实验五组合逻辑电路的设计与测试

合集下载

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验

《数字逻辑》实验组合逻辑电路实验组合逻辑电路实验一一、实验目的1、熟悉半加器、全加器的实验原理,学习电路的连接;2、了解基本74LS系列器件(74LS04、00、32)的性能;3、对实验结果进行分析,得到更为优化的实验方案。

二、实验内容1、按照实验原理图连接电路。

2、实验仪器:74LS系列的芯片、导线。

实验箱内的左侧提供了插放芯片的地方,右侧有控制运行方式的开关KC0、KC1及KC2。

其中KC1用来选择实验序号。

序号为0时,手动进行。

自动运行时按加、减选择所做实验的序号。

试验箱内有分别用于手动和自动实验的输入的控制开关Kn和Sn。

3、三、实验原理实验原理图如下:四、实验结果及分析1、将实验结果填入表1-11-1 表2、实验结果分析由实验结果可得半加和:Hi=Ai⊕Bi 进位:Ci=AiBi则直接可以用异或门和与门来实现半加器,减少门的个数和级数,提高实验效率。

实验二全加器一、实验目的1、掌握全加器的实验原理,用简单的与、或非门来实现全加器的功能。

2、分析实验结果,得到全加器的全加和和进位的逻辑表达式,根据表达式用78LS138和与、或、非门来实现全加器。

二、实验内容同半加器的实验,先采用手动方式,再用自动方式。

用自动方式时选实验序号2。

三、实验原理四、实验结果及其分析表1-2 2、实验结果分析从表1-2中的实验结果可以得到:Si=AiBiCi?1+AiBiCi?1+AiBiCi-1=Ai?Bi?Ci-1Ci=AiBi+AiCi-1+BiCi-1故Si=?m(1,2,4,7) Ci=?m(3,5,6,7)因此可用三—八译码器74LS138和与非门实现全加器,逻辑电路图如下:实验三三—八译码器与八—三编码器一、实验目的1、进一步了解译码器与编码器的工作原理,理解译码和编码是相反的过程。

2、在连接电路时,注意译码器74LS138和编码器74LS148使能端的有效级,知道两者的区别。

3、通过实验理解74LS148是优先权编码器。

实验报告组合逻辑电(3篇)

实验报告组合逻辑电(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本概念和组成原理;2. 掌握组合逻辑电路的设计方法;3. 学会使用逻辑门电路实现组合逻辑电路;4. 培养动手能力和分析问题、解决问题的能力。

二、实验原理组合逻辑电路是一种在任意时刻,其输出仅与该时刻的输入有关的逻辑电路。

其基本组成单元是逻辑门,包括与门、或门、非门、异或门等。

通过这些逻辑门可以实现各种组合逻辑功能。

三、实验器材1. 74LS00芯片(四路2输入与非门);2. 74LS20芯片(四路2输入或门);3. 74LS86芯片(四路2输入异或门);4. 74LS32芯片(四路2输入或非门);5. 逻辑电平转换器;6. 电源;7. 连接线;8. 实验板。

四、实验步骤1. 设计组合逻辑电路根据实验要求,设计一个组合逻辑电路,例如:设计一个3位奇偶校验电路。

2. 画出逻辑电路图根据设计要求,画出组合逻辑电路的逻辑图,并标注各个逻辑门的输入输出端口。

3. 搭建实验电路根据逻辑电路图,搭建实验电路。

将各个逻辑门按照电路图连接,并确保连接正确。

4. 测试电路功能使用逻辑电平转换器产生不同的输入信号,观察输出信号是否符合预期。

五、实验数据及分析1. 设计的3位奇偶校验电路逻辑图如下:```+--------+ +--------+ +--------+| | | | | || A1 |---| A2 |---| A3 || | | | | |+--------+ +--------+ +--------+| | || | || | |+-------+-------+||v+--------+| || F || |+--------+```2. 实验电路搭建及测试根据逻辑电路图,搭建实验电路,并使用逻辑电平转换器产生不同的输入信号(A1、A2、A3),观察输出信号F是否符合预期。

(1)当A1=0,A2=0,A3=0时,F=0,符合预期;(2)当A1=0,A2=0,A3=1时,F=1,符合预期;(3)当A1=0,A2=1,A3=0时,F=1,符合预期;(4)当A1=0,A2=1,A3=1时,F=0,符合预期;(5)当A1=1,A2=0,A3=0时,F=1,符合预期;(6)当A1=1,A2=0,A3=1时,F=0,符合预期;(7)当A1=1,A2=1,A3=0时,F=0,符合预期;(8)当A1=1,A2=1,A3=1时,F=1,符合预期。

组合逻辑电路分析

组合逻辑电路分析

实验名称组合逻辑电路分析、设计与测试一、实验目的1.掌握组合逻辑电路的分析与测试方法;2.掌握用门电路设计组合逻辑电路的方法。

二、实验原理1.组合逻辑电路的分析与测试组合逻辑电路是最常见的逻辑电路,即通过基本的门电路(比如与门,与非门,或门,或非门等)来组合成具有一定功能的逻辑电路。

组合逻辑电路的分析,就是根据给定的逻辑电路,写出其输入与输出之间的逻辑函数表达式,或者列出真值表,从而确定该电路的逻辑功能。

组合逻辑电路的测试,就运用实验设备和仪器,搭建出实验电路,测试输入信号和输出信号是否符合理论分析出来的逻辑关系,从而验证该电路的逻辑功能。

组合逻辑电路的分析与测试的步骤通常是:(1)根据给定的组合逻辑电路图,列出输入量和中间量、输出量的逻辑表达式;(2)根据所得的逻辑式列出相应的真值表或者卡诺图;(3)根据真值表分析出组合逻辑电路的逻辑功能;(4)运用实验设备和器件搭建出该电路,测试其逻辑功能。

2.组合逻辑电路的设计与测试组合逻辑电路的设计与测试,就是根据设计的功能要求,列出输入量与输出量之间的真值表,通过化简获得输入量与输出量之间的逻辑表达式,然后根据逻辑表达式用相应的门电路设计该组合逻辑电路,然后运用实验设备与器件搭建实验电路,测试该电路是否符合设计要求。

组合逻辑电路的设计与测试的步骤通常是:(1)根据设计的功能要求,列出真值表或者卡诺图;(2)化简逻辑函数,得到最简的逻辑表达式;(3)根据最简的逻辑表达式,画出逻辑电路;(4)搭建实验电路,测试所设计的电路是否满足要求。

三、预习要求1.阅读理论教材上有关组合逻辑电路的分析与综合以及半加器等章节内容,以达到明确实验内容的目的。

2.查阅附录有关芯片管脚定义和相关的预备材料。

四、实验设备与仪器1.数字电路实验箱;2.芯片74LS00;74LS20。

五、实验内容1.半加器逻辑电路的分析与测试SC图5.5.1 半加器的逻辑电路(1) 根据图5.5.1写出中间量(1Z 、2Z 和3Z )和输出量(S 和C )关于输入量(A 和B )的逻辑表达式。

逻辑实验电路实验报告

逻辑实验电路实验报告

一、实验目的1. 理解和掌握基本逻辑门的工作原理和逻辑功能。

2. 学会使用逻辑门进行组合逻辑电路的设计和测试。

3. 培养动手实践能力和逻辑思维。

二、实验原理逻辑电路是数字电路的基础,由基本逻辑门组成。

基本逻辑门包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。

这些逻辑门可以组合成复杂的逻辑电路,实现各种逻辑功能。

三、实验仪器与设备1. 逻辑门实验板2. 万用表3. 逻辑分析仪4. 计算器四、实验内容1. 基本逻辑门实验(1)观察与门、或门、非门、异或门的逻辑功能。

(2)验证逻辑门输入输出关系。

2. 组合逻辑电路实验(1)设计一个简单的组合逻辑电路,如全加器、半加器等。

(2)测试电路的功能,并分析结果。

3. 复杂逻辑电路实验(1)设计一个复杂的组合逻辑电路,如奇偶校验器、编码器、译码器等。

(2)测试电路的功能,并分析结果。

五、实验步骤1. 基本逻辑门实验(1)将实验板上的与门、或门、非门、异或门分别接入电路。

(2)根据实验原理,观察不同输入下输出信号的变化。

(3)记录输入输出关系,并验证逻辑门的功能。

2. 组合逻辑电路实验(1)根据设计要求,搭建电路。

(2)使用逻辑分析仪观察电路的输入输出信号。

(3)分析结果,验证电路的功能。

3. 复杂逻辑电路实验(1)根据设计要求,搭建电路。

(2)使用逻辑分析仪观察电路的输入输出信号。

(3)分析结果,验证电路的功能。

六、实验结果与分析1. 基本逻辑门实验(1)观察实验结果,验证与门、或门、非门、异或门的逻辑功能。

(2)根据实验结果,总结基本逻辑门的输入输出关系。

2. 组合逻辑电路实验(1)观察实验结果,验证电路的功能。

(2)分析电路的工作原理,总结设计方法。

3. 复杂逻辑电路实验(1)观察实验结果,验证电路的功能。

(2)分析电路的工作原理,总结设计方法。

七、实验总结1. 通过本次实验,掌握了基本逻辑门的工作原理和逻辑功能。

2. 学会了使用逻辑门进行组合逻辑电路的设计和测试。

数电实验

数电实验

Si Ai Bi Ci 1 Ai Bi Ci 1 Ai Bi Ci 1 Ai Bi Ci 1 Ci Ai Bi Ai Ci 1 Bi Ci 1
得 p78 图4 . 3. 6 ------太繁琐
教材p78图4.3.7 用异或门和与非门来实现全加运算。----自己推导公 式----p78。
实验预习要求 1、复习有关计数器部分内容 2、绘出各实验内容的详细线路图 3、拟出各实验内容所需的测试记录表格 4、查手册,给出并熟悉实验所用各集成块的引脚排列图 实验报告 1、画出实验线路图,记录、整理实验现象及实验所得的有 关波形。对实验结果进行分析。 2、总结使用集成计数器的体会。
移位寄存器及其应用
(5)平均传输延迟时间tpd :是衡量门电路开关速度的参数, 它是指输出波形边沿的0.5Um至输入波形对应边沿0.5Um点 的时间间隔。
tpd
1 tpd (tpdL tpdH ) 2
T 6
实验五:组合逻辑电路的设计与测试
一、实验目的 掌握组合逻辑电路的设计与测试方法
二、实验内容 1、设计用与非门及用异或门、与门组成的半加器电路。 要求按本文所述的设计步骤进行,直到测试电路逻辑功能符 合设计要求为止。 2、设计一个一位全加器,要求用异或门、与门、或门组成。 3、设计一位全加器,要求用与或非门实现。 4、设计一个对两个两位无符号的二进制数进行比较的电路; 根据第一个数是否大于、等于、小于第二个数,使相应的三 个输出端中的一个输出为“1”,要求用与门、与非门及或非 门实现。
实验预习要求 1、根据实验任务要求设计组合电路,并根据所给的标准器件 画出逻辑图。 2、如何用最简单的方法验证“与或非”门的逻辑功能是否完好? 3、“与或非”门中,当某一组与端不用时,应作如何处理?

组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告

竭诚为您提供优质文档/双击可除组合逻辑电路的设计实验报告篇一:数电实验报告实验二组合逻辑电路的设计实验二组合逻辑电路的设计一、实验目的1.掌握组合逻辑电路的设计方法及功能测试方法。

2.熟悉组合电路的特点。

二、实验仪器及材料a)TDs-4数电实验箱、双踪示波器、数字万用表。

b)参考元件:74Ls86、74Ls00。

三、预习要求及思考题1.预习要求:1)所用中规模集成组件的功能、外部引线排列及使用方法。

2)组合逻辑电路的功能特点和结构特点.3)中规模集成组件一般分析及设计方法.4)用multisim软件对实验进行仿真并分析实验是否成功。

2.思考题在进行组合逻辑电路设计时,什么是最佳设计方案?四、实验原理1.本实验所用到的集成电路的引脚功能图见附录2.用集成电路进行组合逻辑电路设计的一般步骤是:1)根据设计要求,定义输入逻辑变量和输出逻辑变量,然后列出真值表;2)利用卡络图或公式法得出最简逻辑表达式,并根据设计要求所指定的门电路或选定的门电路,将最简逻辑表达式变换为与所指定门电路相应的形式;3)画出逻辑图;4)用逻辑门或组件构成实际电路,最后测试验证其逻辑功能。

五、实验内容1.用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)设计一个一位全加器。

1)列出真值表,如下表2-1。

其中Ai、bi、ci分别为一个加数、另一个加数、低位向本位的进位;si、ci+1分别为本位和、本位向高位的进位。

2)由表2-1全加器真值表写出函数表达式。

3)将上面两逻辑表达式转换为能用四2输入异或门(74Ls86)和四2输入与非门(74Ls00)实现的表达式。

4)画出逻辑电路图如图2-1,并在图中标明芯片引脚号。

按图选择需要的集成块及门电路连线,将Ai、bi、ci接逻辑开关,输出si、ci+1接发光二极管。

改变输入信号的状态验证真值表。

2.在一个射击游戏中,每人可打三枪,一枪打鸟(A),一枪打鸡(b),一枪打兔子(c)。

组合逻辑电路实验报告

组合逻辑电路实验报告

实验报告课程名称:数字电子技术基础实验 指导老师:樊伟敏 成绩:__________________ 实验名称:组合逻辑电路实验 实验类型:设计类 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一.实验目的1.加深理解全加器和奇偶位判断电路等典型组合逻辑电路的工作原理。

2.熟悉74LS00、74LS11、74LS55等基本门电路的功能及其引脚。

3.掌握组合集成电路元件的功能检查方法。

4.掌握组合逻辑电路的功能测试方法及组合逻辑电路的设计方法。

二、主要仪器设备74LS00(与非门) 74LS55(与或非门) 74LS11(与门) 导线 电源 数电综合实验箱三、实验内容和原理及结果(一)一位全加器实验原理:全加器实现一位二进制数的加法,输入有被加数、加数和来自相邻低位的进位;输出有全加和与向高位的进位。

实验内容:用 74LS00与非门和 74LS55 与或非门设计一个一位全加器电路,并进行功能测试。

设计过程:首先列出真值表,画卡诺图,然后写出全加器的逻辑函数,函数如下:;;1-i Bi)C (Ai + Bi Ai = Ci 1-Ci Bi Ai = Si ⊕⊕⊕异或门可通过,A Bi Ai AB B +=⊕即一个与非门(74LS00),一个与或非门(74LS55)来实现。

,,通过一个与或非门1-i 1-i 1-i Bi)C (Ai + Bi Ai Bi)C (Ai + Bi Ai Bi)C (Ai + Bi Ai = Ci ⊕⊕=⊕用与非门)实现。

再取非,即一个非门( 仿真与实验电路图:仿真与实验电路图如图 1 所示。

专业:工科实验班 姓名:(周三下午)学号:日期:地点:东三306 B-1图1实验数据记录以及实验结果全加器实验测试结果满足全加器的功能,真值表:A B C S Ci0 0 0 0 00 0 1 1 00 1 1 0 10 1 0 1 01 1 0 0 11 1 1 1 11 0 1 0 11 0 0 1 0(二)奇偶位判断器实验原理:数码奇偶位判断电路是用来判别一组代码中含1 的位数是奇数还是偶数的一种组合电路。

实验五组合逻辑电路的设计与测试掌握组合逻辑电路的设计与测试...

实验五组合逻辑电路的设计与测试掌握组合逻辑电路的设计与测试...

实验五组合逻辑电路的设计与测试一、实验目的掌握组合逻辑电路的设计与测试方法二、实验原理1、使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。

设计组合电路的一般步骤如图5-1所示。

图5-1 组合逻辑电路设计流程图根据设计任务的要求建立输入、输出变量,并列出真值表。

然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。

并按实际选用逻辑门的类型修改逻辑表达式。

根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。

最后,用实验来验证设计的正确性。

2、组合逻辑电路设计举例用“与非”门设计一个表决电路。

当四个输入端中有三个或四个为“1”时,输出端才为“1”。

设计步骤:根据题意列出真值表如表5-1所示,再填入卡诺图表5-2中。

由卡诺图得出逻辑表达式,并演化成“与非”的形式Z=ABC+BCD+ACD+ABD=ABC⋅⋅ABC⋅BCDACD根据逻辑表达式画出用“与非门”构成的逻辑电路如图5-2所示。

图5-2 表决电路逻辑图用实验验证逻辑功能在实验装置适当位置选定三个14P插座,按照集成块定位标记插好集成块CC4012。

按图5-2接线,输入端A、B、C、D接至逻辑开关输出插口,输出端Z 接逻辑电平显示输入插口,按真值表(自拟)要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与表5-1进行比较,验证所设计的逻辑电路是否符合要求。

三、实验设备与器件1、+5V直流电源2、逻辑电平开关3、逻辑电平显示器4、直流数字电压表3、 CC4011×2(74LS00) CC4012×3(74LS20) CC4030(74LS86)CC4081(74LS08) 74LS54×2(CC4085) CC4001 (74LS02)四、实验内容1、设计用与非门及用异或门、与门组成的半加器电路。

要求按本文所述的设计步骤进行,直到测试电路逻辑功能符合设计要求为止。

2、设计一个一位全加器,要求用异或门、与门、或门组成。

逻辑电路实验实验报告

逻辑电路实验实验报告

一、实验名称逻辑电路实验二、实验目的1. 掌握基本的数字逻辑电路设计方法。

2. 理解并掌握常用的逻辑门及其组合电路。

3. 提高实验操作技能和观察能力。

4. 培养团队协作精神。

三、实验原理数字逻辑电路是构成数字系统的基本单元,主要由逻辑门、触发器等基本元件组成。

逻辑门是数字电路的基本单元,它按照一定的逻辑规则实现基本的逻辑运算。

本实验主要涉及以下逻辑门及其组合电路:1. 与门(AND):当所有输入信号都为高电平时,输出信号才为高电平。

2. 或门(OR):当至少一个输入信号为高电平时,输出信号才为高电平。

3. 非门(NOT):将输入信号取反。

4. 异或门(XOR):当输入信号不同时,输出信号为高电平。

四、实验器材1. 逻辑门实验板2. 逻辑笔3. 万用表4. 逻辑分析仪5. 示波器6. 计时器五、实验内容1. 与门、或门、非门、异或门的逻辑功能测试2. 组合逻辑电路设计3. 电路仿真与验证六、实验步骤1. 与门、或门、非门、异或门的逻辑功能测试(1)按照实验指导书,连接与门、或门、非门、异或门实验板。

(2)使用逻辑笔和万用表,测试各个逻辑门的输入、输出信号。

(3)记录测试结果,与理论值进行对比,分析实验误差。

2. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门,绘制电路图。

(2)使用实验板,搭建组合逻辑电路。

(3)测试电路功能,验证设计是否正确。

3. 电路仿真与验证(1)使用逻辑分析仪或示波器,观察电路的输入、输出信号波形。

(2)分析波形,验证电路功能是否符合预期。

七、实验结果与分析1. 与门、或门、非门、异或门的逻辑功能测试实验结果如下:与门:当所有输入信号都为高电平时,输出信号才为高电平。

或门:当至少一个输入信号为高电平时,输出信号才为高电平。

非门:将输入信号取反。

异或门:当输入信号不同时,输出信号为高电平。

2. 组合逻辑电路设计(1)设计一个4位二进制加法器,包括两个输入端(A、B)和两个输出端(S、C)。

数字逻辑电路实验报告

数字逻辑电路实验报告

数字逻辑电路实验报告指导老师:班级:学号:姓名:时间:第一次试验一、实验名称:组合逻辑电路设计1二、试验目的:掌握组合逻辑电路的功能测试。

1、验证半加器和全加器的逻辑功能。

2、、学会二进制数的运算规律。

3、试验所用的器件和组件:三、74LS00 3片,型号二输入四“与非”门组件74LS20 1片,型号四输入二“与非”门组件74LS86 1片,型号二输入四“异或”门组件实验设计方案及逻辑图:四、/全减法器,如图所示:1、设计一位全加时做减法运时做加法运算,当M=1M决定的,当M=0 电路做加法还是做减法是由SCin分别为加数、被加数和低位来的进位,、B和算。

当作为全加法器时输入信号A分别为被减数,减数Cin、B和为和数,Co为向上的进位;当作为全减法时输入信号A 为向上位的借位。

S为差,Co和低位来的借位,1)输入/(输出观察表如下:(2)求逻辑函数的最简表达式函数S的卡诺图如下:函数Co的卡诺如下:化简后函数S的最简表达式为:Co的最简表达式为:2(3)逻辑电路图如下所示:、舍入与检测电路的设计:2F1码,用所给定的集成电路组件设计一个多输出逻辑电路,该电路的输入为8421为奇偶检测输出信号。

当电路检测到输入的代码大于或F2为“四舍五入”输出信号,的个数为奇数时,电路。

当输入代码中含1F1=1;等于5是,电路的输出其他情况F1=0 F2=0。

该电路的框图如图所示:的输出F2=1,其他情况输出观察表如下:(输入/0 1 0 0 1 01 0 1 0 0 11 1 1 0 0 01 0 1 1 1 11 0 0 1 0 11 0 1 0 0 11 0 0 1 1 01 1 1 0 1 11 0 1 1 0 011111求逻辑函数的最简表达式(2)的卡诺如下:函数F1 F2函数的卡诺图如下:的最简表达式为:化简后函数F2 的最简表达式为:F1)逻辑电路图如下所示;(3课后思考题五、化简包含无关条件的逻辑函数时应注意什么?1、答:当采用最小项之和表达式描述一个包含无关条件的逻辑问题时,函数表达式中,并不影响函数的实际逻辑功能。

组合逻辑电路的设计和逻辑功能验证

组合逻辑电路的设计和逻辑功能验证

组合逻辑电路的设计和逻辑功能验证一、实验目的1.控制组合逻辑电路的设计主意。

2.学会使用集成电路的逻辑功能表。

二、实验仪器及材料1.数字电路实验箱、双踪示波器、数字万用表。

2.元器件:双输入与门CD4081 1片四异或门CD4070 2片四位数值比较器CD4063 1片三、注重事项及说明1.CMOS门电路的电源电压为+3V—+15V,有些可达18V,实验前应先验证或调节准确,才可给门电路通电,本实验可选+5V供电。

2.门电路的输出端不可直接并联,也不可直接联连电源+5V和电源地,否则将造成门电路永远性损坏。

3.CMOS集成电路的多余输入端不可悬空。

4.实验时应仔细检查,仅当各条联线所有准确无误时,方可通电。

四、实验内容、原理及步骤(1)设计一个一位比较器(大、同、小)的组合电路并验证其逻辑功能。

(2)验证四位数值比较器的逻辑功能。

(3)设计一个八位二进制奇偶检测器的组合电路并验证其逻辑功能。

(4)设计一个两位二进制数比较器(大、同、小)的组合电路(选做)。

CD4081为四双输入与门;CD4070为四异或门,CD4063为四位数值比较器,它们均为CMOS集成电路。

图4-1为上述三种集成电路的引脚功能描述。

第1 页/共5 页图 6-11.一位(大、同、小)比较器的设计及其逻辑功能的验证 ① 按照命题要求列真值表设A 、B 为两个二进制数的某一位,即比较器的输入,M 、 G 、L 为比较器的输出,分离表示两个二进制数比较后的大、同、小结果,其逻辑功能真值表见表4.1。

② 写表达式按照表4.1的真值表,并为了减少门电路的种类,我们做如下的运算: 同 B A B A B A AB B A G ⊕=+=+= 大 )()(B A A B A B A A B A M ⊕=+== 小 )()(B A B B A B A B B A L ⊕=+== X X =⊕1 ③ 画逻辑图按照上述表达式,读者可用两个异或门和两个与门实现上述的大、同、小比较器,并将逻辑图画在表4.1右边的空白处。

实验5组合逻辑电路的设计

实验5组合逻辑电路的设计

实验5 组合逻辑电路的设计学生使用指导书实验项目名称:组合逻辑电路的设计实验学时:2实验要求:必做实验类型:设计型大纲要求:通过实验,掌握使用中、小规模集成电路来设计组合电路是最常见的逻辑电路的一般方法;通过实验,验证设计正确性。

一、实验目的掌握组合逻辑电路的设计与测试方法二、实验原理1、组合逻辑电路设计流程使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。

设计组合电路的一般步骤如图5.1所示。

根据设计任务的要求建立输入、输出变量,并列出真值表。

然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。

并按实际选用逻辑门的类型修改逻辑表达式。

根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。

最后,用实验来验证设计的正确性。

2、组合逻辑电路设计举例要求:使用“与非”门设计一个表决电路。

当四个输入端中有三个或四个为“1”时,输出端才为“1”。

设计步骤:根据题意列出真值表,如表5.1所示,再填入表决器卡诺图中,如表5.2所示。

B 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1C 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1Z 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1DA00 01 11 10BC0001 111 1 1 110 1由卡诺图化简,得出逻辑表达式,并演化成“与非”的形式如下:Z=ABC+BCD+ACD+ABD根据逻辑表达式画出用“与非门”构成的逻辑电路如图5.2所示。

图5.2 表决电路逻辑图线路连接如下:实验线路选择2片74ls10(U1使用了全部的三个门,也可以每片使用2个门,避免连线拥塞);一片74LS20A、B、C、D四个输入引脚连接4个开关量输出开关(K3~K0);输出接LED指示。

实验验证逻辑功能:按上图接线,输入端A、B、C、D接至逻辑开关输出插口,输出端Z接逻辑电平显示输入插口,按真值表(自拟)要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与表5.2进行比较,验证所设计的逻辑电路是否符合要求。

组合电路研究实验报告(3篇)

组合电路研究实验报告(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。

2. 掌握常用门电路的功能和特性。

3. 通过实验加深对组合逻辑电路分析和设计能力的培养。

4. 学习使用逻辑分析仪和示波器等实验设备。

二、实验原理组合逻辑电路是由逻辑门电路组成的,其输出仅取决于当前的输入,与电路的历史状态无关。

常见的组合逻辑电路有:半加器、全加器、编码器、译码器、多路选择器等。

三、实验器材1. 74LS00、74LS20等集成电路2. 逻辑分析仪3. 示波器4. 电源5. 逻辑探头6. 实验板四、实验内容及步骤1. 半加器实验(1)设计半加器电路,包括输入端A和B,输出端S和C。

(2)使用与非门和异或门搭建半加器电路。

(3)将输入端A和B接入逻辑探头,输出端S和C接入逻辑分析仪。

(4)通过逻辑分析仪观察半加器电路的输出波形,验证电路功能。

2. 全加器实验(1)设计全加器电路,包括输入端A、B和进位输入端Cin,输出端S和进位输出端Cout。

(2)使用与非门和异或门搭建全加器电路。

(3)将输入端A、B和进位输入端Cin接入逻辑探头,输出端S和进位输出端Cout接入逻辑分析仪。

(4)通过逻辑分析仪观察全加器电路的输出波形,验证电路功能。

3. 编码器实验(1)设计4-2编码器电路,包括输入端I0、I1、I2、I3和输出端Y0、Y1、Y2、Y3。

(2)使用与门和或门搭建4-2编码器电路。

(3)将输入端I0、I1、I2、I3接入逻辑探头,输出端Y0、Y1、Y2、Y3接入逻辑分析仪。

(4)通过逻辑分析仪观察编码器电路的输出波形,验证电路功能。

4. 译码器实验(1)设计2-4译码器电路,包括输入端I0、I1和输出端Y0、Y1、Y2、Y3。

(2)使用与门和或门搭建2-4译码器电路。

(3)将输入端I0、I1接入逻辑探头,输出端Y0、Y1、Y2、Y3接入逻辑分析仪。

(4)通过逻辑分析仪观察译码器电路的输出波形,验证电路功能。

5. 多路选择器实验(1)设计4选1多路选择器电路,包括输入端I0、I1、I2、I3和选择端S0、S1,输出端Y。

数电实验5 冒险与竞争(含仿真图)

数电实验5 冒险与竞争(含仿真图)

实验五组合电路中的竞争与冒险一、实验目的1、观察组合电路中的竞争与冒险现象。

2、了解消除竞争与冒险现象的方法。

二、实验仪器及器件1、实验箱、万用表、示波器。

2、74LS00X3、74LS20X1、330PF 电容X1。

三、实验预习1、复习与组合逻辑电路竞争与冒险有关内容。

2、画出用74LS00 实现实验内容中F 函数的逻辑图。

3、写出F 的真值表。

4、找出变量B、D 变化过程中产生险象时,其他变量的组合。

四、实验原理1、竞争冒险现象及其成因对于组合逻辑电路,输出仅取决于输入信号的取值组合,但这仅是指电路的稳定解而言,没有涉及电路的暂态过程。

实际上,在组合逻辑电路中信号的传输可能通过不同的路径而汇合到某一门的输入端上。

由于门电路的传输延迟,各路信号对于汇合点会有一定的时差。

这种现象称为竞争。

如果竞争现象的存在不会使电路产生错误的输出,则成为非临界竞争;若果使电路的输出产生了错误输出,则称为临界竞争,通常称为逻辑冒险现象。

一般说来,在组合逻辑电路中,如果有两个或两个以上的信号参差地加到同一门的输入端,在门的输出端得到稳定的输出之前,可能出现短暂的,不是原设计要求的错误输出,其形状是一个宽度仅为时差的窄脉冲,通常称为尖峰脉冲或毛刺。

2、检查竞争冒险现象的方法在输入变量每次只有一个改变状态的简单情况下,可以通过逻辑函数式判断组合逻辑电路中是否有竞争冒险存在。

如果输出端门电路的两个输入信号 A 和 A 是输入变量A 经过两个不同的传输途径而来的,那么当输入变量的状态发生突变时输出端便有可能产生尖峰脉冲。

因此,只要输出端的逻辑函数在一定条件下化简成Y=A+A 或Y=AA则可判断存在竞争冒险3、消除竞争冒险现象的方法(1)接入滤波电路在输出端并接入一个很小的滤波电容Cf,足可把尖峰脉冲的幅度削弱至门电路的阈值电压以下。

(2)引入选通脉冲。

对输出引进选通脉冲,避开现象。

(3)修改逻辑设计。

在逻辑函数化简选择乘积项时,按照判断组合电路是否存在竞争冒险的方法,选择使逻辑函数不会使逻辑函数产生竞争冒险的乘积项。

组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告

组合逻辑电路的设计实验报告一、实验目的组合逻辑电路是数字电路中较为基础且重要的部分。

本次实验的主要目的是通过设计和实现简单的组合逻辑电路,深入理解组合逻辑电路的工作原理和设计方法,掌握逻辑门的运用,提高逻辑分析和问题解决的能力。

二、实验原理组合逻辑电路是指在任何时刻,输出状态只取决于同一时刻输入信号的组合,而与电路以前的状态无关。

其基本组成单元是逻辑门,如与门、或门、非门等。

通过将这些逻辑门按照一定的逻辑关系连接起来,可以实现各种不同的逻辑功能。

例如,一个简单的 2 输入与门,只有当两个输入都为 1 时,输出才为 1;而 2 输入或门,只要有一个输入为 1,输出就为 1。

组合逻辑电路的设计方法通常包括以下几个步骤:1、分析问题,确定输入和输出变量,并定义其逻辑状态。

2、根据问题的逻辑关系,列出真值表。

3、根据真值表,写出逻辑表达式。

4、对逻辑表达式进行化简和变换,以得到最简的表达式。

5、根据最简表达式,选择合适的逻辑门,画出逻辑电路图。

三、实验设备与器材1、数字电路实验箱2、集成电路芯片:74LS00(四 2 输入与非门)、74LS04(六反相器)、74LS08(四 2 输入与门)、74LS32(四 2 输入或门)等。

3、导线若干四、实验内容与步骤(一)设计一个一位全加器1、分析问题一位全加器有三个输入变量 A、B 和 Cin(低位进位),两个输出变量 S(和)和 Cout(进位输出)。

2、列出真值表| A | B | Cin | S | Cout |||||||| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 1 | 1 | 0 || 0 | 1 | 0 | 1 | 0 || 0 | 1 | 1 | 0 | 1 || 1 | 0 | 0 | 1 | 0 || 1 | 0 | 1 | 0 | 1 || 1 | 1 | 0 | 0 | 1 || 1 | 1 | 1 | 1 | 1 |3、写出逻辑表达式S = A⊕B⊕CinCout = AB +(A⊕B)Cin4、化简逻辑表达式S = A⊕B⊕Cin 已最简Cout = AB +(A⊕B)Cin = AB + ACin + BCin5、画出逻辑电路图使用 74LS00、74LS08 和 74LS32 芯片实现,连接电路如图所示。

典型组合电路实验报告(3篇)

典型组合电路实验报告(3篇)

第1篇一、实验目的1. 理解组合逻辑电路的基本原理和设计方法。

2. 掌握常用组合逻辑电路(如半加器、全加器、编码器、译码器等)的功能和实现方法。

3. 学会使用门电路和逻辑器件设计简单的组合逻辑电路。

4. 通过实验验证电路设计的正确性和性能。

二、实验原理组合逻辑电路是一种在任意时刻,输出信号仅取决于当前输入信号的逻辑电路。

其基本原理是通过基本的逻辑门(如与门、或门、非门、异或门等)来实现复杂的逻辑功能。

三、实验器材1. 74LS00与非门芯片2. 74LS20异或门芯片3. 74LS138译码器芯片4. 74LS151多路选择器芯片5. 电阻、电容、导线等6. 逻辑分析仪或示波器四、实验内容1. 半加器电路设计设计一个半加器电路,实现两个一位二进制数的加法运算。

- 确定输入输出变量:设A、B为输入,S为输出和,C为进位。

- 列出真值表:| A | B | S | C ||---|---|---|---|| 0 | 0 | 0 | 0 || 0 | 1 | 1 | 0 || 1 | 0 | 1 | 0 || 1 | 1 | 0 | 1 |- 画出逻辑图,并使用与非门和异或门搭建电路。

- 使用逻辑分析仪或示波器验证电路的正确性。

2. 全加器电路设计设计一个全加器电路,实现两个一位二进制数及来自低位进位的加法运算。

- 确定输入输出变量:设A、B为输入,Cin为低位进位,S为输出和,Cout为进位。

- 列出真值表:| A | B | Cin | S | Cout ||---|---|-----|---|------|| 0 | 0 | 0 | 0 | 0 || 0 | 0 | 1 | 1 | 0 || 0 | 1 | 0 | 1 | 0 || 0 | 1 | 1 | 0 | 1 || 1 | 0 | 0 | 1 | 0 || 1 | 0 | 1 | 0 | 1 || 1 | 1 | 0 | 0 | 1 || 1 | 1 | 1 | 1 | 1 |- 画出逻辑图,并使用与非门、异或门和与门搭建电路。

实验五 组合逻辑电路

实验五 组合逻辑电路

实验五、组合逻辑电路一、实验目的1、掌握组合逻辑电路原理2、掌握半加器原理3、掌握使用Multisim仿真逻辑电路的方法二、实验原理1、组合逻辑电路在任何时刻,输出状态只决定于同一时刻各输入状态的组合,而与其他时间的状态无关的电路称为组合逻辑电路。

2、半加器半加器有两个二进制的输入,其将输入的值相加,并输出结果到和(Sum)和进位(Carry)。

半加器虽能产生进位值,但半加器本身并不处理进位值。

其逻辑电符号如下所示:图5.1 半加器逻辑符号三、预习要求1、组合逻辑电路的分析方法2、半加器原理3、字信号发生器(Word Generator)、探针(Probe)、逻辑转换仪(Logic Converter)、逻辑分析仪(Logic Analyzer)的使用方法四、实验内容1、组合逻辑电路功能测试图5.2(1)利用2片74ls00绘制图5.2电路。

(2)使用字信号发生器(Word Generator)作为输入,探针(Probe)作为输出,截图显示以下输入时,探针的输出:A=0;B=1;C=1;(3)使用逻辑转换仪(Logic Converter),分别记录输入与输出Y1,输入与Y2关系,记录Y1、Y2与输入的最简式(4)使用逻辑转换仪(Logic Converter),分别记录输入与输出Y1,输入与Y2关系,填写完整表5.1的真值表,写出表达式。

表5.1 组合逻辑电路真值表2、半加器设计(1)采用一片异或门(74ls86)和一片与非门组成半加器,并绘制出电路图(2)使用逻辑转换仪(Logic Converter),分别记录S、C与输入的关系,写出最简式(3)使用逻辑转换仪(Logic Converter),分别记录S、C与输入的关系,填写完整表2.2的真值表表5.2 半加器真值表(4)使用字信号发生器(Word Generator),按照真值表顺序设定产生的信号,并用逻辑分析仪(Logic Analyzer)检测,截图并用游标标示出从00开始的一个完整的周期(6)总结到目前为止数字电路的各种测试方法的优缺点。

实验五中规模组合逻辑电路的设计

实验五中规模组合逻辑电路的设计

实验五 中规模组合逻辑电路的设计一、实验目的(1) 熟悉中规模集成电路的使用(2) 掌握用中规模集成电路设计组合逻辑电路的方法 二、实验器材(1) 直流稳压电源、数字逻辑实验箱 (2) 74LS00、74LS20、74LS151、74LS138 三、实验内容1、 路灯控制电路试用数据选择器设计一个路灯控制电路,要求在四个不同的地方都能独立的开灯和关灯。

2、 一位全减器试用3—8译码器74SL151设计一位全减器。

四、实验步骤1、(1)根据题意可知,奇数个开关置1,灯亮,反之,灯灭。

用A 、B 、C 、D 表示四个A B C D F A B C D F 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0(2)由真值表画出F 的卡诺图,并求出在A 、B 、C 变量的各组取值下F 与D 的关系C\AB 0 D ⎺D D ⎺D 1⎺D D⎺D DF由图可得:F=(ABC)m (D,⎺D, ⎺D,D,⎺D,D,D,⎺D)T(3) 由F 的逻辑表达式,选择逻辑器件,画出电路图(4) 按照电路图,连接实验器件,测试、检验电路功能 00 1 1011 1 11 1 1 10 1 12、(1)列真值表。

全减器有三个输入变量:被减数A n、减数B n、低位向本位的借位C n;有两个输出变量:本位差D n、本位向高位的借位C n+1。

根据二进制数的减法运算规律列出真值表。

A nB n CnC n+1D n0 0 0 0 00 0 1 1 10 1 0 1 10 1 1 1 01 0 0 0 11 0 1 0 01 1 0 0 01 1 1 1 1(2)由真值表可以写出C n+1和D n的表达式C n+1=m1+m2+m3+m7=⎺Y1⋅⎺Y2⋅⎺Y3⋅⎺Y7D n=m1+m2+m4+m7=⎺Y1⋅⎺Y2⋅⎺Y4⋅⎺Y7(3)根据表达式,选择芯片,画出逻辑电路图:(4)按照电路图,连接实验器件,测试功能五、思考题总结试用中规模组合逻辑器件设计逻辑电路的一般方法。

组合逻辑电路分析与设计实验报告

组合逻辑电路分析与设计实验报告

一、页组合逻辑电路分析与设计实验报告二、目录1.页2.目录3.摘要4.背景和现状分析4.1逻辑电路的基础概念4.2组合逻辑电路的应用领域4.3当前组合逻辑电路设计的挑战5.项目目标5.1实验目的和预期成果5.2技术和方法论5.3创新点和实际应用6.章节一:逻辑门和基本组合电路7.章节二:组合逻辑电路的设计方法8.章节三:实验操作和数据分析9.章节四:实验结果和讨论10.结论与建议三、摘要四、背景和现状分析4.1逻辑电路的基础概念逻辑电路是数字电路的基本组成部分,它们执行基本的逻辑运算,如与、或、非等。

组合逻辑电路(CLC)是由多个逻辑门组成的电路,其输出仅取决于当前输入的组合,而与电路以前的状态无关。

这种电路广泛应用于各种电子设备中,从计算机处理器到简单的电子玩具。

4.2组合逻辑电路的应用领域组合逻辑电路在现代技术中扮演着关键角色。

它们是计算机处理器、数字信号处理器、通信设备和其他许多电子系统的基础。

随着技术的进步,组合逻辑电路的设计和应用也在不断扩展,例如在、物联网和高速通信领域。

4.3当前组合逻辑电路设计的挑战尽管组合逻辑电路的设计原理相对简单,但在实际应用中面临着一系列挑战。

这些挑战包括提高电路的速度和效率、减少能耗、以及设计更复杂的逻辑功能。

随着集成电路尺寸的不断缩小,量子效应和热效应也对电路的设计和性能提出了新的挑战。

五、项目目标5.1实验目的和预期成果本实验的主要目的是深入理解和掌握组合逻辑电路的设计原理和实验方法。

预期成果包括成功设计和实现一个具有特定功能的组合逻辑电路,并对其进行性能分析。

5.2技术和方法论实验将采用现代电子设计自动化(EDA)工具进行电路设计和仿真。

实验方法将包括理论分析、电路设计、仿真测试和性能评估。

5.3创新点和实际应用本实验的创新点在于探索新的设计方法和优化技术,以提高组合逻辑电路的性能和效率。

实验成果将有望应用于实际电子产品的设计和开发,特别是在需要高性能和低功耗的场合。

组合电路实验报告总结(3篇)

组合电路实验报告总结(3篇)

第1篇一、实验背景组合逻辑电路是数字电路的基础,它由各种基本的逻辑门电路组成,如与门、或门、非门等。

本实验旨在通过组装和测试组合逻辑电路,加深对组合逻辑电路原理的理解,并掌握基本的实验技能。

二、实验目的1. 理解组合逻辑电路的基本原理和组成。

2. 掌握基本的逻辑门电路的连接方法。

3. 学会使用万用表等实验工具进行电路测试。

4. 提高动手能力和实验设计能力。

三、实验内容1. 组合逻辑电路的组装实验中,我们组装了以下几种组合逻辑电路:(1)半加器:由一个与门和一个或门组成,实现两个一位二进制数的加法运算。

(2)全加器:由两个与门、一个或门和一个异或门组成,实现两个一位二进制数及来自低位进位信号的加法运算。

(3)编码器:将一组输入信号转换为二进制代码输出。

(4)译码器:将二进制代码转换为相应的输出信号。

2. 组合逻辑电路的测试使用万用表对组装好的电路进行测试,验证电路的逻辑功能是否正确。

3. 电路故障排除通过观察电路的输入输出波形,找出电路故障的原因,并进行相应的修复。

四、实验过程1. 组装电路按照实验指导书的要求,将各种逻辑门电路按照电路图连接起来。

注意连接时要注意信号的流向和电平的高低。

2. 测试电路使用万用表测试电路的输入输出波形,验证电路的逻辑功能是否正确。

3. 故障排除通过观察电路的输入输出波形,找出电路故障的原因。

例如,如果输入信号为高电平,但输出信号为低电平,可能是与非门输入端短路或者输出端开路。

五、实验结果与分析1. 半加器通过测试,发现半加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。

2. 全加器通过测试,发现全加器的输出波形符合预期,即当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。

3. 编码器通过测试,发现编码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。

4. 译码器通过测试,发现译码器的输出波形符合预期,即当输入信号为高电平时,对应的输出端为低电平;当输入信号为低电平时,对应的输出端为高电平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生实验报告
系别电子工程学院课程名称电子技术实验
班级11通信1班实验名称组合逻辑电路
姓名钟伟纯实验时间2012年11月27日
学号201141302114指导教师张宗念
报 告 内 容
一、实验目的和任务
掌握组合逻辑电路的设计与测试方法
二,实验原理
1、 使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。


计组合电路的一般步骤如图1所示。

图1 组合逻辑电路设计流程图
根据设计任务的要求建立输入、输出变量,并列出真值表。

然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。

并按实际选用逻辑门的类型修改逻辑表达式。

根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。

最后,用实验来验证设计的正确性。

2、 组合逻辑电路设计举例
用“与非”门设计一个表决电路。

当四个输入端中有三个或四个
为“1”时,输出端才为“1”。

设计步骤:根据题意列出真值表如表1所示,再填入卡诺图表2中。

表1
D0000000011111111 A0000111100001111 B0011001100110011 C0101010101010101 Z0000000100010111
表2
DA
00011110
BC
00
011
11111
101
由卡诺图得出逻辑表达式,并演化成“与非”的形式
Z=ABC+BCD+ACD+ABD

根据逻辑表达式画出用“与非门”构成的逻辑电路如图2所示。

图2 表决电路逻辑图
用实验验证逻辑功能
在实验装置适当位置选定三个14P插座,按照集成块定位标记插好集成块CC4012。

按图2接线,输入端A、B、C、D接至逻辑开关输出插口,输出端Z接逻辑电平显示输入插口,按真值表(自拟)要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与表1进行比较,验证所设计的逻辑电路是否符合要求。

三、实验设备与器件
1、 +5V直流电源
2、 逻辑电平开关
3、 逻辑电平显示器
4、 直流数字电压表
3、 CC4011×2(74LS00) CC4012×3(74LS20)
CC4030×1(74LS86)
CC4081×1(74LS08) 74LS10×1(CC4023)
CC4001×1 (74LS02)
四、实验内容
1、设计一个路灯控制电路。

要求在4个不同的地方都能独立控制路灯的亮和灭。

当一个开关动作后灯亮,则另一个开关动作后灯灭。

要求用异或门实现。

增值表1.
输 入输出
A B C D Y
00000
00011
00101
00110
01001 01010 01100 01111 10001 10010 10100 10111 11000 11011 11101 11110 得Y=(A⊕B)⊕(C⊕D)
电路图
3.试用与非门设计一个监测信号灯工作状态的逻辑电路。

其条件是,信号灯由红(用R表示)、黄(用Y表示)、緑(用G表示)三种颜色灯组成,正常工作时只能是红、緑或黄加上緑当中的一种灯亮。

而当出现其它五种灯亮状态时,电路发生故障,要求逻辑电路发出故障信号(故障信号由灯亮表示)。

增值表
输入输出R Y G Y
0001
0010
0101
0110
1000
1011
1101
1111
得Y=R’G’+RYG’+RG=[(R’G’)’*(RYG’)’*(RG)’]
电路图
五.实验结论与心得
通过本次实验,我更加地了解到实践的重要性。

只有通过实践,才能更加牢固地掌握已有的知识。

在此次实验过程中,能过充分利用老师上课讲的知识,顺利地设计出电路图,并且很快地把实物连接起来,组成完整的电路。

成绩
教师签名批改时间
年 月
日。

相关文档
最新文档