卡尔曼滤波算法与matlab实现
卡尔曼滤波实验及matlab实现
实验一 卡尔曼滤波一、 实验目的1、了解卡尔曼滤波的准则和信号模型,以及卡尔曼滤波的应用。
2、熟练掌握卡尔曼滤波的递推过程,提高对信号进行处理的能力。
3、分析讨论实际状态值和估计值的误差。
二、实验原理1、卡尔曼滤波简介卡尔曼滤波是解决以均方误差最小为准则的最佳线性滤波问题,它根据前一个估计值和最近一个观察数据来估计信号的当前值。
它是用状态方程和递推方法进行估计的,而它的解是以估计值(常常是状态变量的估计值)的形式给出其信号模型是从状态方程和量测方程得到的。
卡尔曼过滤中信号和噪声是用状态方程和测量方程来表示的。
因此设计卡尔曼滤波器要求已知状态方程和测量方程。
它不需要知道全部过去的数据,采用递推的方法计算,它既可以用于平稳和不平稳的随机过程,同时也可以应用解决非时变和时变系统,因而它比维纳过滤有更广泛的应用。
2、卡尔曼滤波的递推公式)(11∧-∧-∧-+=k k k k k k k k x A C y H x A x (1)1)(-+''=k k k k k k k R C P C C P H ττ.........(2) 11--+='k k k k k Q A P A P τ (3)k k k k P C H I P '-=)(………(4) 3、递推过程的实现如果初始状态0x 的统计特性][0x E 及]var[0x 已知,并 令 000][μ==∧x E x又]var[]))([(000000x x x x x E P =--=∧∧τ将0P 代入式(3)可求得1P ',将1P '代入式(2)可求得1H ,将此1H 代入式(1)可求得在最小均方误差条件下的∧1x ,同时将1P '代入式(4)又可求得1P;由1P又可求2P ',由2P '又可求得2H ,由2H 又可求得∧2x ,同时由2H 与2P '又可求得2P ……;以此类推,这种递推计算方法用计算机计算十分方便。
rssi卡尔曼滤波matlab代码
rssi卡尔曼滤波matlab代码RSSI (Received Signal Strength Indicator) 是一种常见的无线通信信号强度测量方法。
在无线传感器网络中,RSSI常用于距离和位置估计。
卡尔曼滤波器是一种高效递归滤波器,可用于在有噪声的情况下,根据一系列测量值来估计状态变量。
在无线传感器网络中,卡尔曼滤波器可用于RSSI测量值的滤波和校正。
以下是一个简单的RSSI卡尔曼滤波器的MATLAB代码示例:```matlab% 假设你已经有了原始的RSSI测量值 rssi_measurements% 初始位置和速度x0 = [0, 0]; % 初始位置P0 = 1; % 初始位置的不确定性Q = 0.01; % 过程噪声协方差R = 1; % 测量噪声协方差% 卡尔曼滤波器参数dt = 0.1; % 时间间隔x = x0; % 当前位置P = P0; % 当前位置的不确定性K = zeros(2,1); % 卡尔曼增益for i = 1:length(rssi_measurements)% 预测步骤:状态转移方程x_pred = x + dt * x; % 预测位置P_pred = P + Q; % 预测位置的不确定性% 更新步骤:测量更新方程Z = rssi_measurements(i) + x_pred(2)^2 / (x_pred(1)^2 + x_pred(2)^2) - x_pred(1)^2 / (x_pred(1)^2 + x_pred(2)^2); % 计算测量值K = P_pred / (P_pred + R); % 计算卡尔曼增益x = x_pred + K * (Z - x_pred(1)); % 更新位置P = (1 - K) * P_pred; % 更新位置的不确定性end```请注意,这个代码只是一个简单的示例,并没有考虑所有可能的情况和参数。
在实际应用中,你可能需要根据具体的需求和环境条件来调整和优化这个代码。
MATLAB技术卡尔曼滤波教程
MATLAB技术卡尔曼滤波教程MATLAB技术:卡尔曼滤波教程随着现代科技的发展,数据处理和信号滤波成为许多领域研究的重要环节。
其中,卡尔曼滤波作为一种常用的最优估计方法,被广泛应用于控制与导航、机器人、经济学以及信号处理等众多领域。
本文将为读者简要介绍MATLAB中的卡尔曼滤波原理与实现方法。
一、卡尔曼滤波简介卡尔曼滤波由Rudolph E. Kalman在1960年代初提出,其基本思想是通过综合当前观测数据和已知系统动态方程,估计出系统状态的最优解。
卡尔曼滤波通过联合考虑信号的测量和系统模型的不确定性,提供了一种在噪声干扰存在下的最优估计方法。
卡尔曼滤波的核心思想是建立一种递推的状态估计过程,即通过使用上一步的估计结果以及当前时刻的观测数据,预测下一步的状态。
卡尔曼滤波算法分为两个主要步骤:预测(时间更新)和更新(测量更新)。
预测步骤利用系统的动态模型和上一步的状态估计,计算出当前时刻状态的预测值以及预测误差协方差矩阵。
更新步骤则通过结合当前时刻的实际观测数据和预测值,计算出当前时刻的状态估计值和更新后的误差协方差矩阵。
二、MATLAB中的卡尔曼滤波工具箱为了解决卡尔曼滤波的数学推导与实现问题,MATLAB提供了专门的卡尔曼滤波工具箱。
该工具箱提供了丰富的函数和工具,使得用户可以方便地进行卡尔曼滤波算法的实现与仿真。
首先,用户需要定义系统的动态模型和测量模型,并设置初始状态以及误差协方差矩阵。
MATLAB中提供了`kalman`函数用于实现卡尔曼滤波的状态更新与估计。
其次,用户可以利用`kalman`函数进行滤波的仿真实验。
通过输入实际观测数据以及系统模型,用户可以获得滤波后的状态估计值和误差协方差矩阵。
此外,用户还可以根据系统模型的不同,选择不同的卡尔曼滤波算法(如扩展卡尔曼滤波、无迹卡尔曼滤波等)。
三、实例演示:基于MATLAB的卡尔曼滤波仿真为了更好地理解和掌握MATLAB中的卡尔曼滤波工具箱,我们将通过一个简单的实例演示其用法。
基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现
基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。
在目标跟踪定位中,它可以用于估计目标的运动轨迹。
下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。
算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。
2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。
3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。
4. 迭代:重复步骤2和3,直到达到终止条件。
MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。
实际应用中,您需要根据具体问题和数据调整模型和参数。
```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。
卡尔曼滤波器及matlab实现
卡尔曼滤波器及Matlab实现简介卡尔曼滤波器是一种常用于估计系统状态的滤波器,特别适用于具有线性动态模型和高斯噪声的系统。
它通过结合系统的测量值和模型预测的状态来估计系统的状态,并利用测量噪声和模型噪声的特性进行优化。
本文将介绍卡尔曼滤波器的基本原理,并使用Matlab实现一个简单的卡尔曼滤波器。
卡尔曼滤波器的基本原理卡尔曼滤波器的基本原理可以描述为以下步骤:1.初始化卡尔曼滤波器的状态估计值和协方差矩阵。
通常情况下,可以将初始状态设定为系统的初始状态,协方差矩阵设定为一个较大的值。
2.预测步骤:根据系统的动态模型预测下一时刻的状态和协方差矩阵。
3.更新步骤:使用测量值来更新预测的状态和协方差矩阵,得到最优的状态估计值和协方差矩阵。
具体的数学表达式如下:预测步骤:预测的状态估计值:x_k = A*x_(k-1) + B*u_k预测的协方差矩阵:P_k = A*P_(k-1)*A' + Q其中,A是状态转移矩阵,B是输入控制矩阵,u_k是输入控制向量,Q是模型噪声协方差。
更新步骤:测量残差:y_k = z_k - H*x_k残差协方差矩阵:S_k = H*P_k*H' + R卡尔曼增益:K_k = P_k*H'*inv(S_k)更新后的状态估计值:x_k = x_k + K_k*y_k更新后的协方差矩阵:P_k = (I - K_k*H)*P_k其中,H是观测矩阵,z_k是测量值,R是测量噪声协方差。
Matlab实现接下来,我们使用Matlab来实现一个简单的卡尔曼滤波器。
我们假设一个一维运动系统,系统状态为位置,系统模型如下:x_k = x_(k-1) + v_(k-1) * dtv_k = v_(k-1) + a_(k-1) * dt式中,x_k是当前时刻的位置,v_k是当前时刻的速度,a_k是当前时刻的加速度,dt是时间步长。
假设我们只能通过传感器得到位置信息,并且测量噪声服从均值为0、方差为0.1的高斯分布。
自适应扩展卡尔曼滤波matlab
自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。
本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。
一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。
它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。
然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。
为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。
AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。
AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。
2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。
3. 计算测量残差,即测量值与预测值之间的差值。
4. 计算测量残差的方差。
5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。
6. 利用更新后的协方差矩阵计算最优滤波增益。
7. 更新状态向量和协方差矩阵。
8. 返回第2步,进行下一次预测。
二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。
首先,定义非线性系统的动力学方程和测量方程。
在本例中,我们使用一个双摆系统作为非线性系统模型。
```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。
扩展卡尔曼滤波算法的matlab程序
clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。
维纳、卡尔曼滤波简介及MATLAB实现
现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
设维纳滤波器的输入为含噪声的随机信号。
期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。
因此均方误差越小,噪声滤除效果就越好。
为使均方误差最小,关键在于求冲激响应。
如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。
维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。
维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。
因此,维纳滤波在实际问题中应用不多。
下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。
无损卡尔曼滤波UKF Matlab程序
ukf(无迹卡尔曼滤波)算法的matlab程序. function [x,P]=ukf(fstate,x,P,hmeas,z,Q,R)% UKF Unscented Kalman Filter for nonlinear dynamic systems% [x, P] = ukf(f,x,P,h,z,Q,R) returns state estimate, x and state covariance, P% for nonlinear dynamic system (for simplicity, noises are assumed as additive): % x_k+1 = f(x_k) + w_k% z_k = h(x_k) + v_k% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q% v ~ N(0,R) meaning v is gaussian noise with covariance R% Inputs: f: function handle for f(x)% x: "a priori" state estimate% P: "a priori" estimated state covariance% h: fanction handle for h(x)% z: current measurement% Q: process noise covariance% R: measurement noise covariance% Output: x: "a posteriori" state estimate% P: "a posteriori" state covariance%% Example:%{n=3; %number of stateq=0.1; %std of processr=0.1; %std of measurementQ=q^2*eye(n); % covariance of processR=r^2; % covariance of measurementf=@(x)[x(2);x(3);0.05*x(1)*(x(2)+x(3))]; % nonlinear state equationsh=@(x)x(1); % measurement equations=[0;0;1]; % initial statex=s+q*randn(3,1); %initial state % initial state with noiseP = eye(n); % initial state covraianceN=20; % total dynamic stepsxV = zeros(n,N); %estmate % allocate memorysV = zeros(n,N); %actualzV = zeros(1,N);for k=1:Nz = h(s) + r*randn; % measurmentssV(:,k)= s; % save actual statezV(k) = z; % save measurment[x, P] = ukf(f,x,P,h,z,Q,R); % ekfxV(:,k) = x; % save estimates = f(s) + q*randn(3,1); % update processendfor k=1:3 % plot resultssubplot(3,1,k)plot(1:N, sV(k,:), '-', 1:N, xV(k,:), '--')end%}%% By Yi Cao at Cranfield University, 04/01/2008%L=numel(x); %numer of statesm=numel(z); %numer of measurementsalpha=1e-3; %default, tunableki=0; %default, tunablebeta=2; %default, tunablelambda=alpha^2*(L+ki)-L; %scaling factorc=L+lambda; %scaling factorWm=[lambda/c 0.5/c+zeros(1,2*L)]; %weights for meansWc=Wm;Wc(1)=Wc(1)+(1-alpha^2+beta); %weights for covariancec=sqrt(c);X=sigmas(x,P,c); %sigma points around x[x1,X1,P1,X2]=ut(fstate,X,Wm,Wc,L,Q); %unscented transformation of process % X1=sigmas(x1,P1,c); %sigma points around x1% X2=X1-x1(:,ones(1,size(X1,2))); %deviation of X1[z1,Z1,P2,Z2]=ut(hmeas,X1,Wm,Wc,m,R); %unscented transformation of measurmentsP12=X2*diag(Wc)*Z2'; %transformed cross-covarianceK=P12*inv(P2);x=x1+K*(z-z1); %state updateP=P1-K*P12'; %covariance updatefunction [y,Y,P,Y1]=ut(f,X,Wm,Wc,n,R)%Unscented Transformation%Input:% f: nonlinear map% X: sigma points% Wm: weights for mean% Wc: weights for covraiance% n: numer of outputs of f% R: additive covariance%Output:% y: transformed mean% Y: transformed smapling points% P: transformed covariance% Y1: transformed deviationsL=size(X,2);y=zeros(n,1);Y=zeros(n,L);for k=1:LY(:,k)=f(X(:,k));y=y+Wm(k)*Y(:,k);endY1=Y-y(:,ones(1,L));P=Y1*diag(Wc)*Y1'+R;function X=sigmas(x,P,c)%Sigma points around reference point%Inputs:% x: reference point% P: covariance% c: coefficient%Output:% X: Sigma pointsA = c*chol(P)';Y = x(:,ones(1,numel(x))); X = [x Y+A Y-A];。
卡尔曼滤波 matlab算法
卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。
在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。
2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。
其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。
3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。
4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。
需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。
此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。
总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。
希望以上内容能够对你有所帮助。
卡尔曼滤波两例题含matlab程序
设高度的测量误差是均值为0、方差为1的高斯白噪声随机序列,该物体的初始高度0h 和速度0V 也是高斯分布的随机变量,且0000019001000,var 10/02Eh h m P EV m s V ⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦。
试求该物体高度和速度随时间变化的最优估计。
(2/80.9s m g =) 解:1. 令()()()h k X k v k ⎡⎤=⎢⎥⎣⎦t=1 R (k )=1 Q(k)=0 根据离散时间卡尔曼滤波公式,则有: (1)(1,)()()X k k k X k U k φ+=++ (1)(1)(1)(1)Y k H k X k V k +=++++(1,)k k φ+= 11t -⎡⎤⎢⎥⎣⎦ ()U k = 20.5gt gt ⎡⎤-⎢⎥⎣⎦(1)H k +=[]10 滤波初值:^1900(0|0)(0)10X EX ⎡⎤==⎢⎥⎣⎦0100(0|0)var[(0)]2P X P ⎡⎤===⎢⎥⎣⎦一步预测:^^(1|)(1,)(|)()X k k k k X k k U k φ+=++ (1|)(1,)(|)(1,)TP k k k k P k k k k φφ+=++滤波增益:1(1)(1|)(1)[(1)(1|)(1)(1)]TTK k P k k H k H k P k k H k R k -+=+++++++ 滤波计算:^^^(1|1)(1|)(1)[(1)(1)(1|)]X k k X k k K k Y k H k X k k ++=++++-++ (1|1)[(1)(1)](1|)P k k I K k H k P k k ++=-+++ 2. 实验结果高度随时间变化估计速度随时间变化的最优估计高度协方差速度协方差从以上的结果,可以得到高度和速度的估计值,再通过所得到的高度协方差和速度协方差,可见用卡尔曼滤波法,虽然刚开始的初始高度协方差很大为100,但通过2步之后减小到不超过1,逐渐接近于0, 同样的速度协方差刚开始的时候也比较大,为2,但是通过5步之后迅速减小,到10步之后接近于0。
容积卡尔曼滤波 matlab
容积卡尔曼滤波matlab摘要:1.容积卡尔曼滤波简介2.容积卡尔曼滤波算法原理3.容积卡尔曼滤波算法在MATLAB 中的实现4.容积卡尔曼滤波算法的应用案例5.结论正文:一、容积卡尔曼滤波简介容积卡尔曼滤波(Cubature Kalman Filter,简称CKF)是一种基于卡尔曼滤波理论的非线性滤波算法。
它通过将非线性系统的状态空间模型和观测模型进行离散化,采用立方插值方法对系统状态进行预测和更新,从而实现对非线性系统的状态估计。
相较于传统的卡尔曼滤波,容积卡尔曼滤波具有更好的性能和鲁棒性,被广泛应用于导航定位、目标跟踪、机器人控制等领域。
二、容积卡尔曼滤波算法原理容积卡尔曼滤波算法主要包括两个部分:预测阶段和更新阶段。
1.预测阶段在预测阶段,首先对系统的状态向量进行初始化,然后通过系统动态模型和观测模型,对系统的状态向量进行预测。
具体来说,根据系统的状态转移矩阵、控制矩阵、观测矩阵和过程噪声协方差矩阵,计算预测状态向量的均值和协方差矩阵。
2.更新阶段在更新阶段,根据预测的观测值和观测协方差矩阵,计算观测均值和协方差矩阵。
然后,利用卡尔曼增益公式,结合预测状态向量和观测均值,更新系统的状态向量和协方差矩阵。
三、容积卡尔曼滤波算法在MATLAB 中的实现在MATLAB 中,可以通过以下步骤实现容积卡尔曼滤波算法:1.导入所需库:`import numpy as np;`2.初始化状态向量和协方差矩阵:`x = np.zeros((2,1)); p =np.zeros((2,2));`3.设置系统参数:`F = np.array([[1, 0.1], [0, 1]]); Q = np.array([[0.1, 0], [0, 0.1]]); H = np.array([[1, 0], [0, 1]]);`4.预测阶段:`F_pred = F; Q_pred = Q; x_pred = F_pred @ x; S_pred = F_pred @ P @ F_pred.T + Q_pred;`5.更新阶段:`y=H@x;S_update=H@*****+R;`6.计算卡尔曼增益:`K=*****@np.linalg.inv(S_update);`7.更新状态向量和协方差矩阵:`x = x + K @ (y - H @ x); P = (np.eye(2) - K @ H) @ P;`四、容积卡尔曼滤波算法的应用案例容积卡尔曼滤波算法在各种领域都有广泛应用,例如:1.导航定位:利用GPS、惯性导航等传感器的数据,实现对飞行器、船舶等移动设备的精确定位。
(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
卡尔曼滤波 matlab代码
卡尔曼滤波matlab代码卡尔曼滤波Matlab 代码卡尔曼滤波是一种递归的状态估计算法,用于估计随时间变化的系统状态,它通过将过去的观测值与预测模型相结合,得出对当前状态的最优估计。
在Matlab中,我们可以利用内置函数或自己编写的函数来实现卡尔曼滤波算法。
首先,我们需要定义一个状态空间模型。
状态空间模型由状态方程和观测方程组成。
状态方程描述了系统状态如何从先前的状态和控制输入中演化到当前状态,观测方程描述了如何从系统状态中得出观测值。
在Matlab中,我们可以使用以下代码定义状态方程和观测方程。
matlab状态方程A = [1 1; 0 1]; 状态转移矩阵B = [0.5; 1]; 控制输入矩阵C = [1 0]; 观测矩阵Q = [0.1 0; 0 0.1]; 状态噪声协方差矩阵R = 1; 观测噪声方差观测方程sys = ss(A, B, C, 0);[K, P, E] = lqr(sys, Q, R); 最优控制器增益矩阵上述代码中,`A`是状态转移矩阵,表示系统状态如何从t-1时刻转移到t 时刻。
`B`是控制输入矩阵,表示控制输入如何影响系统状态的演化。
`C`是观测矩阵,用于将系统状态映射到观测值。
`Q`是状态噪声协方差矩阵,用于描述系统状态的不确定性。
`R`是观测噪声方差,用于描述观测值的不确定性。
接下来,我们可以利用卡尔曼滤波算法来估计系统状态。
在Matlab中,可以使用`kalman`函数来实现卡尔曼滤波。
matlab卡尔曼滤波x0 = [0; 0]; 初始状态估计P0 = eye(2); 初始估计误差协方差矩阵观测值t = 0:0.1:10;u = sin(t);w = sqrt(Q) * randn(size(t));v = sqrt(R) * randn(size(t));x = zeros(2, length(t));y = zeros(1, length(t));for k = 1:length(t)系统模型x(:, k+1) = A * x(:, k) + B * u(k) + w(:, k);y(:, k) = C * x(:, k) + v(:, k);end卡尔曼滤波x_hat = zeros(size(x));P = zeros(size(P0));for k = 1:length(t)预测x_hat(:, k+1) = A * x_hat(:, k) + B * u(k);P = A * P * A' + Q;更新K = P * C' / (C * P * C' + R);x_hat(:, k+1) = x_hat(:, k+1) + K * (y(:, k) - C * x_hat(:, k+1));P = (eye(2) - K * C) * P;end在上述代码中,`x0`和`P0`分别是初始状态估计和初始估计误差协方差矩阵。
传感器数据卡尔曼滤波算法matlab
传感器数据卡尔曼滤波算法matlab【传感器数据卡尔曼滤波算法matlab】一. 介绍传感器在现代科技中发挥着重要的作用,但是由于各种环境因素和传感器自身的误差,传感器数据往往存在噪声和偏差。
要提取精确、可靠的信息,就需要使用滤波算法。
卡尔曼滤波算法是一种常用的滤波算法之一,特别适用于具有线性系统和高斯噪声的问题。
本文将详细介绍如何使用MATLAB实现传感器数据的卡尔曼滤波算法,并分析其优缺点。
二. 卡尔曼滤波算法原理卡尔曼滤波算法通过在观测数据与模型预测之间建立残差求解,不断更新模型预测值,从而得到更精确的数据估计结果。
其核心思想是综合利用系统动力学模型和传感器测量数据,不断校正预测状态。
卡尔曼滤波常用于线性系统,其基本过程包括预测和更新两个步骤:1. 预测(时间更新):基于系统动力学模型,通过上一时刻的状态估计值和过程噪声,预测当前时刻的状态估计值以及系统的协方差矩阵。
2. 更新(测量更新):基于传感器测量数据,通过测量模型,将预测的状态估计值与传感器测量结果进行比较,得到更新后的状态估计值以及更新后的协方差矩阵。
三. 卡尔曼滤波算法MATLAB实现步骤1. 初始化:定义系统模型(状态转移矩阵A,测量矩阵C)、系统噪声协方差矩阵Q和测量噪声协方差矩阵R、初始状态估计值x0以及初始协方差矩阵P0。
2. 预测:根据系统模型和上一时刻的状态估计值,计算当前时刻的状态预测值x_pred和协方差预测值P_pred。
x_pred = A * x + B * uP_pred = A * P * A' + Q其中,u为系统的控制输入。
3. 更新:根据传感器测量结果z,进行状态更新。
K = P_pred * C' * inv(C * P_pred * C' + R)x = x_pred + K * (z C * x_pred)P = (eye(size(A)) K * C) * P_pred其中,K为卡尔曼增益矩阵。
卡尔曼滤波matlab代码
卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。
它利用模型估计和更新未知状态,以达到估计未知状态的目的。
步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。
步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。
步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。
步骤4:在滤波器中实现卡尔曼滤波:。
卡尔曼滤波原理及应用matlab
卡尔曼滤波原理及应用matlab卡尔曼滤波是一种最优线性滤波算法,经常应用于估计系统的状态,特别是在有观测误差和系统动态噪声的情况下。
它是由卡尔曼于1960年提出的,常用于航天、制导导航控制等领域。
卡尔曼滤波的核心思想是通过将系统的测量值与模型预测值进行加权平均,得到对系统状态的最优估计。
它的主要特点是能够自适应地估计系统的状态,并且对于含有噪声的测量值具有较好的抗扰动能力。
在卡尔曼滤波中,系统的状态通常用状态向量表示,用一个线性方程组表示系统的动态演化,如下所示:x(k) = A * x(k-1) + B * u(k-1) + w(k-1)其中,x(k)表示系统的状态向量,A和B是状态转移矩阵和输入控制矩阵,u(k-1)表示输入控制向量,w(k-1)表示系统动态噪声。
系统的测量模型可以表示为:z(k) = H * x(k) + v(k)其中,z(k)为测量值,H为测量矩阵,v(k)表示观测噪声。
卡尔曼滤波的基本步骤如下:1. 预测状态:根据上一时刻的状态估计值和状态转移矩阵进行预测,得到对当前状态的预测估计。
x^(k k-1) = A * x^(k-1 k-1) + B * u(k-1)P(k k-1) = A * P(k-1 k-1) * A' + Q(k-1)2. 更新观测:根据当前的测量值和测量模型进行更新,得到对当前状态的最优估计。
K(k) = P(k k-1) * H' * inv(H * P(k k-1) * H' + R(k))x^(k k) = x^(k k-1) + K(k) * (z(k) - H * x^(k k-1))P(k k) = (I - K(k) * H) * P(k k-1)3. 输出最优估计:使用更新后的状态估计和协方差矩阵作为当前时刻的最优估计结果。
x(k) = x^(k k)P(k) = P(k k)其中,P(k k-1)和P(k k)是协方差矩阵,Q(k-1)和R(k)是系统动态噪声和观测噪声的协方差矩阵。
卡尔曼滤波入门、简介及其算法MATLAB实现代码
卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。
卡尔曼滤波也可进行系统辨识。
卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。
用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。
信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。
这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。
维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。
(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。
这里所谓“最佳”与“最优”是以最小均方误差为准则的。
维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。
因此在平稳条件下,它们所得到的稳态结果是一致的。
然而,它们解决的方法有很大区别。
维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。
而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。
卡尔曼滤波 matlab代码
卡尔曼滤波 matlab代码【实用版】目录一、卡尔曼滤波简介二、卡尔曼滤波算法原理三、MATLAB 代码实现卡尔曼滤波四、总结正文一、卡尔曼滤波简介卡尔曼滤波是一种线性高斯状态空间模型,主要用于估计动态系统的状态,具有良好的实时性、鲁棒性和准确性。
它广泛应用于导航、定位、机器人控制等领域。
二、卡尔曼滤波算法原理卡尔曼滤波主要包括两个部分:预测阶段和更新阶段。
预测阶段:1.初始化状态变量和协方差矩阵。
2.根据系统动态模型,预测系统的状态变量和协方差矩阵。
更新阶段:1.测量系统的状态变量,得到观测数据。
2.根据观测数据和预测的状态变量,计算卡尔曼增益。
3.使用卡尔曼增益,更新状态变量和协方差矩阵。
三、MATLAB 代码实现卡尔曼滤波以下是一个简单的卡尔曼滤波 MATLAB 代码示例:```MATLABfunction [x, P] = kalman_filter(x, P, F, Q, H, R, z)% 初始化x = 初始状态向量;P = 初始协方差矩阵;% 预测阶段F = 系统动态矩阵;Q = 测量噪声协方差矩阵;H = 观测矩阵;R = 观测噪声协方差矩阵;z = 观测数据;% 预测状态变量和协方差矩阵[x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R);% 更新阶段[x_upd, P_upd] = update(x_pred, P_pred, z);% 输出结果x = x_upd;P = P_upd;endfunction [x_pred, P_pred] = forward_prediction(x, P, F, Q, H, R)% 预测状态变量和协方差矩阵x_pred = F * x;P_pred = F * P * F" + Q;endfunction [x_upd, P_upd] = update(x_pred, P_pred, z)% 更新状态变量和协方差矩阵S = H" * P_pred * H;K = P_pred * H" * S^-1;x_upd = x_pred + K * (z - H * x_pred);P_upd = (I - K * H") * P_pred;end```四、总结卡尔曼滤波是一种高效、准确的状态估计方法,适用于各种线性高斯动态系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个应用实例详解卡尔曼滤波及其算法实现标签:算法filtermatlabalgorithm优化工作2012-05-14 10:4875511人阅读评论(25)收藏举报分类:数据结构及其算法(4)为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。
但是,他的5条公式是其核心内容。
结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。
在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。
假设我们要研究的对象是一个房间的温度。
根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。
假设你对你的经验不是100%的相信,可能会有上下偏差几度。
我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。
另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。
我们也把这些偏差看成是高斯白噪声。
好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。
下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的是实际温度值。
首先你要根据k-1时刻的温度值,来预测k时刻的温度。
因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。
然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。
由于我们用于估算k时刻的实际温度有两个温度值,分别是23 度和25度。
究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance(协方差)来判断。
因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。
可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。
到现在为止,好像还没看到什么自回归的东西出现。
对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56 度)的偏差。
算法如下:((1-Kg)*5^2)^0.5=2.35。
这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。
就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。
他运行的很快,而且它只保留了上一时刻的covariance。
上面的Kg,就是卡尔曼增益(Kalman Gain)。
他可以随不同的时刻而改变他自己的值,是不是很神奇!下面就要言归正传,讨论真正工程系统上的卡尔曼。
3.卡尔曼滤波器算法(The Kalman Filter Algorithm)在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。
下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。
但对于卡尔曼滤波器的详细证明,这里不能一一描述。
首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B 是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance(协方差)还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。
结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) (3)其中Kg为卡尔曼增益(Kalman Gain):Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) (4)到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。
但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:P(k|k)=(I-Kg(k) H)P(k|k-1) (5)其中I 为1的矩阵,对于单模型单测量,I=1。
当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。
这样,算法就可以自回归的运算下去。
卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5 个基本公式。
根据这5个公式,可以很容易的实现计算机的程序。
下面,用Matlab程序举一个实际运行的例子。
4.简单例子(A Simple Example)这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。
所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。
根据第二节的描述,把房间看成一个系统,然后对这个系统建模。
当然,我们见的模型不需要非常地精确。
我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。
没有控制量,所以U(k)=0。
因此得出:X(k|k-1)=X(k-1|k-1) (6)式子(2)可以改成:P(k|k-1)=P(k-1|k-1) +Q (7)因为测量的值是温度计的,跟温度直接对应,所以H=1。
式子3,4,5可以改成以下:X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) (8)Kg(k)= P(k|k-1) / (P(k|k-1) + R) (9)P(k|k)=(1-Kg(k))P(k|k-1) (10)现在我们模拟一组测量值作为输入。
假设房间的真实温度为25 度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。
为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。
他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。
但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。
我选了X(0|0)=1 度,P(0|0)=10。
该系统的真实温度为25度,图中用黑线表示。
图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。
clearN=200;w(1)=0;w=randn(1,N)x(1)=0;a=1;for k=2:N;x(k)=a*x(k-1)+w(k-1);endV=randn(1,N);q1=std(V);Rvv=q1.^2;q2=std(x);Rxx=q2.^2;q3=std(w);Rww=q3.^2;c=0.2;Y=c*x+V;p(1)=0;s(1)=0;for t=2:N;p1(t)=a.^2*p(t-1)+Rww;b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));p(t)=p1(t)-c*b(t)*p1(t);endt=1:N;plot(t,s,'r',t,Y,'g',t,x,'b');用matlab做的kalman滤波程序,已通过测试--------------------------还有下面一个Matlab源程序,显示效果更好。
clearclc;N=300;CON = 25;%房间温度,假定温度是恒定的%%%%%%%%%%%%%%%kalman filter%%%%%%%%%%%%%%%%%%%%%%x = zeros(1,N);y = 2^0.5 * randn(1,N) + CON;%加过程噪声的状态输出x(1) = 1;p = 10;Q = cov(randn(1,N));%过程噪声协方差R = cov(randn(1,N));%观测噪声协方差for k = 2 : Nx(k) = x(k - 1);%预估计k时刻状态变量的值p = p + Q;%对应于预估值的协方差kg = p / (p + R);%kalman gainx(k) = x(k) + kg * (y(k) - x(k));p = (1 - kg) * p;end%%%%%%%%%%%Smoothness Filter%%%%%%%%%%%%%%%%%%%%%%%%Filter_Wid = 10;smooth_res = zeros(1,N);for i = Filter_Wid + 1 : Ntempsum = 0;for j = i - Filter_Wid : i - 1tempsum = tempsum + y(j);endsmooth_res(i) = tempsum / Filter_Wid;end% figure(1);% hist(y);t=1:N;figure(1);expValue = zeros(1,N);for i = 1: NexpValue(i) = CON;endplot(t,expValue,'r',t,x,'g',t,y,'b',t,smooth_res,'k');legend('expected','estimate','measure','smooth result'); axis([0 N 20 30])xlabel('Sample time');ylabel('Room Temperature');title('Smooth filter VS kalman filter');卡尔曼滤波算法--核心公式推导导论再造红旗写在最前面:这是我第一篇专栏文章,感谢知乎提供这么一个平台,让自己能和大家分享知识。