1第一章化学键与分子结构PPT课件
合集下载
第一章 第三节 《化学键》教学课件图文
人教版新课标 第一章 物质结构 元素周期律
第三节 化学键
钠在氯气中燃烧
氯化钠的形成
一.离子键
1.定义: 使阴、阳离子结合成化合物的静电作用,叫离 子键
成键原因: 电子得失 成键粒子: 阴阳离子 成键本质: 静电作用(静电吸引和静电排斥) 成键元素: 活泼的金属元素(ⅠA,ⅡA)
和活泼的非金属元素(ⅥA,ⅦA)
子的最外层电子。这种式子叫做电子式。
① 原子的电子式: H × Na × ×Mg×
②阳离子的电子式:不要求画出离子最外层电子数,只要在 元素、符号右上角标出“n+”电荷字样。
H+
Na+
Mg2+
Ca2+
③阴离子的电子式:不但要画出最外层电子数,而且还应 用于括号“[ ]”括起来,并在右上角标出“n·-”电荷 字样。
资料搜集
课堂练习
5.(2011·江苏卷)下列有关化学用语表示正确的是(C. ) A.N2的电子式: B.S2-的结构示意图: C.质子数为53,中子数为78的碘原子: D.H2O的电子式为
H
:
..
O:
..
H
课堂练习
6.(2012·大纲版)下列关于化学键的叙述 , 正确的一 项是(A) A. 离子化合物中一定含有离子键 B.单质分子中均不存在化学键 C.SiH4的沸点高于CH4,可推测pH3的 沸点高于NH3 D.含有共价键的化合物一定是共价化合物
-
C]l
Na +[O H ] —
Na +[ O O] 2- N+a
非极性共价键 离子键
H
[H
N
H][+ Cl
-
]
H
四、分子间作用力和氢键
第三节 化学键
钠在氯气中燃烧
氯化钠的形成
一.离子键
1.定义: 使阴、阳离子结合成化合物的静电作用,叫离 子键
成键原因: 电子得失 成键粒子: 阴阳离子 成键本质: 静电作用(静电吸引和静电排斥) 成键元素: 活泼的金属元素(ⅠA,ⅡA)
和活泼的非金属元素(ⅥA,ⅦA)
子的最外层电子。这种式子叫做电子式。
① 原子的电子式: H × Na × ×Mg×
②阳离子的电子式:不要求画出离子最外层电子数,只要在 元素、符号右上角标出“n+”电荷字样。
H+
Na+
Mg2+
Ca2+
③阴离子的电子式:不但要画出最外层电子数,而且还应 用于括号“[ ]”括起来,并在右上角标出“n·-”电荷 字样。
资料搜集
课堂练习
5.(2011·江苏卷)下列有关化学用语表示正确的是(C. ) A.N2的电子式: B.S2-的结构示意图: C.质子数为53,中子数为78的碘原子: D.H2O的电子式为
H
:
..
O:
..
H
课堂练习
6.(2012·大纲版)下列关于化学键的叙述 , 正确的一 项是(A) A. 离子化合物中一定含有离子键 B.单质分子中均不存在化学键 C.SiH4的沸点高于CH4,可推测pH3的 沸点高于NH3 D.含有共价键的化合物一定是共价化合物
-
C]l
Na +[O H ] —
Na +[ O O] 2- N+a
非极性共价键 离子键
H
[H
N
H][+ Cl
-
]
H
四、分子间作用力和氢键
化学键与分子结构详解PPT课件
✓ 指原子失去或得到电子后形成的带电离子的电子构型
✓ 简单负离子的最外电子层都是8个电子的稀有气体结构
✓ 正离子的电子构型主要有5种
P81
10
第10页/共55页
简单阴离子的电子构型:ns2np6 8电子构型
11
第11页/共55页
➢ 离子半径
✓ 它是根据离子晶体中正、负离子的核间距测出的,并 假定正、负离子的核间距为正、负离子的半径之和。
晶格能越大,离子晶体越稳定。
8
第8页/共55页
离子的特征
➢ 离子电荷 ➢ 离子的电子层构型 ➢ 离子半径
9
第9页/共55页
➢ 离子电荷
✓ 指原子形成离子化合物过程中失去或得到电子的数目 它是影响离子键强度的重要因素。
✓ 离子电荷越多,对相反电荷的离子的吸引力越强,形 成的离子化合物的熔点也越高
➢ 离子的电子构型
6.2 离子键理论
一、离子键的形成 二、离子键的特点 三、离子键的强度 四、离子的特征
5
第5页/共55页
离子键的形成
➢离子键是由原子得失电子后,生成的正、负离 子之间靠静电作用而形成的化学键。
➢形成离子键的必要条件:
电离能低的活泼金属元素与电子亲合能高的活
泼
6
第6页/共55页
离子键的特点
Hale Waihona Puke ➢ 离子键的本质是正、负离子之间的静电引力
✓ 离子半径的变化规律:
12
第12页/共55页
✓ 离子半径大致有如下的变化规律:
a.主族元素自上而下电子层数依次增多,所以具有相同电荷数的 同族离子的半径依次增大。Li+<Na+<K+<Rb+<Cs+
第一章 化学键和分子结构理论
由于σ体系和π体系互相垂直, HMO理论认为π体 系能在不考虑σ骨架的情况下单独处理,并且认为π 体系决定芳香化合物和多烯化合物的性质。
O 2s O 2s
2p O 2p O O O
1、HMO的发展简史
1927-1931: 分子轨道理论是由(德国Hund, Hü ckel以及美国 Mulllikon,)提出的。
价键理论的不足,如液态和固态O2的顺磁性问题就不能说明。 此外,光谱研究证明还有 H2+存在, (H‧H)+,价键理论也不能 说明,故发展起分子轨道理论,它在说明很多分子的结构和反 应性能问题上很成功,在共价键理论中,占有非常重要的位置。 分子轨道理论主要强调分子中的电子是在整个分子的势场中运 动(非定域键),而价键理论的共价键将电子局限于成键两原 子之间,是“定域键”。
(5)不等性杂化
杂化后所形成的几个杂化轨道所含原来轨道成
分的比例不相等能量不完全相同,这种杂化称
为不等性杂化。
通常,若参与杂化的原子轨道中,有的已被孤 对电子占据,其杂化是不等性的。
不等性sp3杂化轨道→ NH3
2 3 N 2s 2p 2p
2s
不等性 SP3 107o
SP3 N-H bond sp3-s
成共价键的数目取决于该原子中的单电子数目—— 共价键的饱和性。如H2分子中的2个电子已经配对, 就不能再与另1个H原子成键。
(3)共价键的方向性 成键时,两原子轨道重叠愈多,两核间电子 云愈密集,形成的共价键愈牢固,这称为 原子轨道最大重叠原理。因此共价键具有 方向性。如HCl
y
y
H
y
x H Cl
2p x1 2S2
2p y1
2pz 0
电子跃迁
O 2s O 2s
2p O 2p O O O
1、HMO的发展简史
1927-1931: 分子轨道理论是由(德国Hund, Hü ckel以及美国 Mulllikon,)提出的。
价键理论的不足,如液态和固态O2的顺磁性问题就不能说明。 此外,光谱研究证明还有 H2+存在, (H‧H)+,价键理论也不能 说明,故发展起分子轨道理论,它在说明很多分子的结构和反 应性能问题上很成功,在共价键理论中,占有非常重要的位置。 分子轨道理论主要强调分子中的电子是在整个分子的势场中运 动(非定域键),而价键理论的共价键将电子局限于成键两原 子之间,是“定域键”。
(5)不等性杂化
杂化后所形成的几个杂化轨道所含原来轨道成
分的比例不相等能量不完全相同,这种杂化称
为不等性杂化。
通常,若参与杂化的原子轨道中,有的已被孤 对电子占据,其杂化是不等性的。
不等性sp3杂化轨道→ NH3
2 3 N 2s 2p 2p
2s
不等性 SP3 107o
SP3 N-H bond sp3-s
成共价键的数目取决于该原子中的单电子数目—— 共价键的饱和性。如H2分子中的2个电子已经配对, 就不能再与另1个H原子成键。
(3)共价键的方向性 成键时,两原子轨道重叠愈多,两核间电子 云愈密集,形成的共价键愈牢固,这称为 原子轨道最大重叠原理。因此共价键具有 方向性。如HCl
y
y
H
y
x H Cl
2p x1 2S2
2p y1
2pz 0
电子跃迁
化学键课件(共34张PPT)
[:O····:]2[:C··l :]-
··
阴离子的电子式:不但要画出最外层电子 数,而且还要用中括号“[ ]”括起来,并 在右上角标出所带电荷“n-”。
[ 练习] 写出下列微粒的电子式:
如:NaOH、KOH、MgO、Na2O2、
硫原子、 溴原子、 硫离子、溴离子、铝离子 ”或小叉“×”来表示其最外层电子数。
原子的电子式:
原子的电子式:在元素符 号周围用小点“.”或小叉 “×”来表示其最外层电
子数。
ⅠA ⅡA ⅢA ⅣA ·ⅤA ⅥA ⅦA
···· ··
Na ·
R·
·Mg ·
··C··N··N···
·· F
·O··· ··
Cl ·
··
离子的电子式:
Na+ Ca2+
阳离子的电子式:简单阳离子 的电子式就是它的离子符号, 复杂阳离子(NH4+)例外。
如何用电子式表示离子化合物的形成过程?
··
[:S····:]2-
[:B·r·:]··
Al3+
练习2、下列各数值表示有关元素的原子序数,其所表示的各原子组中能以离子键相互结合成稳定化合物的是:
“ ”表示电子得失
共价键使原子结合成共价化合物.
用电子式可以直观地 含有活泼金属元素和铵根离子的化合物
哪些物质属于离子化合物,含有离子键?
电子式
结构式
HCl (2) 构成离子键的粒子:
练习1、下列说法正确的是: 如:NaOH、KOH、MgO、Na2O2、
H—Cl
H O 氢分子的形成:
离子化合物2的电子式:由阴、阳离子的电子式组成,但相同离子不能合并
电子式
结构式
H—O—H
《化学键和分子结构》课件
O
CH3 C O
O CH3 C
O
O-
CH3 C O
➢ 电负性大的元素接在共轭链端,使π电子向电负性 大的元素端离域叫吸电子共轭效应-C ;
+ [CH2=CH-CH2
+ CH2-CH=CH2 ]
δ-
δ-
CH2—CH—CH2
共轭体系能量降低
能 ΔH≈254KJ.mol-1
量
28KJ.mol-1 共轭能
取代羧酸的酸性与在烃基同一位置上引入-I基团的 数目有关,数目越多,酸性越强。加合性
取代羧酸的酸性与-I基团离羧基的距离有关,距离 越远,影响越小。 短程效应
O
H
X
C
O-
吸电子诱导效应(- I):
+
NR3 NO2
SO2R
CN
Br I OAr COOR
C = CR
C6H5
CH=CH2
SO2Ar
COOH
如:
为主。
三、超共轭效应
1. σ-π、 σ-p 超共轭体系
丙烯分子中的甲基可绕C- C σ键旋转,旋转到某一角 度时,甲基中C-H σ键轴与 π键P轨道近似平行,形成 σ-π超共轭体系。
C—H σ电子云与相邻自由 基碳上的p电子云部分重叠, 离域,形成σ-p超共轭体系。
2. σ-π、 σ-p 超共轭效应
反应活性比较
CH3CHO﹤, HCHO
HCN OH-
比较酸性大小
CH3CH2CH-CH2CH3
Cl
?
CH3CH2CH√2-CHCH3
Cl
O2N
COOH ﹥ HO
COOH
四. 场效应(field effects)
化学键(46张)PPT课件
化学键的形成与断裂
形成
原子通过得失或共享电子达到稳定的 电子构型,从而形成化学键。化学键 的形成是化学反应的基础。
断裂
化学键的断裂需要吸收能量,使原子 从稳定的电子构型中摆脱出来。化学 键的断裂是化学反应的驱动力。
化学键的强度与稳定性
强度
化学键的强度取决于键能和键长。键能越大,键长越短,化学键越强。一般来说,离子键和共价键的强度较高 ,而氢键的强度较低。
的物质通常具有较高的反应活性。
03
键角
化学键的键角对物质的反应活性也有一定影响。例如,具有较小键角的
物质在化学反应中更容易发生空间位阻效应,从而影响反应的进行。
06
化学键的应用与拓展
化学键在材料科学中的应用
材料性质与化学键
通过改变材料中化学键的类型和强度 ,可以调控材料的硬度、韧性、导电 性等性质。
02
通过改变药物分子中的化学键,可以优化药物的疗效和降低副
作用。
生物医学工程
03
利用化学键原理,可以设计和合成生物相容性良好的医用材料
,如人工关节、心脏瓣膜等。
化学键在环境科学中的应用
大气化学
大气中的化学反应涉及多种化学 键的断裂和形成,对气候变化和
空气质量有重要影响。
水处理化学
利用化学键原理,可以设计和合成 高效的水处理剂,用于去除水中的 污染物。
应。
反应类型
不同类型的化学键在化学反应中 表现出不同的反应类型。例如, 离子键容易发生复分解反应,共 价键则容易发生加成、取代等反
应。
化学键与物质反应活性的关系
01
键能
化学键的键能越大,物质越稳定,反应活性越低。反之,键能越小,物
质越不稳定,反应活性越高。
物质结构基础—化学键与分子结构(应用化学课件)
在键轴的两侧并对称于与键轴垂直的平面,这样形成的键称为π键,形成π键的 电子称为π电子。
zz
x
yy π pz-pz
通常π键形成时原子轨道重叠程度小于σ键,故π键没有σ键稳定。
当两原子间形成双键或叁键时,既有σ键又有π键。 例如N2分子:N原子的价层电子构型是2s22p3
小结: 1、σ键的形成及特点 2、π键的形成及特点
(1)键长(l) •键长(l)——分子内成键两原子核间的
平衡距离(即核间距)。单位为pm(皮米)。
键长(l)可用X射线衍射方法精确地测定。 例如:H—H键长0.74×10–10 m, C—C键长1.54×10–10 m 一般来说,两个原子之间所形成的键越短,键就越牢固,不易断裂。
• (2)键能(E)
键
432
C—H
347
C—N
611
C—O
837
159
C—Cl
142
N—H
158
O—H
244
S—H
192
150
S—S
键长l/pm
109 147 143 121 177 101 96 136
110
205
键能 E/kJmol–1
414 305 360 736 326 389 464 368
946
264
非金属元素的单质分子都是以共价键结合成的。如氯分
2、离子键的特征
活泼金属(如钾、钠、钙、镁等)与活泼非金属(如氯、溴、 氧、硫等)化合时,都能形成离子键。例如,氧化镁、溴化钾等 都由离子键所形成。
• 离子键的特
• (1)离子键的本质是静电作用 • (2)离子键没有方向性(电荷球形对称分布) • (3)离子键没有饱和性(空间许可)
zz
x
yy π pz-pz
通常π键形成时原子轨道重叠程度小于σ键,故π键没有σ键稳定。
当两原子间形成双键或叁键时,既有σ键又有π键。 例如N2分子:N原子的价层电子构型是2s22p3
小结: 1、σ键的形成及特点 2、π键的形成及特点
(1)键长(l) •键长(l)——分子内成键两原子核间的
平衡距离(即核间距)。单位为pm(皮米)。
键长(l)可用X射线衍射方法精确地测定。 例如:H—H键长0.74×10–10 m, C—C键长1.54×10–10 m 一般来说,两个原子之间所形成的键越短,键就越牢固,不易断裂。
• (2)键能(E)
键
432
C—H
347
C—N
611
C—O
837
159
C—Cl
142
N—H
158
O—H
244
S—H
192
150
S—S
键长l/pm
109 147 143 121 177 101 96 136
110
205
键能 E/kJmol–1
414 305 360 736 326 389 464 368
946
264
非金属元素的单质分子都是以共价键结合成的。如氯分
2、离子键的特征
活泼金属(如钾、钠、钙、镁等)与活泼非金属(如氯、溴、 氧、硫等)化合时,都能形成离子键。例如,氧化镁、溴化钾等 都由离子键所形成。
• 离子键的特
• (1)离子键的本质是静电作用 • (2)离子键没有方向性(电荷球形对称分布) • (3)离子键没有饱和性(空间许可)
1第一章化学键与分子结构详解
μ=11.81×10-30c· m μ =14.11×10-30c· m m △ μ =11.81-14.11= - 2.30c· -NO2表现为-C效应。
(二)P-∏共轭体系:
CH2=CH-Cl CH2=CH-CH2 CH2=CH-CH2 O C X NH 2
(三)超共轭体系(σ-π;σ -p)
HC C H HC C C H3 HC C H H C C H3
C H2
C H C H3
C H3
σ-π超共轭
σ-p超共轭
电子离域比较微弱
二、共轭效应的涵义和特征
1-1 诱导效应(Inductive effect)
一、诱导效应的涵义和特征 在有机化合物的分子中,由于电负性不同的取代 基的影响沿着键链(单链或重键链)传递,致使 分子中电子云密度,按取代基相对氢的电负性强 弱所决定的方向而偏移的效应,叫诱导效应(I) 。
¦ ÄX
Hale Waihona Puke ¦ Ä +A
¦ Ħ Ä +
B
¦ Ħ Ħ Ä
一些共价键的键能
共价键 键能/kJ.mol C C C H C N C O C F 347 414 305 360 485
-1
共价键 C Cl C Br C I C C C C
键能/kJ.mol 339 285 218 611 837
-1
说明:化学环境不同的相同共价键的键能 是有差异的!
4、键矩与偶极矩
共轭效应:
电子通过共轭体系传递并引起性质的改变的效应。
特征:
1. 共轭效应只存在共轭体系中,最突出的特征是它 的传导方式。 离域的电子沿共轭键而传递,结果是共轭键的电子 云密度或多或少发生平均化(表现为键长的平均化)
(优质)化学键与分子结构PPT课件
一个形象的说法就是,在金属晶体中,金属原子整齐 的排列在一起,并浸泡在自由电子的海洋中。
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
图:金属的电子海模型,带正电的球表示内层电子原 子核,周围的著色表示非定域电子构成的电子海
特点: 无方向性、无饱和性
金属特性:
•导电性:自由电子在外电场作用下可定向流动; •导热性:不断碰撞的自由电子可将热量交换和递; •延展性:金属可以在不破坏晶体结构,受力作用时整 层滑动。 •金属光泽:自由电子能够吸收并重新发射很宽波长范 围的光线,使金属不透明而具有金属光泽。
导体中存在导带,在电场作用下,导带中的电子很容易跃入导 带中的空分子轨道中去,从而导电。绝缘体和半导体中不存在导 带,这是它们的共同点,不同的是满带和空带之间的禁带的能量间 隔不同。一般绝缘体的能量间隔大,一般电子很难获得能量跃过禁 带;而一般半导体的能量间隔,在一定条件下,少数高能电子能跃 过禁带而导电。
(优质)化学键与分 子结构PPT课件
本章教学要求
基本要求: 掌握化学键和分子结构的基本概念和有关
理论,了解化学键的成键本质。 重 点: 共价键的基本理论。 难 点: 分子轨道理论。
2.1 化学键的分类 2.2 共价键的成键理论 2.3 分子间作用力
分子是物质能独立存在并保持其化学特性的 最小微粒,而分子又是由原子组成的。迄今,人 们发现112种元素。正是由这些元素的原子构成 分子,从而构成了整个物质世界。那么原子与原 子如何结合成分子;分子和分子又如何结合成宏 观物体?前者是化学键问题,后者是分子间力的 问题。
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
图:金属的电子海模型,带正电的球表示内层电子原 子核,周围的著色表示非定域电子构成的电子海
特点: 无方向性、无饱和性
金属特性:
•导电性:自由电子在外电场作用下可定向流动; •导热性:不断碰撞的自由电子可将热量交换和递; •延展性:金属可以在不破坏晶体结构,受力作用时整 层滑动。 •金属光泽:自由电子能够吸收并重新发射很宽波长范 围的光线,使金属不透明而具有金属光泽。
导体中存在导带,在电场作用下,导带中的电子很容易跃入导 带中的空分子轨道中去,从而导电。绝缘体和半导体中不存在导 带,这是它们的共同点,不同的是满带和空带之间的禁带的能量间 隔不同。一般绝缘体的能量间隔大,一般电子很难获得能量跃过禁 带;而一般半导体的能量间隔,在一定条件下,少数高能电子能跃 过禁带而导电。
(优质)化学键与分 子结构PPT课件
本章教学要求
基本要求: 掌握化学键和分子结构的基本概念和有关
理论,了解化学键的成键本质。 重 点: 共价键的基本理论。 难 点: 分子轨道理论。
2.1 化学键的分类 2.2 共价键的成键理论 2.3 分子间作用力
分子是物质能独立存在并保持其化学特性的 最小微粒,而分子又是由原子组成的。迄今,人 们发现112种元素。正是由这些元素的原子构成 分子,从而构成了整个物质世界。那么原子与原 子如何结合成分子;分子和分子又如何结合成宏 观物体?前者是化学键问题,后者是分子间力的 问题。
化学键与分子结构
2s
2s
sp sp杂化
Be采用sp杂化 生成BeCl2
两个sp杂化轨道
sp2杂化 B: 2s22p1
2p
2s
BF3的空间构型 为平面三角形
F
B
F
F
2s
2p 激发 2s 2p
sp2 sp2杂化
BF3的形成
三个sp2杂化轨道
sp3杂化 C:2s22p2
2p
2s
CH4的空间构 型为正四面体
2s
n —— 未成对电子数 顺磁性:被磁场吸引 µ> 0 , n > 0
如:O2,NO,NO2等 反磁性:被磁场排斥 µ= 0 , n =0 (大多数物质) 铁磁性:被磁场强烈吸引。如:Fe,Co,Ni
根据 n(n 2) 可用未成对电子 数目n估算磁矩µ 。
n 01 2 3 4 5
µ/B.M. 0 1.73 2.83 3.87 4.90 5.92 实例: [Ti(H2O)6]3+ Ti3+: 3d1 µ=1.73 n=1 K3[Mn(CN)6] Mn3+: 3d4 µ=3.18 n=2
432
366
298
159
243
193
151
共价键
H-H C-C C--C C---C N-N N---N C-H O-H
键长 l/pm
74 154 134 120 145 110 109 96
键
能
E/(kJ·mol-1)
436
346
602
835
159
946
414
464
由表数据可见,H-F, H-Cl, H-Br, H-I 键长依次递增,而键能 依次递减;单键、双键及叁键的键长 依次缩短,键能依次增大,但与单键 并非两倍、叁倍的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
δ+
δ-
H Cl H Cl μ=3.57x10-30(C.m)
1D =3.334x10-30(C.m) (德拜)
有机化合物键矩:(0.4-3.5D)
11
分子的极性用偶极矩表示:多原子分子偶极 矩是各个共价键键矩的矢量和
Cl
Cl
Cl
HC H
H
μ=6.47x10-30(C.m)
HC Cl
H
Cl C Cl
第一章:化学键和分子结构
1.1 键长、键能、偶极距 1.2 取代基效应 1.3 分子轨道理论 1.4 前线轨道 1.5 共振论 1.6 芳香性和休克尔规则
1
PART ONE
前言
请在此处添加具体内容,文字尽量言简意赅,见到 那描述即可,不必过于繁琐,注意版面美观度。
2
教学目的和要求
1、掌握电子效应(诱导、共轭、超共轭) 的基本概念(定义、方向、强弱、传导)
5
2、键角
键角:两个以上原子和其他原子成键时,两个共 价键之间的夹角。
H
HC H
109 .5 o
H
甲烷
104o
O
乙醚
H
118 o
H
121o
CO
甲醛
说明:键角反映了分子的空间结构,分子结构 不同,键角有所改变。
6
3、键能
键能:当A和B两个原子(气态)结合成A-B气 态分子时放出的能量。
解离能:使1mol A-B气态双原子分子的共价键离 解为气态原子时吸收的能量。Ed(kJmol-1) 说明:键能表示键的牢固程度,键能越大, 键越牢固。
CF
485
CC
611
CC
837
说明:化学环境不同的相同共价键的键能 是有差异的!
9
4、键矩与偶极矩
+
-
HHH F
电负性:原子在分子中吸引电子的能力 非极性共价键:两相同原子组成的共价键 极性共价键:不同原子组成的共价键
10
键的极性用键矩(μ)来衡量,它是正或负电荷
中心所带电量与它们之间距离的乘积: μ=q.d(C.m)
18
若α-H被吸电子基(如-Cl)取代后,羧酸的酸性增强。
诱导效应具有加和性
吸电子基距-COOH越远,对RCOOH的酸性影响越小。
诱导效应是短程的。
19
二、诱导效应的相对强度
(一)确定方法
1.通过测定取代酸、碱离解常数确定
通常是测定取代酸的离解常数的大小来确定取代基诱导效应 的方向和强弱。如取代乙酸比乙酸酸性强,该取代基是-I效 应,反之为+I效应。(注:这是取代乙酸在水溶液中的离解 常数确定的,气相中的结果与此有一些不同)
δ Y +I C δ3R H 标 准 C3R δ X
- I δ
C3R
方向: 吸电子诱导效应:-I;给电子诱导效应:+I
17
特点: 1. 起源于电负性; 2.是一种静电作用,在键链中传递
只涉及到电子云密度分布的改变,即主要 是键的极性的改变,且极性变化一般是单 一方向的;
3.传递有一定限度,经过三个碳原 子以后,已极微弱(短程)
CHE d ( C H ) = 3 4 7 k J . m o l - 1
甲烷C-H键键能(414kJ.mol-1)是上述 解离能的平均值。
8
一些共价键的键能
共价键 键能/kJ.mol-1 共价键
CC
347
C Cl
CH
414
C Br
键能/kJ.mol-1 339 285
CN
305
CI
218
CO
360
说明:键长反映共价键的类型和键的牢固程度。同一类
的共价键在不同的化合物中可能稍有不同!
4
一些共价键的键长
共价键 CC CH CN CO CF
键长/nm 0.154 0.109 0.147 0.143 0.141
共价键 C Cl C Br CI CC CC
键长/nm 0.177 0.191 0.212 0.134 0.120
7
多原子分子键能通常是同一类共价键 的解离能平均值。
C H 4 C H 3 C H 2 C H
C H 3HE d ( C H 3H )= 4 2 3 k J .m o l - 1 C H 2HE d ( C H 2H )= 4 3 9 k J .m o l - 1 C H HE d ( C H H )= 4 4 8 k J . m o l - 1
15
1-1 诱导效应(Inductive effect)
一、诱导效应的涵义和特征
在有机化合物的分子中,由于电负性不同的取代
基的影响沿着键链(单链或重键链)传递,致使
分子中电子云密度,按取代基相对氢的电负性强
弱所决定的方向而偏移的效应,叫诱导效应(I)
。
δ-
δ+
δδ+
δδδ+
X
A
Байду номын сангаас
B
C
16
诱导效应( inductive effect)
14
取代基效应
电子效应
诱导效应 (σ, π) 共轭效应 ( π-π, p-π) 超共轭效应 (σ- π,σ- p)
场效应 空间传递
空间效应 (位阻效应) 物理的相互作用
电子效应 (Electronic effect):
由于取代基的作用而导致的共有电子对 沿共价键转移的结果。
O
O
O 2NC H 2COH >C H 3COH
Cl
μ=3.28x10-30(C.m) μ=0(C.m)
键矩用于衡量共价键的极性,与化学性质有 关;而偶极矩用于衡量分子的极性,与物理 性质有关!
12
5、键的极化性与可极化度
共价键在外界电场作用下,键的极性发生变化,产生 了诱导偶极矩,称为键的极化性,或可极化性。
键的极化性用极化度(率)来衡量。它表示成键电子被 成键原子核电荷约束的相对程度,与许多因素有关: 成键原子的体积: 正比 电负性:反比 C-I > C-Br > C-Cl > C-F 键的种类: 键比键容易极化 外加电场强度: 正比
2、掌握电子效应和空间效应对性能的影响 3、了解场效应的概念及其对化合物性能的
影响 4、学会用电子效应和空间效应解释和预测
反应现象。
3
1.1 共价键的键参数
1、键长
键长:形成共价键的两个原子的原子核之间的距 离。等于成键两原子的共价半径之和。
d
B
A
r4
r3 r2
r1
r1:A的范德华半径 r2:A的共价半径 r3:B的共价半径 r4:B的范德华半径 d :A-B键长
无论键是否有极性,均有一定的极化度
13
1.2 取代基效应
反应的本质: 旧键的断裂,新键的生成 共价键的极性取决于取代基的效应
CH3COOH ClCH2COOH Cl2CHCOOH Cl3CCOOH
pKa 4.76
2.86
1.29
0.65
取代基效应: 分子中的某个原子或原子团对整个分子 或分子中其它部分产生的影响