`mean`函数来计算数据的均值,使用`std`函数计算标准差。
此外,还可以通过`histogram`函数绘制直方图、通过`boxplot`函数绘制箱线图等。
二、概率分布及参数估计在概率统计分析中,概率分布是描述随机变量的函数。
在Matlab中,我们可以使用各种内置的概率分布函数,如正态分布、二项分布、泊松分布等。
这些函数可以用来计算随机变量在给定参数下的概率密度函数、累积分布函数等。
参数估计是概率统计分析的重要内容之一。
根据已有的样本数据,我们可以通过最大似然估计等方法来估计概率分布的参数。
在Matlab中,可以使用`fitdist`函数进行参数估计。
该函数可以根据给定的数据和概率分布类型,自动计算出最佳的参数估计结果。
三、假设检验假设检验用于验证关于总体参数的假设,并对观察到的样本数据进行统计推断。
Matlab提供了一系列的函数来进行假设检验。
例如,`ttest`函数可以用于t检验,`chi2gof`函数可以用于卡方检验等。
四、参数估计的抽样分布参数估计的抽样分布是概率统计分析中的重要概念之一。
通过对参数估计结果进行大量次数的模拟重复,可以得到参数估计的分布情况。
在Matlab中,通过使用`random`函数,我们可以生成服从特定概率分布的随机数。
结合循环语句,可以进行大量次数的模拟实验,进而得到参数估计的抽样分布。
五、相关性分析相关性分析用于研究两个或多个变量之间的相关关系。
实验5(2)-概率统计问题的Matlab求解资料
![实验5(2)-概率统计问题的Matlab求解资料](https://img.taocdn.com/s3/m/2f30f0c6524de518974b7d0a.png)
即: a = –2.032, c= 0.148 则模型:y = – 2.032 + 0.148 x R2=0.9928 , F=1101.878 ,P=0 由R2和F 表明拟合效果很好! (5)预报 当X=108时,Y= 13.952亿; 当X=110时,Y=14.248亿
故
回归模型为
y 13.1501x2 217.8686x 175.6217.
的回归关系,收集数据:
年份 1971 1972 1973 1974 1975 1976
火柴销量 y(万件) 17.84 18.27 20.29 22.61 26.71 31.19
一元多项式回归
(3)结果分析 p =-0.2003 8.9782 -72.2150
a 72.2150。 即 a2 0.2003, a1 8.9782, 0
则二次模型为:
y a2 x 2 a1 x a0 0.2003 x 2 8.9782 x 72.2150
数学实验 概率统计问题的Matlab求解
——回归分析
实验目的
熟练掌握Matlab编程中一元线性回归、多 元线性回归、一元多项式回归、非线性回归 等语句的调用格式 会用Matlab对各种数据样本进行回归分析, 并分析回归结果,对回归进行评价。 对实际问题,能够进行数据样本的分析,选 用哪种方式进行回归模拟,依该回归进行预 测。
x1=[17.84,27.43,21.43,11.09,25.78;18.27,29.95,24.96,... 14.48,28.16;20.29,33.53,28.37,16.97,24.26;22.61,37.31,... 42.57,20.16,30.18;26.71,41.16,45.16,26.39,17.08;31.19,... 45.73,52.46,27.04,7.39;30.5,50.59,45.3,23.08,3.88;29.63,... 58.82,46.8,24.46,10.53;29.69,65.28,51.11,33.82,20.09;... 29.25,71.25,53.29,33.57,21.22]; x=[ones(size(x1(:,1))),x1(:,2:5)];y=x1(:,1); [b,bint,r,rint,stats]=regress(y,x,0.05)
matlab概率统计函数
![matlab概率统计函数](https://img.taocdn.com/s3/m/947c137a32687e21af45b307e87101f69e31fb20.png)
matlab概率统计函数Matlab是一种流行的科学计算软件,其中包含了丰富的概率统计函数,可以用来进行统计分析、建模和预测等工作。
本文将介绍一些常用的Matlab概率统计函数及其应用。
1. normpdf函数:该函数用来计算正态分布的概率密度函数值。
对于给定的均值和标准差,可以使用该函数计算某个特定值的概率密度。
例如,可以使用normpdf函数计算身高在某个范围内的概率密度。
2. normcdf函数:该函数用来计算正态分布的累积分布函数值。
对于给定的均值和标准差,可以使用该函数计算某个特定值以下的累积概率。
例如,可以使用normcdf函数计算身高小于某个数值的累积概率。
3. binopdf函数:该函数用来计算二项分布的概率密度函数值。
对于给定的试验次数和成功概率,可以使用该函数计算在指定次数内出现特定成功次数的概率。
例如,可以使用binopdf函数计算在10次抛硬币试验中出现5次正面朝上的概率。
4. binocdf函数:该函数用来计算二项分布的累积分布函数值。
对于给定的试验次数和成功概率,可以使用该函数计算在指定次数内出现不超过特定成功次数的累积概率。
例如,可以使用binocdf函数计算在10次抛硬币试验中不超过5次正面朝上的累积概率。
5. poisspdf函数:该函数用来计算泊松分布的概率密度函数值。
对于给定的平均发生率,可以使用该函数计算在指定时间内发生特定次数的概率。
例如,可以使用poisspdf函数计算在一小时内发生3次事故的概率。
6. poisscdf函数:该函数用来计算泊松分布的累积分布函数值。
对于给定的平均发生率,可以使用该函数计算在指定时间内发生不超过特定次数的累积概率。
例如,可以使用poisscdf函数计算在一小时内不超过3次事故的累积概率。
7. hist函数:该函数用来绘制直方图。
通过将数据分成若干个区间,该函数可以显示每个区间的频数或频率。
例如,可以使用hist函数绘制一组数据的身高分布直方图。
MATLAB在概率统计中的应用
![MATLAB在概率统计中的应用](https://img.taocdn.com/s3/m/8871db2e866fb84ae45c8d3b.png)
第7章 MATLAB在概率统计中的应用一、统计量的数字特征<一)简单的数学期望和几种均值●mean(x> 平均值函数当x 为向量时,得到它的元素平均值;当x 为矩阵时,得到一列向量,每一行值为矩阵行元素的平均值,举例1:求矩阵A的平均值。
D=[74.001 74.005 74.003 74.001 74.00 73.998 74.006 74.02]Mean(d>举例22的值E(x>的值●E(x>的值:x=[-2 0 2],pk=[0.4 0.3 0.3]sum(x.*pk>●E(3x2+5>的值。
x=[-2 0 2],pk=[0.4 0.3 0.3]z=3*x.^2+5sum(z.*pk><二)数据比较⏹max 最大值⏹min 最小值⏹median 中值⏹sort 由小到大排序<三)求和与积⏹ sum 求向量或矩阵的元素累和 ⏹ prod : 求当前元素与所有前面元素的积 举例:下面的程序用来求向量各元素的之和prod=1 varx=[2 3 4] for x=varx prod=prod*x end<四)方差和标准差为了反映随机变量与其均值的偏离程度 方差表示为标准差表示为: 样本方差为: 样本标准差为: ● 方差函数Var①Var(x> x 为向量,返回向量的样本方差;x 为矩阵,则返回矩阵各列的方差。
②Var(x,1> 返回向量<矩阵x )的简单方差<即置前因子为n1的方差) ③Var(x,w> 返回向量<矩阵)x 即以w 为权的方差。
● Std 标准差函数Std(x> 返回向量或矩阵x 的样本标准差<置前因子为11n ) Std(x,1> 返回向量或矩阵x 的标准差<置前因子为n1)举例: d=[74.001 74.005 74.003 74.001 74.00 73.998 74.006 74.02]mean(d>var(d,1> %方差 var(d> %样本方差 std(d,1> %标准差 std(d> %样本标准差<五)协方差和相关系数cov(x>:x 为向量,返回向量的方差,x 为矩阵时返回矩阵的协方差矩阵,其中协方差矩阵的对角元素是x 矩阵的列向量的方差值。
matlab概率统计
![matlab概率统计](https://img.taocdn.com/s3/m/26decd9a294ac850ad02de80d4d8d15abe230004.png)
MATLAB概率统计1. 概述概率统计是数学中的一个重要分支,用于研究随机现象的规律性和不确定性。
MATLAB作为一种强大的数值计算和数据可视化工具,提供了丰富的函数和工具箱,使得概率统计分析变得简单而高效。
本文将介绍MATLAB中常用的概率统计函数和方法,并结合实例进行详细说明。
2. 概率分布2.1 常见概率分布函数在概率统计中,常见的概率分布函数有正态分布、均匀分布、二项分布等。
MATLAB 提供了相应的函数来生成这些概率分布。
•正态分布:normrnd函数用于生成服从正态分布的随机数。
x = normrnd(mu, sigma, [m, n]);其中,mu表示均值,sigma表示标准差,[m, n]表示生成随机数矩阵的大小。
•均匀分布:unifrnd函数用于生成服从均匀分布的随机数。
x = unifrnd(a, b, [m, n]);其中,a和b表示均匀分布区间的上下界。
•二项分布:binornd函数用于生成服从二项分布的随机数。
x = binornd(n, p, [m, n]);其中,n表示试验次数,p表示成功的概率。
2.2 概率密度函数和累积分布函数除了生成随机数,MATLAB还提供了计算概率密度函数(PDF)和累积分布函数(CDF)的函数。
•概率密度函数:对于连续型随机变量,可以使用normpdf、unifpdf等函数计算其概率密度函数值。
y = normpdf(x, mu, sigma);其中,x表示自变量的取值,mu和sigma表示正态分布的均值和标准差。
•累积分布函数:使用normcdf、unifcdf等函数可以计算连续型随机变量的累积分布函数值。
y = normcdf(x, mu, sigma);其中,参数的含义同上。
对于离散型随机变量,可以使用相应的离散型概率分布函数来计算其概率质量函数(PMF)和累积分布函数(CDF)。
3. 统计描述3.1 均值与方差均值和方差是统计学中常用的描述统计量,MATLAB提供了相应的函数来计算均值和方差。
实验5(1)-概率统计问题的Matlab求解.
![实验5(1)-概率统计问题的Matlab求解.](https://img.taocdn.com/s3/m/6c87b52103d8ce2f00662337.png)
参数估计
例2. 分别使用金球和铂球测定引力常数 (1)用金球测定观察值为:6.683 6.681 6.676 6.678 6.679 6.672 (2)用铂球测定观察值为:6.661 6.661 6.667 6.667 6.664 设测定值总体为 ,μ和σ为未知。对(1)、 (2)两种情况分别求μ和σ的置信度为0.9的置信区 间。
解:需要检验假设 H 0 : 1 2 0 H1 : 1 2 0 X=[78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3]; Y=[79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1]; [h,sig,ci]=ttest2(X,Y,0.05,-1) 结果显示为: h= 1 sig = 2.1759e-004 %说明两个总体均值相等的概率很小 ci = -Inf -1.9083 结果表明:h=1表示在 0.05 水平下,应该拒绝原假设,即 认为建议的新操作方法提高了产率,因此,比原方法好。
由上可知,金球测定的μ估计值为6.6782,置信 区间为[6.6750,6.6813]; σ的估计值为0.0039,置信区间为[0.0026, 0.0081]。 泊球测定的μ估计值为6.6640,置信区间为 [6.6611,6.6669]; σ的估计值为0.0030,置信区间为[0.0019, 0.0071]。
例 5 一道工序用自动化车床连续加工某种零件,由于刀具 损坏等会出现故障.故障是完全随机的,并假定生产任一零 件时出现故障机会均相同 .工作人员是通过检查零件来确定 工序是否出现故障的 . 现积累有 100 次故障纪录,故障出现 时该刀具完成的零件数如下:
459 612 926 527 775 402 699 447 621 764 362 452 653 552 859 960 634 654 724 558 624 434 164 513 755 885 555 564 531 378 542 982 487 781 49 610 570 339 512 765 509 640 734 474 697 292 84 280 577 666 584 742 608 388 515 837 416 246 496 763 433 565 428 824 628 473 606 687 468 217 748 706 1153 538 954 677 1062 539 499 715 815 593 593 862 771 358 484 790 544 310 505 680 844 659 609 638 120 581 645 851
Matlab第4章概率统计
![Matlab第4章概率统计](https://img.taocdn.com/s3/m/203af93bba1aa8114531d922.png)
Matlab 第4章概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。
4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数binornd格式R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。
R = binornd(N,P,m) %m指定随机数的个数,与R同维数。
R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数normrnd格式R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA 的正态分布的随机数据,R可以是向量或矩阵。
R = normrnd(MU,SIGMA,m) %m指定随机数的个数,与R同维数。
R = normrnd(MU,SIGMA,m,n) %m,n分别表示R的行数和列数例4-2>>n1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827>>n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462>>n3 = normrnd([1 2 3;4 5 6],0.1,2,3) %mu为均值矩阵n3 =0.9299 1.9361 2.96404.12465.0577 5.9864>> R=normrnd(10,0.5,[2,3]) %mu为10,sigma为0.5的2行3列个正态随机数R =9.7837 10.0627 9.42689.1672 10.1438 10.59554.1.3 常见分布的随机数产生常见分布的随机数的使用格式与上面相同表4-1 随机数产生函数表4.1.4 通用函数求各分布的随机数据命令求指定分布的随机数函数random格式y = random('name',A1,A2,A3,m,n) %name的取值见表4-2;A1,A2,A3为分布的参数;m,n指定随机数的行和列例4-3 产生12(3行4列)个均值为2,标准差为0.3的正态分布随机数>> y=random('norm',2,0.3,3,4)y =2.3567 2.0524 1.8235 2.03421.9887 1.94402.6550 2.32002.0982 2.2177 1.9591 2.01784.2 随机变量的概率密度计算4.2.1 通用函数计算概率密度函数值命令通用函数计算概率密度函数值函数pdf格式Y=pdf(name,K,A)Y=pdf(name,K,A,B)Y=pdf(name,K,A,B,C)说明返回在X=K处、参数为A、B、C的概率密度值,对于不同的分布,参数个数是不同;name为分布函数名,其取值如表4-2。
Matlab在概率统计中的应用
![Matlab在概率统计中的应用](https://img.taocdn.com/s3/m/b64f3f40fad6195f302ba610.png)
H1 μ1≠μ2
x=[20.5 18.8 20.9 21.5 19.5 21.6 21.8]; y=[17.7 19.2 20.3 20 18.6 19 19.1 20 18.1];
corrcoef(X) ans =
1.0000 0.9563 -0.1259 -0.3706 0.2186 0.9563 1.0000 -0.0434 -0.2201 0.3524 -0.1259 -0.0434 1.0000 0.5273 0.1414 -0.3706 -0.2201 0.5273 1.0000 -0.4423 0.2186 0.3524 0.1414 -0.4423 1.0000
MATLAB中,协方差和相关系数函数cov和coffcoef实现 协方差 调用格式 cov(x)
当x是向量时,返回此向量的协方差;当x是矩阵时,返 回此矩阵的协方差矩阵,其中x的每一行是一个观测值, x的每一列是一个变量。由Cov(x)的对角元素为构成的向 量是x的各列的方差所构成的向量,diag(cov(x)是) 标准差向量
H=0 表示“在显著性水平a的情况下,不能拒绝原假设”。 H=1 表示“在显著性水平a的情况下,可以拒绝原假设”。
P为显著性概率;ci表示置信水平为1-a的置信区间。 zval是检验统计量。
例如 某糖厂用自动包装机将糖果装箱,已知规定每箱的 标准重量为100公斤。设每箱重服从正态分布。由以往经 验知重量的均方差为0.9公斤。某天开工后检验包装机是 否正常,随机抽取该包装机所包装的9箱,称得净重为 (公斤)99.3,98.7,100.5,101.2,98.3,99 .7, 105.1,102.6,100.5。取a=0.05,问机器是否正常?
matlab中对一维数据进行计算概率分布的方法
![matlab中对一维数据进行计算概率分布的方法](https://img.taocdn.com/s3/m/c99f193203768e9951e79b89680203d8ce2f6a82.png)
matlab中对一维数据进行计算概率分布的方法在Matlab中,有多种方法可以计算一维数据的概率分布。
以下是一些常用的方法:1. 直方图:直方图是一种常用的概率分布计算方法,它将数据划分成若干个小区间,然后统计每个区间中数据出现的频次。
Matlab提供了histogram函数,可以直接使用该函数计算一维数据的概率分布。
例如:```matlabdata = [1, 2, 3, 1, 2, 1, 3, 4, 5, 1];edges = 0:1:5; % 设置直方图的区间counts = histogram(data, edges, 'Normalization', 'probability');```counts变量将包含每个区间的概率分布值。
2. 核密度估计:核密度估计是一种非参数方法,它通过使用核函数在数据点周围生成一定数量的带宽,从而估计数据的概率密度。
Matlab中的ksdensity函数可以用来计算一维数据的核密度估计。
例如:```matlabdata = [1, 2, 3, 1, 2, 1, 3, 4, 5, 1];[f,xi] = ksdensity(data);plot(xi, f);```这将生成一条概率密度估计曲线。
3. 概率分布拟合:如果已知数据属于特定的概率分布类型,可以使用概率分布拟合方法来计算数据的概率分布。
Matlab提供了fitdist函数,可以使用各种概率分布类型(如正态分布、指数分布、伽马分布等)进行拟合。
例如:```matlabdata = [1, 2, 3, 1, 2, 1, 3, 4, 5, 1];pd = fitdist(data', 'Normal');x = linspace(min(data), max(data), 100);y = pdf(pd, x);plot(x, y);```这将绘制数据的概率密度函数。
第3章 概率统计实例分析及MatlAb求解
![第3章 概率统计实例分析及MatlAb求解](https://img.taocdn.com/s3/m/f674d3c92cc58bd63186bd2f.png)
第3章概率统计实例分析及MatlAb求解3.1 随机变量分布与数字特征实例及MATLAB求解3.1.1 MATLAB实现用mvnpdf和mvncdf函数可以计算二维正态分布随机变量在指定位置处的概率和累积分布函数值。
利用MATLAB统计工具箱提供函数,可以比较方便地计算随机变量的分布律(概率密度函数)、分布函数及其逆累加分布函数,见附录2-1,2-2,2-3。
MATLAB中矩阵元素求期望和方差的函数分别为mean和var,若要求整个矩阵所有元素的均方差,则要使用std2函数。
随机数生成函数:rand( )和randn( )两个函数伪随机数生成函数:A=gamrnd(a,lambda,n,m) % 生成n*m的 分布的伪随机矩阵B=raylrnd(b,n,m) %生成rayleigh的伪随机数3.1.2 相关实例求解例2-1计算服从二维正态分布的随机变量在指定范围内的累积分布函数值并绘图。
程序:%二维正态分布的随机变量在指定范围内的累积分布函数图形mu=[0 0];sigma=[0.25 0.3;0.3 1];%协方差阵x=-3:0.1:3;y=-3:0.2:3;[x1,y1]=meshgrid(x,y);%将平面区域网格化取值f=mvncdf([x1(:) y1(:)],mu,sigma);%计算累积分布函数值F=reshape(f,numel(y),numel(x));%矩阵重塑surf(x,y,F);caxis([min(F(:))-0.5*range(F(:)),max(F(:))]);%range(x)表示最大值与最小值的差,即极差。
axis([-3 3 -3 3 0 0.5]);xlabel('x'); ylabel('y');zlabel('Probability Density');图1 二维正太分布累积分布函数值图例2-2 设X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<<-≤≤=其他。
8.7--概率统计问题的-MATLAB求解
![8.7--概率统计问题的-MATLAB求解](https://img.taocdn.com/s3/m/453ae201f6ec4afe04a1b0717fd5360cbb1a8d1d.png)
输入命令 >> unifcdf(3,0,5)
ans = 0.6000
输出结果
输入命令 >> normcdf(90,80,6)-normcdf(69,80,6)
输出结果
ans = 0.9188
输入命令 >> 1-expcdf(100,2000)
ans = 0.9512
输出结果
8.7.2 随机变量的数字特征——数学期望与方差
输入命令 >> X=[0 1 2 3 4]; >> P=[0.1 0.2 0.3 0.2 0.2]; >> EX=sum(X.*P)
>> DX=sum(X.^2.*P)-(EX)^2
输出结果
EX = 2.2000
DX = 1.5600
输入命令 >> [E,D]=binostat(20,0.6)
E= 12 D= 4.8000
输出结果
EX = 1
DX = -1/4
输入命令 >> [E,D]=unifstat(0,10)
E= 5 D= 8.3333
输出结果
输入命令
E=
>> [E,D]=normstat(60,5)
60 D=
25
输出结果
输入命令 >> [E,D]=expstat(0.5)
E= 0.5000 D= 0.2500
第8章 MATLAB数学实验与数学建模
(四)
8.7 实验六 概率统计问题的MATLAB求解
8.7.1 几种常用的概率分布
1.离散型随机变量的概率 命令调用格式:
binopdf(k,n,p) 计算二项分布 B(n, p)中随机变量 k 的概率; binocdf(k,n,p) 计算二项分布 B(n, p)中随机变量 k 的概率; poisspdf(k, ) 计算泊松分布 P()中随机变量 k 的概率; poisscdf(k, ) 计算泊松分布 P()中随机变量 k 的概率.
MATLAB计算概率
![MATLAB计算概率](https://img.taocdn.com/s3/m/a0e2f8830d22590102020740be1e650e53eacf73.png)
MATLAB计算概率在MATLAB中,计算概率可以使用MATLAB的概率和统计工具箱。
概率是一个数学领域,主要研究随机事件发生的可能性。
在计算概率时,常见的方法包括使用概率分布函数、概率密度函数和累积分布函数等。
1.概率分布函数概率分布函数(Probability Distribution Function, PDF)用于描述随机变量的取值概率分布。
MATLAB中提供了多种常见的概率分布函数,如正态分布、均匀分布、泊松分布等。
计算概率分布函数可以使用相应的函数,例如:- 正态分布:normpdf(x, mu, sigma)计算正态分布的概率密度函数值。
- 均匀分布:unifpdf(x, a, b)计算均匀分布的概率密度函数值。
- 泊松分布:poisspdf(x, lambda)计算泊松分布的概率质量函数值。
其中x为随机变量,mu、sigma、a、b和lambda是对应分布的参数。
2.概率密度函数概率密度函数(Probability Density Function, PDF)用于描述随机变量取一些特定值的概率密度。
计算概率密度函数可以使用相应的函数,例如:- 正态分布:normpdf(x, mu, sigma)计算正态分布的概率密度函数值。
- 均匀分布:unifpdf(x, a, b)计算均匀分布的概率密度函数值。
- 泊松分布:poisspdf(x, lambda)计算泊松分布的概率质量函数值。
其中x为随机变量,mu、sigma、a、b和lambda是对应分布的参数。
3.累积分布函数累积分布函数(Cumulative Distribution Function, CDF)用于描述随机变量取值小于或等于一些特定值的概率。
计算累积分布函数可以使用相应的函数,例如:- 正态分布:normcdf(x, mu, sigma)计算正态分布的累积分布函数值。
- 均匀分布:unifcdf(x, a, b)计算均匀分布的累积分布函数值。
概率统计在MATLAB中的实现方法解析
![概率统计在MATLAB中的实现方法解析](https://img.taocdn.com/s3/m/2ff0b12d876fb84ae45c3b3567ec102de2bddfee.png)
概率统计在MATLAB中的实现方法解析概率统计是一门研究随机现象的规律性和不确定性的学科,广泛应用于各个领域。
而MATLAB是一种强大的科学计算软件,可以在概率统计领域中提供很多实用的工具和方法。
本文将探讨概率统计在MATLAB中的实现方法,帮助读者更好地理解和应用于实践。
一、概率分布的生成和拟合在概率统计中,对于一些已知的概率分布,我们常常需要生成符合该分布的随机数,或者通过已有的样本数据对分布进行拟合。
在MATLAB中,可以使用一些函数来实现这些操作。
首先,对于已知的概率分布,例如正态分布(高斯分布),可以使用normrnd()函数生成符合该分布的随机数。
该函数的输入参数包括均值和标准差,输出为符合正态分布的随机数。
例如,我们可以生成100个符合均值为0,标准差为1的正态分布随机数:```MATLABx = normrnd(0, 1, 100, 1);```对于已有的样本数据,我们可以使用fitdist()函数对数据进行概率分布的拟合。
该函数可以自动选择合适的分布类型,并给出对应的参数估计值。
例如,我们有一组样本数据x,需要对其进行正态分布的拟合:```MATLABdist = fitdist(x, 'Normal');```通过fitdist()函数返回的dist对象,我们可以获取该分布的参数估计值、置信区间等信息。
二、假设检验和置信区间估计假设检验和置信区间估计是概率统计中常用的分析方法,用于判断样本数据是否符合某个假设、计算参数估计的可信度等。
在MATLAB中,可以使用一些函数来实现假设检验和置信区间估计。
对于假设检验,MATLAB提供了ttest2()和chi2gof()等函数,用于分别进行两样本t检验和卡方检验。
例如,我们有两组样本数据x和y,需要进行两样本t检验:```MATLAB[h, p] = ttest2(x, y);```通过ttest2()函数返回的h值可以判断是否拒绝原假设,p值则表示检验结果的显著性。
使用Matlab进行概率统计分析的方法
![使用Matlab进行概率统计分析的方法](https://img.taocdn.com/s3/m/ef68712853d380eb6294dd88d0d233d4b14e3f6d.png)
使用Matlab进行概率统计分析的方法概率统计是一门研究随机现象的规律性的数学学科,广泛应用于各个领域。
而Matlab作为一种高效的数值计算工具,也可以用来进行概率统计分析。
本文将介绍使用Matlab进行概率统计分析的一些常用方法和技巧。
一、概率统计的基本概念在介绍使用Matlab进行概率统计分析方法之前,首先需要了解一些基本概念。
概率是表示事件发生可能性的数值,通常用概率分布来描述。
而统计是通过收集、整理和分析数据来研究问题的一种方法,通过统计推断可以得到总体的一些特征。
二、Matlab中的概率统计函数在Matlab中,有许多内置的概率统计函数,可以直接调用来进行分析。
常用的概率统计函数有:1. 随机数生成函数:可以用来生成服从不同概率分布的随机数,如正态分布、均匀分布等。
2. 描述统计函数:可以用来计算数据的统计特征,如均值、方差、标准差等。
3. 概率分布函数:可以用来计算不同概率分布的概率密度函数、累积分布函数、分位点等。
4. 线性回归和非线性回归函数:可以用来拟合数据并进行回归分析。
5. 假设检验函数:可以用来进行参数估计和假设检验,如t检验、方差分析等。
这些函数可以通过Matlab的帮助文档来查找具体的使用方法和示例。
三、随机数生成和分布拟合随机数生成是概率统计分析的基础,Matlab提供了多种随机数生成函数。
例如,可以使用rand函数生成服从均匀分布的随机数,使用randn函数生成服从标准正态分布的随机数。
通过设置不同的参数,可以生成不同分布的随机数。
分布拟合是将实际数据与理论概率分布进行对比的方法,可以帮助我们判断数据是否符合某种分布。
Matlab提供了fitdist函数用于对数据进行分布拟合,可以根据数据自动选择合适的概率分布进行拟合,并返回相应的参数估计结果。
通过对数据拟合后的分布进行分析,可以更好地了解数据的性质。
四、描述统计和数据可视化描述统计是在数据收集和整理之后,对数据进行总结和分析的过程。
完整版Matlab概率论及数理统计
![完整版Matlab概率论及数理统计](https://img.taocdn.com/s3/m/222fac046294dd88d1d26bee.png)
Matlab概率论与数理统计一、 matlab 基本操作1.画图【例】简单画图hold off;x=0:0.1:2*pi;y=sin(x);plot(x,y,'-r');x1=0:0.1:pi/2;y1=sin(x1);hold on;fill([x1, pi/2],[y1,1/2],'b' );【例】填充,二维平均随机数hold off;x=[0,60];y0=[0,0];y60=[60,60];x1=[0,30];y1=x1+30;x2=[30,60];y2=x2-30;xv=[0 0 30 60 60 30 0];yv=[0 30 60 60 30 0 0];fill(xv,yv,'b');hold on ;plot(x,y0,'r',y0,x,'r',x,y60,'r' ,y60,x,'r' );plot(x1,y1,'r',x2,y2,'r');yr=unifrnd (0,60,2,100);plot(yr(1,:),yr(2,:),'m.')axis('on');axis('square');2.排列组合C=nchoosek(n,k) :C C n k,例 nchoosek(5,2)=10, nchoosek(6,3)=20.prod(n1:n2) :从 n1 到 n2 的连乘【例】最少有两个人寿辰相同的概率n!C N nN !( N n)!N(N1)(N n1)公式计算 p 111N nN n N n365 364 (365rs1)365364365rs 1 1365rs1365365365rs=[20,25,30,35,40,45,50];%每班的人数p1=ones(1,length(rs));p2=ones(1,length(rs));%用连乘公式计算for i=1:length(rs)p1(i)=prod(365-rs(i)+1:365)/365^rs(i);end%用公式计算(改进)for i=1:length(rs)for k=365-rs(i)+1:365p2(i)=p2(i)*(k/365);end ;endp1(i)=exp(sum(log(365-rs(i)+1:365))-rs(i)*log(365));endp_r1=1-p1;p_r2=1-p2;Rs =[20253035404550 ]P_r=[0.4114 0.5687 0.7063 0.8144 0.8912 0.9410 0.9704]二、随机数的生成3.平均分布随机数rand(m,n); 产生 m 行 n 列的 (0,1) 平均分布的随机数rand(n); 产生 n 行 n 列的 (0,1)平均分布的随机数【练习】生成(a,b)上的平均分布4.正态分布随机数randn(m,n); 产生 m 行 n 列的标准正态分布的随机数【练习】生成N(nu,sigma.^2) 上的正态分布5.其他分布随机数函数名调用形式注释Unidrnd unid rnd (N,m,n)平均分布(失散)随机数binornd bino rnd (N,P,m,n)参数为 N, p的二项分布随机数Poissrnd poiss rnd (Lambda,m,n)参数为 Lambda的泊松分布随机数geornd geornd (P,m,n)参数为 p 的几何分布随机数hygernd hygernd (M,K,N,m,n)参数为 M, K, N 的超几何分布随机数Normrnd normrnd (MU,SIGMA,m,n)参数为 MU, SIGMA的正态分布随机数,SIGMA是标准差Unifrnd unif rnd ( A,B,m,n)[A,B] 上平均分布 ( 连续 ) 随机数Exprnd exprnd (MU,m,n)参数为 MU的指数分布随机数chi2rnd chi2 rnd(N,m,n)自由度为 N 的卡方分布随机数Trnd t rnd(N,m,n)自由度为 N 的 t分布随机数Frnd f rnd(N1, N2,m,n)第一自由度为N1, 第二自由度为 N2 的 F 分布随机数gamrnd gamrnd(A, B,m,n)参数为 A, B的分布随机数betarnd betarnd(A, B,m,n)参数为 A, B的分布随机数lognrnd lognrnd(MU, SIGMA,m,n)参数为 MU, SIGMA的对数正态分布随机数nbinrnd nbinrnd(R, P,m,n)参数为 R,P 的负二项式分布随机数ncfrnd ncfrnd(N1, N2, delta,m,n)参数为 N1, N2, delta 的非中心 F 分布随机数nctrnd nctrnd(N, delta,m,n)参数为 N,delta的非中心 t 分布随机数ncx2rnd ncx2rnd(N, delta,m,n)参数为 N,delta的非中心卡方分布随机数raylrnd raylrnd(B,m,n)参数为 B 的瑞利分布随机数weibrnd weibrnd(A, B,m,n)参数为 A, B的韦伯分布随机数三、一维随机变量的概率分布1.失散型随机变量的分布率(1)0-1 分布(2)平均分布(3) 二项分布: binopdf(x,n,p) ,若X ~ B(n, p),则P{ X k} C n k p k (1p) n k,x=0:9;n=9;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')y=[ 0.0404, 0.1556, 0.2668, 0.2668, 0.1715, 0.0735, 0.0210, 0.0039, 0.0004, 0.0000 ]‘当 n 较大时二项分布近似为正态分布x=0:100;n=100;p=0.3;y= binopdf(x,n,p);plot(x,y,'b-',x,y,'r*')(4) 泊松分布: piosspdf(x, lambda) ,若X ~k e ( ) ,则 P{ X k}k !x=0:9; lambda = 3;y= poisspdf (x,lambda);plot(x,y,'b-',x,y,'r*')y=[ 0.0498, 0.1494, 0.2240, 0.2240, 0.1680, 0.1008, 0.0504, 0.0216, 0.0081, 0.0027 ](5) 几何分布: geopdf (x, p),则P{ X k} p(1p) k 1y= geopdf(x,p);plot(x,y,'b-',x,y,'r*')y=[ 0.3000, 0.2100, 0.1470, 0.1029, 0.0720, 0.0504, 0.0353, 0.0247, 0.0173, 0.0121 ]C M k C N n k Mx=0:10;N=20;M=8;n=4;y= hygepdf(x,N,M,n);plot(x,y,'b-',x,y,'r*')y=[ 0.1022, 0.3633, 0.3814, 0.1387, 0.0144, 0, 0, 0, 0, 0, 0 ]2.概率密度函数1a x b(1)平均分布: unifpdf(x,a,b) ,f ( x)b a0其他a=0;b=1;x=a:0.1:b;y= unifpdf (x,a,b);112(2)正态分布: normpdf(x,mu,sigma) ,f ( x)e2 2 ( x)2x=-10:0.1:12;mu=1;sigma=4;y= normpdf(x,mu,sigma);rn=10000;z= normrnd (mu,sigma,1,rn); %产生 10000 个正态分布的随机数d=0.5;a=-10:d:12;b=(hist(z,a)/rn)/d;% 以 a 为横轴,求出 10000 个正态分布的随机数的频率plot(x,y,'b-',a,b,'r.')(3) 指数分布: exppdf(x,mu) ,f (x)1 e1xa x by= exppdf(x,mu); plot(x,y,'b-',x,y,'r*')1n1(4)2分布: chi2pdf(x,n) , f (x; n)2n 2x2( n 2)hold on x=0:0.1:30;n=4;y= chi2pdf(x,n);plot(x,y,'b');%blue n=6;y= chi2pdf(x,n);plot(x,y,'r');%redn=8;y= chi2pdf(x,n);plot(x,y,'c');%cyan n=10;y= chi2pdf(x,n);plot(x,y,'k');%black legend('n=4', 'n=6', 'n=8', 'n=10');(( n 1) 2) x 2(5) t 分布: tpdf(x,n) , f (x; n)(n 2)1nnhold on x=-10:0.1:10;n=2;y= tpdf(x,n);plot(x,y,'b');%blue e 2n 1 2x 0x 0n=20;y= tpdf(x,n);plot(x,y,'k');%black legend('n=2', 'n=6', 'n=10', 'n=20');n1n1 2n1n222(6) F 分布: fpdf(x,n1,n2) ,f ( x; n1, n2)(( n1n2 ) 2) n1x 21n1x x 0 (n1 2)(n2 2) n2n20x 0hold onx=0:0.1:10;n1=2; n2=6;y= fpdf(x,n1,n2);plot(x,y,'b');%bluen1=6; n2=10;y= fpdf(x,n1,n2);plot(x,y,'r');%redn1=10; n2=6;y= fpdf(x,n1,n2);plot(x,y,'c');%cyann1=10; n2=10;y= fpdf(x,n1,n2);plot(x,y,'k');%blacklegend(' n1=2; n2=6', ' n1=6; n2=10', ' n1=10; n2=6', ' n1=10; n2=10');3.分布函数 F (x) P{ X x}【例】求正态分布的累积概率值设 X ~ N(3,22),求P{2X 5},P{ 4 X 10},P{ X 2}, P{X3} ,4.逆分布函数,临界值y F (x) P{ X x} , x F 1 ( y) , x 称之为临界值【例】求标准正态分布的累积概率值y=0:0.01:1;x=norminv(y,0,1);【例】求2 (9) 分布的累积概率值hold offy=[0.025,0.975];x=chi2inv(y,9);n=9;x0=0:0.1:30;y0=chi2pdf(x0,n);plot(x0,y0,'r');x1=0:0.1:x(1);y1=chi2pdf(x1,n);x2=x(2):0.1:30;y2=chi2pdf(x2,n);hold onfill([x1, x(1)],[y1,0],'b');fill([x(2),x2],[0,y2],'b');5. 数字特色函数名调用形式注释sort sort(x),sort(A)排序 ,x 是向量, A 是矩阵,按各列排序sortrows sortrows(A) A 是矩阵,按各行排序mean mean(x)向量 x 的样本均值var var(x)向量 x 的样本方差std std(x)向量 x 的样本标准差median median(x)向量 x 的样本中位数geomean geomean(x)向量 x 的样本几何平均值harmmean harmmean(x)向量 x 的样本调停平均值skewness skewness(x)向量 x 的样本偏度max max(x)向量 x 的最大值min min(x)向量 x 的最小值cov cov(x), cov(x,y)向量 x 的方差,向量x,y 的协方差矩阵corrcoef corrcoef(x,y)向量 x,y 的相关系数矩阵【练习】二项分布、泊松分布、正态分布( 1)对n10, p 0.2 二项分布,画出 b(n, p) 的分布律点和折线;( 2)对np ,画出泊松分布( ) 的分布律点和折线;( 3)对np,2np(1 p) ,画出正态分布N ( , 2 )的密度函数曲线;( 4)调整 n, p ,观察折线与曲线的变化趋势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/1
11
指数分布X~exp(λ)
1 ex
P{X x}
0
命令1:Fx=expcdf(x, lambda)
功能:计算累积概率Fx=P{X≤x}=F(x)
命令2:x=expinv(p, lambda)
功能:计算随机量x,使得p=P{X≤x}
命令3:X=exprnd(lambda,M,N)
命令3:X=poissrnd(lambda,M,N)
功能:产生M*N维随机数矩阵X
命令4:Px=poisspdf(x,lambda)
功能:计算概率Px=P{X=x}
2020/5/1
10
正态分布X~N(μ,σ2)
x
P{X x}
1
1 (x)2
e 2 2 dx
命令1:Fx=normcdf(x,
1 (
k
)
x
k 1 x
2 e2
2
0
x0 x0
命令:chi2cdf(x, k), chi2inv(p, k),chi2pdf(x, k) chi2rnd(k,m,n)
o
x
x
如果将 看作数轴上随机点的坐标,那么分
布函数 F(x) 的值就表示 落在区间 (, x] 内的
20概20/率5/1.
5
连续型随机变量及其概率密度的定义
对于随机变量 , 如果存在非负可积函数( x),
x , ,使得对任意实数 x , 有
F
x
x φt dt
Pξ
x
则称 ξ为连续型随机变量, 称φ( x)为 的概率密度
功能:计算试验中事件恰好发生x次的概率Px=P{X=x}
2020/5/1
9
泊松分布X~P(λ)
P{X k} e k
命令1:Fx=poisscdf(x,lambda)
k!
功能:计算累积概率Fx=P{X≤x}=F(x)
命令2:x=poissinv(p, lambda)
功能:计算随机量x,使得p=P{X≤x}
函数,简称为概率密度或密度函数 .
2连020续/5/型1 随机变量的分布函数在 R上连续
6
超几何分布H(n,M,N)
P{X
命令1:Fx=hygecdf(x,M,N,K)
i}
CiN
C
Ki MN
C
K M
功能:计算超几何分布的累积概率,总共M件产品, 其中次品N 件,抽取K件检查,计算发现次品不 多于x件的概率Fx=P{次品数X≤x}=F(x)
功能:产生M*N维随机数矩阵X
命令4:Px=exppdf(x, lambda)
功能:计算分布密度p(x)在x的值
2020/5/1
x0 x0
12
均匀分布X~U(a,b)
命令1:Fx=unifcdf(x, a,b)
功能:计算累积概率Fx=P{X≤x}=F(x)
命令2:x=unifinv(p, a,b)
命令2:x=hygeinv(p,M, N,K)
功能:在已知参数M、N 、 K和p的情况下计算随 机量x,使得p=P{0≤次品数X≤x}
命令3:X=hygernd(M,N,K,m,n)
功能:在已知参数M,N ,K的情况下产生m*n维符合
超几何分布的随机数矩阵X
2020/5/1
7
命令4:Px=hygepdf(x,M, N, K) 功能:总共M件产品,其中次品N 件,抽取K件检查,
满足:(a) a(a 1),(1) 1, ( 1 )
2
命令:gamcdf(x, a, lambda), gaminv(p, a, lambda) gampdf(x, a,lambda), gamrnd(a, lambda,m,n)
2020/5/1
14
卡方分布
密度函数:f
2
(x)
2
k 2
功能:计算随机量x,使得p=P{X≤x}
命令3:X=unifrnd(a,b,M,N)
功能:产生M*N维随机数矩阵X
命令4:Px=unifpdf(x, a,b)
功能:计算分布密度p(x)在x的值
2020/5/1
13
Γ分布
密度函数:f ( x)
a
x
a
1
(a)
e x
0
x0 x0
其中(a) x a1e x dx 0
1.1 随机变量及其分布
随机试验、样本空间与随机事件的关系
每一个随机试验相应地有一个样本空间, 样 本空间的子集就是随机事件.
随机试验
样本空间 子集 随机事件
2020/5/1
随 机 事 件
基本事件
必然事件
不可能事件
两个特殊事件
1
在样本空间 上定义一种实值单值函数.
.
()
R
定义 对于定义在样本空间 上的每一个样本点
计算发现恰好x件次品的概率Px=P{X=x}
注:以后碰到命令末尾为: rnd----产生随机数X; cdf----产生分布函数F(x) pdf----产生密度函数p(x)或分布律Px=P{X=x} inv----计算x=F-1(p)→ p=F (x)
2020/5/1
8
二项分布B(n,p)
P{X
பைடு நூலகம்
k}
的一切可能值,称
P{ xk } pk ,k 1, 2,
为离散型随机变量 的概率函数或分布律.
分布律也可用表格形式表示:
x1 x2 …… xn ……
P p1 p2 …… pn ……
2020/5/1
4
分布函数的定义
设 是一个 随机变量,称
F(x) P( x) ( x )
为 的分布函数 , 记作 F (x) .
C
k n
p
k
(1
p)nk
命令1:Fx=binocdf(x,n,p)
功能:计算二项分布的累积概率Fx=P{X≤x}=F(x)
命令2:x=binoinv(y, n,p)
功能:计算随机量x,使得y=P{X≤x}
命令3:X=binornd(n,p,M,N)
功能:产生M*N维符合二项分布的随机数矩阵X
命令4:Px=binopdf(x,n, p)
有一个实数 ()与之对应, 则称实值函数 ()
2020/简5/1记为 r.v.
2
随机变量
离散型 非离散型
定义
连续型 其它 如果随机变量所取的可能值是有限多个或 无限可列个,并以确定的概率取这些不同的 值, 则为离散型随机变量.
2020/5/1
3
分布律的定义 设 xk (k=1,2, …) 是离散型随机变量 所取
2
mu,sigma)
功能:计算累积概率Fx=P{X≤x}=F(x)
命令2:x=norminv(p, mu,sigma)
功能:计算随机量x,使得p=P{X≤x}
命令3:X=normrnd(mu,sigma,M,N)
功能:产生M*N维随机数矩阵X
命令4:Px=normpdf(x, mu,sigma)
功能:计算分布密度p(x)在x的值