永川中学初2019级初一(上)数学第三周周考题1
永川中学初2019级初一(上)数学第六周周考.
永川中学初2019级初一(上)数学第六周周考题(满分:100分 时间:40分钟 命题人:龙定永 审题人:吴冬梅)班级:________________ 姓名:______________一、选择题:(每小题5分,共30分)1.21-的相反数是( )A .-2B .2C .21- D .212.在-2,0,1,3这四个数中,比0小的数是( )A .-2 B.0 C.1 D.33.气象部门测定高度每增加1km ,气温下降5℃,现在地面气温是15℃,那么4km 高空的气温是() A.5℃ B.0℃ C. -5℃ D. -15℃4.计算:(41+61-21)×24的结果是( )A.-2B.-1C.2D.15.在数轴上,到表示-1的点的距离等于6的点表示的数是( )A.5B.-7C.5或-7D.86.已知|x|=4,|y|=5且x >y ,则2x-y 的值为( )A.-13B.+13C.-3 或+13D.+3或-13二、填空题:(每小题5分,共30分)7.-2的倒数 .8.绝对值小于2.5的非负整数是 .9.数轴上离原点7个单位的点所表示的数是 .10.若20ab ->,则a 0 (填“>”、“=”、“<”).11.若|a+3|+(b -2)2 =0,求a b 的值。
12.观察下列算式: ,,,请你在观察规律之后并用你得到的规律填空: .三、解答题:(共40分)13.计算(每小题4分,共8分)(1)3)411()213()53(÷-÷-⨯-; (2))12(60)4()3(-÷--⨯-;14.用简便方法计算(每小题4分,共8分) (1) )12(242339-⨯ (2))511(3)511(13)511(5-⨯--⨯+-⨯-15.计算(每小题4分,共8分) (1) ]51)31(71[1051---÷. (2) ()()⎥⎦⎤⎢⎣⎡-÷⎪⎭⎫ ⎝⎛⨯-----2452132324;16(10分).小明早晨跑步,他从自家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家,然后向西跑了4.5千米到达中心广场,最后回到家。
2019-2020年七年级数学上学期周练三试题新人教版
2019-2020年七年级数学上学期周练三试题新人教版一、选择题(每题3分;共30分)1、-2的倒数的相反数是( )A.-2B.2C.12D.-122、数轴上到表示-2的点的距离为3的点表示的数为( ) A 、1 B 、-5 C 、+5 D 、1或-53、下列说法正确的是( )A .倒数等于它本身的数只有1B .平方等于它本身的数只有1C .立方等于它本身的数只有1D .正数的绝对值是它本身4、绝对值大于2且小于5的所有整数的和是( )A. 7B. -7C. 0D. 55、第六次全国人口普查公布的数据表明,登记的全国人口数量约为1340000000人.这个数据用科学记数法表示为( )A .134×107人B .13.4×108人C .1.34×109人D .1.34×1010人6、下列说法正确的是( )A 、13 πx2的系数是13B 、12 xy2的系数为12x C 、-5x2的系数为5 D 、-x2的系数为-17、下列运算正确的是( )A .-22=4B .(-2)2=-4C .(-2)3=-6D .(-3)2=98、若| a |=2,| b |=5,则a+b 的值为( )A 、B 、C 、3或7D 、或9. 若-ax 2y b+1是关于x 、y 的五次单项式,且系数为-12,则a 、b 的值分别是( ) A 、 12 ,1 B 、-12 ,-1 C 、-12 ,2 D 、 12,2 10、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,…,通过观察,用你所发现的规律确定3xx 的个位数字是( )A 、4B 、2C 、6D 、8二、填空题(每小题3分,共15分)11、A 地海拔高度是-30米,B 地海拔高度是10米,C 地海拔高度是-10米,则地势最高的与地势最低的相差__________米.12、现规定一种新运算:a*b=ab+a-b,则2*(-3)=__________.13. 多项式3m 3-2m-5+m 2的常数项是______,一次项是______, 二次项的系数是_____.14、如果, 则3x -4y= ______.15、左图是一数值转换机,若输入的x 为-5,则输出的结果为__________.三、解答题16、计算(共16分)1、 2、3、 ()()⎪⎭⎫⎝⎛-÷---÷322210024、()3222181125632⎪⎭⎫ ⎝⎛-÷-⎪⎭⎫ ⎝⎛-⨯-+-⨯-17(8分)把下列各数填入相应的集合中:-23,0.5,,28,0,4,,-5.2.正数集合:{ …},负分数集合:{ …},正整数集合:{ …},非负数集合:{ …}.18(8分)已知a 、b 互为相反数,c 、d 互为倒数,|m|=3计算: 的值。
最新永川中学数学七年级周末试卷及答案分析
最新永川中学数学七年级周末试卷及答案分析第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.钟表在1点30分时,它的时针和分针所成的角度是()A.135° B.125° C.145° D.115°2、有下列各数:8,-6.7,0,-80,-1/7,-(-4),-|-3|,-(+62),其中属于非负整数的共有( )A、1个B、2个C、3个D、4个3.把弯曲的河道改成直的,可以缩短航程,其理由是()A.经过两点有且只有一条直线B.两点之间,线段最短C.两点之间,直线最短D.线段可以比较大小4、在数轴上,把表示-4的点移动2个单位长度后,所得到的对应点表示的数是()A.-1B.-6C.-2或-6D.无法确定5.下列判断错误的是()A、一个正数的绝对值一定是正数;B、一个负数的绝对值一定是正数;C、任何数的绝对值一定是正数;D、任何数的绝对值都不是负数;6.把图1绕虚线旋转一周形成一个几何体,与它相似的物体是().A.课桌 B.灯泡 C.篮球 D.水桶7. 如图中的两个角∠1和∠2之间的关系是 ····························································()A.同位角B.内错角C.同旁内角D.对顶角8.在下列各数:-3, +8, 3.14, 0, π,1/7 , -0.4, 2.75%, 0.1010010001……中,有理数的个数是()A.6个 B.7个 C.8个 D.9个9.下列各方程中,是一元一次方程的是()A.B.C.D.10.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b|C.﹣a<b D.a+b<0第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11、-1/7的绝对值是,相反数是,倒数是.12.某商品的售价为a元,现按8折出售,则实际售价可表示为 .13.甲乙丙三地的海拔高度分别为20米, -15米, -10米,那么最高的地方比最低的地方高()A.5米B.10米C.25米D.35米14.当x= _________ 时,代数式4x+2与3x﹣9的值互为相反数.15、平面上5条直线两两相交,任何三条直线不交于同一点,则一共形成____对同旁内角.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(﹣3)﹣32÷[(﹣2)3﹣(﹣4)(217.解方程(每小题4分,共8分)(1) 3(x -4)=12; (2) x -x -12 =2-x +23.18.已知:A =2a 2+3ab -2a -1,B =-a 2+ab +1 (1)当a =-1,b =2时,求4A -(3A -2B )的值; (2)若(1)中的代数式的值与a 的取值无关,求b 的值.19.(本题8分)一座楼梯的示意图如图所示,要在楼梯上铺一条地毯。
新人教版2018-2019学年度数学七年级上册周测含答案(3)范围第一章有理数
D.-l00 元
2.下面的数中,与-2 的和为 0 的是( C ). A.������
������
B.− ������ C.2
������
D.-2
3.下列说法中,正确的是( D ). A.绝对值等于 3 的数是-3 C.绝对值最小的有理数是 1 B.绝对值小于������ ������的整数是 l 和-l D.3 的绝对值是 3 ).
,倒数是
.
14.计算(−������)������������������������ + (−������)������������������������ = 15.已知|������| = ������, |������| = ������,且 xy<0,则 ������ 的值等于 16.按照如图计算转换机计算,输出结果为
−������, − ������ , ������. ������, ������, ������ , ������ ������ , − ������ , ������������������������, −������. ������
������ ������ ������ ������
9
.
2018-2019 学年度数学七年级上学期周测(3)
2018/10/14 姓名:___________班级:___________成绩:___________
一、选择题(每小题 3 分,共 30 分) 1.如果收入 80 元记作+80 元,那么支出 20 元记作( A.+20 元 B.-20 元 C.+100 元 ). ).
������
������
������
(4)−��ห้องสมุดไป่ตู้��������� × (−������) + ������������ ÷ (−������)������ − |−������|
七年级数学上册周周清3新版新人教版20200911266
19.(12 分)小华在电脑上设计了一个有理数运算程序:输入 a,加*键,再输入 b,且
a≠b,得到运算 a*b=ab÷(a-b).
(1)求 2*(-3)和(-3)*2 的值;
(2)猜想 a*b 与 b*a 的关系(不必说明理由);
y (3)若|x+4|=m*n,|y-8|=n*m,且 m≠n,求 -xy 的值.
32
1 解:原式=(-15)÷(- )×6(第一步)
6
=(-15)÷(-1)(第二步)
=-15(第三步)
回答下列问题:
(1)上面解题过程中有两处错误,第一处是第__二__步,错误的原因是__运算顺序错误
__;第二处是第__三__步,错误的原因是__符号错误__;
(2)把正确的解题过程写出来.
1 解:原式=(-15)÷(- )×6=(-15)×(-6)×6=90×6=540
1
1
8.一列数 a1,a2,a3,…,其中 a1= 2
,an= 1+an-1
(n 为不小于 2 的整数),则 a4 的
1
值为(A)
5 A.
8
8 B.
5
13 C.
8
8 D.
13
二、填空题(每小题 3 分,共 18 分)
-45 15
6
1
9. =__ __, =__- __.
-12
4
-18
3
1 10.计算:1÷(- )×(-9)=__81__.
x
6
6
解:(1)2*(-3)=2×(-3)÷[2-(-3)]=- ,(-3)*2=(-3)×2÷[(-3)-2]=
5
5
(2)a*b 与 b*a 互为相反数 (3)因为 m*n 与 n*m 互为相反数,所以|x+4|+|y-8|=0,
2019-2020年七年级上学期数学第三周练习及答案
课外作业一、境空题(每空2分,共28分)1、的绝对值是____;—(—)的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:._____59____;2123=--=+- 4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为,最高气温为8℃,那么该景点这天的温差是____.C7、在数+8.3、-4、、 、 0、 90、 、中,________________是正数,____________________________是非正整数8、观察下面一列数的规律并填空:0,—3,8,—15,24,______二计算(1)、(-23)+|-63|+|-37|+(-77) (2)、(+18)+(-32)+(-16)+(+26)(3)、19+(-195)+47 (4)、(-0.8)+(-1.2)+(-0.6)+(-2.4)(5)、(-8)+(-3)+2+(-)+12 (6)、 5+(-5)+4+(-)(7)、(-6.37)+(-3)+6.37+2.75三、解答题1、已知求的值?==+<-2.5,3.6,0,a b a b a b2、某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、3、 5、 +4、 8、 +6、 3、6、 4、 +10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?3、如图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_________,A、B两点间的距离是________。
2019-2020年七年级(上)第3周周练数学试卷
2019-2020年七年级(上)第3周周练数学试卷一、精心选一选(每小题3分,共30分)1.根据下列条件画三角形,不能唯一确定三角形的是()A.已知三个角 B.已知三边C.已知两角和夹边D.已知两边和夹角2.在△ABC中,∠A的平分线交BC于点D,则()A.D是BC的中点 B.D在BC的中垂线上C.D在AC的中垂线上D.D到AB、AC的距离相等3.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′4.下列命题的逆命题是真命题的是()A.对顶角相等 B.全等三角形的面积相等C.同角的余角相等D.两直线平行,内错角相等5.若点P在等边三角形ABC的BC边的垂直平分线上,则使△PAB、△PAC、△PBC均为等腰三角形的P点个数有()A.1个B.4个 C.7个 D.10个6.如图,△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,OE∥AB交BC于点E,OF∥AC交BC于点F,图中等腰三角形共有()A.6个B.5个 C.4个 D.3个7.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°8.若三角形三边垂直平分线的交点在三角形的某一边上,则该三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形9.如图,过△ABC的顶点A的直线DE∥BC,∠ABC、∠ACB的平分线分别交DE于E、D两点,若AB=6,AC=8,则DE=()A.10 B.14 C.16 D.2410.关于x的不等式组只有3个整数解,则a的取值范围是()A.﹣3≤a≤﹣2 B.﹣3≤a<﹣2 C.﹣3<a≤﹣2 D.﹣3<a<﹣2二、仔细填一填(每小题3分,共24分)11.把命题“直角三角形的两个锐角互余”改写成“如果…,那么…”的形式为.12.如图是工厂里常用的可用于测量圆形零件内槽的工具(卡钳),它由两根等长的钢条AB和A′B′在中点处连接而成,只要测出A′B′长就知道AB的长,用到的原理为全等三角形的判定方法.13.如图,△ABC中,AB=AC,要使AD=AE,需要添加的一个条件是.14.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB 交于点D,则∠BCD的度数是度.15.如图,AC⊥CE,DE⊥CE,AC=BE,AB=BD,C、B、E三点共线,则∠ABD的度数为.16.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,BD=5,BC=4,则点D到AB的距离是.17.如图,△ABC中,∠A=36°,AB=AC,DE是AC的垂直平分线,交AB于点D,若AD=5cm,则BC=cm.18.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管根.三、认真解一解(共46分)19.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.20.根据下列命题,画出图形并写出“已知”、“求证”,不要求证明.直角三角形中,30°角所对的直角边等于斜边的一半.21.某中学八年级的同学参加义务劳动,其中有两个班的同学在D、E两处参加劳动,另外两个班的同学在道路AB、AC两处劳动(如图),现要在道路AB、AC的交叉区域内设置一个茶水供应点P,使P到AB、AC的距离相等,且使PD=PE,请你找出点P的位置.22.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l.求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整.)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.23.如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,并交于点P,PD⊥BM于点D,PF⊥BN于点F,求证:BP是∠MBN的平分线.24.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°)如图(1)放置,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴的原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应数轴上的数是,点H对应数轴上的数是;(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=α,试用α来表示∠M的大小;(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,求∠N+∠M的值.xx学年江苏省无锡市惠山区石塘湾中学七年级(上)第3周周练数学试卷参考答案与试题解析一、精心选一选(每小题3分,共30分)1.根据下列条件画三角形,不能唯一确定三角形的是()A.已知三个角 B.已知三边C.已知两角和夹边D.已知两边和夹角【考点】全等三角形的判定.【分析】根据全等三角形的判定对各个选项进行分析,从而得到答案.【解答】解:A,不正确,已知三个角可画无数个三角形;B,正确,符合SSS判定,画出的三角形是唯一的;C,正确,符合ASA判定,画出的三角形是唯一的;D,正确,符合SAS判定,画出的三角形是唯一的;故选A.2.在△ABC中,∠A的平分线交BC于点D,则()A.D是BC的中点 B.D在BC的中垂线上C.D在AC的中垂线上D.D到AB、AC的距离相等【考点】角平分线的性质.【分析】本题从三角形的内心和垂心交点在重合时三角形为正三角形,以及角平分线的特点来判断.【解答】解:A、三角形是等腰或等边三角形时才符合,故本选项错误;B、同选项A中一样,故本选项错误;C、要符合,那么三角形应为等边三角形,但没有条件,故本选项错误;D、为角平分线上点的性质特点,正确.3.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′【考点】全等三角形的判定.【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.【解答】解:A中两边夹一角,满足条件;B中两角夹一边,也可证全等;C中∠B并不是两条边的夹角,C不对;D中两角及其中一角的对边对应相等,所以D也正确,故答案选C.4.下列命题的逆命题是真命题的是()A.对顶角相等 B.全等三角形的面积相等C.同角的余角相等D.两直线平行,内错角相等【考点】全等三角形的性质.【分析】首先明确各个命题的逆命题,再分别分析各逆命题的题设是否能推出结论,可以利用排除法得出答案.【解答】解:A、原命题的逆命题为:相等的角为对顶角,不正确;B、原命题的逆命题为:面积相等的三角形全等,不正确;C、原命题的逆命题为:如果两个角相等,那么它是同一个角的余角,不正确;D、原命题的逆命题为:内错角相等,两直线平行,正确;故选D.5.若点P在等边三角形ABC的BC边的垂直平分线上,则使△PAB、△PAC、△PBC均为等腰三角形的P点个数有()A.1个B.4个 C.7个 D.10个【考点】等腰三角形的判定;线段垂直平分线的性质;等边三角形的性质.【分析】要判断为等腰三角形,两条边相等即可.【解答】解:要使△PAB、△PAC、△PBC均为等腰三角形,由于在线段BC的中垂线上,则△PBC一定是等腰三角形,所以只需找出使△PAB、△PAC同时为等腰三角形的点P即可如图所示故选B.6.如图,△ABC为等边三角形,∠ABC、∠ACB的平分线相交于点O,OE∥AB交BC于点E,OF∥AC交BC于点F,图中等腰三角形共有()A.6个B.5个 C.4个 D.3个【考点】角平分线的性质;等腰三角形的判定与性质.【分析】由已知条件,首先得到∠OBC=∠OCB,利用两个角相等即为等腰三角形,得到△BOC为等腰三角形;然后在题中找出对应角相等即可.【解答】解:∵△ABC为正三角形,∴△ABC为等腰三角形;∵OB,OC为角平分线,∴∠OBC=∠OCB,∴△BOC为等腰三角形;∵OE∥AB,∴∠ABO=∠BOE=∠OBE,∴△BOE为等腰三角形;同理,△COF为等腰三角形;∠OEF=∠OFE,∴△EOF为等腰三角形.所以题中共有5个等腰三角形故选B7.如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC的大小是()A.40°B.45°C.50°D.60°【考点】直角三角形全等的判定;全等三角形的性质;等腰直角三角形.【分析】先利用AAS判定△BDF≌△ADC,从而得出BD=DA,即△ABD为等腰直角三角形.所以得出∠ABC=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E,∴∠BEA=∠ADC=90°.∵∠FBD+∠BFD=90°,∠AFE+∠FAE=90°,∠BFD=∠AFE,∴∠FBD=∠FAE,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴BD=AD,∴∠ABC=∠BAD=45°,故选:B.8.若三角形三边垂直平分线的交点在三角形的某一边上,则该三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形【考点】线段垂直平分线的性质.【分析】根据三种三角形线段垂直平分线上的交点的位置解答即可.【解答】解:∵锐角三角形三边垂直平分线的交点在三角形的内部,钝角三角形三边垂直平分线的交点在三角形的外部,直角三角形三边垂直平分线的交点在三角形的斜边上,∴该三角形是直角三角形.故选A.9.如图,过△ABC的顶点A的直线DE∥BC,∠ABC、∠ACB的平分线分别交DE于E、D两点,若AB=6,AC=8,则DE=()A.10 B.14 C.16 D.24【考点】勾股定理.【分析】BE为∠ABC的角平分线,∠EBC=∠ABE,CD为∠ACB的角平分线,则∠ACD=∠DCB,因为BC∥DE,根据平行线的性质,内错角相等,可得出AD=AC,AB=AE,所以DE=AD+AE=AB+AC,从而可求出DE的长度.【解答】解:由分析得:∠EBC=∠ABE,∠ACD=∠DCB;根据平行线的性质得:∠DCB=∠CDE,∠EBC=∠BED;所以∠ADC=∠ACD,∠ABE=∠AEB,则AD=AC,AB=AE;所以DE=AD+AE=AB+AC=6+8=14;故选B.10.关于x的不等式组只有3个整数解,则a的取值范围是()A.﹣3≤a≤﹣2 B.﹣3≤a<﹣2 C.﹣3<a≤﹣2 D.﹣3<a<﹣2【考点】一元一次不等式组的整数解.【分析】先根据一元一次不等式组解出x的取值,再根据不等式组只有3个整数解,求出实数a的取值范围.【解答】解:,由①得:x>a,由②得:x<1,∴不等式组的解集为:a<x<1,∵只有3个整数解,∴整数解为:0,﹣1,﹣2,∴﹣3≤a<﹣2,故选:B.二、仔细填一填(每小题3分,共24分)11.把命题“直角三角形的两个锐角互余”改写成“如果…,那么…”的形式为如果一个三角形是直角三角形,那么它的两个锐角互余.【考点】命题与定理.【分析】首先找出原命题中的条件及结论,然后写成“如果…,那么…”的形式即可.【解答】解:如果一个三角形是直角三角形,那么它的两个锐角互余.12.如图是工厂里常用的可用于测量圆形零件内槽的工具(卡钳),它由两根等长的钢条AB和A′B′在中点处连接而成,只要测出A′B′长就知道AB的长,用到的原理为全等三角形的判定方法两边和它们的夹角对应相等的两个三角形全等(SAS).【考点】全等三角形的应用.【分析】根据在钢条的中点处连接,又对顶角相等,所以判断两个三角形全等的方法是,两边和它们的夹角对应相等的两个三角形全等.【解答】解:如图,∵两根等长的钢条AB和A′B′在中点处连接,∴钢条AO=A′O,BO=B′O,又∠AOB=∠A′OB′,∴两三角形全等的判定方法为:两边和它们的夹角对应相等的两个三角形全等,即SAS.故填两边和它们的夹角对应相等的两个三角形全等,(SAS).13.如图,△ABC中,AB=AC,要使AD=AE,需要添加的一个条件是BD=CE,或∠BAD=∠CAE,或∠BAE=∠CAD.【考点】全等三角形的判定与性质.【分析】要使AD=AE,可证△ABD≌△ACE,即添加一个条件满足△ABD与△ACE全等即可,现有一边一角分别对应相等,添加一个条件,可用两角夹一边,两边夹一角等于是答案可得.【解答】解:应添加BD=CE,∵AB=AC,∴∠B=∠C,又BD=CE,∴△ABD≌△ACE,∴AD=AE故填AD=AE.14.如图,在Rt△ABC中,∠B=90°,∠A=40°,AC的垂直平分线MN与AB 交于点D,则∠BCD的度数是10度.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据垂直平分线的性质计算.∠BCD=∠BCN﹣∠DCA.【解答】解:∵Rt△ABC中,∠B=90°,∠A=40°,∴∠BCN=180°﹣∠B﹣∠A=180°﹣90°﹣40°=50°,∵DN是AC的垂直平分线,∴DA=DC,∠A=∠DCA=40°,∠BCD=∠BCN﹣∠DCA=50°﹣40°=10°,∠BCD的度数是10度.故答案为:10.15.如图,AC⊥CE,DE⊥CE,AC=BE,AB=BD,C、B、E三点共线,则∠ABD的度数为90°.【考点】全等三角形的判定与性质.【分析】由题中条件可得△ABC≌△BED,进而利用角之间的转化得出∠ABD 的值.【解答】解:∵AC⊥CE,DE⊥CE,AC=BE,AB=BD,∴△ABC≌△BED,∴∠A=∠DBE,∠ABC=∠D,又∠A+∠ABC=90°∴∠ABC+∠DBE=90°,∴∠ABD=90°.16.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,BD=5,BC=4,则点D到AB的距离是3.【考点】角平分线的性质.【分析】本题从角平线上点D到AB和BC距离相等,即求出CD的长度即可.【解答】解:∵在直角三角形ABC中,∠C=90°,BD=5,BC=4,∴由勾股定理得CD为3,即为点D到BC的距离.∵BD是∠ABC的平分线,又∵角平线上点到角两边距离相等,∴点D到AB距离等于点D到BC的距离.即点D到AB的距离是3.17.如图,△ABC中,∠A=36°,AB=AC,DE是AC的垂直平分线,交AB于点D,若AD=5cm,则BC=5cm.【考点】线段垂直平分线的性质.【分析】先根据∠A=36°,AB=AC求出∠B=∠ACB,再根据线段垂直平分线的性质求出CD的长及∠ACD的度数,进而求出∠BCD的度数,由三角形内角和定理求出∠BDC的度数,判断出△BCD的形状,进而可求出BC的长.【解答】解:∵△ABC中,∠A=36°,AB=AC,∴∠B=∠ACB===72°,∵DE是AC的垂直平分线,AD=5cm,∴∠A=∠ACD=36°,AD=CD=5cm,∴∠BCD=∠ACB﹣∠ACD=72°﹣36°=36°,∵∠B=72°,∴∠BDC=180°﹣∠B﹣∠BCD=180°﹣72°﹣36°=72°,∴△BCD是等腰三角形,∴BC=CD=5cm.18.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管8根.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=10°,∴∠GEF=∠FGE=20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.三、认真解一解(共46分)19.已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.【考点】全等三角形的判定与性质.【分析】要证明AF=DE,可以证明它们所在的三角形全等,即证明△ABF≌△DEC,已知两边(由BE=CF得出BF=CE,AB=DC)及夹角(∠B=∠C),由SAS可以证明.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AB=DC,∠B=∠C,∴△ABF≌△DCE,∴AF=DE.20.根据下列命题,画出图形并写出“已知”、“求证”,不要求证明.直角三角形中,30°角所对的直角边等于斜边的一半.【考点】含30度角的直角三角形.【分析】根据题意即可得出△ABC为直角三角形,∠A=30°,以及要求证的结论.【解答】解:已知:Rt△ABC中,∠ACB=90°,∠A=30°,求证:21.某中学八年级的同学参加义务劳动,其中有两个班的同学在D、E两处参加劳动,另外两个班的同学在道路AB、AC两处劳动(如图),现要在道路AB、AC的交叉区域内设置一个茶水供应点P,使P到AB、AC的距离相等,且使PD=PE,请你找出点P的位置.【考点】全等三角形的应用.【分析】角平分线上的点到角两边的距离相等,又PD=PE,中垂线上的点到线段两端的距离相等,所以点P应是∠BAC的平分线与DE的中垂线的交点.【解答】解:连接DE,作DE的中垂线;作∠BAC的角平分线交DE的中垂线于点P;如图22.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C l,∠C=∠C l.求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整.)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.【考点】全等三角形的判定.【分析】本题考查的是全等三角形的判定,首先易证得△ADB≌△A1D1B1然后易证出△ABC≌△A1B1C1.【解答】证明:(1)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.补充:∵AB=A1B1,∠ADB=∠A1D1B1=90°.∴△ADB≌△A1D1B1(HL),∴∠A=∠A1,又∵∠C=∠C1,BC=B1C1,在△ABC与△A1B1C1中,∵,∴△ABC≌△A1B1C1(AAS);(2)解:若两三角形(△ABC、△A1B1C1)均为锐角三角形或均为直角三角形或均为钝角三角形,则它们全等(AB=A1B1,BC=B1C1,∠C=∠C1,则△ABC ≌△A1B1C1).23.如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,并交于点P,PD⊥BM于点D,PF⊥BN于点F,求证:BP是∠MBN的平分线.【考点】角平分线的定义.【分析】过点P作PE⊥AC于点E,已知AP平分∠MAC,PD⊥BM,根据角平分线上点到角两边的距离相等得到DP=EP,同理可得PE=PF,从而可推出PD=PF,则点P在∠MBN的角平分线上,即PB平分∠MBN.【解答】证明:过点P作PE⊥AC于点E.∵AP平分∠MAC,PD⊥BM,∴DP=EP(角平分线的性质).同理PE=PF,∴PD=PF,又PD⊥BM,PF⊥BN,∴P在∠MBN的角平分线上,∴PB平分∠MBN.24.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°)如图(1)放置,其中一块三角板的直角边AC垂直于数轴,AC的中点过数轴的原点O,AC=8,斜边AB交数轴于点G,点G对应数轴上的数是4;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.(1)如果△AGH的面积是10,△AHF的面积是8,则点F对应数轴上的数是﹣5,点H对应数轴上的数是﹣1;(2)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,若∠HAO=α,试用α来表示∠M的大小;(3)如图(2),设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,求∠N+∠M的值.【考点】三角形综合题;角平分线的定义;三角形内角和定理;三角形的外角性质;等腰直角三角形.【分析】(1)由于∠OCB=90°,则OG=OA=4,再根据三角形面积公式可计算出GH=5,FH=4,所以OH=1,OF=5,所以点F对应的数轴上的数是﹣5,点H 对应的数轴上的数是﹣1;(2)由∠AHF的平分线和∠AGH的平分线交于点M得到∠FHM=∠FHA,∠HGM=∠HGA,根据三角形外角性质得∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,则2∠M+2∠HGM=∠HGA+∠HAG,所以∠M=∠HAG=(∠HAO+∠OAG)=α+22.5°;(3)根据(2)中证明方法,可得到∠N=90°﹣∠FAO=90°﹣∠FAH﹣∠OAH=90°﹣15°﹣∠OAH=75°﹣∠OAH,再根据∠M=∠OAH+22.5°,即可得到∠M+∠N=97.5°.【解答】解:(1)如图1,∵AC的中点过数轴的原点O,AC=8,∴AO=4,∵△AGH的面积是10,∴×4×GH=10,解得GH=5,又∵∠AOG=90°,∠OAG=45°,∴OG=OA=4,∴OH=1,∴点H对应的数轴上的数是﹣1,∵△AHF的面积是8,∴FH•4=8,解得FH=4,∴OF=OH+FH=5,∴点F对应的数轴上的数是﹣5,故答案为:﹣5,﹣1;(2)如图2,∵∠AHF的平分线和∠AGH的平分线交于点M,∴∠FHM=∠FHA,∠HGM=∠HGA,∵∠FHM=∠M+∠HGM,∠FHA=∠HGA+∠HAG,∴2∠M+2∠HGM=∠HGA+∠HAG,即2∠M=∠HAG,∴∠M=∠HAG=(∠HAO+∠OAG)=(α+45°)=α+22.5°;(3)如图2,∵∠EFH的平分线和∠FOC的平分线交于点N,∴∠NFO=∠EFO,∠NOF=∠COF,∴△FON中,∠N=180°﹣(∠NFO+∠NOF)=180°﹣(∠EFO+∠COF)=180°﹣=180°﹣=180°﹣[360°﹣]=180°﹣=90°﹣∠FAO,即∠N=90°﹣∠FAH﹣∠OAH=90°﹣15°﹣∠OAH=75°﹣∠OAH,又∵∠M=∠OAH+22.5°,∴∠M+∠N=75°﹣∠OAH+∠OAH+22.5°=97.5°.xx年2月25日 .。
最近重庆永川区数学七年级上第三月考精华试卷及答案分析下载
最近重庆永川区数学七年级上第三月考精华试卷及答案分析下载第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、3的相反数是()A.-3B.3C.0D.62.若一个棱柱有10个顶点,则下列说法正确的是( )A.这个棱柱有4个侧面B.这个棱柱有5个侧面C.这个棱柱的底面是十边形D.这个棱柱是一个十棱柱3.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.对于用科学记数法表示的数4.70×104,下列说法正确的是( )A.精确到百位,原数是47000B.精确到百位,原数是4700C.精确到百分位,原数是47000D.精确到百分位,原数是4700005.一个数和它的倒数相等,则这个数是( )A.1 B.﹣1 C.±1 D.±1和06.把图1绕虚线旋转一周形成一个几何体,与它相似的物体是().A.课桌 B.灯泡 C.篮球 D.水桶7、某商品价格a元,降低10%后,又降低了10%,销售量猛增,商店决定再提价20%,提价后这种商品的价格为()A.a元B.1.08a元C.0.972a元D.0.96a元8.一根绳子弯曲成如图1的形状,用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪开的方向与a平行),这样一共剪n次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+59.下列计算中,正确的是()A.﹣2(a+b)=﹣2a+b B.﹣2(a+b)=﹣2a﹣b2C.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b10.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为()A.3 B.C.5 D.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.(4分)2.5的相反数是,的倒数是.12. 如图,∠AOB=90°,以O为顶点的锐角共有个13.在数轴上与-5表示的点相距2个单位长度的点表示的数为.14.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是(用含m的代数式表示).15.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为______________(用含a的代数式表示).三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算:(1)13+5×(-2)-(-4)÷(-8)(2)75.0431218522-52+⎪⎭⎫⎝⎛-⨯-⎪⎭⎫⎝⎛÷(3)()()3216183437513-÷⎥⎦⎤⎢⎣⎡-⨯⎪⎭⎫⎝⎛-+-(4)332475521212211324.032⎪⎭⎫⎝⎛-⨯⎪⎭⎫⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛⨯⎪⎭⎫⎝⎛-÷+--17.(本题满分8分)解方程:(1) x-2(5 + x) =-4 ;(2) x-12=1-x+23.18.已知代数式:A=2x2+3xy+2y-1,B=x2-xy+x-1 2;(1)当x-y=-1,xy=1时,求A-2B的值;(2)若A-2B的值与x的取值无关,求y的值.19.下表为国外几个城市与北京的时差(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市东京巴黎伦敦纽约莫斯科悉尼时差(时)+1 ﹣7 ﹣8 ﹣13 ﹣5 +2(1)北京6月11日20时是巴黎的什么时间?(2)北京6月11日20时是悉尼的什么时间?(3)小莹的爸爸于6月11日20时从北京乘飞机,经过16小时的航行到达纽约,到达纽约时北京时间是多少?20.如图,小蚂蚁在10×10的方格上沿着网格线运动(每小格边长为1),一只小蚂蚁在A处找到食物后,要通知B,C,D,E处的其他小蚂蚁,规定其行动为:向上或向右走为正,向下或向左走为负.如果从A到B记为:A→B(-4,+2);从B到C记为:B→C(+3,+4)(第一个数表示左、右运动,第二个数表示上、下运动),那么(1)C→D(_____,_____);D→_____(-1,-3);E→_____(_____,-1);(2)这时P处又出现一只小蚂蚁,A处的小蚂蚁去通知P处小蚂蚁的行走路线依次为:(-2,+2)→(+3,-4)→(-4,-2)→(+7,0),请在图中标出P点的位置;(3)A处的蚂蚁要用最短的路径去F处,每一步走的距离为方格纸中每一个小方格的边长,请你写出所有可能的各条最短行走路线(仿第(2)小题的路线表示方法,比如(0,+1)→(+1,0)→(+1,0)→(0,+1)).21.(本题共10分)已知直线l 上有一点O ,点A 、B 同时从O 出发,在直线l 上分别向左、向右作匀速运动,且A 、B 的速度比为1:2,设运动时间为t s . (1)当t =2s 时,AB =12cm .此时,① 在直线l 上画出A 、B 两点运动2秒时的位置,并回答点A 运动的速度是________cm/s ; 点B 运动的速度是________cm/s.② 若点P 为直线l 上一点,且PA —PB=OP , 求的值;(2) 在(1)的条件下,若A 、B 同时按原速向左....运动,再经过几秒,OA=2OB .22、如图1是一个三角形,分别连接这个三角形三边的中点得到图2,在分别连接图b 中间的小三角形三边中点,得到图3,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:ABO l·lO.. ..CBDA.EF. (第20题图)图1 图2 图3图形编号 1 2 3 4 5 ……三角形个数 1 523.阅读理解:钟面角是指时钟的时针与分针所成的角.We know:在时钟上,每个大格对应360°÷12=30°的角,每个小格对应360°÷60=6°的角.这样,时针每走1小时对应30°的角,即时针每走1分钟对应30°÷60=0.5°的角,分针每走1分钟对应6°的角.初步感知:(1) 如图1,时钟所表示的时间为2点30分,则钟面角为_____________°;(2) 若某个时刻的钟面角为60°,请写出一个相应的时刻:____________;延伸拓展:(3) 如图2,时钟所表示的时间为3点,此时钟面角为90°,在4点前,经过多少分钟,钟面角为35°?活动创新:(图1)(图2)(备用图)(备用图)(4) 一天中午,小明在12:00到13:00之间打开电视看少儿节目,看完节目后,他发现这段时间钟面上的时针和分针正好对调了位置.请问小明是在12:_____开始看电视的.(填时刻即可)。
2019 2020重庆市永川中学片区教研共同体七年级上册期中数学试卷解析版
2019-2020学年重庆市永川中学片区教研共同体七年级(上)期中数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.02.4的相反数是().. 4B.﹣4 CDA.3.下列四组数中,相等一组是()A.+(+3)和+(﹣3)B.+(﹣5)和﹣5 C.﹣(+4)和﹣(﹣4)D.+(﹣1)和|﹣1|224.计算﹣a+3a的结果为()2222A.2a B.﹣2a C.4a D.﹣4a5.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()13121110A.0.95×10km B.9.5×10km C.95×10km D.950×10km6.下列各组代数式中,是同类项的是()2332222与xD.8B.﹣5xyC与yx .5ax与yxA.5xy 与xy7.下列各方程中,不是一元一次方程的是()2y=y.4.﹣3x+=2 DBA.x﹣2=2x+1.y+5=7﹣y C2y8.若|x+1|+(y﹣2)=0,则x的值是()A.﹣2 B.2 C.﹣1 D.19.下列方程中,变形正确的是()A.由3x﹣2=4,得3x=4﹣2 B.由2x+5=4x﹣1,得2x﹣4x=1﹣5.由x=﹣2,得,得.由﹣x=2x=8 Dx=﹣C310.已知:x﹣2y=﹣3,则5(x﹣2y)2﹣3(x﹣2y)+40的值是()A.5 B.94 C.45 D.﹣411.如果规定“?”为一种新运算符号,且a?b=ab+a﹣b,其中a,b为有理数,则3?5的值()A.11 B.12 C.13 D.14112.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为)(216 D.C.240 A.220 B.236二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.物体向右运动4m记作+4m,那么物体向左运动3m,应记作m..单项式﹣的系数.1415.﹣2.5的倒数是.16.若x=2是方程2x+m﹣1=5的解,则m=.17.|a|=5,|b|=3,且|a+b|=a+b,则ab=.“”的图案,如图2所示,再将118.如图,将一个边长为a的正方形纸片剪去两个小矩形,得到一个剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示.为三、解答题(本大题2个小题,每小题6分.共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.2|,0,并把这些数用﹣|“<”连接起来.319,.画出一条数轴,在数轴上表示数2,﹣(﹣),﹣)﹣的值.﹣(﹣b |m|=2c,b互为相反数,,d互为倒数,,求aa20.若四、解答题(本大题4个小题,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.计算题215 (+21)﹣(﹣79)﹣(1)﹣5+ )﹣(﹣3m﹣2n)(2)2(m﹣3n÷(3+)﹣(﹣)201322(﹣1)3×.(﹣)+2]×(4[)﹣÷﹣2222 1),其中.a=,b=1﹣22.先化简,再求值:5(3ab﹣ab)﹣(ab+3ab22﹣2,求M﹣2N.M=3x23.已知:+2x﹣1,N=﹣x+3x还岁,小华的年龄比小红的年龄的2倍少424.已知小明的年龄是m岁,小红的年龄比小明的年龄的1岁,求这三名同学的年龄的和.多分)五、解答题(本大题2个小题,共22辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实25025.某摩托车厂本周计划每日生产际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)日五六二星期一三四104725增减 3﹣﹣5﹣﹣9根据记录回答:①本周六生产了多少辆摩托车?②本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?③产量最多的一天比产量最少的一天多生产多少辆?=1﹣,=﹣,=﹣;26.观察下列等式:=1﹣+﹣+﹣++=1﹣=;将以上三个等式两边分别相加得:(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①+++…+=;=.②++…++++…+的值.(+3)探究并计算式子:32019-2020学年重庆市永川中学片区教研共同体七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.0【考点】正数和负数.【专题】探究型.【分析】根据负数的定义可以从题目中的四个数据中,得到哪些数是负数,从而可以解答本题.【解答】解:在﹣3,0,1,﹣2这四个数中,负数是:﹣3,﹣2,即在﹣3,0,1,﹣2这四个数中,有2个负数,故选:B.【点评】本题考查正数和负数,解题的关键是明确负数的定义.2.4的相反数是().D .A.4B.﹣4 C【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.【点评】主要考查相反数的性质.相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0.3.下列四组数中,相等一组是()A.+(+3)和+(﹣3)B.+(﹣5)和﹣5 C.﹣(+4)和﹣(﹣4)D.+(﹣1)和|﹣1| 【考点】绝对值;相反数.【专题】计算题;实数.【分析】原式各项中两式计算得到结果,即可做出判断.【解答】解:A、+(+3)=3,+(﹣3)=﹣3,不相等;B、+(﹣5)=﹣5,相等;C、﹣(+4)=﹣4,﹣(﹣4)=4,不相等;D、+(﹣1)=﹣1,|﹣1|=1,不相等,故选B【点评】此题考查了绝对值,以及相反数,熟练掌握运算法则是解本题的关键.224.计算﹣a+3a的结果为()2222A.2a B.﹣2a C.4a D.﹣4a【考点】合并同类项.【分析】运用合并同类项的方法计算.222【解答】解:﹣a+3a=2a.故选:A.【点评】本题考查了合并同类项法则,解题的关键是掌握相关运算的法则.45.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()13121110A.0.95×10km B.9.5×10km C.95×10km D.950×10km【考点】科学记数法—表示较大的数.n【分析】科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.12【解答】解:将9500 000 000 000km用科学记数法表示为:9.5×10km.故选:B.n【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列各组代数式中,是同类项的是()2332222与x D.xyyB.﹣5x8与yx C.5ax与yA.5xyx与【考点】同类项.【专题】新定义.【分析】所含字母相同,并且相同字母的指数也相同的项叫同类项,且常数项也是同类项.通过该定义来判断是不是同类项.【解答】解:2的指数不同,所以不是同类项;y相同,但x与xy字母x、A、5xy22 y的指数也相同,所以是同类项;、y相同,且xB、﹣5xy、与yx字母x22与y不同,所以不是同类项;C、5ax 与yx字母a3333 x只是字母项无常数项,所以不是同类项.x8与,对8只是常数项无字母项,D、B 故选且相同字母的指所含字母相同②【点评】同学们判断一个整式是否是同类项主要从以下三个方面:①常数项也是同类项.③数也相同的项7.下列各方程中,不是一元一次方程的是()y2y=Bx﹣2=2x+1.y+5=7﹣y C.=2 3x+D.4﹣.A【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、是一元一次方程,故A不符合题意;B、是一元一次方程,故B不符合题意;C、是分式方程,故C符合题意;D、是一元一次方程,故D不符合题意;故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2y8.若|x+1|+(y﹣2)=0,则x的值是()A.﹣2 B.2 C.﹣1 D.1【考点】非负数的性质:偶次方;非负数的性质:绝对值.5【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x+1=0,y﹣2=0,解得,x=﹣1,y=2,y则x=1,故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.下列方程中,变形正确的是()A.由3x﹣2=4,得3x=4﹣2 B.由2x+5=4x﹣1,得2x﹣4x=1﹣5.由x=﹣2,得x=C﹣.由﹣x=2,得x=8 D3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】原式各项变形得到结果,即可做出判断.【解答】解:A、由3x﹣2=4,得3x=4+2,错误;B、由2x+5=4x﹣1,得2x﹣4x=﹣1﹣,错误;、由﹣x=2,得x=﹣C8,错误;、由x=﹣2,得Dx=﹣3,正确,故选D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.已知:x﹣2y=﹣3,则5(x﹣2y)2﹣3(x﹣2y)+40的值是()A.5 B.94 C.45 D.﹣4【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把x﹣2y的值代入原式计算即可得到结果.【解答】解:当x﹣2y=﹣3时,原式=45+9+40=94,故选B【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.如果规定“?”为一种新运算符号,且a?b=ab+a﹣b,其中a,b为有理数,则3?5的值()A.11 B.12 C.13 D.14【考点】有理数的混合运算.【专题】新定义;实数.【分析】原式利用题中的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:3?5=15+3﹣5=13,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为)(216.240 C.220 A.B236 .D6【考点】规律型:图形的变化类.s就增加四个.【分析】观察可得规律:n每增加一个数,【解答】解:4;时,s=4=1×n=2 4;时,s=8=2×n=3 ;s=12=3×4n=4时,;….)×4=236时,s=(60﹣1n=60 .故选B 【点评】主要培养学生的观察能力和空间想象能力.分)请将每小题的答案直接填在答卷244分,共6二、填空题(本大题个小题,每小题.中对应的横线上.m3m,应记作﹣313.物体向右运动4m记作+4m,那么物体向左运动【考点】正数和负数.”所表示的意义;再根据题意作答.负正”和“【分析】首先审清题意,明确“+4m,【解答】解:∵物体向右运动4m,记作3m.∴物体向左运动3m,应记作﹣3.故答案为:﹣明确什么是一对具有相反意义”的相对性,和“负【点评】本题考查了正数和负数,解题关键是理解“正”量中,先规定其中一个为正,则另一个就用负表示.的量.在一对具有相反意义的.﹣14.单项式﹣的系数是【考点】单项式.【分析】根据单项式系数的定义进行解答即可.的数字因数是﹣,【解答】解:∵单项式﹣.∴此单项式的系数是﹣.故答案为:﹣【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.15.﹣2.5的倒数是.【考点】倒数.【分析】根据倒数的定义作答.,所以它的倒数是.是﹣【解答】解:∵﹣2.5故答案为:.【点评】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.若x=2是方程2x+m﹣1=5的解,则m=2.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.7【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:4+m﹣1=5,解得:m=2,故答案为:2【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.|a|=5,|b|=3,且|a+b|=a+b,则ab=±15.【考点】有理数的乘法;绝对值.【分析】由绝对值的性质先求得a、b的值,然后根据|a+b|=a+b分类计算即可.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3.又∵|a+b|=a+b,∴a=5,b=3或a=5,b=﹣3.∴ab=5×3=15或ab=5×(﹣3)=﹣15.故答案为±15.【点评】本题主要考查的是有理数的加法,绝对值的性质,求得a、b的值是解题的关键.“”的图案,如图a的正方形纸片剪去两个小矩形,得到一个2所示,再将18.如图1,将一个边长为剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为4a﹣.8b【考点】列代数式.【专题】计算题.,宽为(a﹣3ba﹣b),所以这两个小矩形拼成的新矩形的长为a【分析】剪下的两个小矩形的长为﹣b,a﹣3b,然后计算这个新矩形的周长.【解答】解:新矩形的周长为2(a﹣b)+2(a﹣3b)=4a﹣8b.故答案为4a﹣8b.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a和b表示出剪下的两个小矩形的长与宽.三、解答题(本大题2个小题,每小题6分.共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.2|,0,并把这些数用“<”连接起来.|),﹣(﹣,19.画出一条数轴,在数轴上表示数23,﹣﹣【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再根据数轴上表示的数,右边的数总比左边的数大比较即可.【解答】解:如图所示:8<<2<﹣(﹣3<0).﹣|﹣2|【点评】本题考查了有理数的大小比较,数轴的应用,能在数轴上表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.)﹣的值.b ,求d互为倒数,|m|=2a﹣(﹣20.若a,b互为相反数,c,【考点】代数式求值;相反数;绝对值;倒数.【分析】根据互为相反数的两数相加得零可知a+b=0,由倒数的定义可知cd=1,由绝对值的性质可知m=±2,然后代入计算即可.【解答】解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵|m|=2,∴m=±2.﹣=﹣m整理得:原式=a+b.当m=2时原式=﹣2,;当m=﹣2原式=2.∴代数式的值2或﹣2.【点评】本题主要考查的是求代数式的值,根据题意求得a+b=0,cd=1,m=±2是解题的关键.四、解答题(本大题4个小题,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.计算题(1)﹣5+(+21)﹣(﹣79)﹣15(2)2(m﹣3n)﹣(﹣3m﹣2n)÷(3+)﹣()﹣201322(﹣)+2]×(﹣1).4()﹣÷[﹣3×【考点】有理数的混合运算;整式的加减.【专题】实数;整式.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式去括号合并即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣5+21+79﹣15=﹣20+100=80;(2)原式2m﹣6n+3m+2n=5m﹣4n;+)×36=﹣20+27﹣2=5;(3)原式= ﹣(﹣﹣.= ×(﹣)(﹣1))1)×(﹣)=﹣÷(﹣4+2×(﹣1=×﹣)+2(﹣=4()原式﹣÷9×【点评】此题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解本题的关键.2222,其中1bababb(.先化简,再求值:2253a﹣)﹣(+3a﹣)a=,.b=19【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.22222222【解答】解:原式=15ab﹣5ab﹣ab﹣3ab+1=(15﹣3)ab+(﹣5﹣1)ab+1=12ab﹣6ab+1,222﹣3+1=11××+1=12.×b=1a=,时,原式=12ab﹣6ab+1=12﹣××1﹣6当3+1=3 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22﹣2N.x+3x﹣2,求M23.已知:M=3x+2x﹣1,N=﹣【考点】整式的加减.【分析】根据题意列出整式相加减的式子,再去括号,合并同类项即可.22 2,,N=﹣x+3x﹣【解答】解:∵M=3x+2x﹣122)(﹣x+3x﹣2+2x∴M﹣2N=(3x﹣1)﹣2226x+4﹣=3x+2x﹣1+2x2.=5x﹣4x+3 【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.还小华的年龄比小红的年龄的4岁,已知小明的年龄是24.m岁,小红的年龄比小明的年龄的2倍少多1岁,求这三名同学的年龄的和.【考点】整式的加减.【专题】应用题.【分析】根据题意分别列出小明、小红和小华的年龄,再相加,去括号,合并同类项,即可求出这三名同学的年龄的和.【解答】解:由题意可知:)岁,小华的年龄为岁,小红的年龄为(2m﹣4 则这三名同学的年龄的和为:)=4m﹣5.2+1=m+2m﹣4+(m﹣答:这三名同学的年龄的和是岁.4m﹣5【点评】解决本题是要先去小括号,再去中括号.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.五、解答题(本大题2个小题,共22分)25.某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)星期一二三四五六日1074﹣25﹣5﹣93﹣增减根据记录回答:①本周六生产了多少辆摩托车?②本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?③产量最多的一天比产量最少的一天多生产多少辆?【考点】有理数的加减混合运算.【专题】应用题.【分析】①平均数加上增减的数即可得到周六生产的数量.②将所有的增减量相加,若为正则增加,若为负则减少.10即求增加数量最多的一天减去减少数量最多的一天.③;本周六生产数量=250﹣9=241(辆)【解答】解:①辆.﹣21,所以减少了21②﹣5+7﹣3+4+10﹣9﹣25= 增量最多的是星期五,减量最多的是星期日,③.25)=35(辆)∴产量最多的一天比产量最少的一天多生产10﹣(﹣【点评】本题考查有理数的混合运算,难度不大,关键是读懂题意.=﹣﹣=26,.观察下列等式:=1 ﹣;,将以上三个等式两边分别相加得:+=﹣=1=1﹣;+﹣﹣+ +)猜想并写出:=﹣.(1(2)直接写出下列各式的计算结果:;+…+①=++….+=②++++的值.…+ +(3)探究并计算式子:+【考点】有理数的混合运算.【专题】规律型;实数.【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)两式利用得出的规律变形,计算即可得到结果;(3)原式变形后,利用得出的规律化简,计算即可得到结果.﹣;=【解答】解:(1)猜想得:=;…﹣+ (2)①原式=1﹣﹣+=1﹣+=;﹣=1﹣+ ﹣+…﹣+=1②原式=.(1(1﹣﹣+﹣+…+)﹣)=)原式(3=②.);①2;(故答案为:1)﹣(【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11。
第3周七年级数学周周清答案
A 卷 七年级数学第3周周周清(主要内容:第一章 有理数) ( 总分:100分 命题人:胡勇华 审核人:胡勇华) 班级 姓名 得分一、填空题(每空4分,40分)1、在数轴上表示5的点在原点的 右 边,距离原点 5 个单位长度。
2、数轴上一点到原点的距离为5,那么这点表示的数是 5± 。
3、一个点从数轴的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,这时它表示的数是 -14、-(-a )=-2007,则a = 2007 。
5、如果aa ||-=-1,那么a 〈 0; 6、已知-21,-32,31,43四个有理数在数轴上所对应的点分别为A 、B 、C 、D ,则这四个点从左到右的顺序为_B ,A ,C ,D____,离原点最近的点为___C__.7、如果|x |-2=4,则x = 6± ,如果x =3,则|x |-1=_2_____.二、解答题(共30分)1、在数轴上把数431、-2.5、0、121表示出来。
解:如图:(略)2、已知a 与b 互为相反数,c≠0,求2007-cb a +的值。
答:因为a 与b 互为相反数,所以a+b=0,所以2007-c b a +=2007-0=20073、若│b -311│+│3-a│=0。
求2a +3b 的值 答:∵│b -311│+│3-a│=0 ∴ │b -311│=0,且│3-a│=0 ∴ b -311=0,且3-a =0 ∴ b =311,且a =3 于是有2a +3b =2×3+3×34=6+4=10;三、拓广探索(20分)1、对于一个数,给定条件A :负整数,且大于-3;条件B :绝对值等于2。
(1)分别写出满足条件A ,B 的数,并把它们表示在同一条数轴上.(2)试问是否存在同时满足A 、B 两个条件的数?若存在,求出该数;若不存在,说明理由. 答:(1)A :―2,―1;条件B : 2;(2)-22、司机小王加满70升的汽油后,从火车站出发,向东行驶了32千米,遇上一位要去火车站的客人,于是掉头从原路返回,行驶到一半的路程时,客人突然有事下车,问此时小王在火车站的什么位置?如果该汽车每100千米耗油15升,问到现在为止小王的车里还剩多少汽油?解:向东行驶记为正,向西行驶则记为负,依题意可得 +32-(32÷2)=16(千米) 70-15÷100×(32+32÷2)=62.8(升)答:小王在火车站东边16千米处。
初中数学初一年级上学期数学第三周周考试卷
初一年级第三周数学周考试卷时量:40分钟 总分:100分 范 围:---有理数的乘法一.选择题(共8小题,满分32分,每小题4分) 1.20+(﹣20)的结果是( ) A .﹣40B .0C .20D .402.气温由6℃下降了8℃,下降后的气温是( ) A .﹣14℃ B .﹣8℃C .﹣2℃D .2℃3.在﹣,0.62,0四个数中,正有理数的个数为( )A .4B .3C .2D .14.-2021的相反数是( ) A .-2021B .20211C .20211 D .20215.下列说法正确的是( )A .几个有理数相乘,当因数有奇数个时,积为负B .几个有理数相乘,当正因数有奇数个时,积为负C .几个有理数相乘,当负因数有奇数个时,积为负D .几个有理数相乘,当积为负数时,负因数有奇数个6.若x 的相反数是3,|y |=6,且x +y <0,则x ﹣y 的值是( ) A .3B .3或﹣9C .﹣3或﹣9D .﹣97.如图,A ,B 两点表示的有理数分别是a ,b ,则下列式子正确的是( )A .(a +1)(b ﹣1)>0B .(a ﹣1)(b ﹣1)>0C .a ﹣b >0D .ab >08.如图所示,a 、b 是有理数,则式子|a |﹣|b |+|b ﹣a |化简的结果为( )A .﹣2aB .﹣2bC .0D .2a ﹣2b二.填空题(共6小题,满分24分,每小题4分) 9.﹣2比3小 .10.倒数等于它本身的数是 .11.8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式是 . 12. 鹅的孵化期是30天,鸭的孵化期是鹅的1514,鸡的孵化期是鸭的43.鸡的孵化期是 天13.已知数轴上有A ,B ,C ,D ,E ,F 六个点,点C 在原点位置,点B 表示的数为﹣4,已知下表中A ﹣B ,B ﹣C ,D ﹣C ,E ﹣D ,F ﹣E 的含义均为前一个点所表示的数与后一个点所表示的数的差,比如B ﹣C 为﹣4﹣0=﹣4.A ﹣B B ﹣CD ﹣CE ﹣DF ﹣E 10﹣4﹣1x2若点A 与点F 的距离为2.5,则x 的值为 .14.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,… (2)f ()=2,f ()=3,f ()=4,f ()=5,… 利用以上规律计算:f ()﹣f (2008)= .答 题 卡班级 姓名 学号 分数一.选择题(共8小题,满分32分,每小题4分)1 2345678二.填空题(共6小题,满分24分,每小题4分)9、 10、 11、 12、 13、 14、三.解答题(共4小题,满分44分) 15.(18分)计算(1)104.8|7.5|2.4+--+-; (2)15)7()18(12--+--;(3)⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-813414215874; (4)248161⨯⎪⎭⎫⎝⎛+(5))25.0()7(8)5(-⨯-⨯⨯- (6)⎪⎭⎫⎝⎛-⨯⨯⨯⎪⎭⎫ ⎝⎛-322115812516.(6分)若定义一种新的运算“*”,规定有理数a *b =4ab ,如2*3=4×2×3=24. (1)求3*(﹣4)的值; (2)求(﹣2)*(6*3)的值.17.(8分)气象资料表明,高度每增加1km ,气温大约升高C6-(1)我国著名风景区黄山的天都峰的高度约为1700米,当山下的地面温度约为C18时,求山顶气温?(2)若某地地面的温度为C20时,高空某处的气温为C22-,求此处的高度。
七年级上册数学第三周周考测试题
七年级上册数学第三周周末检测卷姓名:_________ 班级:_________ 分数:________一、选择题(每小题3分,共36分) 1.在体育课的立定跳远测试中,以2.00m 为标准,若小明跳出了2.35m ,可记作+0.35m ,则小 亮跳出了1.75m ,应记作( ) A .+0.25mB .﹣0.25mC .+0.35mD .﹣0.35m 2.下列各数:﹣8,,0.66666…,0,9.8181181118…(每两个8之间1的个数逐渐增加1),0.112134,其中有理数有( ) A .6个B .5个C .4个D .3个 3.﹣(﹣2021)的相反数是( ) A .﹣2021 B .2021 C . D .4.如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度 看,哪个球最接近标准?( ) A .﹣3.5B .+0.7C .﹣2.5D .﹣0.6 5.如果a =﹣a ,那么表示a 的点在数轴的( ) A .原点 B .原点左边 C .原点右边 D .原点及原点左边 6.下列说法正确的有( )个 ①符号相反的数互为相反数; ②一个数的绝对值越大,表示它的点在数轴上越靠右; ③一个数的绝对值越大,表示它的点在数轴上离原点越远; ④当a ≠0时,|a |总是大于0. A.1个 B.2个 C.3个 D.4个 7.下列有理数的大小关系判断正确的是( ) A. 010>- B. 33-<+ C. 10.01->- D. 11910⎛⎫-->-- ⎪⎝⎭8.若,,a b c 为有理数,且2340a b c -+-++=,则23a b c ++的值是( ) A.1 B.20 C.-20 D.-4 9.对于任意有理数,a b ,下列语句正确的是( ) A.若0a b a b +==,则 B. 0a b a b =+=若,则C. 0,0,+0a b a b ≠≠≠若则D. 00,0a b a b +>>>若,则10. 如图,将刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别 对应数轴上的3和0,那么刻度尺上“5.8cm ”对应数轴上的数为( )A .5.8B .﹣2.8C .﹣2.2D .﹣1.8 11.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会 进入循环,下面选项一定不是该循环的是( ) A .4,2,1 B .2,1,4 C .1,4,2 D .2,4,112.若自然数n 使得作竖式加法n +(n +1)+(n +2)时均不产生进位现象,便称n 为“连绵 数”.如因为12+13+14不产生进位现象,所以12是“连绵数”;但13+14+15产生进位现象, 所以13不是“连绵数”,则小于100的“连绵数”共有( )个. A .9 B .11 C .12 D .15二、填空题(每小题3分,共18分) 13.大于-5的非正整数有________个. 14.已知5a a b =-=,,则b 的值为__________. 15. ,0(1)(1)a a b a b b +-⨯+互为相反数且都不为,则的值为_________. 16.已知0,0,,,,____________________.a b b a a a b b ><<--,且则的大小关系为 17. 如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点 与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴 的正方向滚动,那么数轴上的数2013将与圆周上的数字 重合.18.已知1(0)1(0)a a a a >⎧=⎨-<⎩ ,则12391239++++a a a a a a a a 的不同的值有_________个. 三、解答题 19.根据条件完成下列各题.(1)比较大小:195()287+---和 (2) 计算:16(25)24(35)+-++-20.把下列各数填在相应的集合圈内:2 100,25,0.3,2021,0,30%,0.35,,.5π---分数集合非负整数集合负数集合整数集合21.在数轴上表示下列各数,并用“<”号把这些数连接起来.11(4), 3.5,(),0,( 2.5),1.22----+-++22.观察下列等式:第1个等式:a1=;第2个等式:a2=;第3个等式:a3=;第4个等式:a4=;…请回答下列问题:(1)按照上述规律,写出第5个等式:a5==;(2)求a1+a2+a3+…+a2017的值.23.股民小杨上星期五买进某公司股票1000股,每股27元.下表为本周内每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+2+1﹣2﹣1+2(1)星期三收盘时,每股多少元?(2)本周内该股票的最高价是每股多少元?最低价是每股多少元?(3)已知小杨买进股票时付了1.5‰的手续费,卖出时还需要付成交额的1.5‰的手续费和1‰的交易税.如果小杨在星期五收盘前将全部股票卖出,则他的收益情况如何?(收益=卖股票收入﹣买股票支出﹣卖股票手续费和交易税﹣买股票手续费)24.已知点A在数轴上对应的数为a,点B对应的数为b,且| a+4 |+| b﹣1 |=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.(1)求线段AB的长|AB|;(2)设点P在数轴上对应的数为x,当|P A|﹣|PB|=2时,求x的值;(3)若点P在A的左侧,M、N分别是P A、PB的中点,当P在A的左侧移动时,下列两个结论:①|PM|+|PN|的值不变;②|PN|﹣|PM|的值不变,其中只有一个结论正确,请判断出正确结论,并求其值.。
永川中学七年级数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 3.1415926D. √-12. 下列各数中,绝对值最小的是()A. -3B. 0C. 2D. -53. 下列各数中,是偶数的是()A. -7B. 8C. -9D. 34. 下列各数中,是质数的是()A. 6B. 7C. 8D. 95. 下列各数中,是互质数的是()A. 8和9B. 10和15C. 12和18D. 14和216. 下列各数中,是同类二次根式的是()A. √2 + √3B. √3 - √2C. √2 + √4D. √3 - √67. 下列各数中,是同类二次根式的是()A. √3 + √6B. √2 - √3C. √2 + √4D. √3 - √68. 下列各数中,是同类二次根式的是()A. √2 + √3B. √3 - √2C. √2 + √4D. √3 - √69. 下列各数中,是同类二次根式的是()A. √3 + √6B. √2 - √3C. √2 + √4D. √3 - √610. 下列各数中,是同类二次根式的是()A. √3 + √6B. √2 - √3C. √2 + √4D. √3 - √6二、填空题(每题5分,共20分)11. 若a、b是相反数,则a+b=__________。
12. 若|a|=5,则a的值为__________。
13. 若a=√16,则a的平方根为__________。
14. 若a=√9,则a的立方根为__________。
15. 若a=2√3,则a的倒数为__________。
三、解答题(每题10分,共30分)16. 简化下列各数:(1)√36 + √64(2)√81 - √25(3)√100 + √1617. 解下列方程:(1)2x - 5 = 11(2)3x + 4 = 19(3)5x - 7 = 218. 计算下列各式的值:(1)(-2)×(-3)×(-4)(2)(-2)×(-3)×(-4)×(-5)(3)(-2)×(-3)×(-4)×(-5)×(-6)答案:一、选择题1. C2. B3. B4. B5. A6. C7. D8. A9. B10. D二、填空题11. 012. ±513. ±414. ±315. -1/2三、解答题16. 简化下列各数:(1)√36 + √64 = 6 + 8 = 14(2)√81 - √25 = 9 - 5 = 4(3)√100 + √16 = 10 + 4 = 14 17. 解下列方程:(1)2x - 5 = 112x = 16x = 8(2)3x + 4 = 193x = 15x = 5(3)5x - 7 = 25x = 9x = 1.818. 计算下列各式的值:(1)(-2)×(-3)×(-4)= 24(2)(-2)×(-3)×(-4)×(-5)= -120(3)(-2)×(-3)×(-4)×(-5)×(-6)= 720。
人教版2019学年七年级上册数学期中试卷跟答案(共十套)
人教版2019学年七年级上数学期中试卷(一)一、选择题(共10小题,每小题3分,共30分)1.在﹣0.25、+2.3、0、﹣这四个数中,最小的数是()A.﹣0.25 B.+2.3 C.0 D.﹣2.(﹣3)3等于()A.﹣9 B.9 C.﹣27 D.273.x=﹣1是下列哪个方程的解()A.x﹣5=6 B. x+6=6 C.3x+1=4 D.4x+4=04.的相反数是()A.B.C.D.5.下列运算正确的是()A.﹣2(a+b)=﹣2a﹣b B.﹣2(a+b)=﹣2a+bC.﹣2(a+b)=﹣2a﹣D.﹣2(a+b)=﹣2a+6.下列说法中正确的是()A.单项式的系数是3,次数是2B.单项式﹣15ab的系数是15,次数是2C.是二次多项式D.多项式4x2﹣3的常数项是37.小新出生时父亲28岁,现在父亲的年龄是小新的3倍,现在小新的年龄是()岁.A.14 B.15 C.16 D.178.代数式y 2+2y+7的值是6,则4y 2+8y ﹣5的值是( ) A .9B .﹣9C .18D .﹣189.下列说法中正确的是( ) A .任何数都不等于它的相反数 B .若|x|=2,那么x 一定是2 C .有比﹣1大的负整数D .如果a >b >1,那么a 的倒数小于b 的倒数10.如果a+b+c=0,且|a|>|b|>|c|,则下列说法中可能成立的是( ) A .a 、b 为正数,c 为负数 B .a 、c 为正数,b 为负数 C .b 、c 为正数,a 为负数 D .a 、c 为负数,b 为正数二、填空题(本大题共6个小题,每小题3分,共18分) 11.如果80m 表示向东走80m ,那么﹣60m 表示 .12.中国的领水面积约为370 000km 2,请用科学记数法表示: km 2. 13.若单项式3ab m 和﹣4a n b 是同类项,则m+n= .14.某校男生人数占学生总数的60%,女生有m 人,学生总数为 .15.一艘船从甲码头到乙码头顺流而行,用了3小时,从乙码头返回甲码头逆流而上,多用了1.5小时.已知水流的速度是4km/h ,设船在静水中的平均速度为x km/h ,可列方程为 . 16.在一次数学游戏中,老师在A 、B 、C 三个盘子里分别放了一些糖果,糖果数依次为a 0、b 0、c 0,记为G 0=(a 0,b 0,c 0).游戏规则如下:若三个盘子中的糖果数不完全相同,则从糖果数最多的一个盘子中拿出两个,给另外两个盘子各放一个(若有两个盘子中的糖果数相同,且都多于第三个盘子中的糖果数,则从这两个盘子字母序在前的盘子中取糖果),记为一次操作.若三个盘子中的糖果数都相同,游戏结束.n 次操作后的糖果数记为G n =(a n ,b n ,c n ).小明发现:若G 0=(4,8,18),则游戏永远无法结束,那么G 2016= .三、解答题(共8题,共52分) 17.计算:(1)16+(﹣25)+24+(﹣35) (2)(﹣)×(﹣1)÷(﹣2)(3)23×(﹣5)﹣(﹣3)÷(4)|﹣10|+|(﹣4)2﹣(1﹣32)×2|18.先化简,再求值:3x2﹣[7x﹣(4x﹣3)﹣2x2],其中x=5.19.解方程:(1)3x+7=32﹣2x(2)2﹣3(x+1)=1﹣2(1+0.5x)20.某文具店在一周的销售中,盈亏情况如下表(盈余为正,单位:元):表中星期六的盈亏被墨水涂污了,请你算出星期六的盈亏数,并说明星期六是盈还是亏?盈亏是多少?21.甲地的海拔高度是h m,乙地的海拔高度是甲地海拔高度的3倍多20m,丙地的海拔高度比甲地的海拔高度低30m,列式计算乙、丙两地的高度差.22.四人做传数游戏,小郑任报一个数给小丁,小丁把这个数加1传给小红,小红再把所得的数乘以2后传给小童,小童把所听到的数减1报出答案.(1)如果小郑所报的数为x,请把小童最后所报的答案用代数式表示出来(2)若小郑报的数为9,则小童的答案是多少?(3)若小童报出的答案是15,则小郑传给小丁的数是多少?23.有理数a、b在数轴上的对应点位置如图所示(1)用“<”连接0、﹣a、﹣b、﹣1(2)化简:|a|﹣2|a+b﹣1|﹣|b﹣a﹣1|(3)若a2c+c<0,且c+b>0,求+﹣的值.24.(8分)如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对应的数分别是a、b、c、d,且d﹣2a=14(1)那么a= ,b= ;(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数;(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持AB=AC.当点C运动到﹣6时,点A对应的数是多少?人教版2019学年七年级上数学期中试卷(二)一、选择题(本题共30分,每小题3分)1. -2的相反数是( )A. 21-B. 2C. 21 D .-22. 全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( )A .15×106B . 1.5×107C .1.5×108D .0.15×1083. 下列单项式中,与 是同类项的是( ) A. B. C. D.3ab4.单项式-3224c ab 的系数与次数分别是( )A. -2, 6B.2, 7C.-32, 6 D.-32, 7 5.下列算式中,结果是正数的是( )A.()3---⎡⎤⎣⎦B.()33---C.()23--D.()3232-⨯-6.下列合并同类项正确的是( )A. B. C. D.7.)]([c b a ---去括号应得( )A. c b a -+-B.c b a +--C.c b a ---D.c b a ++-8.在代数式:n 2,33-m ,22-,32m -,22b π中,单项式的个数有( )A. 1个B.2个C.3个D.4个9.下列结论中,错误的个数为( ) ()224--=,15555-÷⨯=-,22439=,()21333⎛⎫-⨯-= ⎪⎝⎭,339-=-.A.2个B.3个C.4个D.5个10. 如图,M ,N ,P ,Q ,R 分别是数轴上五个整数所对应的点,其中有一点是原点,并且325a b ab +=770m m -=33622ab ab a b +=-+=a b a b ab 222MN =NP =PQ =QR =1.数a 对应的点在N 与P 之间,数b 对应的点在Q 与R 之间,若3a b +=,则原点可能是( ). A .M 或RB .N 或PC .M 或ND .N 或R二、填空题(本题共20分,每小题2分)11. 比较大小:2- 3-(填“>”,“<”或“=”).12.1-14的绝对值是 . 13.数轴上点A 表示的数为2-,与点A 相距3个单位的点表示的数为 .14.多项式223x x -+是_______次________项式. 15.如果-13mx y 与221n x y +是同类项,则m +n=________. 16.张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸, 剩余的以每份0.2元的价格退回报社,则张大伯卖报收入__________元.17.若()0322=-++b a ,则2a b -= .18.若3x =,2y =,且0xy >,则x y += . 19.若x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,则220162016)()2(c ab yx +--+= .20.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:第(4)个图案中有黑色地砖4块;那么第(n )个图案中有白色..地砖 块.三、有理数计算题(本题共24分,每题4分, )21.)5()18()5(12-+---- 22. 1316.5483442-++-ab ……23. 51(3)()(1)64-⨯-÷- 24.25.2213502()110-÷⨯-- 26. ⎥⎦⎤⎢⎣⎡÷-+-⨯-÷-)525311()3()31(32322四、整式加减(本题共8分,每题4分, )27.)69()3(522x x x +--++- 28.五、解答题(本题共18分 29、30每题4分,31、32每题5分) 29.化简求值)]21(3)13(2[22222x x x x x x -------其中:21-=x30.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:)12()4332125(-⨯-+-3x+2= -5x +1.(1)求所捂的二次三次式;(2)若请给x 选择一个你喜欢的数代入,求所捂二次三项式的值.31.一位同学做一道题:已知两个多项式A 、B ,计算2A+B ,他误将“2A+B•”看成“A+2B ”求得的结果为,已知,求2A+B 的正确结果。
20192020重庆市永川中学片区教研共同体七年级上册期中数学试卷解析版
2019-2020学年重庆市永川中学片区教研共同体七年级(上)期中数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1 .在-3,0,1,- 2这四个数中,是负数的有()个.A . 1B . 2 C. 3 D . 0即一丄2. 4的相反数是()一..4B . - 4 CDA .3. 下列四组数中,相等一组是()A . + (+3 )和+ (- 3)B . + (- 5)和-5 C. -(+4 )和-(-4)D . + (- 1)和口 - 1|224 •计算-a+3a的结果为()2222A . 2a B . —2a C . 4a D . —4a5. 光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()13121110A . 0.95 X 10km B . 9.5 X 10km C . 95 X 10km D . 950 X 10km6. 下列各组代数式中,是同类项的是()-■'2332222 与xD . 8B . —5xyC 与yx . 5ax 与yxA . 5xy 与xy7. 下列各方程中,不是一元一次方程的是()2y=y.4 . —3x+=2 DBA . x —2=2x+1.y+5=7 —y C2y8 .若|x+1|+ (y—2)=0,贝U x 的值是()A . —2B . 2 C. —1 D . 19.下列方程中,变形正确的是()A .由3x —2=4,得3x=4 —2B .由2x+5=4x —1,得2x由 x= — 2,得,得.由—x=2x=8 Dx= — C310 .已知:x - 2y= - 3,贝U 5 (x - 2y ) 2- 3 (x - 2y ) +40 的值是( )A . 5B . 94C . 45D . - 411•如果规定“ ?”为一种新运算符号,且a?b=ab+a - b ,其中a, b 为有理数,则3?5的值()A . 11B . 12C . 13D . 14112 .由点组成的正方形,每条边上的点数 n 与总点数s 的关系如图所示,则当216 D . C . 240 A . 220 B . 236 ■二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接 填在答卷中对应的横线上•13 .物体向右运动 4m 记作+4m ,那么物体向左运动 3m ,应记作m . ---------------------------.单项式-的系数.1415 . - 2.5的倒数是16 .若x=2是方程2x+m - 1=5的解,则 m=n=60时,计算s的值为口二乙 s-4 s-8 n=4., s=1217 . |a|=5, |b|=3,且 |a+b|=a+b ,贝U ab= -----------------------|5|“”的图案,如图 2所示,再将118 .如图,将一个边长为 a 的正方形纸片剪去两个小矩形,得到一个剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示图1圉丄 图令 为 ---------------------三、解答题(本大题2个小题,每小题6分•共12分)解答时每小题必须给出2]図 必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上. ,二2|, 0,并把这些数用-| “V”连接起来.319,画岀一条数轴,在数轴上表示数2,-(-),Im]- I)-的值-b |m|=2c , b 互为相反数,,d 互为倒数,,求aa20.若四、解答题(本大题4个小题,共40分)解答时每小题必须给出必要的演算过 程或推理步骤,请将解答过程书写在答卷中对应的位置上.21 •计算题2还岁,小华的年龄比小红的年龄的 2倍少424.已知小明的年龄是 m 岁,小红的年龄比小明的年龄的1岁,求这三名同学的年龄的和•多分)五、解答题(本大题2个小题,共22辆摩托车,由于工人实行轮休,每日上班人 数不一定相等,实25025 •某摩托车厂本周计划每日生产 际每日生产量与计划量相比情况如下 表(增加的辆数记为正数,减少的记为负数,单位:辆)日五六 二星期 一三四104 7 25增减3 --5 --9根据记录回答:①本周六生产了多少辆摩托车?②本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆? ③产量最多的一天比产量最少的一天多生产多少辆?15 (+21 )2222 1 ),22- 2,79)-( 1)- 5+)-(2 23 3 201322(- 1 ) 3 X. (-)+2] X 其中.a=, b=1 - 22•先化简,再求值: 求 M -2N . M=3x23 .已知:+2x - 1,(4[)5 (3ab - ab )-( ab+3ab N= — x+3x(3+)13m - 2n ) (2) 2 ( m -2019-2020学年重庆市永川中学片区教研共同体七年 级(上)期中数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都 给出了代号为A 、B C D 的四个答案,其中只有一个是正确的,请将答卷上对 应的方框涂黑.1 .在-3,0,1,- 2这四个数中,是负数的有( )个.A . 1B . 2C . 3D . 0【考点】正数和负数. 【专题】探究型.【分析】根据负数的定义可以从题目中的四个数据中,得到哪些数是负数,从而可以解答本题. 【解答】解:在-3,0,1,- 2这四个数中,负数是:- 3,- 2, 即在-3,0,1,- 2这四个数中,有 2个负数, 故选:B .【点评】本题考查正数和负数,解题的关键是明确负数的定义.B . - 4C 【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为 0,采用逐一检验法求解即可.【解答】解:根据概念, (4的相反数)+ (4) =0,则4的相反数是-4 .故选:B .【点评】主要考查相反数的性质.相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0 .3.下列四组数中,相等一组是()A . + (+3 )和 + (- 3)B . + (- 5)和-5C . -( +4 )和-(-4)D . + (- 1) 和口 - 1| 【考点】绝对值;相反数.【专题】计算题;实数.【分析】原式各项中两式计算得到结果,即可做岀判断. 【解答】解:A 、+ ( +3 ) =3 , + (- 3) = - 3,不相等;(2)直接写岀下列各式的计算结果:];:”• I :①+++…+=. ②++…++11 1 1 2014X20151X2 3X4 2X31 1113X42X3 1X22013X20151X3 3X5++••• +的值.(+3)探究并计算式子:2. 4的相反数是(.D . A . 4B、+ (- 5) = - 5,相等;C、-( +4) = - 4,-(- 4) =4,不相等;D、+ (- 1) = - 1, |- 1|=1,不相等,故选B【点评】此题考查了绝对值,以及相反数,熟练掌握运算法则是解本题的关键.224 •计算-a+3a的结果为( )2222A • 2a B • - 2a C • 4a D • - 4a【考点】合并同类项.【分析】运用合并同类项的方法计算.222【解答】解:-a+3a=2a•故选:A •【点评】本题考查了合并同类项法则,解题的关键是掌握相关运算的法则.45.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()13121110A • 0.95 x 10km B . 9.5 x 10km C . 95 x 10km D . 950 x 10km【考点】科学记数法一表示较大的数•n【分析】科学记数法的表示形式为a x 10的形式,其中1 < |a|< 10,n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值< 1时,n是负数.12【解答】解:将9500 000 000 000km用科学记数法表示为:9.5 x 10km .故选:B .n【点评】此题考查了科学记数法的表示方法•科学记数法的表示形式为a x 10的形式,其中1< |a|< 10,n为整数,表示时关键要正确确定a的值以及n的值.3 B国6 .下列各组代数式中,是同类项的是( )儿儿儿2332222 与X D . XyyB . - 5x8与yx C . 5ax与yA . 5xyx与【考点】同类项.【专题】新定义.【分析】所含字母相同,并且相同字母的指数也相同的项叫同类项,且常数项也是同类项. 通过该定义来判断是不是同类项.1【解答】解:■'2的指数不同,所以不是同类项;y相同,但x与xy字母x、A、5xy ' 22 y的指数也相同,所以是同类项;、y相同,且xB、- 5xy、与yx字母x^' 22与y不同,所以不是同类项;C、5ax 与yx字母a3333 x只是字母项无常数项,所以不是同类项.x8与,对8只是常数项无字母项,D、B故选且相同字母的指所含字母相同②【点评】同学们判断一个整式是否是同类项主要从以下三个方面:① 常数项也是同类项•③数也相同的项7 •下列各方程中,不是一元一次方程的是()2 £y2y=Bx - 2=2x+1• y+5=7 - y C • =2 3x+D • 4 A【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是 1 (次)的方程叫做一元一次方程•它的一般形式是ax+b=O (a, b是常数且0).【解答】解:A、是一元一次方程,故A不符合题意;B、是一元一次方程,故B不符合题意;C、是分式方程,故C符合题意;D、是一元一次方程,故D不符合题意;故选:C •【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1, 一次项系数不是0 ,这是这类题目考查的重点•2y8 •若|x+1|+ (y—2)=0,贝U x 的值是()A • - 2B • 2C • - 1D • 1【考点】非负数的性质:偶次方;非负数的性质:绝对值•【分析】根据非负数的性质列岀方程求岀x、y的值,代入所求代数式计算即可•【解答】解:由题意得,x+1=0,y —2=0,解得,x= —1,y=2,y则x=1 ,故选:D •【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0 •9•下列方程中,变形正确的是()A •由3x - 2=4,得3x=4 - 2B •由2x+5=4x - 1,得2x - 4x=1 - 5 •由x= —2,得x=C —•由-x=2,得x=8 D3【考点】解一元一次方程•【专题】计算题;一次方程(组)及应用•【分析】原式各项变形得到结果,即可做岀判断•【解答】解:A、由3x —2=4,得3x=4+2,错误;B、由2x+5=4x —1,得2x —4x= —1 -,错误;■」2、由-x=2,得x= —C8,错误;3、由x= —2,得Dx= —3,正确,故选D •【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键•10 •已知:x —2y= —3,贝U 5 (x —2y) 2—3 (x—2y) +40 的值是( )A . 5B . 94 C. 45 D . - 4【考点】整式的加减一化简求值.【专题】计算题;整式.【分析】把x - 2y的值代入原式计算即可得到结果.【解答】解:当x - 2y= - 3时,原式=45+9+40=94 ,故选B【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.11•如果规定“ ?”为一种新运算符号,且a?b=ab+a- b,其中a, b为有理数,则3?5的值()■A . 11B . 12 C. 13 D . 14【考点】有理数的混合运算.【专题】新定义;实数.【分析】原式利用题中的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:3?5=15+3 - 5=13,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12 .由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为n-2, s-4 s-8 n二4」s=12 )(216.240 C. 220 A. B236 . D6【考点】规律型:图形的变化类.s就增加四个.【分析】观察可得规律:n每增加一个数,【解答】解:4;时,s=4=1 X n=2 4 ;时,s=8=2 X n=3 ; s=12=3 X 4n=4 时,;•••. )x 4=236 时,s= (60 - 1n=60 .故选B【点评】主要培养学生的观察能力和空间想象能力.分)请将每小题的答案直接填在答卷244分,共6二、填空题(本大题个小题,每小题.中对应的横线上.m3m,应记作 -313 .物体向右运动4m记作+4m,那么物体向左运动【考点】正数和负数. 所表示的意义;再根据题意作答.负正”和【分析】首先审清题意,明确" +4m,【解答】解:•••物体向右运动4m,记作3m .二物体向左运动3m,应记作-3.故答案为:-明确什么是一对具有相反意义”的相对性,和“负【点评】本题考查了正数和负数,解题关键是理解“正”量中,先规定其中一个为正,则另一个就用负表示.的量.在一对具有相反意义的-14 .单项式-的系数是【考点】单项式. 【分析】根据单项式系数的定义进行解答即可. :;的数字因数是-,丄1【解答】解:•••单项式- 3 .•••此单项式的系数是- 3 •故答案为:- 【点评】本题考查~_2的是单项式,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键. 各15 • - 2.5的倒数是. ____________【考点】倒数.【分析】根据倒数的定义作答. 2 拆 (2),所以它的倒数是•是-【解答】解:•••- 2.5 5故答案为:•【点评】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16 .若x=2是方程2x+m - 1=5的解,则m= 2 . ----------【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.7【分析】把x=2代入方程计算即可求岀m的值.【解答】解:把x=2代入方程得:4+m - 1=5 ,解得:m=2,故答案为:2【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17. |a|=5,|b|=3,且|a+b|=a+b,贝U ab= 士15 . -------------【考点】有理数的乘法;绝对值.【分析】由绝对值的性质先求得a、b的值,然后根据|a+b|=a+b分类计算即可.【解答】解:•••|a|=5,|b|=3,•a= 士5,b= 士3 .又J |a+b|=a+b,•a=5,b=3 或a=5,b= - 3.•ab=5 x 3=15 或ab=5X( - 3) = - 15.故答案为士15 .【点评】本题主要考查的是有理数的加法,绝对值的性质,求得a、b的值是解题的关键.5“”的图案,如图a的正方形纸片剪去两个小矩形,得到一个2所示,再将18.如图1,将一个边长为剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为4a-• 8b 【考点】列代数式.【专题】计算题. 2 ,宽为(a -3ba - b ),所以这两个小矩形拼成的新矩形的长为 a 【分析】剪下的两个小矩形的长为- b ,a - 3b ,然后计算这个新矩形 的周长. 【解答】解:新矩形的周长为 2 (a - b ) +2 (a - 3b ) =4a - 8b .故答案为4a - 8b .【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式 子表示岀来,就是列代数式.解决本题的关键用a 和b 表示岀剪下的两个小矩形的长与宽..82丄S 4 VV 2V- (- 3V 0). - |- 2|【点评】本题考查了有理数的大小比较,数轴的应用,能 在数轴上表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.IT Jcd)-的值.b ,求d 互为倒数,|m|=2a - (- 20 .若a, b 互为相反数,c ,【考点】代数式求值; 相反数;绝对值;倒数. 【分析】根据互为相反数的两数相加得零可知 a+b=0,由倒数的定义可知 cd=1,由绝对值的性质可知m= 士 2,然后代入计算即可. 【解答】解:••• a ,b 互为相反数,••• a+b=0 . ••• c ,d 互为倒数,• cd=1 .•••|m|=2,Hl• m= 士 2.叔-=-m 整理得:原式=a+b . 当m=2时原式=-2,, 当m= - 2原式=2 . •代数式的值2或-2 .【点评】本题主要考查的是求代数式的值,根据题意求得a+b=0 , cd=1, m= 士 2是解题的关键.四、解答题(本大题4个小题,共40分)解答时每小题必须给出必要的演算过 程或推理步骤,请将解答过程书写在答卷中对应的位置上.21 •计算题(1) - 5+ ( +21)-( - 79 )- 15卫空_L 丄(2) 2 ( m - 3n )-( - 3m - 2n )「'■: '■、解答题(本大题2个小题,每小题6分.共12分)解答时每小题必须给出 12 4 3必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.2|,0,并把这些数用“V”连接起来.|),-(-, 19 •画岀一条数轴,在数轴上表示数--【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再根据数轴上表示的数,右边的数总比左边的数大比较即可.I ), 23,【解答】解:如图所示:丄-■23 11 -(-3)-5 -4 -3* -2-16 123 4、2 2* ( 3+)-()- H 3 201322 (-) +2] X( - 1) • 4 ( )-- [ - 3X【考点】有理数的混合运算;整式的加减.【专题】实数;整式.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式去括号合并即可得到结果;(3 )原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=-5+21+79 - 15= - 20+100=80 ;5 3 J_(2)原式2m - 6n+3m+2n=5m - 4n;^4 182 J.+) X 36= - 20+27 - 2=5; (3)原式=- (- 39^HM3 -. = X (-) (- 1))1) X (-)=-* (- 4+2 X (- 1 = X-) +2 (- =4 ()原式-+ 9X【点评】此题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解本题的关键.122222,其中1bababb (.先化简,再求值:2253a -)-( +3a-) a=,. b=19【考点】整式的加减一化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求岀值.22222222【解答】解:原式=15ab - 5ab - ab- 3ab+ 仁(15 - 3) ab+ (- 5 - 1) ab+仁12ab - 6ab+1,2 4 2 4222 - 3+1=11 XX +1=12 . X b=1a=,时,原式=12ab - 6ab+ 仁12 -XX 1 - 6 当3+1=3 【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.22 - 2N . X+3X - 2,求M23 •已知:M=3x+2x - 1,N=-【考点】整式的加减. 【分析】根据题意列岀整式相加减的式子,再去括号,合并同类项即可. 22 2,, N= - X+3X -【解答】解:•••M=3x+2x - 1 22 ) (- x+3x - 2+2x 二M - 2N= ( 3x - 1 )- 2226x+4-=3x+2x - 1+2x2 . =5x - 4x+3【点评】本题考查的是整式的加减,熟知整式的加减实质上就1是合并同类项是解答此题的关键. ::还小华的年龄比小红的年龄的4岁,已知小明的年龄是24. m岁,小红的年龄比小明的年龄的2倍少多1岁,求这三名同学的年龄的和. 【考点】整式的加减. 【专题】应用题.【分析】根据题意分别列岀小明、小红和小华的年龄,再相加,去括号,合并同类项,即可求岀这三名同£4)十1学的年龄的和. 【解答】解:由题意可知::)岁,小华的年龄为岁,小红的mF (2^-4) (加-4) +1〕年龄为(2m - 4则这三名同学的年龄的和为:2)=4m - 5 . 2+仁m+2m - 4+( m -答:这三名同学的年龄的和是岁. 4m - 5【点评】解决本题 是要先去小括号,再去中括号•注意去括号时,如果括号前是负号,那么括号中的 每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.五、解答题(本大题2个小题,共22分)25.某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆)10 7 4-25 -5 -93-增减根据记录回答:① 本周六生产了多少辆摩托车?② 本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆? ③ 产量最多的一天比产量最少的一天多生产多少辆? 【考点】有理数的加减混合运算. 【专题】应用题.【分析】①平均数加上增减的数即可得到周六生产的数量. ②将所有的增减量相加,若为正则增加,若为负则减少. 10即求增加数量最多的一天减去减少数量最多的一天•③;本周六生产数量=250 - 9=241 (辆)【解答】解:① 辆.-21,所以减少了 21②-5+7 - 3+4+10 - 9- 25=增量最多的是星期五,减 量最多的是星期日, ③.25) =35 (辆).••产量最多的一天比产量最少的一天多生产10-(-【点1评】本题考查有理数的混合运算,难度不大,关键是读懂题意.1 2X323丄■4233x431x22--=26,观察下列等式: =1 —;,3 rm4 3 4 4 2将以上三个等式两边分别相加得:+= - =1=1 -; + - - + +=—.(1 ———n (rrbl) n+1 n)猜想并写出:20H(2)直接写岀下列各式的计算结果:--■'13X4 2014X2015 1X2_ n (n+1) Ml 1X2 ~2><3 3X4….+=②+++11 1X33X5;+…+①11」•'丄丄-:』丄- +的值.…+ + ( 3)探究并计算式子: +【考点】有理数的混合运算.【专题】规律型;实数.【分析】(1)观察已知等式,得到一般性规律,写岀即可; (2)两式利用得岀的规律变形,计算即可得到结果;(3) 原式变形后,利用得岀的规律化简,计算即可得到结果.111 1 1① 2 ;(故答案为:1) — (【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题 的关键.n 12014______ 1(口+1) n n+1 =【解答】解:(1)猜想得:囱吕噸吗 但015 2015| 2015| =;- +=1 — + 目黑+ (2)①原式1 11 20152 2015丄丄;—=1 — +— + --- +=1 ②原式-八1」 --- =• (1 (1 + — + …+)—)=)原式(3=「| 川 1 =11012-+ ②•);。
永川区数学七年级上册模拟试题(含答案)下载
永川区数学七年级上册模拟试题(含答案)下载第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.8的倒数是( )A.8 B. -8 C.1/8 D.-1/82.下列运算正确的是()A.x2+x2=x4B.3x3y2﹣2x3y2=1C.4x2y3+5x3y2=9x5y5D.5x2y4﹣3x2y4=2x2y43.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把书3120000用科学记数法表示为A.3.12×105B.3.12×106C.31.2×105D.0.312×1074.对于用科学记数法表示的数4.70×104,下列说法正确的是( )A.精确到百位,原数是47000B.精确到百位,原数是4700C.精确到百分位,原数是47000D.精确到百分位,原数是4700005.钟表上2时25分时,时针与分针所成的角是 ( )A. 77.5 °B. 77 °5′C. 75°D. 76°6.下列说法正确的是( ) A.过一点有且仅有一条直线与已知直线平行B.两点之间的所有连线中,线段最短C.相等的角是对顶角D.若AC=BC,则点C是线段AB的中点7.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于……………………………………………………………()A.3 cm B.6 cm C.11 cm D.14 cmA BDC8.一个数的平方是49, 这个数是( )A.7B.-7C.+7或—7D.+9或—99.下列计算中,正确的是( )A.﹣2(a+b)=﹣2a+b B.﹣2(a+b)=﹣2a﹣b2C.﹣2(a+b)=﹣2a﹣2b D.﹣2(a+b)=﹣2a+2b10.用棋子摆出下列一组“口”字,按照这种方法白下区,则摆第n个“口”字需用旗子()A.4n枚B.(4n﹣4)枚C.(4n+4)枚D.n2枚第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. -5的绝对值是__________,-2的倒数是____________.12.如果a-b=3,ab=-1,则代数式3ab-a+b-2的值是_________.13.国家体育场“鸟巢”的建筑面积达258000m2,用科学记数法表示为____________ m2.14.在下表中,我们把第i行第j列的数记为a i,j(其中i,j都是不大于5的正整数),对于表中的每个数a i,j,规定如下:当i≥j时,a i,j=1;当i<j时,a i,j=0.例如:当i=2,j=1时,a i,j=a2,1=1.则a1,1•a i,1+a1,2•a i,2+a1,3•a i,3+a1,4•a i,4+a1,5•a i,5= .15.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561…;那么32007的末位数字应该是_________ .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(1)计算:(﹣+﹣)×|﹣24|(2)计算:﹣13﹣(1﹣0.5)××[2﹣(﹣3)2].17.(本题满分8分)解方程:(1) x -2(5 + x ) =-4 ; (2)x -12 =1-x+23.18.已知||a -1+||ab -2=0,求代数式1ab +1(a +1)(b +1)+1(a +2)(b +2)+…+1(a +2014)(b +2014)的值.19.李师傅打算把一个长、宽、高分别为50cm ,8cm ,20cm 的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是多少cm ?20.小甲虫从某点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为:(单位:厘米)① 小甲虫最后是否回到出发点O 呢?(4分)②在爬行过程中,如果每爬行1厘米奖励三粒芝麻,那么小甲虫一共得到多少粒芝麻?(4分)21.探究题如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中按a次幂从大到小排列的项的系数.规定任何非零数的零次幂为1,如(a+b)0=1例如,(a+b)1 =a+b展开式中的系数1、1恰好对应图中第二行的数字;(a+b)2 =a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;(a+b)3 =a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.(1)请认真观察此图,写出(a+b)4的展开式,(a+b)4= .(2)类似地,请你探索并画出(a-b) 0,、(a-b) 1 ,(a-b) 2 ,(a-b) 3 的展开式中按a次幂从大到小排列的项的系数..对应的三角形.(3)探究解决问题:已知a+b=3,a2+b2=5,求ab的值.22.附加题:如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是_________ _,A,B两点间的距离是__________;(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是__________,A,B两点间的距离为__________;(3)如果点A表示数﹣4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是__________,A、B两点间的距离是__________;(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B 表示什么数?A,B两点间的距离为多少?23.如图,正方形ABCD 和CEFG 的边长分别为m 、n ,且B 、C 、E 三点在一直线上试说明△AEG 的面积只与n 的大小有关.ABCD EFGmn。
2019-2020学年重庆市永川中学片区教研共同体七年级(上册)期中数学试卷(解析版).doc
2019-2020学年重庆市永川中学片区教研共同体七年级(上)期中数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.02.4的相反数是()A.4 B.﹣4 C.D.3.下列四组数中,相等一组是()A.+(+3)和+(﹣3)B.+(﹣5)和﹣5 C.﹣(+4)和﹣(﹣4)D.+(﹣1)和|﹣1|4.计算﹣a2+3a2的结果为()A.2a2B.﹣2a2C.4a2D.﹣4a25.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km6.下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2C.5ax2与yx2D.83与x37.下列各方程中,不是一元一次方程的是()A.x﹣2=2x+1 B.y+5=7﹣y C.3x+=2 D.4﹣2y=y8.若|x+1|+(y﹣2)2=0,则x y的值是()A.﹣2 B.2 C.﹣1 D.19.下列方程中,变形正确的是()A.由3x﹣2=4,得3x=4﹣2 B.由2x+5=4x﹣1,得2x﹣4x=1﹣5C.由﹣x=2,得x=8 D.由x=﹣2,得x=﹣310.已知:x﹣2y=﹣3,则5(x﹣2y)2﹣3(x﹣2y)+40的值是()A.5 B.94 C.45 D.﹣411.如果规定“⊗”为一种新运算符号,且a⊗b=ab+a﹣b,其中a,b为有理数,则3⊗5的值()A.11 B.12 C.13 D.1412.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220B.236 C.240 D.216二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.物体向右运动4m记作+4m,那么物体向左运动3m,应记作m.14.单项式﹣的系数是.15.﹣2.5的倒数是.16.若x=2是方程2x+m﹣1=5的解,则m=.17.|a|=5,|b|=3,且|a+b|=a+b,则ab=.18.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为.三、解答题(本大题2个小题,每小题6分.共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.画出一条数轴,在数轴上表示数,2,﹣(﹣3),﹣|﹣2|,0,并把这些数用“<”连接起来.20.若a,b互为相反数,c,d互为倒数,|m|=2,求a﹣(﹣b)﹣的值.四、解答题(本大题4个小题,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.计算题(1)﹣5+(+21)﹣(﹣79)﹣15(2)2(m﹣3n)﹣(﹣3m﹣2n)(3)﹣(﹣+)÷(4)﹣÷[﹣32×(﹣)2+2]×(﹣1)2013.22.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b﹣1),其中a=,b=1.23.已知:M=3x2+2x﹣1,N=﹣x2+3x﹣2,求M﹣2N.24.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.五、解答题(本大题2个小题,共22分)25.某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每①本周六生产了多少辆摩托车?②本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?③产量最多的一天比产量最少的一天多生产多少辆?26.观察下列等式:=1﹣,=﹣,=﹣;将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=;(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①+++…+=;②+++…+=.(3)探究并计算式子:+++…+的值.2019-2020学年重庆市永川中学片区教研共同体七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.0【考点】正数和负数.【专题】探究型.【分析】根据负数的定义可以从题目中的四个数据中,得到哪些数是负数,从而可以解答本题.【解答】解:在﹣3,0,1,﹣2这四个数中,负数是:﹣3,﹣2,即在﹣3,0,1,﹣2这四个数中,有2个负数,故选:B.【点评】本题考查正数和负数,解题的关键是明确负数的定义.2.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.【点评】主要考查相反数的性质.相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0.3.下列四组数中,相等一组是()A.+(+3)和+(﹣3)B.+(﹣5)和﹣5 C.﹣(+4)和﹣(﹣4)D.+(﹣1)和|﹣1|【考点】绝对值;相反数.【专题】计算题;实数.【分析】原式各项中两式计算得到结果,即可做出判断.【解答】解:A、+(+3)=3,+(﹣3)=﹣3,不相等;B、+(﹣5)=﹣5,相等;C、﹣(+4)=﹣4,﹣(﹣4)=4,不相等;D、+(﹣1)=﹣1,|﹣1|=1,不相等,故选B【点评】此题考查了绝对值,以及相反数,熟练掌握运算法则是解本题的关键.4.计算﹣a2+3a2的结果为()A.2a2B.﹣2a2C.4a2D.﹣4a2【考点】合并同类项.【分析】运用合并同类项的方法计算.【解答】解:﹣a2+3a2=2a2.故选:A.【点评】本题考查了合并同类项法则,解题的关键是掌握相关运算的法则.5.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将9500 000 000 000km用科学记数法表示为:9.5×1012km.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.6.下列各组代数式中,是同类项的是()A.5x2y与xy B.﹣5x2y与yx2C.5ax2与yx2D.83与x3【考点】同类项.【专题】新定义.【分析】所含字母相同,并且相同字母的指数也相同的项叫同类项,且常数项也是同类项.通过该定义来判断是不是同类项.【解答】解:A、5x2y与xy字母x、y相同,但x的指数不同,所以不是同类项;B、﹣5x2y与yx2字母x、y相同,且x、y的指数也相同,所以是同类项;C、5ax2与yx2字母a与y不同,所以不是同类项;D、83与x3,对83只是常数项无字母项,x3只是字母项无常数项,所以不是同类项.故选B【点评】同学们判断一个整式是否是同类项主要从以下三个方面:①所含字母相同②且相同字母的指数也相同的项③常数项也是同类项.7.下列各方程中,不是一元一次方程的是()A.x﹣2=2x+1 B.y+5=7﹣y C.3x+=2 D.4﹣2y=y【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、是一元一次方程,故A不符合题意;B、是一元一次方程,故B不符合题意;C、是分式方程,故C符合题意;D、是一元一次方程,故D不符合题意;故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.8.若|x+1|+(y﹣2)2=0,则x y的值是()A.﹣2 B.2 C.﹣1 D.1【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:由题意得,x+1=0,y﹣2=0,解得,x=﹣1,y=2,则x y=1,故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.9.下列方程中,变形正确的是()A.由3x﹣2=4,得3x=4﹣2 B.由2x+5=4x﹣1,得2x﹣4x=1﹣5C.由﹣x=2,得x=8 D.由x=﹣2,得x=﹣3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】原式各项变形得到结果,即可做出判断.【解答】解:A、由3x﹣2=4,得3x=4+2,错误;B、由2x+5=4x﹣1,得2x﹣4x=﹣1﹣,错误;C、由﹣x=2,得x=﹣8,错误;D、由x=﹣2,得x=﹣3,正确,故选D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.已知:x﹣2y=﹣3,则5(x﹣2y)2﹣3(x﹣2y)+40的值是()A.5 B.94 C.45 D.﹣4【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把x﹣2y的值代入原式计算即可得到结果.【解答】解:当x﹣2y=﹣3时,原式=45+9+40=94,故选B【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.11.如果规定“⊗”为一种新运算符号,且a⊗b=ab+a﹣b,其中a,b为有理数,则3⊗5的值()A.11 B.12 C.13 D.14【考点】有理数的混合运算.【专题】新定义;实数.【分析】原式利用题中的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:3⊗5=15+3﹣5=13,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.由点组成的正方形,每条边上的点数n与总点数s的关系如图所示,则当n=60时,计算s的值为()A.220 B.236 C.240 D.216【考点】规律型:图形的变化类.【分析】观察可得规律:n每增加一个数,s就增加四个.【解答】解:n=2时,s=4=1×4;n=3时,s=8=2×4;n=4时,s=12=3×4;…;n=60时,s=(60﹣1)×4=236.故选B.【点评】主要培养学生的观察能力和空间想象能力.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答卷中对应的横线上.13.物体向右运动4m记作+4m,那么物体向左运动3m,应记作﹣3m.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵物体向右运动4m,记作+4m,∴物体向左运动3m,应记作﹣3m.故答案为:﹣3.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.14.单项式﹣的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义进行解答即可.【解答】解:∵单项式﹣的数字因数是﹣,∴此单项式的系数是﹣.故答案为:﹣.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.15.﹣2.5的倒数是.【考点】倒数.【分析】根据倒数的定义作答.【解答】解:∵﹣2.5是﹣,所以它的倒数是.故答案为:.【点评】此题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.16.若x=2是方程2x+m﹣1=5的解,则m=2.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:4+m﹣1=5,解得:m=2,故答案为:2【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.|a|=5,|b|=3,且|a+b|=a+b,则ab=±15.【考点】有理数的乘法;绝对值.【分析】由绝对值的性质先求得a、b的值,然后根据|a+b|=a+b分类计算即可.【解答】解:∵|a|=5,|b|=3,∴a=±5,b=±3.又∵|a+b|=a+b,∴a=5,b=3或a=5,b=﹣3.∴ab=5×3=15或ab=5×(﹣3)=﹣15.故答案为±15.【点评】本题主要考查的是有理数的加法,绝对值的性质,求得a、b的值是解题的关键.18.如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为4a﹣8b.【考点】列代数式.【专题】计算题.【分析】剪下的两个小矩形的长为a﹣b,宽为(a﹣3b),所以这两个小矩形拼成的新矩形的长为a﹣b,a﹣3b,然后计算这个新矩形的周长.【解答】解:新矩形的周长为2(a﹣b)+2(a﹣3b)=4a﹣8b.故答案为4a﹣8b.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a和b表示出剪下的两个小矩形的长与宽.三、解答题(本大题2个小题,每小题6分.共12分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.19.画出一条数轴,在数轴上表示数,2,﹣(﹣3),﹣|﹣2|,0,并把这些数用“<”连接起来.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再根据数轴上表示的数,右边的数总比左边的数大比较即可.【解答】解:如图所示:﹣|﹣2|<0<<2<﹣(﹣3).【点评】本题考查了有理数的大小比较,数轴的应用,能在数轴上表示各个数是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.若a,b互为相反数,c,d互为倒数,|m|=2,求a﹣(﹣b)﹣的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】根据互为相反数的两数相加得零可知a+b=0,由倒数的定义可知cd=1,由绝对值的性质可知m=±2,然后代入计算即可.【解答】解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵|m|=2,∴m=±2.整理得:原式=a+b﹣=﹣m.当m=2时原式=﹣2,;当m=﹣2原式=2.∴代数式的值2或﹣2.【点评】本题主要考查的是求代数式的值,根据题意求得a+b=0,cd=1,m=±2是解题的关键.四、解答题(本大题4个小题,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.21.计算题(1)﹣5+(+21)﹣(﹣79)﹣15(2)2(m﹣3n)﹣(﹣3m﹣2n)(3)﹣(﹣+)÷(4)﹣÷[﹣32×(﹣)2+2]×(﹣1)2013.【考点】有理数的混合运算;整式的加减.【专题】实数;整式.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式去括号合并即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣5+21+79﹣15=﹣20+100=80;(2)原式2m﹣6n+3m+2n=5m﹣4n;(3)原式=﹣(﹣+)×36=﹣20+27﹣2=5;(4)原式=﹣÷(﹣9×+2)×(﹣1)=﹣÷(﹣4+2)×(﹣1)=﹣×(﹣)×(﹣1)=﹣.【点评】此题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解本题的关键.22.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b﹣1),其中a=,b=1.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b+1=(15﹣3)a2b+(﹣5﹣1)ab2+1=12a2b﹣6ab2+1,当a=,b=1时,原式=12a2b﹣6ab2+1=12××1﹣6××12+1=12×﹣3+1=3﹣3+1=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.已知:M=3x2+2x﹣1,N=﹣x2+3x﹣2,求M﹣2N.【考点】整式的加减.【分析】根据题意列出整式相加减的式子,再去括号,合并同类项即可.【解答】解:∵M=3x2+2x﹣1,N=﹣x2+3x﹣2,∴M﹣2N=(3x2+2x﹣1)﹣2(﹣x2+3x﹣2)=3x2+2x﹣1+2x2﹣6x+4=5x2﹣4x+3.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.24.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和.【考点】整式的加减.【专题】应用题.【分析】根据题意分别列出小明、小红和小华的年龄,再相加,去括号,合并同类项,即可求出这三名同学的年龄的和.【解答】解:由题意可知:小红的年龄为(2m﹣4)岁,小华的年龄为岁,则这三名同学的年龄的和为:=m+2m﹣4+(m﹣2+1)=4m﹣5.答:这三名同学的年龄的和是4m﹣5岁.【点评】解决本题是要先去小括号,再去中括号.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.五、解答题(本大题2个小题,共22分)25.某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每①本周六生产了多少辆摩托车?②本周总生产量与计划生产量相比,是增加了还是减少了?增加或减少了多少辆?③产量最多的一天比产量最少的一天多生产多少辆?【考点】有理数的加减混合运算.【专题】应用题.【分析】①平均数加上增减的数即可得到周六生产的数量.②将所有的增减量相加,若为正则增加,若为负则减少.③即求增加数量最多的一天减去减少数量最多的一天.【解答】解:①本周六生产数量=250﹣9=241(辆);②﹣5+7﹣3+4+10﹣9﹣25=﹣21,所以减少了21辆.③增量最多的是星期五,减量最多的是星期日,∴产量最多的一天比产量最少的一天多生产10﹣(﹣25)=35(辆).【点评】本题考查有理数的混合运算,难度不大,关键是读懂题意.26.观察下列等式:=1﹣,=﹣,=﹣;将以上三个等式两边分别相加得:++=1﹣+﹣+﹣=1﹣=;(1)猜想并写出:=﹣.(2)直接写出下列各式的计算结果:①+++…+=;②+++…+=.(3)探究并计算式子:+++…+的值.【考点】有理数的混合运算.【专题】规律型;实数.【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)两式利用得出的规律变形,计算即可得到结果;(3)原式变形后,利用得出的规律化简,计算即可得到结果.【解答】解:(1)猜想得:=﹣;(2)①原式=1﹣+﹣+…+﹣=1﹣=;②原式=1﹣+﹣+…+﹣=1﹣=;(3)原式=(1﹣+﹣+…+﹣)=(1﹣)=.故答案为:(1)﹣;(2)①;②.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
永川中学初2019级初一(上)数学第三周周考题
(满分:100分 时间:40分钟 命题人:李立凤 审题人:王存波)
班级:________________ 姓名:______________
一、选择题:(每小题5分,共30分)
1. -3的相反数是( )
A. 3
B. -3
C. 31
D. 3
1- 2. 一种面粉的质量标识为“250.25kg ”,则下列面粉中合格的是( )
A. 24.70kg
B. 25.30kg
C. 25.51kg
D. 24.80kg 3. 21-
的绝对值是( ) A. 21 B. 2
1- C. 2 D. -2 4. 在数轴上,点P 从-3处开始移动,先向左移动3个单位长度到达A 点,接着再向右移动6个单位长度到达B 点,则点A 表示的数是_____,点B 表示的数是_______.
A. 0,3;
B. 0,6;
C. -6,3;
D. -6,0
5.下列各式成立的是( )
A .—(+3.5)>—(—3.5) B. 0<+(212-) C. 0>—(—0.7) D. 72-<7
1- 6. 一列数:0,1,—2,3,—6,7,—14,15,—30,____,_____,_____.这串数是由小明按照一定规则写下来的,他第一次写下“0,1”,第二次接着写“—2,3”,第三次接着写“—6,7”第四次接着写“—14,15”,就这样一直接着往下写,那么这串数的最后三个数应该是下面的( )
A. 31,—32,64
B. 31,—62,63
C. 31,—32,33
D. 31,—45,46
二、填空题:(每小题5分,共30分)
7.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作_______.
8.下列4对数中:①7和7.5; ②0和0; ③—7和|—7| ④5和5
1-
.其中互为相反数的是:________.(填序号)
9.若|x|=7,则x=_________,若|x —3|=0,则x=_____.
10.若A 在数轴上表示数—3,点B 距离点A 有4个单位的长度,则点B 表示数是_______.
11.已知|x —3|+|y —1|=0,那么x —y=_______.
12.观察下面一列数:—1,2,—3,4,—5,6,—7,…将这列数排成下列形式:
—1
2 —
3 4
—5 6 —7 8 —9
10 —11 12 —13 14 —15 16
……
按照上述规律排下去,那么第10行从左边数第10个数是_______.
三、解答题:(共4个小题,第13题8分,第14、15题各10分,第16题12分,共40分)
13.把下列各数填入相应的集合内:2,—3,0,+6,0.25,213-,65%,7
22,|—0.36|, 正整数集合:{ …};
负整数集合:{ …};
正分数集合:{ …};
整数集合: { …}.
14.在数轴上表示出下列各数:+5,0,433-,211,—2,3
1-,—1.25,432,并把它们用“<”连接起来.
15.出租车司机小李一天下午的营运全是在南北走向的光明大街进行的,假定向南为正,向北为负,他这天下午运行的里程如下(单位:千米):+15,—3,+14,—11,+10,+4,—26.
(1)小李在送第几位乘客时车的行程最大?
(2)若汽车耗油量为0.1升/千米,这天下午汽车共耗油多少升?
16.已知a 、b 、c 为有理数,且它们在数轴上的位置如图所示:
(1)试判断a ,b ,c 的正负性
(2)根据数轴化简:
①|a|=________, ②|b|=_________, ③|c|=________,
④|—a|=_______, ⑤|—b|=_____, ⑥|—c|=__________;
(3)若|a|=5.5,|b|=2.5,|c|=5,则a ,b ,c 的值.。