(完整版)整式的乘除练习题.doc

合集下载

整式的乘除法专题训练(含答案)

整式的乘除法专题训练(含答案)

整式的乘除法专题训练类型一:幂的运算性质幂的运算性质共有六个:1同底数幂的乘法;2. 幂的乘方;3. 积的乘方;4.同底数幂的除法;5.负整数指数幂;6.零次幂运算需要注意的问题:1. 看清楚运算符号加、减、乘、除、乘方;2. 计算时注意“—”号;3. 3.认清楚指数和底数;4.正确联系运算性质和法则一、计算1.4353x x x x x ••+•2.()()()()x 211x 21x 21x 2432-•-+-•-3.()()4n 31n 35x x x x -•+•--4.()()()()a b b a a b b a 432-•-+-•-5.()()()344321044x 5x 2x 2x 2x 2•+-•+-6.()()()()y x xy 2y 2x x 32332•-•+-••-7.()()()2222332x x x 3x 2•+-+-8.()()()72335m m m-••-9.()()36x -x -÷10.()()63243x x x 2÷÷-11.()()()223223x -x -x x x x •÷+÷÷12.()()[]()[]322313x 2-y y -x 2y -x 2÷÷类型二:幂的运算性质的灵活运用13.已知的值。

求b a b a2,72,42+==14.已知,a 3a x =+用含a 的代数式表示.3x15.已知,5.133,63n m ==求m+n 的值。

16.已知的值。

求2n m n m a ,2a ,3a ++==17.已知的值。

求b 3a 2b a 10,610,510+==18.若的值。

求y x 328,03y 5x 3•=-+19.已知486331x 22x 2=-++,求x 的值。

20.已知(),a a a 113m 5=•求m 的值。

21.已知的值。

求n 2-1m n m 9,43,23+==22.若的值。

(完整word版)整式的乘除测试题(3套)及答案

(完整word版)整式的乘除测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322ba 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

(完整版)整式的乘除单元测试卷及答案

(完整版)整式的乘除单元测试卷及答案

整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D.()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23( )A 、2527 B 、109 C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①② B 、③④ C 、①②③ D 、①②③④ ( ) 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( ) A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定nmab a二、填空题(共6小题,每小题4分,共24分) 11.设12142++mx x 是一个完全平方式,则m =_______。

完整word版整式的乘除提高练习

完整word版整式的乘除提高练习

《整式的乘除》拔高题专项练习【题型1】1、若2x 5y 3 ____________________ 0,则4x 32y的值为m 3 m 1 4m 72、如果9 27 3 81,那么m= ________ .【变式练习】1、若5X—3y—2=0,则105x 103y= _________ .2、若32 92a 127a 181,求a 的值.3、如果2 8X 16x222,贝V x的值为_______________ .【题型2】1、___________________________________________________ 若10m 3, 10n 2,则102m 3n的值为 ________________________2、若a2n3,则a3n 4的值为________________ .3、 已知 x n 5, y n 4,贝V xy 2n = _________________ .4、 若 3m =6, 9n =2,求 32fm 4n +1 的值。

【变式练习】1、已知2m 3,2n 4,则23m 2n 的值为 ____________________2、若2x 3,4x 5,则2x 2y 的值为 _______________3、己知 2n =a , 3n =b,则 6n = ______________,t . —m . n亠 E —3m 2n 14、若 2 3,4 8,则 2 = _____ .【题型3】1、 若 x 2m+102=x 5,则 m 的值为()A.OB.1C.2 3 2、 已知 2|x29,则 x = __________ .【变式练习】 1、求下列各式中的x :①a x 3 a 2x1(a 0,a 1) •,②p x p 6 D.3p 2x (p 0,p 1).2、已知2 X 2329,则x的值是 ______________ .【题型4】1、在ax 3y与x y的积中,不想含有xy项,则a必须为____________________ .【变式练习】2 2 11. 当k= ________ 时,多项式x 3kxy 3y xy 8中不含xy项.32、若a2 pa 8 a2 3a q中不含有a3和a2项,贝U p _______________ ,q ______【题型5】1、若x26, x y 3,则x y =2 22、已知a b 11, a b 7,则ab的值是__________________________3、已知a b 5, ab 3,贝V a2 b2的值为 _____________________21 14、已知x —3,贝y x - 的值为_________________x x5、(3x 2y)2 ___________ =(3x 2y)2.6、若ab 2, a b 3,贝V a b 2的值为【变式练习】2 2 4、若 x y 8, xy 10 ,则 x y =4 42 5、若1 4 -2 0,则2的值为 ____________x x x1 1 16 .已知 a 1,贝U a 2= ___________________ ; a 4= _________________ a a a【题型6】 1、计算 a 2 ab b 2 a 2 ab b 2 的结果是 _____________________________________1、已知x 9, x y 2 5,则xy 的值为2 22 .若 m n 10, mn 24,则 m n3、若 x y 0, xy 11,则x 2 xy y 2的值为【变式练习】1、计算3x 2y 1 3x 2y 1的结果为________________________________【题型7】21、若4x mx 9是一个完全平方式,则m的值为____________________ .2、若代数式x2 y214x 2y 50的值为0,则x ____________ ,y ________【变式练习】2 21、已知4x 12x m 是一个完全平方式,则m的值为________________________ .2、若x22(m 3) 16是关于x的完全平方式,则m __________ .2 23、若m n 3,则2m 4mn 2n 6的值为 ____________________________24、若 m 2 n 8n 16 0,贝U m _____ ,n _________15•已知 a2 b 2 2a 6b 1。

整式的乘除测试题练习四套(含答案).

整式的乘除测试题练习四套(含答案).
通过计算,探索规律:
152 225 100 1 (11) 25 , 252 625 100 2 (2 1) 25 , 352 1225 100 3 (3 1) 25 , 452 2025 100 4 (4 1) 25
(1) 752 5625 __________ ,(2)从第(1)题的结果,归纳、猜想得 (10n 5)2 _________ (3)请根据上面的归纳猜想,算出19952 _________________ 26、(8 分)已知 a,b,c 为△ABC 的三条边长,当 b2 2ab c2 2ac
整式的乘除测试题练习二
一、精心选一选(每小题 3 分,共 30 分)
1、下面计算中,能用平方差公式的是( )
A、 (a 1)(a 1) B、 (b c)(b c) C、 (x 1)(y 1) 22
2、若 (x 2y)2 (x 2y)2 A ,则 A 等于( )
6
3
正确的有( )
A.0 个
B.1 个
C.2 个
D.3 个
5.4a7b5c3÷(-16a3b2c)÷ 1 a4b3c2 等于(
)
8
A.a
B.1
C.-2
D.-1
6.(m+n-p)(p-m-n)(m-p-n)4(p+n-m)2 等于( )
A.-(m+n-p)2(p+n-m)6 B.(m+n-p)2(m-n-p)6C.(-m+n+p)8 D.-(m+n+p)8
个抽水马桶漏水。如果一个关不紧的水龙头一个月漏掉 a 立方米水,一个抽水马桶一个月漏掉 b 立方米水,

整式的乘除含答案

整式的乘除含答案

一、选择题(每题3分,共30分)1、44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a --2、下列计算正确的是( )A 、22))((y x x y y x -=-+B 、22244)2(y xy x y x +-=+-C 、222414)212(y xy x y x +-=-D 、2224129)23(y xy x y x +-=--3、在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+(4)ab ab ab a b b a =-=--23)2)(3(中错误的有( )A 、1个B 、2个C 、3个D 、4个4、下列各式中,能用平方差公式计算的是( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+-D 、))((b a b a -+-5、如果:=-==+-222)32,5,0168y x x y xy x 则(且( )A 、425B 、16625C 、163025D 、162256、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.96017、如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( )A 、8B 、16C 、32D 、648、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=19、对于任何整数m ,多项式9)54(2-+m 都能( )A 、被8整除B 、被m 整除C 、被m -1整除D 、被(2m -1)整除10.已知多项式2222z y x A -+=,222234z y x B ++-=且A+B+C=0,则C 为() A 、2225z y x -- B 、22253z y x -- C 、22233z y x -- D 、22253z y x +-二、填空题(每题3分,共30分)11、++xy x 1292 =(3x + )212、2012= , 48×52= 。

整式的乘除整章练习题(完整)

整式的乘除整章练习题(完整)
4.计算:(1) ____________;(2) _______.
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )

整式的乘除(习题及答案)

整式的乘除(习题及答案)

整式的乘除(习题)例题示范例1:计算328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-.【操作步骤】(1)观察结构划部分:328322(2)(2)(84)(2)x y y x y x x ⋅-+-+÷-①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第一部分:先算积的乘方,然后是单项式相乘;第二部分:多项式除以单项式的运算.(3)每步推进一点点.【过程书写】解:原式62634(2)(42)x y y x y =⋅-+-6363842x y x y =-+-6342x y =-- 巩固练习1.①3225()a b ab -⋅-=________________;②322()(2)m m n -⋅-=________________;③2332(2)(3)x x y -⋅-;④323(2)(2)b ac ab ⋅-⋅-.2.①2223(23)xy xz x y ⋅+=_____________________;②31422xy y ⎛⎫-⋅-= ⎪⎝⎭_______________________;③2241334ab c a b abc ⎛⎫-⋅= ⎪⎝⎭___________________;④222(2)(2)ab a b ⋅-=________________________;⑤32(3231)a a a a -⋅+--=____________________.3.①(3)(3)x y x y +-;②(2)(21)a b a b -++;③(23)(24)m n m n ---;④2(2)x y +;⑤()()a b c a b c -+++.4.若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为()A .328421a a a -+-B .381a -C .328421a a a +--D .381a +5.若圆形的半径为(21)a +,则这个圆形的面积为()A .42a π+πB .2441a a π+π+C .244a a π+π+πD .2441a a ++6.①32223x yz xy ⎛⎫÷= ⎪⎝⎭__________________;②3232()(2)a b a b -÷-=________________;③232(2)()x y xy ÷=___________;④2332(2)(__________)2x y x y -÷=;⑤23632()(6)(12)m n m n mn -÷⋅-=_________.7.①32(32)(3)x yz x y xy -÷-=____________;②233242112322a b a b a b a b ⎛⎫⎛⎫-+÷-= ⎪ ⎪⎝⎭⎝⎭_______________;③24422(48)(2)m n m n mn --÷=_______________;④()221___________________32m mn n ÷=-+-.8.计算:①322322(4)(4)()(2)a c a c a c ac -÷--⋅-;②224(2)(21)a a a -+--;③33(2)(2)(2)()a b a b a b ab ab +-+-÷-.思考小结1.老师出了一道题,让学生计算()()a b p q ++的值.小聪发现这是一道“多×多”的问题,直接利用握手原则展开即可.()()a b p q ++=小明观察这个式子后,发现可以把这个式子看成长为(a +b ),宽为(p +q )的长方形,式子的结果就是长方形的面积;于是通过分割就可以表达这个长方形的面积为_________________.∴()()a b p q ++=请你类比上面的做法,利用两种方法计算(a +b )(a +2b ).【参考答案】巩固练习1.①445a b ②522m n ③12272x y -④3524a b c -2.①222336+9x y z x y ②428xy xy-+③232321334a b c a b c -④442584a b a b -⑤432323a a a a--++3.①229x y -②2242a b a b-+-③224212m mn n -++④2244x xy y ++⑤2222a b c ac-++4.D5.C6.①223x z ②12③48x y④34x y -⑤22mn 7.①223x z x -+②2246b ab a -+-③222n m --④3222132m n m n m -+-8.①322a c ②7③23a ab+ 思考小结()()a b p q ap aq bp bq ++=+++22()(2)32a b a b a ab b ++=++。

完整版)整式的乘除典型例题

完整版)整式的乘除典型例题

完整版)整式的乘除典型例题1.若 $a=8$,$m+n=16$,则 $a=\frac{m+n}{n}=2$。

2.已知 $2m=3$,$2n=4$,则$23m+2n=23\times\frac{3}{2}+2\times2=19$。

3.若 $\frac{xy}{2x+5y}=4$,则 $xy=8x+20y$。

4.若 $a>5$,且 $a=2$ 或 $a=3$,则 $ax-y$ 的值为 $2^{x-y}$ 或 $3^{x-y}$。

5.已知 $x^8\times x^a=x^3a$,则 $a=5-3m$。

6.若 $a^{m+1}b^{n+2}\times a^{2n-1}b=a^5b^3$,则$m+n=3$。

7.若 $2a=5$,$2b=3$,$2c=45$,则 $a=\frac{5}{2}$,$b=\frac{3}{2}$,$c=15$。

8.若 $\frac{x-m}{x^2+x+a}=1$,则 $m=-\frac{a}{4}$,$a=12$。

9.若 $abc^2=5$,$2=3$,$2=30$,则$a=\frac{1}{\sqrt{15}}$,$b=\frac{\sqrt{5}}{3}$,$c=1$。

10.比较 $5$ 和 $\frac{24}{25}$ 的大小,$8$ 和$\frac{2514}{1000}$ 的大小。

11.计算$\frac{2011}{3}-\frac{1}{2}\times\frac{2012}{3}$。

12.计算 $\frac{-1}{8}\times2$,$1990\times\frac{3980}{825n}$。

13.若 $a+b=2013$,$a-b=1$,则 $a^2-b^2=2012\times2014$。

14.计算 $1232-\frac{124\times122}{2}$,$899\times901+1$。

15.计算 $\frac{2x+1}{2x-1}\times\frac{4x+1}{x^2+2x+1}\times\frac{2}{(x+2)^3}$。

《整式乘除100题》[大全]

《整式乘除100题》[大全]

《整式乘除100题》[大全]第一篇:《整式乘除100题》[大全]整式乘除计算 100 题使用说明:本专题的制作目的是提高学生在整式乘除这一部分的计算能力。

大致分了三个模块:①单项式与单项式(34题);②单项式与多项式(33题);③多项式与多项式(33题);共题。

建议先仔细研究方法总结、易错总结和例题解析,再进行巩固练习。

模块一单项式与单项式方法总结:单项式乘单项式:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式.单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.易错总结:相同字母相乘,注意是字母不变,指数相加;注意单项式相乘,他们的系数也是分别相乘,不是相加;系数里的负号要注意不要忘掉单独出现的字母最后要作为积的一个因式,不要遗漏例题解析:—ꅘy 2 · 2ꅘ2 y 2 .解:—ꅘy 2 · 2ꅘ2 y 2 =—ꅘ y 2· 4ꅘ4 y 2=— 4ꅘ5 y 4 .……【系数、相同字母分别相乘】巩固练习:1.计算:— 8a⺁·a 2 ⺁. 422ꅘ3 · —져ꅘ y 3 . 4.计算:a 4 ·—a 3÷ — a 2. 5.计算:——ꅘ2 3 · —ꅘ 2 2 —ꅘ· —ꅘ 3 3 . 6.计算:—ꅘ6—— 3ꅘ 3 2 — [ — 2ꅘ 2 ] 3 . 7.计算:—a 2 ·— a 3·— a+— a 2—— a 3. 8.计算:a —2 ⺁2 · a 2 ⺁—2 —3 . 9.计算:— 2ꅘ2 ·(ꅘ2)3 · —ꅘ 2 . 10.计算:— 21ꅘ2 y 4 ÷ — 3ꅘ 2 y 3 . 11.计算:2a 3 ⺁ 3— 8a⺁ 2÷ — 4a 4 ⺁ 3. 12—a 2 · a 4 ÷ a 3 . 13.计算:12a⺁ 2a⺁c 4 ÷ — 3a 2 ⺁3 c ÷ 2 a⺁c 3 . 17—a 3·— a 218.计算:(2a)3 —a · a 2 + 3a 6 ÷ a 3 . 19.(a 5)2·(a 2)2—(a 2)4·(a 3)2 . 20.ꅘ + 2ꅘ + 3ꅘ + ꅘ· ꅘ2 · ꅘ 3 + ꅘ 3 2 . 21.计算:ꅘm · ꅘn 3 ÷ ꅘ m—1 · 2ꅘ n—1 . 22.计算:— 2ꅘ2 y · 5ꅘy 3 ·— 3ꅘ 3 y 2. 523.ꅘ5 · ꅘ져 + ꅘ6 ·(—ꅘ 3)2 + 2(ꅘ 3)4 . 24.计算:— 1a⺁ 2·— 2a 3 ⺁c . 425.计算:— 2ꅘ— 3ꅘ2 y 2 3 · 1y 2 + t ꅘ져 y 8 . 32 3 4 14.计算:a 3 · a 5 · a 2 +a 5—a 2· a 2 . 15.化简:(4ꅘ2 y)2 ÷ 8y 2 . / 服务内核部-初数教研10.计算:6ꅘy ·ꅘ y — 1y+ 3ꅘ y2 . 211.计算:8a 2 ⺁— 4a⺁ 2÷ — 1a⺁ 2服务内核部-初数教研/ 28.— 2ꅘ2 y 2 3 · 3ꅘ y 4 . 29.计算:— 1a 3 · — 6a⺁ 2 . 330.计算:2ꅘ3 y — 2ꅘ y + — 2ꅘ 2 y 2 . 312a 2 ⺁·— 3⺁2 c ÷ 4a⺁ 3. 32.计算:— 3ꅘ2 y 3·— 2 ꅘ y 233.计算:—3a 2·a 2 ÷ — 1 a 22. 3 2 34.计算:(— 2ꅘm y n)2 ·(—ꅘ2 y n)3 ·(— 3ꅘ y 2).模块二单项式与多项式方法总结:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.易错总结:巩固练习:1.化简:—져ꅘ2 y 2ꅘ 2 y — 3ꅘ y 3 + ꅘ y . 22ꅘ y 5ꅘ y 2 + 3ꅘ y —1 . 3.计算:— a 2 ⺁c + 2a⺁ 2 — 3 ac·— 2 ac 2 . 5 3 4.计算:— 2ꅘ2 y — 3ꅘ y + 3ꅘ 2 y 3 — 6ꅘ 3 . 3 2 5.计算:ꅘn+1 · ꅘ 2n —ꅘ n+1 + ꅘ 2 . 6.计算:2 2 3a 2 2— 1 . 7.计算:a⺁2 · 2a 2 ⺁— 3a⺁2 . 282a 23a⺁ 2 — 5a⺁ 3. 9.计算:— 4 a⺁2 ·— ta 2 ⺁— 12a⺁ + 3⺁ 2. 3 2 4 12.化简3a 5 ⺁ 3 — a 4 ⺁ 2÷ — a 2 ⺁ 213.计算:2져ꅘ3 — 18ꅘ 2 + 3ꅘ÷ — 3ꅘ. 14.计算:45a 3 — 1a 2 ⺁ + 3a÷ — 1a . 6 3 15.计算:6m 2 n — 6m 2 n 2 — 3m 2÷ — 3m 2. 16.计算:—ꅘ2 3 — 3ꅘ 2 ꅘ 4 + 2ꅘ— 2 . 17.计算:— 1ꅘ y 2 3 — 2ꅘ y ꅘ y —ꅘ2 y 5 . 318.计算:a⺁ 2 — 2a⺁ + 4⺁· 1a⺁—a⺁ 2 . 3 3 2 2 19.计算:— 2a ⺁(6a ⺁— 3a + 3 ⺁).2 20.计算:2a a — 2a 3—— 3a 2. 21.化简 1单项式乘多项式中的每一项时,注意不要漏掉前面的符号注意多项式中的每一项都要和单项式相乘,不要漏项例题解析:计算:— 2ꅘy 2 2 ·y 2 — 1ꅘ2 — 3ꅘ y . 4 2 2 解:原式= 4ꅘ2 y 4 · 1y 2 — 1ꅘ 2 — 3ꅘ y 4 2 2 = ꅘ2 y 6 — 2 ꅘ 4 y 4 — 6 ꅘ 3 y 5 .……【用单项式去乘多项式的每一项】/ 服务内核部-初数教研3ꅘ2 — y — 22ꅘ2 + y . 24.计算:(— 2ꅘy 2)2 · 1y 2 — 1ꅘ2 — 3ꅘ y . 4 2 2 25.计算:(3ꅘ y)2(ꅘ2 — y 2)—(4ꅘ2 y 2)2 ÷ 8y 2 + t ꅘ 2 y 4 . 26.计算:4a ⺁(2a 2 ⺁ 2 — a ⺁+ 3)27.计算:2ꅘ—ꅘ2 + 3ꅘ— 4 — 3ꅘ 2ꅘ + 1 . 228.计算:ꅘꅘ2 —ꅘ— 1 + 3 ꅘ 2 + ꅘ— 1ꅘ 3ꅘ 2 + 6ꅘ. 329.化简:ꅘ 1ꅘ + 1— 3ꅘ 3ꅘ— 2 . 2 2 30.求值:ꅘ2 3ꅘ— 5 — 3ꅘꅘ 2 + ꅘ— 3,其中ꅘ= 1 . 231.先化简,再求值:ꅘꅘ2 —ꅘ— 1+ 2 ꅘ2 + 2 — 1ꅘ 3ꅘ 2 + 6ꅘ— 1,其中ꅘ =— 3. 333.先化简,再求值:ꅘ— 2 1 — 3ꅘ— 2ꅘ 2 —ꅘ,其中ꅘ = 4. 2 3 2 模块三多项式乘多项式方法总结:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.易错总结:在不引起歧义的情况下,单项式和其它单项式或多项式作运算时本身可以不加括号;计算时注意符号变化,不要丢掉单独的字母或数字;多项式与多项式相乘后如果出现同类项必须合并.合并同类项时,可以在同类项下边标上相同的符号,避免引起错误.例题解析:计算:ꅘ— aꅘ2 + aꅘ + a 2解:ꅘ— aꅘ2 + aꅘ + a 2= ꅘ3 + aꅘ 2 + a 2 ꅘ— aꅘ 2 — a 2 ꅘ—a 3 ……【用一个多项式的每一项乘另一个多项式的每一项】= ꅘ3 — a 3 .巩固练习:12ꅘ + 5y3ꅘ— 2y . 2a — 2⺁(a + ⺁). 332ꅘ— 1 . 6ꅘ + yꅘ— 2y . 72ꅘ + 3y3ꅘ— 2y . 8— 1ꅘ + — 3ꅘꅘ + 3 . 9.计算:ꅘ 1ꅘ— 2 . 10a + 32a + 5. 11m + 22m — 3 . 12ꅘ— 32ꅘ + 5 . 13.计算:4ꅘ2 y — 5ꅘ y 2· 져ꅘ 2 y — 4ꅘ y 2 . 14.计算:ꅘm — 2y n3ꅘ m + y n. 15.计算:ꅘ— 1ꅘ2 + ꅘ + 1 . 18.计算:ꅘ— aꅘ2 + aꅘ + a 2.19.计算:ꅘ + yꅘ2 —ꅘ y + y 2. 203ꅘ + 1ꅘ— 3 . 21ꅘ + y — 2ꅘ— y . 22.计算:2a —⺁ + c2a —⺁— c . 23.—ꅘ3 + 2ꅘ 2 — 5 2ꅘ 2 — 3ꅘ + 1 . 24.计算:ꅘ + 52ꅘ— 3 — 2ꅘꅘ2 — 2ꅘ + 3 . 25.计算:ꅘ2 — 2ꅘ + 3ꅘ— 1ꅘ + 1 . 26ꅘ 4ꅘ— 3 — 2 ꅘ— 3ꅘ + 1 . 272ꅘ— 3ꅘ + 4—ꅘ— 1ꅘ + 1 . 30— 1ꅘ + 2ꅘꅘ + 3 . 31ꅘ + 3ꅘ— 5— 3 ꅘ— 1ꅘ + 6 . 325ꅘ + 3y3y — 5ꅘ—4ꅘ— y4y + ꅘ. 33.计算:a⺁ a + ⺁—a —⺁a 2 + ⺁ 2. 4.计算:2ꅘ + 3yꅘ— 2y . 5.计算:(ꅘ2 y 3 —ꅘ3 y 2)·(ꅘ 2 — y 2). / 服务内核部-初数教研2 3 4 16.计算:(2m + n 2)(4m 2 — 2mn 2 + n 4). 17.化简:3ꅘ2 + 2ꅘ + 13ꅘ— 1 .服务内核部-初数教研/ 服务内核部-初数教研/第二篇:第一章整式的乘除单元测试第一章整式的乘除单元测试(时间120分钟,满分150分)A卷(100分)一、选择题:本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各题中计算错误的是()2.化简x(y-x)-y(x-y)得()A、x2-y2B、y2-x2C、2xyD、-2xy3.计算的结果是()A.B.-C.D.-4.是一个完全平方式,则a的值为()A.4B.8C.4或—4D.8或—85.三个数中,最大的是()A.B.C.D.不能确定6.化简(a+b+c)-(a-b+c)的结果为()A.4ab+4bcB.4acC.2acD.4ab-4bc7.已知,,则、、的大小关系是()A.>>B.>>C.<<D.>>8.若,则等于()A.-5B.-3C.-1D.19.边长为a的正方形,边长减少b以后所得较小正方形的面积比原来正方形的面积减少了()A.B.+2abC.2abD.b(2a—b)10.多项式的最小值为()A.4B.5C.16D.25二、填空题:本大题共6小题,每小题3分,共18分,把答案填写在题中横线上.11.是_____次_____项式,常数项是_____,最高次项是_____.12.(1)(2)13.(1)(2)14.已知是关于的完全平方式,则=;15.若m2+n2-6n+4m+13=0,m2-n2=;16、如果时,代数式的值为2008,则当时,代数式的值是三、计算题:本大题共5小题,每小题4分,共20分,解答应写出必要的计算过程.17.;18.19.20.21.四、综合题:本大题共5小题,共32分,解答应写出必要的计算过程.22.(5分)已知,求的值[来23.(6分)简便计算:(1)(2)3.76542+0.4692×3.7654+0.23462.24.(5分)已知,,求代数式的值;25.(6分)若4m2+n2-6n+4m+10=0,求的值;26.(8分)若的积中不含与项,(1)求、的值;(2)求代数式的值;B卷(50分)1.若,则=;2.有理数a,b,满足,=;3.=;4.若那么=;5.观察下列各式:1×3=12+2×1,2×4=22+2×2,3×5=32+2×3,…,请你将猜想到的规律用自然数n(n≥1)表示出来:__________.6.(6分)计算:.7.(7分)已知:,求-的值.8.(8分)已知a2-3a-1=0.求、的值;9.(9分)一元二次方程指:含有一个未知数,且未知数的最高次数为2的等式,求一元二次方程解的方法如下:第一步:先将等式左边关于x的项进行配方,第二步:配出的平方式保留在等式左边,其余部分移到等式右边,;第三步:根据平方的逆运算,求出;第四步:求出.类比上述求一元二次方程根的方法,(1)解一元二次方程:;(2)求代数式的最小值;答案:1-5.CBBCA;6-10.AABDC;11.12.(1)(2);13.(1)(2);14.;15.-5;16、-2006;17.;18.2;19.;20.;21.22.15;23.(1)1;(2)16;24.3;25.-8;26.;B卷:1.-2;2.6;3.;4.6;5.;6.2;7.30;8.3,13;9.(1);(2)2;第三篇:初中数学复习整式的乘除专题01整式的乘除阅读与思考指数运算律是整式乘除的基础,有以下5个公式:,,,.学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题与求解【例1】(1)若为不等式的解,则的最小正整数的值为.(“华罗庚杯”香港中学竞赛试题)(2)已知,那么.(“华杯赛”试题)(3)把展开后得,则.(“祖冲之杯”邀请赛试题)(4)若则.(创新杯训练试题)解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.【例2】已知,则等于()A.2B.1C.D.(“希望杯”邀请赛试题)解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.【例4】已知多项式,求的值.解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式能被整除,求的值.(北京市竞赛试题)解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.能力训练A级1.(1).(福州市中考试题)(2)若,则.(广东省竞赛试题)2.若,则.3.满足的的最小正整数为.(武汉市选拔赛试题)4.都是正数,且,则中,最大的一个是.(“英才杯”竞赛试题)5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是.(长沙市中考试题)6.已知,则的大小关系是()A.B.C.D.7.已知,那么从小到大的顺序是()A.B.C.D.(北京市“迎春杯”竞赛试题)8.若,其中为整数,则与的数量关系为()A.B.C.D.(江苏省竞赛试题)9.已知则的关系是()A.B.C.D.(河北省竞赛试题)10.化简得()A.C.D.11.已知,试求的值.12.已知.试确定的值.13.已知除以,其余数较被除所得的余数少2,求的值.(香港中学竞赛试题)B级1.已知则=.2.(1)计算:=.(第16届“希望杯”邀请竞赛试题)(2)如果,那么.(青少年数学周“宗沪杯”竞赛试题)3.(1)与的大小关系是(填“>”“<”“=”).(2)与的大小关系是:(填“>”“<”“=”).4.如果则=.(“希望杯”邀请赛试题)5.已知,则.(“五羊杯”竞赛试题)6.已知均为不等于1的正数,且则的值为()A.3B.2C.1(“CASIO杯”武汉市竞赛试题)7.若,则的值是()A.1B.0C.—1D.28.如果有两个因式和,则()A.7B.8C.15D.21(奥赛培训试题)9.已知均为正数,又,则与的大小关系是()A.B.C.D.关系不确定10.满足的整数有()个A.1B.2C.3D.411.设满足求的值.12.若为整数,且,求的值.(美国犹他州竞赛试题)13.已知为有理数,且多项式能够被整除.(1)求的值;(2)求的值;(3)若为整数,且.试比较的大小.(四川省竞赛试题)第四篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。

整式的乘除计算练习题及答案

整式的乘除计算练习题及答案

整式的乘除计算练习题及答案一.解答题1.计算:①③④?[﹣4]?÷32;②[]÷[]?y233522.计算:222①﹣8y;②﹣;③;④;⑤;⑥[+﹣2x]÷2x.⑦222⑧.3.计算:564233336abc÷÷.﹣.[]?3xy. +﹣2m.2234224.计算:?x÷x﹣2x?÷x.ab÷a+b?.﹣.+﹣2.5.因式分解:3322①6ab﹣24ab;②﹣2a+4a﹣2;③4n﹣6;④2xy﹣8xy+8y;⑤a+4b;⑥4mn﹣;⑦22222222222841053232222;⑧﹣4a;⑨3x222n+1﹣6x+3xnn﹣1⑩x﹣y+2y﹣1;4a﹣b﹣4a+1;4﹣4x+4y+1;3ax﹣6ax﹣9a;x﹣6x﹣27;﹣2﹣3.242222222226.因式分解:4x﹣4xy+xy. a﹣4.7.给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:+b﹣4ab÷b,其中a=﹣,b=2. 9.当x=﹣1,y=﹣2时,求代数式[2x﹣][+2y]的值. 10.解下列方程或不等式组:①﹣=0;②2﹣≤4.11.先化简,再求值:﹣,其中,.2222232222若x﹣y=1,xy=2,求xy﹣2xy+xy.12.解方程或不等式:222+2=3x+13.+>13.2223223整式的乘除因式分解习题精选参考答案与试题解析一.解答题1.计算:①②[]÷[]?y ③632523352;;④?[﹣4]?÷2.计算:22①﹣8y;2②﹣;③;④;⑤;2⑥[+﹣2x]÷2x.22⑦⑧.2一.计算题19、已知a?b?,a?b?11,求0、已知x?3,x?2,求x 3334221、m??22、 3、?22ab2a?b34、235、?432324、?x8x4x425、?2?226、xy2327、?28、2229、2006200530、231、32、22?4x33、??4xy?6xy??第1页、共6页36、?2xy7、解方程?2x2?2?2x?6x38、已知xm4,xn?3,求x2mx3n的值39、已知x2?xy?21 ,y2?xy?28,求20、已知x3a27,求x4a的值41、2??342、?3?243、?2244、6245、?46、11?222m4m47、?8?48、x?x122259、已知m?3,m?4,求m ab3a?2b的值.0、已知a?115,求a4?4的值. aa 23323261、25?2?62、23?349、4m651、253、55、257、第2页、共6页 50、2、29254、、2258、63、2?365、5667、??47369、199264、a6a2a2a366、255?33?2118、3?4?270、72、28273、74、23232375、??ab6、?77、8、?5x?79、先化简再求值x?,当x??的值80、已知:2?2?5,求2第3页、共6页ab3a?2b?33422322222221时,求此代数式4的值。

整式的乘除(含答案)

整式的乘除(含答案)

整式的乘除(含答案) 第4课整式的乘除目的:复习幂的运算法则,整式的乘除运算.中考基础知识1.幂的运算法则:am·an=______(m,n都是正整数),(am)n=_______(m,n都是正整数).am÷an=_______(m,n都是正整数,且m_gt;n,a≠0),(ab)n=______(n为正整数).2.整式的乘除(1)单项式_单项式:4a2_5·(-3a3b_)=_________,(2)单项式_多项式:m(a+b+c)=__________,(3)多项式_多项式:(a+b)(m+n-d)=_______.(4)单项式÷单项式:-12a5b3_2÷4a3_2=________.3.乘法公式(1)平方差公式:(a+b)(a-b)=________.(2)完全平方公式:(a+b)2=_______,(a-b)2=_________.(3)立方和.立方差公式:(a+b)(a2-ab+b2)=________,__________=a3-b34.在做整式乘除时,严格按照运算法则进行,做每一步都应有计算依据,•充分利用乘法公式简化计算.备考例题指导例1.下列计算正确的是( )(A)_5+_5=_10 (B)(3ab2)3=9a3b6(C)a2·a3=a6 (D)(-c)6÷(-c)5=-c(c≠0)选(D)例2.(_,金华市)如图,沿正方形的对角线对折,•把对折后重合的两个小正方形内的单项式相乘,乘积是___________(只要写出一个结论)答案:2a2或-2b2任写一个.例3.化简(a-b)3·(b-a)2÷(b-a)3.分析:底数不同,不能直接乘除,但注意到a-b与b-a是互为相反数,而且(a-b)3=-(b-a)3解:原式=-(b-a)3·(b-a)2÷(b-a)3=-(b-a)3+2-3 (注意乘除在一起要依次运算)=-(b-a)2例4.计算(1)(-2b-5)(2b-5);(2)(a+b-1)(a-b+1).分析:在(a+b)(a-b)=a2-b2中,其左边的两个多项式有两项(a与a)相同,有两项b与-b是互为相反数.这里平方差公式的使用条件.解:(1)原式=(-5)2-(2b)2=25-4b2.(2)原式=[a+(b-1)][a-(b-1)]=a2-(b-1)2=a2-(b2-2b+1)=a2-b2+2b-1备考巩固练习1.填空题(1)-_3·(-_)5=________;[(-_)3]2·(-_)3=________;(-2_2y3)2·(-_y)3=____ ____.(2)-6_(_-2y)=_______;(_-6)(_+7)=________;(_-2)(_-y)=________.(3)(2_-3y)2=________;(3a+b)2=________.(4)(_+1)(_2-_+1)=_______;(_______-2b)(_______)=a3-(________).(5)若4m·8m-1÷2m=32,则m=________.2.选择题(1)下列各式中,计算正确的是()(A)a2·a3=a6(B)a3÷a2=a2(C)(a2)3=a6 (D)(3a2)4=9a8(2)(_,黄冈)下列计算中正确的是( )(A)_5+_5=2_10(B)-(-_)3·(-_)5=-_8(C)(-2_2y)3·4_-3=-24_3y3(D)(_-3y)(-_+3y)=_2-9y23.(_,太原市)某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为__________.4.化简求值:(a+2b)(a2+4b2)(a-2b),其中a=2,b=-.5.解答下列各题:(1)若a-=3,求a2+的值.(2)若3_2-m_y+6y2是一个完全平方式,求m的值.(3)已知_+y=2,_y=,求_3+y3的值.(4)计算(8_2m-3-6_m+2-4_m)÷(-2_m-3).6.(_,四川)观察下面的式子:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,……它们的个位数字的变化有一定规律,用你发现的规律直接写出910的个位数字是几?7.(_,苗城)先化简后求值:[(_-y)2+(_+y)(_-y)]÷2_,其中_=3,y=1.5答案:1.(1)_8;-_9;-_7y9(2)-6_2+12_y;_2+_-42;_2-_y-2_+2y(3)4_2-12_y+9y2,9a2+6ab+b2(4)_3+1;(a-2b)(a2+2ab+b2)=a3-8b3(5)22m·23m-3÷2m=25,m=22.(1)D (2)C 3.22a24.原式=(a2-4b2)(a2+4b2)=a4-16b4,当a=2,b=-原式=24-16_(-)4=16-1=155.(1)由a-=3得(a-)2=9∴a2-2+=9 ∴a2+=11(2)∵3_2-m_y+6y2=(_)2-m_y+(y)2∴m=±2·=±6或用△=0,求m.(3)_3+y3=(_+y)(_2-_y+y2)=(_+y)[(_+y)2-3_y] =2(22-3_)=2_=5(4)原式=-4_m+3_5+2_36.17.原式=1.5。

(完整版)整式的乘除计算题汇总

(完整版)整式的乘除计算题汇总

《整式的乘除》测试题(B 卷)、填空题(每题2分,共20 分)D 、( -2x 2)(1-3x 3)= - 2x 2+6x 55、 若(a m+1b n+1)(a 2n b 2m )=a 5b 3,贝S m+n 的值为( )A 、1B 、2C 、3D 、-36、 下列各式中正确的是( )A 、(a + 4) (a -4)= a 2— 4B 、(5x - 1) (1 -5x )= 25x 2— 1C 、(-3x + 2) 2 = 4- 12x + 9x 2D 、(x -3) (x -9)= x 2-277、 如果 x 2- kx - ab =(x -a ) (x + b ),贝S k 应为( )A 、a + bB 、a — bC 、b — aD 、一 a — b&若多项式4x 2 4nx m 等于2x J ,则m 、n 满足( )A. m n 2 0B. m n 2 0C. m 2 n 0D. n m 2 09、因式分解x 2+2xy+y 2-4的结果是()班级 姓名 成绩1、 F 列运算中正确的是(. 3 4 f 3 A.x x x B. x x / 2 \3 C. (x ) x 5 D. 2、 计算 3a 2b 3 4的结果是( A 、 81a 8b 12 B 、12a 6b 7 C 、 12a 6b 7 81a 8b 12 3、 4、 若 3x 5 , 3y 4,则 32xy 等于( A 25 ; 4 ;下列计算正确的是 A 、a 2 • a 3=a 6 B.6 ; C.21;D.20.(B 、x ( x 2+x 2)=2x 4 + x 3C 、( -2x)4=-16x 4A . (x+y+2) (x+y-2)B . (x+y+4) (x+y-1 )C . (x+y-4) (x+y+1)D .不能分解10、计算x(1+x)-x(1-x)的结果是()二、填空题(每题3分,共30 分)2、 ____________________________________________ 分解因式: 5X82 — 20xb 2= __________________________________3、 _________________________________ — x 2 • ( — x ) 3 •( — x ) 2= .4、 _________________________________ 若 x 3m =2,则 x 2m (x m +x 4m -x 7m ) = .5、 如果代数式(ax-y)(x+y)的乘积中不含“ xy ”型的项,那么a 的值求 3(- ab) 2+(-2 a) 3bc-5 a 2•(- b) 2+3a 3bc 的值 3、已知:(a + b ) 2=7 , (a -b ) 2=9,求 a 2+ b 2 及 ab 的值2 a 2(x-y ) +b 2(y-x ).A 、2xB 、2x 2C 、0D 、 2x 2x 21、已知a 3 2b 6 2 b 3 3,那么 a 8 9 10b 4= ________4、下列各式进行因式分解.( 1)4x2 3(4xy 3y2 )5、某学校欲建如图所示的草坪(阴影部分),请你计算一下,一共需要铺是设草坪多少平方米?如果每平方米草坪需100元,则学校为是设草坪一共需投资多少元?(单位:米)6、( x4)3 ( x2)3?( x)3 ( x)2 = __________________7、____________________________________ 若a+b=3, ab=2,则护+b2二8、已知m2 n2 6m 10n 34 0,贝S m n= _________________________ .9、19922—1991X 1993= _________ .10、_______________________________________________________ 若2x2+3x+7的值是8,则代数式9-4x2-6x的值是____________________ 三、解答题(每题10分,共50分)1、已知32m 5,3n 10,求(1)9mn; (2)92mn2、已知(a+1)2=0, I b-4 I + I c-(-2) 3I =0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除一:知识网络归纳
a m
a
n = m n
a
幂的运算法则m n
a mn 为正整数,可为一个单项式或一个式项式
)
( a ) (m, n a,b 整
( ab)n a n b n
式单项式单项式

单项式多项式 : m(a b) ma mb


整式的乘法多项式多项式:
na nb
(m n)(a b) ma mb
特殊的
平方差公式 : (a b)(a b) a2 b2 乘法公式
b)
2
a
2 2
完全平方公式:
(a 2ab b
二:小试牛刀
1、 (- a)2· (- a)3=( -a)5 , (- x)·x2· (- x4)=X 7 , (xy2 )2= X 2Y 4 .
2、 (- 2× 105)2× 1021=, (-3xy 2)2·( - 2x2y)=.
3、 (- 8)2004 ( -0.125)2003=,22005-22004=.
4、 3 m 3 3 m 1=_____
5、(2y x)( x 2y) _____________,
(a b)2 (a b) 2 __________ __, (a b) 2 (a b) 2 _________________
6、已知│ │,且(-)0=1,则 2a =____________.
a =1 a 1
7、若5n=2,4n=3,则20n的值是;若 2n+1= 16,则 x= ________.
n n n 2 3 n 4 3 n
8、若 x = 2, i = 3,则 (xy) = _______, (x y ) = ________;若 128 ÷ 8 = 2 ,则 n= _____.
9、 10m+ 1÷ 10n-1= _______;
1
3 101
× 3100= _________; (-0.125)8×224.
三:例题讲解
专题一巧用乘法公式或幂的运算简化计算方法 1逆用幂的三条运算法则简化计算
例 1
3 1996 1 1996
(1) 计算:( ) (3 ) 。

10 3
(2)已知 3×9m× 27 m= 321,求 m 的值。

(3)已知 x2n= 4,求 (3x 3n)2- 4(x 2) 2n的值。

、已知: 3 9m 27 m 3 6
m
2 ,求 .
方法 2
巧用乘法公式简化计算。

例 2 计算: (1
1 )(1
1 1
)(1
1
1
2 2 )(1
4
8
)
15
.
2
2 2 2
思路分析: 在进行多项式乘法运算时, 应先观察给出的算式是否符合或可转化成某公式
的形式, 如果符合则应用公式计算, 若不符合则运用多项式乘法法则计算。

观察本题容易发
现缺少因式 (1
1
) ,如果能通过恒等变形构造一个因式
(1 1
) ,则运用平方差公式就会迎
2
2
刃而解。

方法 3
将条件或结论巧妙变形,运用公式分解因式化简计算。

例 3 计算: 2003002 2- 2003021× 2003023
例 4 已知 (x + y)2=1, (x - y)2= 49,求 x 2+y 2 与 xy 的值。

专题二
整式乘法和因式分解在求代数式值中的应用(格式的问题)
方法 1
先将求值式化简,再代入求值。

例 1 先化简,再求值。

(a - 2b)2
+ (a - b)(a +b)- 2(a - 3b)(a - b),其中 a = 1
, b =- 3.
2
思路分析: 本题是一个含有整式乘方、
乘法、加减混合运算的代数式,根据特点灵活选
用相应的公式或法则是解题的关键。

方法 2 整体代入求值。


例 2
当代数式 a + b 的值为 3 时,代数式 2a + 2b +1 的值是( )
A 、 5
B 、 6
C 、 7
D 、 8
1、已知 x 2-3x + 1= 0,求下列各式的值,
① x 2
1 ② x 4
1
x 2

x 4
.
综合题型讲解
题型一:
学科间的综合
例 2
生物课上老师讲到农作的需要的肥料主要有氮、磷、钾三种,现有某种复合肥共
50
千克,分别含氮 23%、磷 11%、钾 6%,求此种肥料共含有肥料多少千克?
四:巩固练习
1、若 x 2
mx 15 x 3 x n ,则 m 的值是(

A.
5 B. 5 C. 2 D. 2
2、某同学在计算 3(4+1)(4 2 +1) 时, 把 3 写成 4-1 后, 发现可以连续运用平方差公
式计算 :
3(4+1)(4 2+1)=(4 -1) (4+1)(4 2+1)= (4
2
-1)(4 2+1)=162-1=255.
请借鉴该同学的经验 , 计算 : A 2 1 22
1 24 1 28
1 216
1 23
2 1 264 1
3、 (1
1
2 )(1
1
2 )(1
1
2 ) L (1
1 2 )(1 1
2 )
5 6 7
99
100
4、已知 x+y=8,xy=12 ,求x
2
y 2 的值
2
5、已知x( x 1) (x 2 y)3 ,求x2 y2
xy 的值2
6、2004 = .
2005
20042 2003 7、已知 a 1 4 则 a 21
()
a a 2
A、12 B 、 14 C 、 8 D 、16
8、x x m 1 x2 x m 2 3 x3 x m 3 ( x 4 ) 2 ( x 2 ) 4 x( x 2 ) 2 x3 ( x) 3 ( x 2 ) 2 ( x )
9、1)(2a b) 2;(2)(-m+n) (-m-n).
10
2 3 5a 2 5 3a 7 3a 7 ,其中 a=-2
、先化简再求值。

相关文档
最新文档