钢铁生产过程余热资源回收与利用技术
钢铁企业余热资源的回收与利用
钢铁企业余热资源的回收与利用摘要:本文首先分析了钢铁企业余热回收的现状,接着分析了钢铁企业余热资源的回收与利用的措施,希望能够为相关人员提供有益的参考和借鉴。
关键词:钢铁企业;余热资源;回收;利用;措施引言:当烟气从出口排出时的余热温度在100℃以下,那么将会产生大量的潜热,将这些潜热转换为热量在钢铁行业可以得到有效的应用。
类似的余热利用数不胜数,每年通过余热的利用,钢铁行业可以节约大量的蒸汽等物质,由此可见,余热回收能够有效的节约能源成本,促进钢铁行业的发展,同时也能为我国的节能减排工作做出突出贡献。
1钢铁企业余热回收的现状当前,我国的钢铁企业在进行作业的过程中主要有几种产生余热的形式,分别是高温烟气、冷却介质、炉渣、高温凝结水等。
目前,我国很多钢铁企业在进行钢铁生产的过程中都会通过对于余热的利用来进行低压蒸汽的生产,这种余热回收手段也是最基础、最广泛的余热回收利用手段。
但是,仅仅只有这一种余热利用回收手段仍然显得我国钢铁企业在进行余热回收利用的过程中没有体现其应有的技术水平,余热回收率过低,仅仅有30%左右。
这其中又以高温余热的回收利用率最高,可以达到40%以上,而低温余热的回收利用率却很少,只有1%左右。
但是如果针对世界上其他先进国家进行观察,我们能够发现先进国家的钢铁企业在进行运转的过程中,对于余热的回收利用率往往非常高,普遍在85%以上甚至90%以上。
由此可见,当前我国在钢铁企业余热回收方面仍然处于初级阶段。
2钢铁企业余热资源的回收与利用的措施2.1烧结环冷系统余热回收利用在钢铁生产的烧结工序中,烧结矿在经过环冷机冷却时,会产生大量温度较高的热烟气,如果这部分烟气直接排入大气,不仅会造成较大的能源损失,还会对大气造成严重污染。
烧结工序的能耗仅次于炼钢工序,约占总能耗的9%-15%,所以对烧结环冷机中的余热进行回收利用具有很大的节能空间,并且可产生较大的经济效益。
在烧结机生产线中都会配备相应的环冷机,对于烧结矿经过环冷机时产生的高温烟气可以采用两种余热回收利用措施。
钢铁工艺流程废热利用分析
一、钢铁工艺流程废热的定义与分类钢铁工业是重点的耗能大户,其总能耗约占总能耗的15%左右,钢铁生产工艺流程长、工序多,且主要以高温冶炼、加工为主,生产过程中产生大量余热能源,详见下表所示。
各种余热资源约占全部生产能耗的68%,这说明在目前钢铁生产过程中,2/3以上的能量是以废气、废渣和产品余热形式被消耗。
钢铁流程中的余热按照余热资源的品种分类,如下表:钢铁各流程中均有不同品质的废热产生,各废热来源如下:二、钢铁工艺流程废热利用技术现状(一)常规废热利用方式钢铁流程的废热利用中,废热回收发电是经济性比较高的一种废热回收方式,因此钢铁行业的废热回收主要以废热回收发电方式为主,在余热发电技术的研发应用方面,与发达国家钢铁工业相比,我们钢铁行业的余热发电技术起步较晚。
目前,钢铁工业余热发电主要有以下几种方式,一是利用焦化、烧结工序烟气余热换热产生过热蒸汽发电;二是利用炼钢、轧钢工序烟气余热换热产生饱和蒸汽发电;第三种是煤气-蒸汽联合循环发电。
另外目前有人提出利用高炉的冲渣热水余热进行ORC发电,此技术目前尚在论证中,市场未有应用案例。
1、过热蒸汽发电(1)干熄焦余热发电炼焦生产中,高温红焦冷却有两种熄焦工艺:一种是传统的采用水熄灭炽热红焦的工艺,简称湿熄焦,另一种是采用循环惰性气体与红焦进行热交换冷却焦炭,简称干熄焦。
干熄焦余热发电技术是指利用与红焦热交换产生的高温烟气驱动汽轮发电机组进行发电,其主要工艺流程为:焦炉生产出来的约1000℃赤热焦炭运送入干熄炉,在冷却室内与循环风机鼓入的冷惰性气体进行热交换。
惰性气体吸收红焦的显热,温度上升至800℃左右,经余热锅炉生产中高压过热蒸汽,驱动汽轮发电机组发电,同时汽轮机还可产生低压蒸汽用于供热。
随着干熄焦技术所产生的社会和节能环保效益得到普遍认可,干熄焦余热发电技术也得到了国内钢铁企业越来越广泛的应用。
该项发电技术已十分成熟,目前的发展趋势集中在进一步提高余热的回收利用效率上,正逐步由传统的小型中压参数系统向系列化、大型化、高参数发展。
钢铁生产过程余热资源的回收与利用的开题报告
钢铁生产过程余热资源的回收与利用的开题报告一、选题背景钢铁生产是典型的大能耗、大污染的行业,生产过程中产生了大量的余热资源。
这些余热资源如果得不到充分利用,将会造成能源的浪费,同时也会给环境带来严重的污染。
因此,对钢铁生产过程中产生的余热资源进行回收和利用,已经成为企业发展中不可忽视的一项重要工作。
二、研究目的和意义本文旨在研究钢铁生产过程的余热资源回收与利用,探讨其实现技术、经济和环境的可行性,提出提高钢铁生产能源利用率、降低企业能源消耗、减少环境污染的对策和建议,促进能源的可持续利用和企业的可持续发展。
三、研究内容和方法(一)研究内容:1.钢铁生产过程中产生的余热资源的类型、范围、产量及潜在价值进行调查和分析。
2.综述余热资源回收与利用的相关技术和应用,重点研究余热资源的直接利用和间接利用两种主要方式。
3.选择一些典型的企业进行实地调研和信息采集,为后续的研究提供基础数据。
4.从技术、经济和环境三个方面对余热资源的回收与利用进行评价,深入探讨可行性和适用性分析。
5.根据分析结果,提出具体的对策和建议,以提高企业的能源利用率、降低能源消耗、减少环境污染并推进可持续发展。
(二)研究方法:1.文献资料法:收集、整理有关文献资料,分析余热资源回收与利用的发展现状和趋势。
2.实地调查和采集法:选择一些典型的企业进行实地调研和信息采集,了解企业的生产情况和实际现状。
3.理论分析法:通过理论分析的方法,对余热资源的回收与利用进行评价,分析其技术、经济和环境的可行性和适用性。
四、预期成果1.钢铁生产过程中产生的余热资源的类型、产量和潜在价值,以及余热资源回收与利用的现状和趋势的分析报告2.关于余热资源的直接利用和间接利用的技术特点、适用性、经济性和环境效益的评价报告3.一些有代表性的钢铁企业的余热资源回收与利用的实例分析报告4.建议和对策,包括提高钢铁生产能源利用率、降低企业能源消耗、减少环境污染的对策和建议报告。
余热回收的应用案例有哪些?
余热回收的应用案例有哪些?一、工业领域在工业领域,余热回收可以用于提高生产效率,降低能耗,减少环境污染。
以下是几个常见的应用案例:1. 钢铁行业:钢铁生产过程中会产生大量的高温烟气和废热,利用余热回收技术可以将这些废热用于发电或供热,从而提高能源利用效率。
2. 石化行业:石化过程中会产生大量的热能,通过余热回收系统,可以将这些热能转化为电能或用作供热,降低生产成本,减少环境污染。
3. 纸浆造纸行业:纸浆造纸过程中会产生大量的废热和废水,利用余热回收系统可以将这些废热用于供热或蒸汽发生器,实现能源的再利用,提高能源效率。
二、建筑领域在建筑领域,余热回收可以实现能源的节约和循环利用,以下是几个典型应用案例:1. 暖通空调系统:在中央空调系统中,空调冷凝器会产生大量余热,通过余热回收技术,可以将这些余热用于供暖、热水等方面,减少能源消耗。
2. 混凝土暖房:利用太阳能或地下热能预热混凝土墙板,在夜间或阴雨天通过余热回收技术释放热能,实现冬季保温和夏季散热的双重效果。
三、交通运输领域在交通运输领域,余热回收可以提高能源利用效率,减少尾气排放,以下是几个应用案例:1. 船舶:船舶发动机产生的废热可以利用余热回收技术,转化为动力用于推进船舶,从而减少燃油消耗和减少排放。
2. 汽车:汽车发动机也会产生大量的废热,通过余热回收技术,可以将这些废热用于发电、提供车内供暖或冷却系统,实现能源的节约和减少尾气排放。
综上所述,余热回收在工业、建筑和交通运输领域都有着广泛的应用。
通过利用余热回收技术,可以实现能源的节约、环境保护和可持续发展,对于实现绿色低碳的未来具有重要意义。
我们应该进一步推广和应用这项技术,为可持续发展作出贡献。
钢铁厂炼焦炉上升管余热回收技术发展及应用
钢铁厂炼焦炉上升管余热回收技术发展及应用摘要传统荒煤气冷却工艺造成大量显热流失浪费,同时消耗淡水资源带来环境压力。
在技术人员的多年努力下,上升管余热回收技术及装置已日臻成熟并得到了推广应用,创造了良好的经济和环保效益。
一、钢铁联合企业炼焦工序余热资源长流程钢铁生产工艺,高炉炼铁工序中作为还原剂的主要原料是焦炭。
用于还原铁矿石中的铁元素,生产出的生铁供给后续炼钢车间炼钢。
高炉内的化学方程式为:Fe0+C=Fe+CO。
钢铁联合企业一般自备炼焦炉系统生产焦炭满足生产需求。
焦炭由炼焦煤在炼焦炉碳化室中,隔绝空气高温干馏去除有机质、挥发分生成。
炼焦生产过程中有三种余热资源产生:红焦显热、烟道废气显热、荒煤气显热。
各自在焦炉总体热量消耗中所占比例分别为:37%、17%、36%本文讨论荒煤气显热的回收----上升管余热回收技术:二、炼焦炉上升管余热(荒煤气显热)回收的必要性红焦炭带出的显热及烟道废气显热,通过采用成熟可靠的干熄焦发电装置和烟道余热锅炉已实现有效回收利用。
但荒煤气的显热由于种种因素一直没有好的办法来回收。
传统工艺为便于后工序的煤气净化与处理,普遍的做法是:先在桥管和集气管喷洒循环氨水与荒煤气直接接触,靠循环氨水大量气化,使荒煤气急剧降温至80~85℃;降温后荒煤气在初冷器中再用冷却水间接冷却至常温。
所得到的效果是:荒煤气被冷却,其中所夹带的粉尘被清洗除去,绝大部分焦油蒸汽冷凝、萘凝华(并溶于焦油)而被脱除,为煤气的输送、深度净化和化学产品回收创造了较好的条件。
上述过程对荒煤气的冷却和初步净化而言是高效的,但在热力学上却是不完善的。
第一、该回收的能量未回收。
荒煤气在桥管和集气管内急剧降温─增湿过程是高度不可逆过程,其物理显热损失达90%以上.第二、冷却水耗量大。
荒煤气从650~850℃降温至常温所放出的热量绝大部分是在初冷器中靠冷却水移除的(以两段循环水一段深冷水的横管初冷器为例,冷却水总比用量约43t/km3)。
余热回收工程方案
余热回收工程方案一、引言随着工业生产的不断发展,能源消耗量也在不断增加。
在许多行业中,大量的热能被浪费掉了。
为了提高能源利用率,减少环境污染,余热回收技术被广泛应用。
这篇文章将详细介绍余热回收工程方案,包括余热回收的原理、应用领域、设备和技术等。
二、余热回收的原理余热回收是指将原本被排放到环境中而未被利用的热能转化成更为有用的形式的过程。
在工业生产过程中,许多工艺会产生大量的余热,比如锅炉、炉窑、发动机、燃气轮机等设备。
这些设备产生的废热如果得不到合理的利用将会导致资源的浪费和环境污染。
通过余热回收技术,可以将这些废热转化成电力、蒸汽、热水等形式,从而实现能源的再利用。
三、余热回收的应用领域1. 钢铁工业:在钢铁生产过程中,会产生大量的高温余热,可以通过余热回收技术转化成蒸汽和电力,用于工艺生产和供暖。
2. 化工工业:化工生产中的许多反应都需要高温能源,余热回收可以为化工企业提供稳定的热能供应。
3. 电力行业:电力产生的过程中会产生大量废热,通过余热回收可以提高发电效率,减少能源消耗。
4. 冶金行业:冶金生产需要大量的高温热源,通过余热回收可以实现能源的再利用。
5. 建材工业:水泥、玻璃等建材生产中也会产生余热,通过余热回收可以减少环境污染。
四、余热回收的设备和技术1. 热交换器:热交换器是余热回收的重要设备,通过热交换器可以将工艺中的热能转移给其他介质,实现能源的转化。
2. 膜分离技术:膜分离技术是一种高效的能量转化方式,通过膜分离可以将工艺中的热能转化成压缩空气、蒸汽等形式。
3. 地源热泵:地源热泵是一种利用地下热能的技术,通过地源热泵可以将地下的热能提取出来用于生产和供暖。
4. 湿法烟气余热回收技术:湿法烟气余热回收技术可以将工业烟气中的水分以及热能一起提取出来,用于供暖和发电。
五、余热回收工程方案根据不同行业的需求和特点,余热回收工程方案也有所不同。
下面以钢铁工业为例,介绍余热回收工程方案的具体实施步骤。
钢铁制造全流程余热余能资源的回收利用现状
文章编号 : 1 0 0 2 — 1 7 7 9 ( 2 0 1 7 ) 0 2 — 0 0 5 2 — 0 5
钢铁制造全流程余热余能资源的回收利冶金行业余热余能资源 的定义 、 分类 和利用 方式 , 分析 了钢铁制造全流程 的余热余能利用 概况 , 各工序余 热余能利 用技术 和研 究趋势 , 以及先 进钢铁企业 的余热余 能利用状况 , 介绍 和分析
终轧制成材或成材前铁水 、 钢水、 坯料具有的显热 ; 烧结 矿、 球团矿具有的显热 ; 高炉渣和钢渣等熔渣显热 ; 生产
中 各种冷却水及产生的 蒸汽携带的 热能; 高炉炉顶煤气 的余压 , 少许带有压力的冷却水; 等等。
2 . 冶金行业余热资源的分类
流程的能源利用率仅为2 7 %, 其余7 3 % 主要以 余能余热 的形式存在。因 此, 提高钢铁生产流程各工序的 余热回
收利用率 , 分析与优化能耗 , 利用先进的节能技术提高资 源利用率 , 降低生产成本 , 是实现生产流程的高能效 、 高 品质、 低排放甚至零排放的根本途径。
一
( 1 ) 按品种分类
若按照余热资源的品种分类, 可将余热资源分为产 品显热 、 废气显热 、 冷却水显热和熔渣显热。其中, 产品
品显热直接输送到下道T序, 如高温铁水供转炉炼钢 ( 一
罐到底 ) 、 热钢坯送进加热炉 ( 热送热装 ) ; 烟气显热预热
二、钢铁制造全流程的余热余能利用概况
我同钢铁企业9 0 % 是以高炉一转炉为主的长流程企
业。完整的制造流程包括焦化、 烧结或球团、 高炉炼铁 、 转炉炼钢 、 轧制。陶l 是一个典型钢铁企业的制造全流程
显热占3 9 %, 废气显热  ̄ i 3 7 %, 冷却水显热 占1 5 %, 熔渣 显热 占9 %。可见 , 产品显热和废烟气显热 占总余热资
钢铁工业余热回收技术现状研究
钢铁工业余热回收技术现状研究钢铁工业作为国民经济的支柱产业之一,其能耗占比较高,而且在生产过程中会产生大量的余热。
利用钢铁工业余热回收技术,可以有效降低能源消耗,减少环境污染,提高资源利用率,具有非常重要的意义。
目前,国内外钢铁工业余热回收技术研究方兴未艾,各种新技术不断涌现。
本文针对钢铁工业余热回收技术的现状进行了研究,对相关技术进行了梳理和分析,为今后的研究工作提供参考。
1.1 余热回收技术的发展历程钢铁工业余热回收技术的研究可以追溯到上个世纪70年代。
最早期的研究主要集中在余热锅炉的开发和利用上。
随着科技的不断进步,目前已有各种不同类型的余热回收技术,如热电联产技术、余热发电技术、余热循环利用技术等。
在国外,美国、德国、日本等发达国家对钢铁工业余热回收技术的研究比较深入。
他们在余热回收技术的开发和应用方面取得了很多成果,在余热回收率和利用效率方面均取得了较为突出的成绩。
而在国内,由于钢铁工业的规模和产值较大,各大钢铁企业也开始重视余热回收技术的研究工作。
一些大型钢铁企业已经建立了较为完善的余热回收系统,并取得了良好的效果。
1.3 钢铁工业余热回收技术存在的问题目前,钢铁工业余热回收技术在应用过程中还存在一些问题。
技术成熟度不高,一些新技术在实际应用中还存在一定难度。
由于钢铁工业生产过程的特点,余热回收技术需要针对不同的工艺进行优化设计,这增加了技术开发和应用的难度。
由于钢铁工业的生产规模大、设备多,余热回收系统的改造和建设成本较高,需要经济和技术上的双重考量。
2.1 热电联产技术热电联产技术是一种将燃煤燃气锅炉与汽轮机、发电机组等设备组合在一起,实现余热回收和发电的技术。
该技术可以在一定程度上提高能源利用效率,减少二氧化碳等温室气体的排放。
目前,国内外不少钢铁企业已经开始推广应用热电联产技术,并取得了显著的经济效益和环保效益。
余热发电技术是指将高温工业余热通过热交换器转化为蒸汽,再通过汽轮机发电的技术。
冶炼熔渣余热回收技术
冶炼熔渣余热回收技术冶炼熔渣是冶金行业中产生的一种废弃物,通常含有铁、钢、铜等有价值的金属成分。
然而,熔渣的处理和处置成为了一个不小的问题,因为它不仅对环境造成了污染,同时也是一种浪费资源的行为。
因此,熔渣回收利用技术尤为重要,其中之一便是熔渣余热回收技术。
下面将详细阐述这一技术的原理及应用。
一、熔渣余热的特点熔渣在从高温状态冷却过程中会释放大量的热量,称之为熔渣余热。
通常情况下,熔渣的温度在1000℃以上,因此熔渣余热的温度很高,热量非常充足,可供热能利用。
而熔渣在冷却过程中,温度递减,并最终结晶硬化,处理起来变得更加复杂和困难。
二、熔渣余热回收技术的原理熔渣余热回收技术的原理主要是通过熔渣冷却和传热来回收热能。
具体地说,它主要由以下原理构成:1. 传热原理:将熔渣热能通过热交换器跟其他流体或空气进行热交换,将热量转化成可以直接利用的热能。
2. 二次回收原理:通过对熔渣冷却处理,可以将熔渣放置在冷却设备中进行冷却,然后再将其中的热量回收。
3. 尾气利用原理:在熔渣冷却过程中排放的尾气也可以被利用,将其通过回收装置进行回收利用。
三、熔渣余热回收技术的应用熔渣余热回收技术是冶金行业中应用广泛的一种技术,被广泛应用于钢铁、黄铜、铜等行业,以充分利用熔渣的价值。
其具体应用场景如下:1. 钢铁冶炼:钢铁熔炼过程中产生的高温熔渣,通过熔渣余热回收技术进行能量收回,用于锅炉能源提供等方面,减少用电量,节约能源。
2. 黄铜冶炼:黄铜冶炼中产生的熔渣同样可以通过余热回收技术进行能量回收,以提高工业生产效率。
3. 铜冶炼:铜冶炼中产生的熔渣通过余热回收技术进行冷却和能量回收,既可以减少对环境的污染,又可以减少对能源的浪费。
总结:熔渣余热回收技术是一种重要的能量回收方式,能够减少对环境的污染,同时提高了冶炼工业中的资源利用率,对环保意义重大。
随着新材料和新冶炼技术的不断涌现,熔渣余热回收技术也将发挥更广泛的应用前景。
钢铁企业余热资源回收利用技术现状综述
热炉存在70%〜80%的热量损失,其中烟气
带走的热
30%〜35%〔26"。热
热炉烟气在锅炉
加热煤气和助燃空气后仍以300 Q以上的温度外排。通过 余热锅炉锅炉中的内置蒸发器对烟气系统进
行改
热炉 热空气、煤气后的烟气余热,能够
使加热炉尾部的烟气温度由回收前的约300 °C下降至约
150 S,同时改善炉压调 增 压蒸汽产量!24"。
中,余热资源丰富且回收利用技术
从焦
化、烧结、炼铁、炼钢、轧钢等钢铁生工序发
钢
铁企业余热资源的主要回收利用技术
述 钢铁企
业余热回收利用技术发展
1钢铁企业余热资源分布与利用现状概述
1.1钢铁企业各生产工序余热资源状况
钢铁企业90% 高
主的长流程企
业⑵,生流程
炼铁、炼钢、轧钢、烧结、焦化等
工序。钢铁生产流程中工序
约25.3%⑷。
1.2钢铁企业余热资源回收利用现状
钢铁企业余热资源的回收利用目前仍存在一些
问题,具有较大的发展 。
在炼铁工序中,现
渣余热回收技术可分为通过
介质交换热量和与化学反应结合以吸收余热,对于显热处
理有提鬲余热回收率和促进髙附加值产品生产两种偏向,
但仍然没有相关成熟技术可以兼顾两者;炼钢烟气余热回
余热。气进行降温以满足后续的除尘要求,同时 产生蒸。所蒸送至蒸蓄热器,使热以饱和水
的形式被存储,使用时将部分饱和水闪蒸转化为饱和蒸
输送给用户。
汽化冷却烟道余热过程中产生的低压饱和蒸汽还可
以直接用于发电,发电系统简,
行,在不需要
另外补充燃料或能源的同时,又能够保障安全性和可靠性。
烧生
钢铁厂余热利用政策
钢铁厂余热利用政策
钢铁厂余热利用政策是指政府制定的鼓励和促进钢铁厂余热利用的相关政策措施。
钢铁厂是能源消耗较大的行业,会产生大量的余热。
充分利用和回收这些余热,不仅可以减少资源浪费,还可以提高能源利用效率,降低环境污染。
因此,很多国家和地区都制定了相关的政策来推动钢铁厂余热利用。
具体的政策措施包括:
1. 减税优惠:政府可以对进行余热利用的钢铁企业给予减免税收的优惠政策,以提高企业的利润和盈利能力。
2. 资金支持:政府可以设立专项资金,用于扶持和支持余热利用项目的建设和运营。
同时,可为企业提供贷款和融资支持,降低企业投资余热利用项目的成本。
3. 技术支持:政府可以建立技术研发中心,支持钢铁企业的余热利用技术研究和开发。
提供技术指导、培训和咨询服务,加强技术交流与合作。
4. 奖励机制:政府可以设立奖励机制,对那些在余热利用方面取得显著效果的钢铁企业进行奖励和表彰,激励企业加大投入和创新。
5. 示范工程:政府可以选择一些具有示范和推广价值的余热利用项目进行资助和扶持,以提供技术和经验参考给其他企业。
通过上述政策措施的推动和支持,可以有效促进钢铁厂余热的利用,推动钢铁产业的可持续发展。
钢铁行业能耗减排技术的研究与应用
钢铁行业能耗减排技术的研究与应用钢铁工业是我国重要的基础产业之一,同时也是能耗高、排放大的典型行业。
钢铁生产过程中采用了高温熔融工艺,因此,钢铁工业的能耗和污染问题一直备受关注。
为了减少能源消耗和环境污染,钢铁行业不断探索新的节能减排技术。
下面将对钢铁行业能耗减排技术的研究与应用进行探讨。
一、节能减排技术的研究1.1 高温余热回收技术高温余热回收技术是钢铁行业中的一项重要的节能技术。
在钢铁烧结、炼铁等工业生产过程中,大量的高温余热会被排放而浪费。
通过采用高温余热回收技术,可以将这些余热重新利用,降低生产能耗。
目前,高温余热回收的技术主要包括余热发电和余热回收利用两种。
1.2 洁净煤炭燃烧技术洁净煤炭燃烧技术是近年来钢铁行业中普及和研究的一项重要技术。
该技术通过对煤的深度处理,达到减少烟气中有毒有害物质的含量,降低对环境的污染。
同时,采用洁净煤炭燃烧技术还能够提高钢铁生产的效率,降低生产成本,提高产品品质。
1.3 低温热处理技术低温热处理技术是指通过低温热处理使得原材料的结构发生变化,以此来改善原材料的物理化学性质,提高钢铁的生产效率。
低温热处理技术具有能耗低、环境污染小、原材料利用率高等优点。
目前,该技术已得到广泛的应用。
二、应用实例2.1 钢铁生产废气中有机物处理钢铁生产过程中排放的废气主要包括一氧化碳、一氧化氮、挥发性有机物等。
在此基础上,钢铁生产废气中的有机物处理可以采用吸附-脱附法、催化氧化法和生物膜法等技术。
利用这些技术,可以将废气中的有害气体转变为无害物质,从而减少有机物废气对环境造成的污染。
2.2 焦炉余热回收利用钢铁行业中最大的能源消耗来源是焦化工段。
但焦炉煤气却是一种强热值燃料。
通过采用焦炉余热的回收利用技术,提高了能源的利用率,降低了生产成本。
目前,焦炉余热的回收利用主要包括烟气余热回收和炉顶废气余热回收两种。
2.3 工序水循环利用钢铁生产中,水作为一种重要的生产原料,使用量相当庞大。
钢铁生产过程余热资源回收与利用技术
钢铁行业是高消耗、高排放行业: 工业消耗能源量约占全国的17%;水资源消耗约占我国工 业耗水的10% ;二氧化碳排放量约占全国11%。 钢铁是我国生态环境建设和低碳经济发展的重点领域。
钢铁生产流程实质上是复杂的“煤—铁化工”过程,以 煤为主的过剩能量流在推动“矿石—铁—钢—材”这一过程 (即物质流)完成的同时,产生了大量的余热余能。
工序 余热资源
焦炭显热
焦化 工序
焦炉煤气显热 焦炉烟气显热
烧结 烧结矿余热 工序 烧结废风余热
高炉煤气余热和余压 炼铁 高炉煤气化学热 工序 高炉渣显热
热风炉烟气余热
转炉煤气余热 炼钢 转炉煤气化学热 工序 钢坯余热
钢渣余热
合计(GJ/t钢)
合计(GJ/t钢)不计化学热
总火用量 GJ/t产品 GJ/t钢
随着钢铁工业生产流程的不断优化和工序能耗的逐步降低, 回收利用各生产工序产生的余热余能资源是钢铁企业节能减 排的方向、途径及潜力所在。
企业能耗
工序能耗 =
∑(能源 j 实物耗量)×(能源 j 折标系数)—(能源回收利用量)
j
统计期内工序的实物产量
降低工序能耗必须从两方面入手:
(1)降低各工序生产单位产品所直接消耗的燃料量和 各种动力;
续表
表 我国大中型钢铁企业余热资源回收利用的情况(续) GJ/t-s
高温
中温
低温
合计
资源量 回收量 资源量 回收量 资源量 回收量 资源量 回收量
焦炉烟气显热
0.19
0.19
焦炉煤气显热
废 烧结烟气显热 烟 高炉煤气显热 气 显 热风炉烟气显热 热 转炉渣显热
0.21
余热回收方案
余热回收方案引言随着全球能源需求的不断增长和环境问题的愈发突出,寻找可持续能源和能源效率的解决方案已成为当今社会的重要任务之一。
其中,余热回收是一种非常有效的能源利用方式。
本文将介绍余热回收的概念、原理、应用领域以及一些常见的余热回收方案。
1. 余热回收的概念余热回收是指在工业生产过程中产生的废热通过适当的技术手段进行回收利用的过程。
通常来说,工业生产中会产生大量的废热,直接排放废热不仅浪费了能源资源,还对环境造成了污染。
而余热回收则通过一系列的热交换设备,将废热转化为可用的热能,实现能源的循环利用。
2. 余热回收的原理余热回收的原理主要是通过热交换器实现的。
热交换器是一个设备,它可以在两个流体(热源和工质)之间传递热量,以实现能量的转移。
在余热回收中,废热通过热交换器与另一种工质进行热量交换,从而使废热转化为可用的热能。
常见的热交换器包括管壳式热交换器、板式热交换器和螺旋板热交换器等。
3. 余热回收的应用领域余热回收广泛应用于许多不同的工业领域,下面列举了其中一些常见的应用领域:3.1 钢铁工业在钢铁生产过程中,高温炉炉顶、高温烟气和冷却水等都会产生大量的废热。
通过余热回收技术,可以将这些废热转化为电力或热能,用于生产工艺中的加热和电力供应,从而提高能源利用效率。
3.2 化工工业化工工业通常需要耗费大量的热能来完成各种化学反应和物料加热工艺。
通过余热回收,可以将一部分的废热转化为蒸汽或热水,用于生产过程中的加热需求,从而减少能源消耗。
3.3 发电工业在发电过程中,热电厂会产生大量的废热,这些废热可以通过余热回收技术进行利用。
例如,可以利用废热蒸汽发生器将废热转化为蒸汽,用于其他生产过程中的加热需求,如供暖和工艺加热等。
3.4 制冷与空调制冷和空调设备会产生大量的热量,但同时也需要大量的热能来提供制冷和空调效果。
通过余热回收技术,可以将制冷和空调设备产生的废热用于生产过程中的加热需求,从而提高能源利用效率。
钢铁行业如何提高资源利用效率
钢铁行业如何提高资源利用效率钢铁行业作为国民经济的重要支柱产业,在生产过程中消耗了大量的资源。
然而,随着资源的日益稀缺和环境压力的不断增大,提高资源利用效率已成为钢铁行业可持续发展的关键所在。
首先,优化生产工艺是提高资源利用效率的核心途径之一。
在炼铁环节,采用先进的高炉技术,如大型高炉、富氧喷煤等,可以提高矿石的还原效率,降低燃料消耗。
同时,改进烧结和球团工艺,提高原料的质量和利用率。
炼钢方面,推广转炉炼钢和电炉炼钢的高效工艺,例如转炉的顶底复合吹炼、电炉的废钢预热等技术,能够减少能源和原材料的浪费。
在轧钢过程中,采用高精度轧制和控轧控冷技术,不仅可以提高产品质量,还能降低废品率,从而减少资源的损失。
加强能源管理也是至关重要的。
钢铁企业应建立完善的能源管理体系,对能源的生产、分配、使用进行全面监测和分析。
通过采用能源回收技术,如高炉煤气余压透平发电(TRT)、转炉煤气回收利用等,将生产过程中产生的余热、余压、余能转化为电能或其他可用能源。
此外,合理规划能源的供应和分配,避免能源的浪费和不合理使用。
例如,根据不同生产环节的能源需求,优化能源的调度和分配,确保能源的高效利用。
原材料的合理选择和回收利用对于提高资源利用效率具有重要意义。
在采购原材料时,应注重品质和成分的稳定性,减少杂质的含量,以降低生产过程中的能耗和物耗。
同时,加强对废钢、废渣、废水等废弃物的回收利用。
废钢作为可循环利用的资源,其回收和再利用不仅可以减少对铁矿石的依赖,还能降低能源消耗和环境污染。
废渣经过处理后,可以用于生产水泥、建筑材料等,实现资源的综合利用。
废水通过净化处理和回用,能够减少新鲜水的取用,降低水资源消耗。
科技创新是推动钢铁行业资源利用效率提升的强大动力。
企业应加大研发投入,开展与资源利用相关的技术研究和创新。
例如,开发新型的节能设备和工艺,研究高性能的钢铁材料,以减少钢材的使用量。
同时,加强与科研机构和高校的合作,引进和吸收国内外先进的技术和经验,促进技术的交流和共享。
钢铁行业余热回收 相关的政策
钢铁行业余热回收相关的政策一、背景钢铁行业作为国民经济重要的基础产业,其产能和产量均居全球第一位。
然而,钢铁生产过程中会产生大量的余热,不仅资源浪费严重,还会对环境造成污染。
因此,钢铁行业余热回收已成为当前能源节约和环境保护的紧迫任务。
二、意义1. 能源节约:钢铁行业的余热回收可有效利用高温烟气中的余热,提高能源利用效率,保护有限的能源资源。
2. 减少排放:余热回收可以减少炼钢企业排放的废热和废气,降低环境污染,改善空气质量。
3. 降低成本:通过合理利用余热,可以减少对外购能量的依赖,降低生产成本,提高企业竞争力。
三、政策措施1. 奖励制度:政府可以出台奖励措施,对使用余热回收技术并取得一定效果的钢铁企业给予一定的财政奖励。
2. 政策引导:政府可以加大对余热回收技术的扶持力度,通过贷款贴息、税收减免等方式鼓励企业投资并采用余热回收设备。
3. 技术支持:政府可以加大对余热回收技术的研发投入,鼓励企业开展科技创新,提高余热回收技术的先进性和可靠性。
4. 限制排放:政府可以制定环保政策,限制钢铁企业的废热和废气排放量,强制企业加强余热回收设备的安装和使用。
5. 行业标准:政府可以牵头组织制定行业标准,要求钢铁企业在余热回收方面达到一定的技术和效果标准。
四、预期效果1. 能源节约:通过余热回收,预计可以减少钢铁行业的能源消耗,提高能源利用效率,减少资源浪费。
2. 环境改善:余热回收可以大幅度减少钢铁行业的废热和废气排放,降低环境污染,改善周边环境质量。
3. 产业升级:通过余热回收技术的推广应用,将促进我国钢铁行业的技术升级和发展,提高产业的可持续竞争力。
五、总结钢铁行业余热回收是国家能源节约和环境保护的紧迫任务,只有整合政府和企业的力量,出台相关政策措施,推动钢铁行业余热回收技术的应用,才能实现能源效益和环境效益的双赢。
同时,行业主管部门应加大监督检查力度,确保政策的有效实施,为钢铁行业的可持续发展提供有力的支持。
我国钢铁企业余热资源的回收与利用
余 热资源 , 且很多 的余 热资 源具有 回收利用 的价值 。 我 国钢铁工业 生 产 1 钢 产 生 的余 热 约为 8 4 J 目 t .G ,
前 回收利 用 率 仅 2 . % … 。 随 着 我 国钢 铁 节 能 技 58 术 的不 断发展 , 对钢 铁 企业 多种 余 热 资源 的高效 回
t c n lg n q p e tf r r c v rn n t ii g t e wa t h a r n r d e r m te c k n e h oo y a d e uim n o e o e i g a d u i zn h se e t we e i to uc d fo l h o i g, sn ei g, ba tf r a eio a i g,c n e rse l k n nd se lr l n r d cin p o e s s I r - i trn ls u n c r n m k n o v  ̄e t ema i g a te ol g p o u to rc se . tp o i v d sr fr n e fr te e e g a i g a o u p in r d cng o he io n te n e rs s i e ee e c h n r y s v n nd c ns m t e u i ft r n a d se le t r ie . o o p K e r se le tr ie y wo ds te n eprs s;wa t e tr s u c se h a e o r e;r c v r n t iain o se h a ;e e g a i g e o ey a d u i z to fwa t e t n r y s v n l
工业余热回收利用途径与技术
工业余热回收利用途径与技术工业余热是指在工业生产过程中产生的废热能。
传统的做法是将废热通过冷却装置排放到大气中,造成了严重的能源浪费和环境污染。
因此,工业余热的回收利用具有重要的经济和环境意义。
本文将重点介绍工业余热回收利用的途径与技术。
1.直接利用工业余热直接利用是指将废热直接用于其他工业过程或提供空调、供热等服务。
常见的直接利用方法包括:1.1热传导法:通过热传导将废热直接传递给需要加热的物体,如暖气片、水暖设备等。
1.2蒸汽回收:将产生的低温废热用于蒸汽发生器,生成高温高压蒸汽,用于驱动发电机组或其他工业过程。
1.3空调回收:将废热用于空调系统中的冷凝器,提高冷凝效果,减少能源消耗。
1.4包装、纺织等行业的暖房:利用废热为产品提供加热设备,提高生产效率和产品质量。
2.热能转化为电能热能转化为电能是将废热通过发电机转化为电能,具体的技术包括:2.1ORC技术:有机朗肯循环技术是指将废热用于加热工质,工质在密闭系统中气化成蒸汽驱动发电机产生电能。
2.2燃气轮机技术:将废热用于燃气轮机,获得高温高压蒸汽,驱动燃气轮机产生电能。
3.废热回收再利用除了直接利用和热能转化为电能外,还可以通过废热回收再利用来提高能源利用效率。
常见的回收再利用方法包括:3.1热交换器:将废热通过热交换器与传质体进行热交换,将工业余热转移到其他介质中,为其他工业过程或生活提供热能。
3.2热泵技术:将低品质废热通过热泵的工作循环将其提高温度,转化为高品质的热能。
3.3储热技术:将废热用于热能储存系统中,储存并再利用。
4.废热联合发电废热联合发电是指将工业余热利用于燃气轮机或蒸汽轮机等发电设备,将废热转化为电能的同时,回收废气中的热能供应其他工业过程。
废热联合发电技术在大型化工、钢铁、石油、电力等行业得到广泛应用。
5.其他技术此外,还有一些新兴的工业余热回收利用技术:5.1热管技术:利用热管的传热性能和传热特性,将废热转移到需要加热的目标区域,实现能量利用。
中国钢铁企业余能余热资源及利用现状分析
中国钢铁企业余能余热资源及利用现状分析1.钢铁企业煤气资源及利用现状目前,多数大型钢铁厂回收的煤气主要作为燃料供焦炉、热风炉、加热炉等钢铁厂自生产过程。
这部分主工艺所利用的煤气占煤气总资源量的50%-80%,剩余部分供自备电厂发电,方式有全烧(或掺烧)煤气锅炉发电和燃气蒸汽联合循环发电(CCPP),多余部分放散。
据调查,我国重点钢铁企业高炉煤气放损率平均为7.4%,焦炉煤气放损率平均为3.8%,转炉煤气吨钢回收仅18.1kgce(折合63m3/t),占可回收量的三分之二。
而在日本、德国等发达国家,钢铁厂副产煤气基本上全部回收再利用,无放散。
2.钢铁企业余热资源及利用现状蒸汽是钢铁企业生产和生活所必需的能源。
根据对部分大中型企业的统计,蒸汽能耗占钢铁企业总能耗的10%左右,而可回收利用的余热蒸汽量也很大,占企业能耗的7%左右。
钢铁生产各环节均有余热产生,余热大多以产品、废渣、废烟气、冷却水等为载体。
据统计,我国大中型企业吨钢产生的余热总量为8.44GJ,约占吨钢能耗的37%,其中最终产品或中间产品所携带的显热约占余热总量的39%,各种熔渣的显热约占9%,各种废(烟)气的显热占37%,冷却水携带的显热约占15%,余热资源丰富。
据调查,我国钢铁企业余热资源的平均回收率只有25.8%。
其中,按余热资源的品质统计,回收高温余热居多,回收率为44.4%;其次是中温余热,回收率为30.2%;低温余热的回收率还不足1%。
若按携带余热的物质形态统计,回收最多的是产品显热,回收率为50.0 4%;其次是烟气显热,回收率为14.92%;冷却水的显热回收率只有1.90%;各种渣显热的回收率更少,为1.59%。
钢铁企业的蒸汽产生及使用环节限制了用户对蒸汽品位的需求,用户通常为满足生产需求将蒸汽减压降温后使用,致使蒸汽系统不能按质用能、梯级利用,高品质蒸汽贬值严重。
因此,在回收利用余热蒸汽时,要根据余热蒸汽资源的数量和质量,以及用户对蒸汽品质的需求,在供需之间尽量做到能级匹配、温度对口、梯级利用,在符合技术经济要求的条件下,选择适宜的设备,使回收的余热蒸汽发挥最大的经济和环境效益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
就我国钢铁工业而言(以长流程为例),其比较典型的 余热资源有: 焦化工序:红焦显热、焦炉荒煤气显热; 烧结工序:烧结矿显热、烧结烟气显热; 炼铁工序:铁水显热、高炉炉顶余热、融渣显热、高炉冷却 水显热;
炼钢工序:钢水显热、转炉烟气显热、融渣显热;
轧钢工序:加热炉冷却水显热。
余热总量
2005年,我国大中型钢铁企业生产1吨钢所产生的余热资 源总量为8.44GJ/t钢,大约占吨钢可比能耗的37%。
0.21
0.08
1.65 0.95
0.29 1.24 0.02 0.02 0.02
0.19 0.17 0.69 0.77 0.36 0.21 0.72 3.11 0.95
0.29 1.24 8.44
0.02
0.11 0.08 0.25 0.46 0.02 0.02 2.17
利用分析
3.36
1.49
2.19
冷却水显 热15% 产品显热 39%
废烟气显 热37%
渣显热 9%
图5 我国钢铁工业余热资源构成*
*2005年,我国20余家大中型钢铁企业统计数据
1.2 余热资源的回收利用水平
以1吨钢为基准,统计各种余热的回收与利用数据。
表 我国大中型钢铁企业余热资源回收利用的情况
高温 中温 低温
GJ/t-s
合计
排的方向、途径及潜力所在。
企Байду номын сангаас能耗
∑(能源 j 实物耗量)×(能源 j 折标系数)—(能源回收利用量) 工序能耗 =
j
统计期内工序的实物产量
降低工序能耗必须从两方面入手: (1)降低各工序生产单位产品所直接消耗的燃料量和 各种动力;
(2)高效回收各工序产生的各种余热和余能。
随着钢铁工业生产流程的逐步优化和工序能耗的不断下 降,降低单位产品能源实物消耗量的节能难度越来越大, 回收与利用余热余能的效果会更加明显。
钢铁生产过程余热资源 回收与利用技术
钢铁行业是高消耗、高排放行业:
工业消耗能源量约占全国的17%;水资源消耗约占我国工
业耗水的10% ;二氧化碳排放量约占全国11%。 钢铁是我国生态环境建设和低碳经济发展的重点领域。
钢铁生产流程实质上是复杂的“煤—铁化工”过程,以 煤为主的过剩能量流在推动“矿石—铁—钢—材”这一过程 (即物质流)完成的同时,产生了大量的余热余能。 物质流(主要是铁素流)在能量流(主要是碳素流)的
点题
——余热资源的高效回收与利用是进一步降低大型钢铁 联合企业吨钢能耗的主要措施之一 。
主要内容
主要内容
1 我国钢铁生产过程余热资源的回收与利用现状 2 余热资源回收与利用的热力学分析
3 钢铁生产过程典型余热资源的回收与利用
——关于烧结过程余热资源高效回收与利用
1利用现状
1.1 余热资源的组成
钢渣显热 小计
0.94 0.59 1.22 0.60 3.35 0.59 0.15 0.74
0.28 0.06 1.10 0.24 1.68 0.01 0 0.01
续表
表 我国大中型钢铁企业余热资源回收利用的情况(续)
GJ/t-s
高温 中温 低温 合计 资源量 回收量 资源量 回收量 资源量 回收量 资源量 回收量
焦炉烟气显热
焦炉煤气显热 废 烧结烟气显热 烟 高炉煤气显热 气 热风炉烟气显热 显 热 转炉渣显热
加热炉烟气显热
0.19
0.17 0.02
0.69 0.77
0.36 0.21 0.08 0.72 1.25 0.11 0.25 0.38
小计
冷 高炉冷却水显热 却 水 加热炉冷却水显热 显 小计 热
合计
0.66
2.89
我国钢铁工业余热资源利用回收现状: 2005年我国钢铁工业余热资源的平均回收利用率25.8%。 回收利用率: 高温余热资源44.4%→中温~30.2% →低温~<1%。 若按携带余热物质种类和形态:产品显热50.04% →烟 气~14.92% →冷却水~1.90% →熔渣~1.59%。
驱动下,工序串联作业,流程协同(集成)运行,实现化学、
物理转换的过程。在此过程中,碳素能量流没有全部转换到 铁素物质流中去。
国际顶级的高炉-转炉-热连轧生产流程,仍有38%左右
的二次能源未被铁素物质流有效利用,因此有必要协同优化 “物耗、能耗”综合成本地系统节能降本。
随着钢铁工业生产流程的不断优化和工序能耗的逐步降低, 回收利用各生产工序产生的余热余能资源是钢铁企业节能减
余热资源属于二次资源。广义而言,凡是具有一定温度的 排气、排液和高温待冷却物料所包含的热能均属于余热。
余热资源包括:
•燃料燃烧产物经利用后的烟气显热; •高温产品的显热; •高温废液的显热; •冷却水带走的显热。
在不同的工序余热有着不同的种类和形态,其温度水平 (即品质)和数量也存在着较大的区别。
我国大中型钢铁企业余热资源回收利用率30%~50%,全 国平均值则更低;而国外先进钢铁企业余热余能的回收利用 率平均为80%,有的在90%以上,如日本新日铁高达92%。
表 某大型钢铁公司余热资源回收利用情况统计表
工序 余热资源 焦化 工序 烧结 工序 总火用量 GJ/t产品 0.73 0.2 0.11 0.32 0.045 0.346 5.4 0.38 0.3 0.147 0.88 0.33 0.12 9.147 2.867 GJ/t钢 0.314 0.086 0.047 0.416 0.059 0.363 5.67 0.4 0.315 0.147 0.88 0.33 0.12 回收火用 GJ/t产品 0.088 0 0 0 0 0.23 5.2 0 0 0.05 0.43 0.01 0 6.228 0.338 GJ/t钢 0.038 0 0 0 0 0.24 5.46 0 0 0.05 0.43 0.01 0 节能技术 CDQ;煤 调湿-配 型煤快速 炼焦技术 综合梯级 利用 节能量 钢比系数
焦炭显热 焦炉煤气显热 焦炉烟气显热
资源量 回收量 资源量 回收量 资源量 回收量 资源量 回收量
烧结/球团显热
0.94 0.59 1.22 0.60 2.41 0.59 0.15 0.74 0.06 1.10 0.24 1.49 0.01 0 0.01
0.28
产 品 显 热
焦炭显热 铁水显热 钢坯显热
小计
渣 显 热
0.94
0.28
高炉渣显热