(完整版)土木工程专业英语翻译
完整版土木工程专业英语课文原文及对照翻译
Civil EngineeringCivil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities.土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。
此处的环境包括建筑吻合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。
Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities.土木工程师建筑道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。
(完整版)土木工程专业英语常用词汇
Part IV:Commonly Used Professional Terms of Civil Engineeringdevelopment organization 建设单位design organization 设计单位construction organization 施工单位reinforced concrete 钢筋混凝土pile 桩steel structure 钢结构aluminium alloy 铝合金masonry 砌体(工程)reinforced ~ 配筋砌体load-bearing ~ 承重砌体unreinforced ~非配筋砌体permissible stress (allowable stress) 容许应力plywood 胶合板retaining wall 挡土墙finish 装修finishing material装修材料ventilation 通风natural ~ 自然通风mechanical ~ 机械通风diaphragm wall (continuous concrete wall) 地下连续墙villa 别墅moment of inertia 惯性矩torque 扭矩stress 应力normal ~ 法向应力shear ~ 剪应力strain 应变age hardening 时效硬化air-conditioning system空调系统(air) void ration(土)空隙比albery壁厨,壁龛a l mery壁厨,贮藏室anchorage length锚固长度antiseismic joint 防震缝architectural appearance 建筑外观architectural area 建筑面积architectural design 建筑设计fiashing 泛水workability (placeability) 和易性safety glass安全玻璃tempered glass (reinforced glass) 钢化玻璃foamed glass泡沫玻璃asphalt沥青felt (malthoid) 油毡riveted connection 铆接welding焊接screwed connection 螺栓连接oakum 麻刀,麻丝tee三通管tap存水弯esthetics美学formwork 模板(工程)shoring 支撑batching 配料slipform construction (slipforming) 滑模施工lfit-slab construction 升板法施工mass concrete 大体积混凝土terrazzo水磨石construction joint 施工缝honeycomb蜂窝,空洞,麻面piled foundation桩基deep foundation 深基础shallow foundation浅基础foundation depth基础埋深pad foundation独立基础strip foundation 条形基础raft foundation筏基box foundation箱形基础BSMT=basement 地下室lift 电梯electric elevatorlift well电梯井escalator 自动扶梯Poisson’s ratio 泊松比μYoung’s modulus , modulus of elasticity 杨氏模量,弹性模量Esafety coefficient 安全系数fatigue failure 疲劳破坏bearing capacity of foundations 地基承载力bearing capacity of a pile 单桩承载力two-way-reinforcement 双向配筋reinforced concrete two-way slabs钢筋混凝土双向板single way slab单向板window blind 窗帘sun blindwind load 风荷载curing 养护watertight concrete 防水混凝土white cement白水泥separating of concrete混凝土离折segregation of concretemortar 砂浆~ joint 灰缝pilaster 壁柱fire rating耐火等级fire brick 耐火砖standard brick标准砖terra cotta 琉璃瓦mosaic 马赛克ceramic mosaic陶瓷锦砖,马赛克,ceramic mosaic tileceramic tile 瓷砖rubble wall毛石墙marble 大理石,大理岩granite 花岗石,花岗岩ready-mixed concrete 商品混凝土,预拌混凝土real estate房地产reinforcement bar 钢筋veinforcement meal, reinforcing bar, reinforcing steel reinforcement cover混凝土保护层reinforcement mat 钢筋网, reinforcing mesh reinforcing ratio 配筋率reinforcement percentagereinforcing work钢筋工程residential building居住建筑rigid foundation刚性基础roof 屋顶,屋盖,屋面; roof board 屋面板; roof garden屋顶花园roof live load 屋面活荷载rustic terrazzo粗面水磨石,水刷石sand cushion砂垫层saw-tooth skylight锯齿形天窗scaffold 脚手架sill窗台silty soil粉质土single door单扇门double door双扇门single reinforcemen单筋tsliding door推拉门sliding window水平推拉窗staircase楼梯间stair rail(ing) 楼梯栏杆,楼梯扶手stair step楼梯踏步stair string (er)楼梯梁stair clearance 楼梯净空高度stair headroom steel forms钢模板store room贮藏室structural drawings结构图soft substratum软弱下卧层sun louver 遮阳板supporting block 支座supporting layer持力层tensile reinforcement 受拉钢筋tensile steel, tension reinforcementterrace roof 平屋顶thermal insulation隔热through ventilation穿堂风timber structure 木结构wood structuretoilet 盥洗间,浴室,厕所,便池tracing paper描图纸lawn 草坪treatment of elevation立面处理drawing board 绘图板triaxial compression test 三轴压缩试验tubular steel scaffolding钢管脚手架uniformly distributed load均布荷载unnotched bar 光面钢; threadbar螺纹钢筋urinal 小便池,小便斗,小便槽valley天沟ventilating skylight 通风天窗waterproof barrier 防水层aquatardTerzaghi bearing capacity theory太沙基承载力理论Terzaghi consolidation theory 太沙基固结理论foundation treatment 地基处理foundation pressure 基底压力span 跨度specific gravity比重quicklime生石灰,氧化钙hydrated lime 熟石灰,消石灰hydration 水化作用plaster of Paris熟石膏portland cement 波特兰水泥,硅酸盐水泥,普通水泥portland blastfurnace slag cement矿渣水泥portland fly-ash cement粉煤灰(硅酸盐)水泥portland-pozzolana cement火山灰质硅酸盐水泥gas-foaming admixture发泡剂retarding admixture缓凝剂water-reducing agent减水剂air-entrained agent 加气剂slump坍落度water-cement ratio水灰比w/carchitectural lighting 建筑采光,建筑照明architectural perspective建筑透视图architectural section 建筑剖面图architectural specifications建筑规范architectural working drawing 建筑施工图architecture sketch建筑草图arc welding 电弧焊stress concentration 应力集中multi storied building 多层建筑settlement of foundation 地基沉降tensile strength抗拉强度compressive strength抗压强度bending strength抗弯强度construction material 建筑材料building material continuous beam连续梁tower crane 塔式起重机,塔吊SPT=standard penetration test 标准贯入度试验wall between two windows窗间墙stability稳定性stress-strain curve应力-应变曲线stress-strain diagram应力-应变图damp-proof coating防潮层osmosis渗透osmotic co-efficient渗透系数osmotic pressure渗透压力finite element method 有限单无法finite-difference method有限差分法finite slice method 条分法deformation 变形displacement位移allowable bearing capacity 容许承载力total and differential settlement 总沉降量和沉降差Mohr’s circle of stress 摩尔应力圆snow laod雪(荷)载bent reinforcement bar 弯起钢筋bent steel 弯起钢筋bent-up bar 弯起钢筋bid 投标,标书bid call招标bid opening开标bidding sheet 标价单bid price 出价,投标价格binding reinforcement 绑扎钢筋blocking course檐口墙,女儿墙parapet (wall) bloodwood 红木redwoodbrick lintel 砖砌过梁brick masonry structure 砖石结构BRKT =bracket 牛腿building height 建筑高度building industrialization建筑工业化building-in fitting 预埋件building law 建筑法building line 建筑红线building module 建筑模数building orientation 建筑物朝向building permits for construction建筑施工执照building equipment 建筑设备building physics建筑物理building rubble 建筑垃圾building storm sewer 房屋雨水管built –in cupboard 壁厨cable structure 悬索结构cable-supported construction悬索结构canopy雨篷cast-in-place concrete 现浇混凝土cast-in-situ concrete 现浇混凝土caterpillar crane 履带式起重机cavity brick空心砖cavity wall空心墙ceiling 顶棚,吊顶,天花板cement floor水泥地面cement mortar水泥砂浆center-to-center中心距(中到中间距)chain-pull switch拉线开关cromatics色彩学city planning城市规划civil architecture民用建筑civil building民用建筑civil engineering土木工程clay brick粘土砖clerestory天窗clerestory windows高侧窗closet 盥洗室,厕所,卫生间coated glass 玻璃幕墙glass curtain wall collapsible loess 湿陷性黄土slumping loess collar tie beam 圈梁combination beam 组合梁combination construction 混合结构shear wall 剪力墙shear strength 抗剪强度transom (门上的)亮子bar 棒,条,杆件,(粗)钢筋beam 梁framework 框架truss桁架statically determinate ~ 静定桁架statically indeterminate ~ 超静定桁架elasticity弹性plasticity塑性stiffness刚度fiexibility挠度bending moment弯矩~ diagram 弯矩图~ envelope弯矩包络线influence line 影响线aggregate 骨料coarse ~ 粗骨料fine ~ 细骨料admixture外加剂concrete mixer混凝土搅拌机paint 油漆density密度viscosity粘度,粘滞性geology地质earth pressure 土压力active ~ 主动土压力coarse sand 粗砂; medium sand中砂; fine sand细砂artificial daylight人工采光artificial illumination人工照明art of architecture建筑艺术seismatic design 抗震设计back view 背立面balcony阳台balustrade 栏杆,扶手bamboo scaffolding竹脚手架band iron扁铁,扁钢bar cutter钢筋切断机bar list钢筋表bar spacing钢筋间距base board踢脚板basic module基本模数BC=building code建筑法规beam-and-column construction梁柱结构(框架结构)beam-and-girder construction主次梁梁格结构beam-and-slab construction梁板结构beam with one overhanging end 悬臂梁cantilever beam, overhanging beambeam with simply supported ends 简支梁simple beam, simple-supported beam, simply supported beambeam with fixed ends 固端梁bending stiffness弯曲刚度bending strength抗弯强度bending stress弯曲应力bend bar 弯起钢筋,弯筋commemorative architecture 纪念性建筑commercial buildings商业建筑物,商业房屋compacted fill 压实填土,夯实填土compacted soil压实土compaction by layers分层填土夯实compaction by rolling 碾压compaction by vibration振动压实compartmentation隔断completion acceptance竣工验收completion date 竣工日期compression bar 受压钢筋compression steel受压钢筋concealed work 隐蔽工程conductor 水落管construction administration 施工管理constructional drawing 施工图,构造图construction and installation work 建筑安装工程construction company 建筑公司construction economics建筑经济construction industry建筑(工)业construction in process 在建工程construction management plan 施工组织设计construction period施工工期construction site 施工现场creep 徐变,蠕变cross wall横墙dark room暗室design development phase 技术设计阶段design scheme设计方案detail drawing 详图,大样图,细部图development area 开发区digestion tank 化粪池septic tank, sewage tank distributed load分布荷载distributing bars 分布钢筋distribution reinforcement分布钢筋BL=dead load 恒载,自重dogleg stair 双折楼梯half turndomestic building居住房屋,住宅door window落地窗dormitory宿舍downspout 雨水管,落水管drain spout, fall pipe, leader pipe, rain conductor, rain leader, rain-water leaderdrip line 滴水线dunny厕所,盥洗室earthquake intensity地震烈度earthquake load 地震荷载earthquake resistant design抗震设计earthwork土石方工程earthwork quantity土方工程量eave 屋檐effective depth 有效高度,有效深度,有效厚度enameled tile 琉璃瓦,釉面砖engineering geological prospecting工程地质勘探expanded joint 伸缩缝,温度缝shrinkage joint, temperature jointfactory building厂房figured glass 图案玻璃,压花玻璃patterned glass fixed window固定窗flat skylight平天窗flexible foundation 柔性基础floor load楼面荷载floor plan楼屋平面图floor-to-ceiling height楼面至顶棚高度,室内净高floor-to-floor height楼面至楼面高度story height层高farmed steel 型钢shape(d) steelfoundation beam 基础梁foundation bed 基础垫层gable 出墙~ wallgalvanized iron 镀锌铁皮,白铁皮general arrangement drawing总体布置图,总平面图general layout 总平面图,总体布置glass fiber reinforced plastics玻璃纤维增强塑料,玻璃钢glued board 胶合板gravel 砾石; ~ cobble 卵石pebble gravel, pebble stoneground engineering地基工程ground floor plan底层平面图groundwater surface 地下水位phreatic (water ) surfacegutter明沟,天沟rain-gutter檐沟,天沟hair 麻刀hempmixed sand 混合砂mechanics of materials 材料力学theoretical mechanics 理论力学elastic mechanics弹性力学structural mechanics结构力学architectural mechanics建筑力学fracture mechanics断裂力学soil mechanics土力学rock mechanics岩石力学fluid mechanics流体力学abrasive floor防滑地板accelerated cement 快凝水泥accelerator促凝剂,速凝剂acceptance of hidden subsurface work 隐蔽工程验收acceptance of tender得标acceptance of work subelements分项工程验收access eye 清扫孔,检查孔access hole 检修孔access plate 检修孔盖板accordion shades 折叠式活动隔断,屏风acid 酸alkali碱acoustical insulation 隔声red cray 红粘土adamic earthadhesive bitumen primer冷底子油administration of the construction contract 施工合同管理aerial ledder消防梯non-bearing wall 非承重墙non-load bearing wall norm for detailed estimates 预算定额norm for preliminary estimates 概算定额norm for estimating labor requirements劳动定额norm for estimating material requirements材料定额open ditch 明沟open trenchoutside finish 外装修partion 隔壁, ~ screen 隔断pea shingle 豆砾石,绿豆砂pipeline gas 管道煤气plastic hinge 塑性铰plinth (wall)勒脚pointing (joints)勾缝pointing masonry勾缝砌体,清水墙porch 门廊,走廊pore water 孔隙水post-tensioning method后张法precast concrete lintel 预制混凝土过梁precast reinforced concrete building预制钢筋混凝土房屋monolithic reinforced concrete building整体式钢筋混凝土房屋prestressed concrete 预应力混凝土pretensioning method先张法protecting cap 安全帽protective cap, safety helmet protecting net 安全网public building公共建筑public comfort station 公共厕所public conveniencepump concrete 泵送混凝土pumping concrete halfpace landing楼梯平台landing platform, stair landing, stair platformhallway门厅,过道hemp thread麻丝high-rise hotel高层旅馆,高层饭店hip 屋脊线hoop reinforcement环筋,箍筋hull core structure筒体结构inside finish内装修jalousie window 百叶窗, louver windowjunior beam 次梁secondary beam, secondary girder main beam 主梁primary beam, primary girder kick strip 踢脚step踏步L & CM=lime and cement mortar石灰水泥砂浆lintol (门窗)过梁lintellongitudinal bar纵向钢筋low-rise building低层建筑LR = living room 起居室,客厅sitting room, parlo(u)rmastic 玛碲脂,树脂,嵌缝料membrane curing薄膜养护metallic tape钢卷尺metal window钢窗mid-span moment跨中弯矩mix(ing) proportion 配合比,混合比mix(ing) ratio mopboard踢脚板mosquito screen 纱窗, screen window。
土木工程专业英语(带翻译)
State-of-the-art report of bridge health monitoring AbstractThe damage diagnosis and healthmonitoring of bridge structures are active areas of research in recent years. Comparing with the aerospace engineering and mechanical engineering, civil engineering has the specialities of its own in practice. For example, because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at low amplitudes, the dynamic responses of bridge structure are substantially affected by the nonstructural components, unforeseen environmental conditions, and changes in these components can easily to be confused with structural damage.All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. This paper firstly presents the definition of structural healthmonitoring system and its components. Then, the focus of the discussion is placed on the following sections:①the laboratory and field testing research on the damage assessment;②analytical developments of damage detectionmethods, including (a) signature analysis and pattern recognition approaches, (b) model updating and system identification approaches, (c) neural networks approaches; and③sensors and their optimum placements. The predominance and shortcomings of each method are compared and analyzed. Recent examples of implementation of structural health monitoring and damage identification are summarized in this paper. The key problem of bridge healthmonitoring is damage automatic detection and diagnosis, and it is the most difficult problem. Lastly, research and development needs are addressed.1 IntroductionDue to a wide variety of unforeseen conditions and circumstance, it will never be possible or practical to design and build a structure that has a zero percent probability of failure. Structural aging, environmental conditions, and reuse are examples of circumstances that could affect the reliability and thelife of a structure. There are needs of periodic inspections to detect deterioration resulting from normal operation and environmental attack or inspections following extreme events, such as strong-motion earthquakes or hurricanes. To quantify these system performance measures requires some means to monitor and evaluate the integrity of civil structureswhile in service. Since the Aloha Boeing 737 accident that occurred on April 28, 1988, such interest has fostered research in the areas of structural health monitoring and non-destructive damage detection in recent years.According to Housner, et al. (1997), structural healthmonitoring is defined as“the use ofin-situ,non-destructive sensing and analysis of structural characteristics, including the structural response, for detecting changes that may indicate damage or degradation”[1]. This definition also identifies the weakness. While researchers have attempted the integration of NDEwith healthmonitoring, the focus has been on data collection, not evaluation. What is needed is an efficient method to collect data from a structure in-service and process the data to evaluate key performance measures, such as serviceability, reliability, and durability. So, the definition byHousner, et al.(1997)should be modified and the structural health monitoring may be defined as“the use ofin-situ,nondestructive sensing and analysis of structural characteristics, including the structural response, for the purpose of identifying if damage has occurred, determining the location of damage, estimatingthe severityof damage and evaluatingthe consequences of damage on the structures”(Fig.1). In general, a structural health monitoring system has the potential to provide both damage detection and condition assessment of a structure.Assessing the structural conditionwithout removingthe individual structural components is known as nondestructive evaluation (NDE) or nondestructive inspection. NDE techniques include those involving acoustics, dye penetrating,eddy current, emission spectroscopy, fiber-optic sensors, fiber-scope, hardness testing, isotope, leak testing, optics, magnetic particles, magnetic perturbation, X-ray, noise measurements, pattern recognition, pulse-echo, ra-diography, and visual inspection, etc. Mostof thesetechniques have been used successfullyto detect location of certain elements, cracks orweld defects, corrosion/erosion, and so on. The FederalHighwayAdministration(FHWA, USA)was sponsoring a large program of research and development in new technologies for the nondestructive evaluation of highway bridges. One of the two main objectives of the program is to develop newtools and techniques to solve specific problems. The other is to develop technologies for the quantitative assessment of the condition of bridges in support of bridge management and to investigate howbest to incorporate quantitative condition information into bridge management systems. They hoped to develop technologies to quickly, efficiently, and quantitatively measure global bridge parameters, such as flexibility and load-carrying capacity. Obviously, a combination of several NDE techniques may be used to help assess the condition of the system. They are very important to obtain the data-base for the bridge evaluation.But it is beyond the scope of this review report to get into details of local NDE.Health monitoring techniques may be classified as global and local. Global attempts to simultaneously assess the condition of the whole structure whereas local methods focus NDE tools on specific structural components. Clearly, two approaches are complementaryto eachother. All such available informationmaybe combined and analyzed by experts to assess the damage or safety state of the structure.Structural health monitoring research can be categorized into the following four levels: (I) detecting the existence of damage, (II) findingthe location of damage, (III) estimatingthe extentof damage, and (IV) predictingthe remaining fatigue life. The performance of tasks of Level (III) requires refined structural models and analyses, local physical examination, and/or traditional NDE techniques. To performtasks ofLevel (IV) requires material constitutive information on a local level, materials aging studies, damage mechanics, and high-performance computing. With improved instrumentation and understanding of dynamics of complex structures, health monitoring and damage assessment of civil engineering structures has become more practical in systematic inspection andevaluation of these structures during the past two decades.Most structural health monitoringmethods under current investigation focus on using dynamic responses to detect and locate damage because they are global methods that can provide rapid inspection of large structural systems.These dynamics-based methods can be divided into fourgroups:①spatial-domain methods,②modal-domain methods,③time-domain methods, and④frequency- domain methods. Spatial-domain methods use changes of mass, damping, and stiffness matrices to detect and locate damage. Modal-domain methods use changes of natural frequencies, modal damping ratios, andmode shapesto detect damage. In the frequency domain method, modal quantities such as natural frequencies, damping ratio, and model shapes are identified.The reverse dynamic systemof spectral analysis and the generalized frequency response function estimated fromthe nonlinear auto-regressive moving average (NARMA) model were applied in nonlinear system identification. In time domainmethod, systemparameterswere determined fromthe observational data sampled in time. It is necessaryto identifythe time variation of systemdynamic characteristics fromtime domain approach if the properties of structural system changewith time under the external loading condition. Moreover, one can use model-independent methods or model-referenced methods to perform damage detection using dynamic responses presented in any of the four domains. Literature shows that model independent methods can detect the existence of damage without much computational efforts, butthey are not accurate in locating damage. On the otherhand, model-referencedmethods are generally more accurate in locating damage and require fewer sensors than model-independent techniques, but they require appropriate structural models and significant computational efforts. Although time-domain methods use original time-domain datameasured using conventional vibrationmeasurement equipment, theyrequire certain structural information and massive computation and are case sensitive. Furthermore, frequency- and modal-domain methods use transformed data,which contain errors and noise due totransformation.Moreover, themodeling and updatingofmass and stiffnessmatrices in spatial-domain methods are problematic and difficult to be accurate. There are strong developmenttrends that two or three methods are combined together to detect and assess structural damages.For example, several researchers combined data of static and modal tests to assess damages. The combination could remove the weakness of each method and check each other. It suits the complexity of damage detection.Structural health monitoring is also an active area of research in aerospace engineering, but there are significant differences among the aerospace engineering, mechanical engineering, and civil engineering in practice. For example,because bridges, as well as most civil engineering structures, are large in size, and have quite lownatural frequencies and vibration levels, at lowamplitudes, the dynamic responses of bridge structure are substantially affected by the non-structural components, and changes in these components can easily to be confused with structural damage. Moreover,the level of modeling uncertainties in reinforced concrete bridges can be much greater than the single beam or a space truss. All these give the damage assessment of complex structures such as bridges a still challenging task for bridge engineers. Recent examples of research and implementation of structural health monitoring and damage assessment are summarized in the following sections.2 Laboratory and field testing researchIn general, there are two kinds of bridge testing methods, static testing and dynamic testing. The dynamic testing includes ambient vibration testing and forced vibration testing. In ambient vibration testing, the input excitation is not under the control. The loading could be either micro-tremors, wind, waves, vehicle or pedestrian traffic or any other service loading. The increasing popularity of this method is probably due to the convenience of measuring the vibrationresponse while the bridge is under in-service and also due to the increasing availability of robust data acquisition and storage systems. Since the input is unknown, certain assumptions have to be made. Forced vibration testing involves application of input excitation of known force level at known frequencies. The excitation manners include electro-hydraulic vibrators, forcehammers, vehicle impact, etc. The static testing in the laboratory may be conducted by actuators, and by standard vehicles in the field-testing.we can distinguish that①the models in the laboratory are mainly beams, columns, truss and/or frame structures, and the location and severity of damage in the models are determined in advance;②the testing has demonstrated lots of performances of damage structures;③the field-testing and damage assessmentof real bridges are more complicated than the models in the laboratory;④the correlation between the damage indicator and damage type,location, and extentwill still be improved.3 Analytical developmentThe bridge damage diagnosis and health monitoring are both concerned with two fundamental criteria of the bridges, namely, the physical condition and the structural function. In terms of mechanics or dynamics, these fundamental criteria can be treated as mathematical models, such as response models, modal models and physical models.Instead of taking measurements directly to assess bridge condition, the bridge damage diagnosis and monitoring systemevaluate these conditions indirectly by using mathematical models. The damage diagnosis and health monitoring are active areas of research in recentyears. For example, numerous papers on these topics appear in the proceedings of Inter-national Modal Analysis Conferences (IMAC) each year, in the proceedings of International Workshop on Structural HealthMonitoring (once of two year, at Standford University), in the proceedings of European Conference on Smart materials and Structures and European Conference on Structural Damage AssessmentUsing Advanced Signal Processing Procedures, in the proceedings ofWorld Conferences of Earthquake Engineering, and in the proceedings of International Workshop on Structural Control, etc.. There are several review papers to be referenced, for examples,Housner, et al. (1997)provided an extensive summary of the state of the art in control and health monitoring of civil engineering structures[1].Salawu (1997)discussed and reviewed the use of natural frequency as a diagnostic parameter in structural assessment procedures using vibrationmonitoring.Doebling, Farrar, et al. (1998)presented a through review of the damage detection methods by examining changes in dynamic properties.Zou, TongandSteven (2000)summarized the methods of vibration-based damage and health monitoring for composite structures, especially in delamination modeling techniques and delamination detection.4 Sensors and optimum placementOne of the problems facing structural health monitoring is that very little is known about the actual stress and strains in a structure under external excitations. For example, the standard earthquake recordings are made ofmotions of the floors of the structure and no recordings are made of the actual stresses and strains in structural members. There is a need for special sensors to determine the actual performance of structural members. Structural health monitoring requires integrated sensor functionality to measure changes in external environmental conditions, signal processing functionality to acquire, process, and combine multi-sensor and multi-measured information. Individual sensors and instrumented sensor systems are then required to provide such multiplexed information.FuandMoosa (2000)proposed probabilistic advancing cross-diagnosis method to diagnosis-decision making for structural health monitoring. It was experimented in the laboratory respectively using a coherent laser radar system and a CCD high-resolution camera. Results showed that this method was promising for field application. Another new idea is thatneural networktechniques are used to place sensors. For example,WordenandBurrows (2001)used the neural network and methods of combinatorial optimization to locate and classify faults.The static and dynamic data are collected from all kinds of sensorswhich are installed on the measured structures.And these datawill be processed and usable informationwill be extracted. So the sensitivity, accuracy, and locations,etc. of sensors are very important for the damage detections. The more information are obtained, the damage identification will be conducted more easily, but the price should be considered. That’s why the sensors are determinedin an optimal ornearoptimal distribution. In aword, the theory and validation ofoptimumsensor locationswill still being developed.5 Examples of health monitoring implementationIn order for the technology to advance sufficiently to become an operational system for the maintenance and safety of civil structures, it is of paramount importance that new analytical developments are ultimately verified with appropriate data obtained frommonitoring systems, which have been implemented on civil structures, such as bridges.Mufti (2001)summarized the applications of SHM of Canadian bridge engineering, including fibre-reinforced polymers sensors, remote monitoring, intelligent processing, practical applications in bridge engineering, and technology utilization. Further study and applications are still being conducted now.FujinoandAbe(2001)introduced the research and development of SHMsystems at the Bridge and Structural Lab of the University of Tokyo. They also presented the ambient vibration based approaches forLaser DopplerVibrometer (LDV) and the applications in the long-span suspension bridges.The extraction of the measured data is very hard work because it is hard to separate changes in vibration signature duo to damage form changes, normal usage, changes in boundary conditions, or the release of the connection joints.Newbridges offer opportunities for developing complete structural health monitoring systems for bridge inspection and condition evaluation from“cradle to grave”of the bridges. Existing bridges provide challenges for applying state-of-the-art in structural health monitoring technologies to determine the current conditions of the structural element,connections and systems, to formulate model for estimating the rate of degradation, and to predict the existing and the future capacities of the structural components and systems. Advanced health monitoring systems may lead to better understanding of structural behavior and significant improvements of design, as well as the reduction of the structural inspection requirements. Great benefits due to the introduction of SHM are being accepted by owners, managers, bridge engineers,etc..6 Research and development needsMost damage detection theories and practices are formulated based on the following assumption: that failure or deterioration would primarily affect the stiffness and therefore affect the modal characteristics of the dynamic response of the structure. This is seldom true in practice, because①Traditional modal parameters (natural frequency, damping ratio and mode shapes, etc.) are not sensitive enough to identify and locate damage. The estimation methods usually assume that structures are linear and proportional damping systems.②Most currently used damage indices depend on the severity of the damage, which is impractical in the field. Most civil engineering structures, such as highway bridges, have redundancy in design and large in size with low natural frequencies. Any damage index should consider these factors.③Scaledmodelingtechniques are used in currentbridge damage detection. Asingle beam/girder models cannot simulate the true behavior of a real bridge. Similitude laws for dynamic simulation and testing should be considered.④Manymethods usually use the undamaged structural modal parameters as the baseline comparedwith the damaged information. This will result in the need of a large data storage capacity for complex structures. But in practice,there are majority of existing structures for which baseline modal responses are not available. Only one developed method(StubbsandKim (1996)), which tried to quantify damagewithout using a baseline, may be a solution to this difficulty. There is a lot of researchwork to do in this direction.⑤Seldommethods have the ability to distinguish the type of damages on bridge structures. To establish the direct relationship between the various damage patterns and the changes of vibrational signatures is not a simple work.Health monitoring requires clearly defined performance criteria, a set of corresponding condition indicators and global and local damage and deterioration indices, which should help diagnose reasons for changes in condition indicators. It is implausible to expect that damage can be reliably detected or tracked byusing a single damage index. We note that many additional localized damage indiceswhich relate to highly localized properties ofmaterials or the circumstances may indicate a susceptibility of deterioration such as the presence of corrosive environments around reinforcing steel in concrete, should be also integrated into the health monitoring systems.There is now a considerable research and development effort in academia, industry, and management department regarding global healthmonitoring for civil engineering structures. Several commercial structural monitoring systems currently exist, but further development is needed in commercialization of the technology. We must realize that damage detection and health monitoring for bridge structures by means of vibration signature analysis is a very difficult task. Itcontains several necessary steps, including defining indicators on variations of structural physical condition, dynamic testing to extract such indication parameters, defining the type of damages and remaining capacity or life of the structure, relating the parameters to the defined damage/aging. Unfortunately, to date, no one has accomplished the above steps. There is a lot of work to do in future.桥梁健康监测应用与研究现状摘要桥梁损伤诊断与健康监测是近年来国际上的研究热点,在实践方面,土木工程和航空航天工程、机械工程有明显的差别,比如桥梁结构以及其他大多数土木结构,尺寸大、质量重,具有较低的自然频率和振动水平,桥梁结构的动力响应极容易受到不可预见的环境状态、非结构构件等的影响,这些变化往往被误解为结构的损伤,这使得桥梁这类复杂结构的损伤评估具有极大的挑战性.本文首先给出了结构健康监测系统的定义和基本构成,然后集中回顾和分析了如下几个方面的问题:①损伤评估的室内实验和现场测试;②损伤检测方法的发展,包括:(a)动力指纹分析和模式识别方法, (b)模型修正和系统识别方法, (c)神经网络方法;③传感器及其优化布置等,并比较和分析了各自方法的优点和不足.文中还总结了健康监测和损伤识别在桥梁工程中的应用,指出桥梁健康监测的关键问题在于损伤的自动检测和诊断,这也是困难的问题;最后展望了桥梁健康监测系统的研究和发展方向.关键词:健康监测系统;损伤检测;状态评估;模型修正;系统识别;传感器优化布置;神经网络方法;桥梁结构1概述由于不可预见的各种条件和情况下,设计和建造一个结构将永远不可能或无实践操作性,它有一个失败的概率百分之零。
土木工程专业英语(完整 大学)
Lesson 26PavementNew words1. pavement [ ☐♏♓❍☜⏹♦] n. 路面2. apron [ ♏♓☐❒☜⏹] n.围裙, 停机坪It is usually the area where aircraft are parked, unloaded or loaded, refueled or boarded.3. subgrade [ ♦✈♌♈❒♏♓♎] n. 路基4. profile [ ☐❒☜◆♐♋♓●] n.剖面, 侧面, 外形, 轮廓5. rehabilitation [ ❒♓☎♒✆☜♌♓●♓♦♏♓☞☜⏹] n.复原,维修6. swelling [ ♦♦♏●♓☠] n. 膨胀,河水猛涨,涨水7. heaving [ ♒♓♓☠] n. 鼓起,隆起8. extant [♏♦♦✌⏹♦] adj.现存的, 未毁的9. overlay [ ☜◆☜●♏♓] n. 覆盖,10. unpaved ☯✈⏹☐♏♓♎] adj.没有铺石砖的, 没有铺柏油的11. liquefy [ ●♓♦♓♐♋♓] v.(使)溶解, (使)液化12. bituminous [♌♓♦◆❍♓⏹☜♦] adj.含沥青的13. hydrocarbon [ ♒♋♓♎❒☜◆♌☜⏹] n.烃, 碳氢化合物14. macadam [❍☜✌♎☜❍] n.碎石, 碎石路15. silicate [ ♦♓●♓♓♦] n. [化]硅酸盐16. kiln [ ♓●⏹ ♓●] n. (砖, 石灰等的)窑, 炉, 干燥炉vt.烧窑, 在干燥炉干燥17. clinker [ ●♓☠☜] n. (一种表面光洁如玻璃的)炼砖, 渣块18. nonbituminous [ ⏹⏹♌♓♦◆❍♓⏹☜♦]19. solidify [♦☜●♓♎♓♐♋♓] v.(使)凝固, (使)团结20. dowel [ ♎♋◆☜●] n. 木钉, 销子vt.用暗销接合Phrases and Expressions1. traveled way 车行道2. composite pavement 复合路面3. flexible pavement 柔性路面4. rigid pavement 刚性路面5. open-graded 开级配6. coarse-graded 粗级配7. fine-graded 细级配8. Asphalt Institute (A.I.) 沥青协会9. Present Serviceability Index (PSI) 现有性能指标10. macadam aggregate 碎石骨料11. cold-laid mixture 冷铺12. hot-laid mixture 热铺13. rock asphalt 岩沥青14. Appian Way 亚壁古道Text PavementBackgroundPavements serve structural, functional and safety purposes. 路面具有结构、功能和安全的目的。
土木工程专业英语翻译
土木工程专业英语翻译第一篇:土木工程专业英语翻译1.第一课土木工程,这个最古老的工程专业,是指对被建设环境的规划、设计、建筑和管理。
这个环境包括按科学原理所建的一切结构,从灌溉和排水系统到火箭发射设备。
土木工程师们修路、建桥、打隧道,木工程师始终(将介词throughout转译成副词)都要充分利用计算机。
用计算机来设计工程的各要素(计算机辅助设计CAD)且用计算机来管理这个工程项目。
对于现代土木工程师而言,计算机是必备的工具,因为它们允许工程师高效建水坝,海港,发电厂,供水排水系统,建医院,学校,公共交通设施和其他公共设施实质上就是要建设现代化社会和大量人口集中地。
他们也建设私有的设施,例如:机场,铁路,管线,摩天大楼,和其他大型建筑物,它们设计用于工业,商业和居住等用途。
此外,土木工程师规划,设计和建设完整的城市和乡镇,近年来,已经在规划和设计空间平台来构建自给自足型社区。
2.土木这个词来源于拉丁文,原意是市民。
1782年,英国人JohnSmeaton用这个术语将非军事工程工作从在当时占绝大多数的军事工程师所人事的工程工作中区别开来。
从那以后,土木工程这个词常常用于表示建设公用设施的工程师们所人事的工作,尽管这个领域要宽广得多。
3.范围:因为它的面太广,所以土木工程被分成许多技术专业。
各专业的土木工程专家所需要的技能取决于工程项目的类型。
当一个项目开始时,场地被土木工程师所测绘,他们给定给水排水设施和电力线路的实际位置。
岩土工程专家们完成土壤实验来确定地基是否能承受工程项目的自重。
环境专家们研究项目对当地的影响:潜在的空气和地下水资源的污染,工程项目对当地动植物的影响,为满足保护环境的管理要求,怎样才能把工程项目设计好。
4.对于任何一个给定的工程项目,土地处理大量的用来制定工程最佳施工方法的数据。
5.结构工程.在这个专业中,土木工程师计划和设计各种各样的结构,包括桥,水坝,发电厂,设备的支柱,海岸工程的特殊结构,美国空间项目,发射塔,巨大的天文射电望远镜,和许多种其它的工程项目。
土木工程专业英语课文翻译考试必备
土木工程专业英语课文_翻译_考试必备土木工程专业英语课文翻译The principal construction materials of earlier times were wood and masonry brick, stone, or tile, and similar materials. The courses or layers were bound together with mortar or bitumen, a tar like substance, or some other binding agent. The Greeks and Romanssometimes used iron rods or claps to strengthen their building. The columns of the Parthenon in Athens, for example, have holes drilled in them for iron bars that have now rusted away. The Romans also used a natural cement called puzzling, made from volcanic ash, that became as hard as stone under water.早期时代的主要施工材料,木材和砌体砖,石,或瓷砖,和类似的材料;这些课程或层密切联系在一起,用砂浆或沥青,焦油一个样物质,或其他一些有约束力的代理人;希腊人和罗马人有时用铁棍或拍手以加强其建设;在雅典的帕台农神庙列,例如,在他们的铁钻的酒吧现在已经生锈了孔;罗马人还使用了天然水泥称为令人费解的,由火山灰制成,变得像石头一样坚硬在水中;Both steel and cement, the two most important construction materials of modern times, were introduced in the nineteenth century. Steel, basically an alloy of iron and a small amount of carbon had been made up to that time by a laborious process that restricted it to such special uses as sword blades. After the invention of the Bessemer process in 1856, steel was available in large quantities at low prices. The enormous advantage of steel is its tensile force which, as we have seen, tends to pull apart many materials. New alloys have further, which is a tendency for it to weaken as a result of continual changes in stress.钢铁和水泥,两个最重要的现代建筑材料,介绍了在十九世纪;钢,铁,基本上是少量的碳合金已作出了这一由一个艰苦的过程,限制它的刀刃等特殊用途的时间;后在1856年发明贝塞麦过程,钢在低价格大批量供货;钢铁的巨大优势是它的拉伸力,正如我们所看到的,往往会拉开许多材料;新合金进一步,这是一个趋势,它削弱了在压力不断变化的结果;Modern cement, called Portland cement, was invented in 1824. It is a mixture of limestone and clay, which is heated and then ground into a power. It is mixed at or near the construction site with sand, aggregate small stones, crushed rock, or gravel, and water to make concrete. Different proportions of the ingredients produce concrete with different strength and weight. Concrete is very versatile; it can be poured, pumped, or even sprayed into all kinds of shapes. And whereas steel has great tensile strength, concrete has great strength under compression. Thus, the two substances complement each other. 现代水泥,称为硅酸盐水泥,发明于1824年;它是石灰石和粘土的混合物,被加热,然后进入电源地;它是混合达到或接近沙施工现场,聚集的小石头,碎石,或石子和水,使混凝土;不同比例的成分产生不同强度和重量混凝土;混凝土是非常灵活,它可浇,泵浦,或连成各种形状喷洒;和鉴于钢具有很大的拉伸强度,混凝土受压的伟大力量;因此,这两种物质是相辅相成的;They also complement each other in another way: they have almost the same rate of contraction and expansion. They therefore can work together in situations where both compression and tension are factors. Steel rods are embedded in concrete to make reinforced concrete in concrete beams or structures where tensions will develop. Concrete and steel also form such a strong bond the force that unites them that the steel cannot slip within theconcrete. Still another advantage is that steel does not rust in concrete. Acid corrodessteel, whereas concrete has an alkaline chemical reaction, the oppositeof acid.他们还以另一种方式补充对方:他们几乎在同样的速度收缩和扩张;因此,他们可以一起工作的情况下压缩和紧张的因素;钢条是嵌在混凝土,使钢筋混凝土结构中混凝土梁或地方的紧张局势会发展;混凝土和钢也形成如此强烈的纽带团结的力量他们的钢材,不滑内的混凝土;还有一个好处是,不生锈的钢混凝土;酸腐蚀钢,而混凝土的碱性化学反应,酸相反;The adoption of structural steel and reinforced concrete caused major changes in traditional construction practices. It was no longer necessary to use thick walls of stone or brick for multistory buildings, and it became much simpler to build fire-resistant floors. Both these changes served to reduce the cost of construction. It also became possible to erect buildings with greater heights and longer spans.结构钢和钢筋混凝土建筑采用传统的做法造成了重大变化;它不再需要使用的石块或砖头厚的多层建筑物的墙壁,成为更简单,建立防火地板;这些变化都有助于降低建设成本;它也成为可能有更大的直立高度和时间跨度的建筑;Since the weight of modern structures is carried by the steel or concrete frame, the walls do not support the building. They have become curtain walls, which keep out the weather and let in light. In the earlier steel orconcrete frame building, the curtain walls were generally made of masonry; they had the solid look of bearing walls. Today, however, curtain walls are often made of lightweight materials such as glass, aluminum, or plastic, in various combinations. 由于现代结构重量是由钢或混凝土框架进行,墙壁不支持建设;他们已成为玻璃幕墙,它保持了天气和光线让;在早期的钢或混凝土框架结构,玻璃幕墙,一般由砖石,他们有坚实的承重墙看看;然而,今天,玻璃幕墙往往是由诸如玻璃,铝,塑料或轻质材料,在各种组合;Another advance in steel construction is the method of fastening together the beams. For many years the standard method was riveting. A rivet is abolt with a head that looks like a blunt screw without threads. It is heated, placed in holes through the pieces of steel, and a second head is formed at the other end by hammering it to hold it in place. Riveting has now largely been replaced by welding, thejoining together of pieces of steel by melting a steel material between them under high heat.钢结构建筑的另一个进步是梁紧固在一起的方法;多年来,标准方法是铆;铆钉是一个头,像一个没有线程看起来钝螺丝螺栓;它被加热时,通过放置在洞的钢件,第二头在另一端形成的锤击它举行到位;铆接现在很大程度上是由焊接取代,加入钢件在一起融化在高温下它们之间的钢铁材料;Presstressed concrete is an improved form of reinforcement. Steel rodsare bent into the shapes to give them the necessary degree of tensile strengths. They are then used to priestess concrete, usually by one of two different methods. The first is to leave channels in a concrete beam that correspond to the shapes of the steel rods. When the rods are run throughthe channels, they are then bonded to the concrete by filling the channels with grout, a thin mortar or binding agent. In the other and more common method, the priestesses steel rods are placed in the lower part of a formthat corresponds to the shape of the finished structure, and the concrete is poured around them. Priestess’s concrete uses less steel and less concrete. Because it is a highly desirable material.预应力钢筋混凝土是一种改进形式;棒钢弯曲成的形状,给他们一定程度的拉伸强度;然后他们用女祭司混凝土,由两种不同的方法之一,通常;首先是留在渠道混凝土梁对应于钢铁棒的形状;当棒是通过渠道来说,他们是那么粘在混凝土充填灌浆,薄砂浆或结合剂的渠道;在其他更常见的方法,女祭司钢棒放置在一个表格对应的成品下部结构形状,和他们周围的混凝土浇;女祭司的具体使用较少的钢铁和混凝土少;因为它是一个非常可取的材料;Presstressed concrete has made it possible to develop buildings with unusual shapes, like some of the modern, sports arenas, with large spaces unbroken by any obstructing supports. The uses for this relatively new structural method are constantly being developed. 预应力混凝土使人们有可能发展不寻常的形状的建筑物,如现代,体育场一些大空间的任何阻挠支持不间断;在使用这种相对较新的构造方法正在不断发展;。
(完整版)土木工程专业英语翻译
(完整版)土木工程专业英语翻译(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。
在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。
(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。
(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。
土木工程专业英语带译文
Chapter 6
If a material with high strength in tension, such as steel, is placed in concrete, then the composite material, reinforced concrete, resists not only compression but also bending and other direct tensile actions. A reinforced concrete section where the concrete resists the compression and steel resists the tension can be made into almost any shape and size for the construction industry.
6. —We shall finish the civil work by the end of the year. 在年底前我们将完成土建工作。 —Cement steel and timber are the most important construction materials used in civil engineering. 水泥、钢材和木材是土建工程中最重要的建筑材料。 7. These are the anchor bolts (rivets, unfinished bolts, high-strength structural bolts) for the structure. 这是用于结构的锚定螺栓(铆钉、粗制螺栓、高强度结构用螺栓)。
Chapter 6
Chapter 6 Reinforced Concrete
(完整)土木工程专业英语词汇(整理版)
(完整)土木工程专业英语词汇(整理版)第一部分必须掌握,第二部分尽量掌握第一部分:1 Finite Element Method 有限单元法2 专业英语 Specialty English3 水利工程 Hydraulic Engineering4 土木工程 Civil Engineering5 地下工程 Underground Engineering6 岩土工程 Geotechnical Engineering7 道路工程 Road (Highway) Engineering8 桥梁工程Bridge Engineering9 隧道工程 Tunnel Engineering10 工程力学 Engineering Mechanics11 交通工程 Traffic Engineering12 港口工程 Port Engineering13 安全性 safety17木结构 timber structure18 砌体结构 masonry structure19 混凝土结构concrete structure20 钢结构 steelstructure21 钢—混凝土复合结构steel and concrete composite structure22 素混凝土 plain concrete23 钢筋混凝土reinforced concrete24 钢筋 rebar25 预应力混凝土 pre-stressed concrete26 静定结构statically determinate structure27 超静定结构statically indeterminate structure28 桁架结构 truss structure29 空间网架结构 spatial grid structure30 近海工程 offshore engineering31 静力学 statics32运动学kinematics33 动力学dynamics34 简支梁 simply supported beam35 固定支座 fixed bearing36弹性力学 elasticity37 塑性力学 plasticity38 弹塑性力学 elaso-plasticity39 断裂力学 fracture Mechanics40 土力学 soil mechanics41 水力学 hydraulics42 流体力学 fluid mechanics43 固体力学solid mechanics44 集中力 concentrated force45 压力 pressure46 静水压力 hydrostatic pressure47 均布压力 uniform pressure48 体力 body force 49 重力 gravity50 线荷载 line load51 弯矩 bending moment52 torque 扭矩53 应力 stress54 应变 stain55 正应力 normal stress56 剪应力 shearing stress57 主应力 principal stress58 变形 deformation59 内力 internal force60 偏移量挠度 deflection61 settlement 沉降62 屈曲失稳 buckle63 轴力 axial force64 允许应力 allowable stress65 疲劳分析 fatigue analysis66 梁 beam67 壳 shell68 板 plate69 桥 bridge70 桩 pile71 主动土压力 active earth pressure72 被动土压力 passive earth pressure73 承载力 load-bearing capacity74 水位 water Height75 位移 displacement76 结构力学 structural mechanics77 材料力学 material mechanics78 经纬仪 altometer79 水准仪level80 学科 discipline81 子学科 sub—discipline82 期刊 journal ,periodical83文献literature84 ISSN International Standard Serial Number 国际标准刊号85 ISBN International Standard Book Number 国际标准书号86 卷 volume87 期 number 88 专著 monograph89 会议论文集 Proceeding90 学位论文 thesis, dissertation91 专利 patent92 档案档案室 archive93 国际学术会议 conference94 导师 advisor95 学位论文答辩 defense of thesis96 博士研究生 doctorate student97 研究生 postgraduate98 EI Engineering Index 工程索引(完整)土木工程专业英语词汇(整理版)99 SCI Science Citation Index 科学引文索引100ISTP Index to Science and Technology Proceedings 科学技术会议论文集索引101 题目 title102 摘要 abstract103 全文 full-text104 参考文献 reference105 联络单位、所属单位affiliation106 主题词 Subject107 关键字 keyword108 ASCE American Society of Civil Engineers 美国土木工程师协会109 FHWA Federal Highway Administration 联邦公路总署110 ISO International Standard Organization111 解析方法 analytical method112 数值方法 numerical method113 计算 computation114 说明书 instruction115 规范 Specification, Code第二部分:岩土工程专业词汇1.geotechnical engineering岩土工程2。
土木工程专业英语课后翻译
一.1.受压构件是只承受轴向压力的结构构件。
Compression members are those structural elements that are subjected only to axial compressive forces.2.公式1.1要成立,构件必须是弹性的并且其两端能自由转动但不能横向移动。
For Eq.1.1 to be valid,the member must be elastic,and it's ends must be free to rotate but not translate laterally.3.临界荷载有时被称为欧拉荷载或欧拉屈服荷载。
The critical load is sometimes referred to as the Euler load or the Euler buckling load.4.图1.2中的应力-应变曲线不同于延性钢的应力-应变曲线,因为它有明显的非线性区域。
The stress-strain curve in Fig.1.2 is differet from the ones for ductile steel because it has a pronounced region of nonlinearity.5.其他因素,像焊接和冷弯,都能影响残余应力,但冷却过程是残余应力的主要来源。
Other factors,such as welding and cold bending to create curvature in a beam, can contribute to be the residual stress,but the cooling process is the chief source.二1。
作用在结构上的力被称为荷载The forces that act on a structure are called loads.2.恒载就是固定不变的荷载,包括结构自身的重量。
土木工程专业英语课文原文及对照翻译
土木工程专业英语课文原文及对照翻译土木工程师建造道路、桥梁、隧道、水坝、港口、发电厂、水和污水系统、医院、学校、大众交通和其他对现代社会和大量人口集中地区至关重要的公共设施。
他们还建造私人拥有的设施,如机场、铁路、管道、摩天大楼和其他为工业、商业或住宅使用而设计的大型结构。
此外,土木工程师规划、设计和建造完整的城市和城镇,最近还在规划和设计太空平台,以容纳自给自足的社区。
___ passes the planning。
design。
n。
and management of the built ___ scientific principles。
from ___ are essential to modern society。
such as roads。
bridges。
___。
dams。
and hospitals.___ public facilities。
civil engineers also design and build privately-owned structures。
including airports。
railroads。
pipelines。
skyscrapers。
and other ___。
and ___.Overall。
___ civil engineers。
our modern infrastructure and public facilities would not exist.___。
n。
and maintenance of public and private infrastructure。
This includes roads。
bridges。
pipelines。
dams。
ports。
power plants。
water supply and sewage systems。
hospitals。
schools。
___。
and other structures that are essential to modern ___ as airports。
土木工程 专业外语词汇大全中英翻译
土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering1. 综合类反分析法back analysis method1. 综合类基础工程foundation engineering1. 综合类临界状态土力学critical state soil mechanics1. 综合类数值岩土力学numerical geomechanics1. 综合类土soil, earth1. 综合类土动力学soil dynamics1. 综合类土力学soil mechanics1. 综合类岩土工程geotechnical engineering1. 综合类应力路径stress path1. 综合类应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock2. 工程地质及勘察标准冻深standard frost penetration2. 工程地质及勘察冰川沉积glacial deposit2. 工程地质及勘察冰积层(台)glacial deposit2. 工程地质及勘察残积土eluvial soil, residual soil2. 工程地质及勘察层理beding2. 工程地质及勘察长石feldspar2. 工程地质及勘察沉积岩sedimentary rock2. 工程地质及勘察承压水confined water2. 工程地质及勘察次生矿物secondary mineral2. 工程地质及勘察地质年代geological age2. 工程地质及勘察地质图geological map2. 工程地质及勘察地下水groundwater2. 工程地质及勘察断层fault2. 工程地质及勘察断裂构造fracture structure2. 工程地质及勘察工程地质勘察engineering geological exploration 2. 工程地质及勘察海积层(台)marine deposit2. 工程地质及勘察海相沉积marine deposit2. 工程地质及勘察花岗岩granite2. 工程地质及勘察滑坡landslide2. 工程地质及勘察化石fossil2. 工程地质及勘察化学沉积岩chemical sedimentary rock2. 工程地质及勘察阶地terrace2. 工程地质及勘察节理joint2. 工程地质及勘察解理cleavage2. 工程地质及勘察喀斯特karst2. 工程地质及勘察矿物硬度hardness of minerals2. 工程地质及勘察砾岩conglomerate2. 工程地质及勘察流滑flow slide2. 工程地质及勘察陆相沉积continental sedimentation2. 工程地质及勘察泥石流mud flow, debris flow2. 工程地质及勘察年粘土矿物clay minerals2. 工程地质及勘察凝灰岩tuff2. 工程地质及勘察牛轭湖ox-bow lake2. 工程地质及勘察浅成岩hypabyssal rock2. 工程地质及勘察潜水ground water2. 工程地质及勘察侵入岩intrusive rock2. 工程地质及勘察取土器geotome2. 工程地质及勘察砂岩sandstone2. 工程地质及勘察砂嘴spit, sand spit2. 工程地质及勘察山岩压力rock pressure2. 工程地质及勘察深成岩plutionic rock2. 工程地质及勘察石灰岩limestone2. 工程地质及勘察石英quartz2. 工程地质及勘察松散堆积物rickle2. 工程地质及勘察围限地下水(台)confined ground water 2. 工程地质及勘察泻湖lagoon2. 工程地质及勘察岩爆rock burst2. 工程地质及勘察岩层产状attitude of rock2. 工程地质及勘察岩浆岩magmatic rock, igneous rock2. 工程地质及勘察岩脉dike, dgke2. 工程地质及勘察岩石风化程度degree of rock weathering 2. 工程地质及勘察岩石构造structure of rock2. 工程地质及勘察岩石结构texture of rock2. 工程地质及勘察岩体rock mass2. 工程地质及勘察页岩shale2. 工程地质及勘察原生矿物primary mineral2. 工程地质及勘察云母mica2. 工程地质及勘察造岩矿物rock-forming mineral2. 工程地质及勘察褶皱fold, folding2. 工程地质及勘察钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil3. 土的分类超固结土overconsolidated soil3. 土的分类冲填土dredger fill3. 土的分类充重塑土3. 土的分类冻土frozen soil, tjaele3. 土的分类非饱和土unsaturated soil3. 土的分类分散性土dispersive soil3. 土的分类粉土silt, mo3. 土的分类粉质粘土silty clay3. 土的分类高岭石kaolinite3. 土的分类过压密土(台)overconsolidated soil3. 土的分类红粘土red clay, adamic earth3. 土的分类黄土loess, huangtu(China)3. 土的分类蒙脱石montmorillonite3. 土的分类泥炭peat, bog muck3. 土的分类年粘土clay3. 土的分类年粘性土cohesive soil, clayey soil3. 土的分类膨胀土expansive soil, swelling soil3. 土的分类欠固结粘土underconsolidated soil3. 土的分类区域性土zonal soil3. 土的分类人工填土fill, artificial soil3. 土的分类软粘土soft clay, mildclay, mickle3. 土的分类砂土sand3. 土的分类湿陷性黄土collapsible loess, slumping loess3. 土的分类素填土plain fill3. 土的分类塑性图plasticity chart3. 土的分类碎石土stone, break stone, broken stone, channery, chat, crushed stone, deritus 3. 土的分类未压密土(台)underconsolidated clay3. 土的分类无粘性土cohesionless soil, frictional soil, non-cohesive soil3. 土的分类岩石rock3. 土的分类伊利土illite3. 土的分类有机质土organic soil3. 土的分类淤泥muck, gyttja, mire, slush3. 土的分类淤泥质土mucky soil3. 土的分类原状土undisturbed soil3. 土的分类杂填土miscellaneous fill3. 土的分类正常固结土normally consolidated soil3. 土的分类正常压密土(台)normally consolidated soil3. 土的分类自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits4. 土的物理性质饱和度degree of saturation4. 土的物理性质饱和密度saturated density4. 土的物理性质饱和重度saturated unit weight4. 土的物理性质比重specific gravity4. 土的物理性质稠度consistency4. 土的物理性质不均匀系数coefficient of uniformity, uniformity coefficient4. 土的物理性质触变thixotropy4. 土的物理性质单粒结构single-grained structure4. 土的物理性质蜂窝结构honeycomb structure4. 土的物理性质干重度dry unit weight4. 土的物理性质干密度dry density4. 土的物理性质塑性指数plasticity index4. 土的物理性质含水量water content, moisture content4. 土的物理性质活性指数4. 土的物理性质级配gradation, grading4. 土的物理性质结合水bound water, combined water, held water4. 土的物理性质界限含水量Atterberg limits4. 土的物理性质颗粒级配particle size distribution of soils, mechanical composition of soil 4. 土的物理性质可塑性plasticity4. 土的物理性质孔隙比void ratio4. 土的物理性质孔隙率porosity4. 土的物理性质粒度granularity, grainness, grainage4. 土的物理性质粒组fraction, size fraction4. 土的物理性质毛细管水capillary water4. 土的物理性质密度density4. 土的物理性质密实度compactionness4. 土的物理性质年粘性土的灵敏度sensitivity of cohesive soil4. 土的物理性质平均粒径mean diameter, average grain diameter4. 土的物理性质曲率系数coefficient of curvature4. 土的物理性质三相图block diagram, skeletal diagram, three phase diagram4. 土的物理性质三相土tri-phase soil4. 土的物理性质湿陷起始应力initial collapse pressure4. 土的物理性质湿陷系数coefficient of collapsibility4. 土的物理性质缩限shrinkage limit4. 土的物理性质土的构造soil texture4. 土的物理性质土的结构soil structure4. 土的物理性质土粒相对密度specific density of solid particles4. 土的物理性质土中气air in soil4. 土的物理性质土中水water in soil4. 土的物理性质团粒aggregate, cumularpharolith4. 土的物理性质限定粒径constrained diameter4. 土的物理性质相对密度relative density, density index4. 土的物理性质相对压密度relative compaction, compacting factor, percent compaction, coefficient of compaction4. 土的物理性质絮状结构flocculent structure4. 土的物理性质压密系数coefficient of consolidation4. 土的物理性质压缩性compressibility4. 土的物理性质液限liquid limit4. 土的物理性质液性指数liquidity index4. 土的物理性质游离水(台)free water4. 土的物理性质有效粒径effective diameter, effective grain size, effective size4. 土的物理性质有效密度effective density4. 土的物理性质有效重度effective unit weight4. 土的物理性质重力密度unit weight4. 土的物理性质自由水free water, gravitational water, groundwater, phreatic water4. 土的物理性质组构fabric4. 土的物理性质最大干密度maximum dry density4. 土的物理性质最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law5. 渗透性和渗流管涌piping5. 渗透性和渗流浸润线phreatic line5. 渗透性和渗流临界水力梯度critical hydraulic gradient5. 渗透性和渗流流函数flow function5. 渗透性和渗流流土flowing soil5. 渗透性和渗流流网flow net5. 渗透性和渗流砂沸sand boiling5. 渗透性和渗流渗流seepage5. 渗透性和渗流渗流量seepage discharge5. 渗透性和渗流渗流速度seepage velocity5. 渗透性和渗流渗透力seepage force5. 渗透性和渗流渗透破坏seepage failure5. 渗透性和渗流渗透系数coefficient of permeability5. 渗透性和渗流渗透性permeability5. 渗透性和渗流势函数potential function5. 渗透性和渗流水力梯度hydraulic gradient6. 地基应力和变形变形deformation6. 地基应力和变形变形模量modulus of deformation6. 地基应力和变形泊松比Poisson s ratio6. 地基应力和变形布西涅斯克解Boussinnesq s solution6. 地基应力和变形残余变形residual deformation6. 地基应力和变形残余孔隙水压力residual pore water pressure6. 地基应力和变形超静孔隙水压力excess pore water pressure6. 地基应力和变形沉降settlement6. 地基应力和变形沉降比settlement ratio6. 地基应力和变形次固结沉降secondary consolidation settlement6. 地基应力和变形次固结系数coefficient of secondary consolidation6. 地基应力和变形地基沉降的弹性力学公式elastic formula for settlement calculation 6. 地基应力和变形分层总和法layerwise summation method6. 地基应力和变形负孔隙水压力negative pore water pressure6. 地基应力和变形附加应力superimposed stress6. 地基应力和变形割线模量secant modulus6. 地基应力和变形固结沉降consolidation settlement6. 地基应力和变形规范沉降计算法settlement calculation by specification6. 地基应力和变形回弹变形rebound deformation6. 地基应力和变形回弹模量modulus of resilience6. 地基应力和变形回弹系数coefficient of resilience6. 地基应力和变形回弹指数swelling index6. 地基应力和变形建筑物的地基变形允许值allowable settlement of building6. 地基应力和变形剪胀dilatation6. 地基应力和变形角点法corner-points method6. 地基应力和变形孔隙气压力pore air pressure6. 地基应力和变形孔隙水压力pore water pressure6. 地基应力和变形孔隙压力系数Apore pressure parameter A6. 地基应力和变形孔隙压力系数Bpore pressure parameter B6. 地基应力和变形明德林解Mindlin s solution6. 地基应力和变形纽马克感应图Newmark chart6. 地基应力和变形切线模量tangent modulus6. 地基应力和变形蠕变creep6. 地基应力和变形三向变形条件下的固结沉降three-dimensional consolidation settlement 6. 地基应力和变形瞬时沉降immediate settlement6. 地基应力和变形塑性变形plastic deformation6. 地基应力和变形谈弹性变形elastic deformation6. 地基应力和变形谈弹性模量elastic modulus6. 地基应力和变形谈弹性平衡状态state of elastic equilibrium6. 地基应力和变形体积变形模量volumetric deformation modulus6. 地基应力和变形先期固结压力preconsolidation pressure6. 地基应力和变形压缩层6. 地基应力和变形压缩模量modulus of compressibility6. 地基应力和变形压缩系数coefficient of compressibility6. 地基应力和变形压缩性compressibility6. 地基应力和变形压缩指数compression index6. 地基应力和变形有效应力effective stress6. 地基应力和变形自重应力self-weight stress6. 地基应力和变形总应力total stress approach of shear strength6. 地基应力和变形最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory7. 固结比奥固结理论Biot s consolidation theory7. 固结超固结比over-consolidation ratio7. 固结超静孔隙水压力excess pore water pressure7. 固结次固结secondary consolidation7. 固结次压缩(台)secondary consolidatin7. 固结单向度压密(台)one-dimensional consolidation7. 固结多维固结multi-dimensional consolidation7. 固结固结consolidation7. 固结固结度degree of consolidation7. 固结固结理论theory of consolidation7. 固结固结曲线consolidation curve7. 固结固结速率rate of consolidation7. 固结固结系数coefficient of consolidation7. 固结固结压力consolidation pressure7. 固结回弹曲线rebound curve7. 固结井径比drain spacing ratio7. 固结井阻well resistance7. 固结曼代尔-克雷尔效应Mandel-Cryer effect7. 固结潜变(台)creep7. 固结砂井sand drain7. 固结砂井地基平均固结度average degree of consolidation of sand-drained ground7. 固结时间对数拟合法logrithm of time fitting method7. 固结时间因子time factor7. 固结太沙基固结理论Terzaghi s consolidation theory7. 固结太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation7. 固结先期固结压力preconsolidation pressure7. 固结压密(台)consolidation7. 固结压密度(台)degree of consolidation7. 固结压缩曲线cpmpression curve7. 固结一维固结one dimensional consolidation7. 固结有效应力原理principle of effective stress7. 固结预压密压力(台)preconsolidation pressure7. 固结原始压缩曲线virgin compression curve7. 固结再压缩曲线recompression curve7. 固结主固结primary consolidation7. 固结主压密(台)primary consolidation7. 固结准固结压力pseudo-consolidation pressure7. 固结K0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose8. 抗剪强度不排水抗剪强度undrained shear strength8. 抗剪强度残余内摩擦角residual angle of internal friction8. 抗剪强度残余强度residual strength8. 抗剪强度长期强度long-term strength8. 抗剪强度单轴抗拉强度uniaxial tension test8. 抗剪强度动强度dynamic strength of soils8. 抗剪强度峰值强度peak strength8. 抗剪强度伏斯列夫参数Hvorslev parameter8. 抗剪强度剪切应变速率shear strain rate8. 抗剪强度抗剪强度shear strength8. 抗剪强度抗剪强度参数shear strength parameter8. 抗剪强度抗剪强度有效应力法effective stress approach of shear strength 8. 抗剪强度抗剪强度总应力法total stress approach of shear strength8. 抗剪强度库仑方程Coulomb s equation8. 抗剪强度摩尔包线Mohr s envelope8. 抗剪强度摩尔-库仑理论Mohr-Coulomb theory8. 抗剪强度内摩擦角angle of internal friction8. 抗剪强度年粘聚力cohesion8. 抗剪强度破裂角angle of rupture8. 抗剪强度破坏准则failure criterion8. 抗剪强度十字板抗剪强度vane strength8. 抗剪强度无侧限抗压强度unconfined compression strength8. 抗剪强度有效内摩擦角effective angle of internal friction8. 抗剪强度有效粘聚力effective cohesion intercept8. 抗剪强度有效应力破坏包线effective stress failure envelope8. 抗剪强度有效应力强度参数effective stress strength parameter8. 抗剪强度有效应力原理principle of effective stress8. 抗剪强度真内摩擦角true angle internal friction8. 抗剪强度真粘聚力true cohesion8. 抗剪强度总应力破坏包线total stress failure envelope8. 抗剪强度总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model9. 本构模型边界面模型boundary surface model9. 本构模型层向各向同性体模型cross anisotropic model9. 本构模型超弹性模型hyperelastic model9. 本构模型德鲁克-普拉格准则Drucker-Prager criterion9. 本构模型邓肯-张模型Duncan-Chang model9. 本构模型动剪切强度9. 本构模型非线性弹性模量nonlinear elastic model9. 本构模型盖帽模型cap model9. 本构模型刚塑性模型rigid plastic model9. 本构模型割线模量secant modulus9. 本构模型广义冯·米赛斯屈服准则extended von Mises yield criterion 9. 本构模型广义特雷斯卡屈服准则extended tresca yield criterion9. 本构模型加工软化work softening9. 本构模型加工硬化work hardening9. 本构模型加工硬化定律strain harding law9. 本构模型剑桥模型Cambridge model9. 本构模型柯西弹性模型Cauchy elastic model9. 本构模型拉特-邓肯模型Lade-Duncan model9. 本构模型拉特屈服准则Lade yield criterion9. 本构模型理想弹塑性模型ideal elastoplastic model9. 本构模型临界状态弹塑性模型critical state elastoplastic model9. 本构模型流变学模型rheological model9. 本构模型流动规则flow rule9. 本构模型摩尔-库仑屈服准则Mohr-Coulomb yield criterion9. 本构模型内蕴时间塑性模型endochronic plastic model9. 本构模型内蕴时间塑性理论endochronic theory9. 本构模型年粘弹性模型viscoelastic model9. 本构模型切线模量tangent modulus9. 本构模型清华弹塑性模型Tsinghua elastoplastic model9. 本构模型屈服面yield surface9. 本构模型沈珠江三重屈服面模型Shen Zhujiang three yield surface method 9. 本构模型双参数地基模型9. 本构模型双剪应力屈服模型twin shear stress yield criterion9. 本构模型双曲线模型hyperbolic model9. 本构模型松岗元-中井屈服准则Matsuoka-Nakai yield criterion9. 本构模型塑性形变理论9. 本构模型谈弹塑性模量矩阵elastoplastic modulus matrix9. 本构模型谈弹塑性模型elastoplastic modulus9. 本构模型谈弹塑性增量理论incremental elastoplastic theory9. 本构模型谈弹性半空间地基模型elastic half-space foundation model9. 本构模型谈弹性变形elastic deformation9. 本构模型谈弹性模量elastic modulus9. 本构模型谈弹性模型elastic model9. 本构模型魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model9. 本构模型文克尔地基模型Winkler foundation model9. 本构模型修正剑桥模型modified cambridge model9. 本构模型准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure10. 地基承载力次层(台)substratum10. 地基承载力地基subgrade, ground, foundation soil10. 地基承载力地基承载力bearing capacity of foundation soil10. 地基承载力地基极限承载力ultimate bearing capacity of foundation soil10. 地基承载力地基允许承载力allowable bearing capacity of foundation soil10. 地基承载力地基稳定性stability of foundation soil10. 地基承载力汉森地基承载力公式Hansen s ultimate bearing capacity formula10. 地基承载力极限平衡状态state of limit equilibrium10. 地基承载力加州承载比(美国)California Bearing Ratio10. 地基承载力局部剪切破坏local shear failure10. 地基承载力临塑荷载critical edge pressure10. 地基承载力梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 10. 地基承载力普朗特承载力理论Prandel bearing capacity theory10. 地基承载力斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula 10. 地基承载力太沙基承载力理论Terzaghi bearing capacity theory10. 地基承载力魏锡克极限承载力公式V esic s ultimate bearing capacity formula10. 地基承载力整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure11. 土压力被动土压力系数coefficient of passive earth pressure11. 土压力极限平衡状态state of limit equilibrium11. 土压力静止土压力earth pressue at rest11. 土压力静止土压力系数coefficient of earth pressur at rest11. 土压力库仑土压力理论Coulomb s earth pressure theory11. 土压力库尔曼图解法Culmannn construction11. 土压力朗肯土压力理论Rankine s earth pressure theory11. 土压力朗肯状态Rankine state11. 土压力谈弹性平衡状态state of elastic equilibrium11. 土压力土压力earth pressure11. 土压力主动土压力active earth pressure11. 土压力主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose12. 土坡稳定分析毕肖普法Bishop method12. 土坡稳定分析边坡稳定安全系数safety factor of slope12. 土坡稳定分析不平衡推理传递法unbalanced thrust transmission method12. 土坡稳定分析费伦纽斯条分法Fellenius method of slices12. 土坡稳定分析库尔曼法Culmann method12. 土坡稳定分析摩擦圆法friction circle method12. 土坡稳定分析摩根斯坦-普拉斯法Morgenstern-Price method12. 土坡稳定分析铅直边坡的临界高度critical height of vertical slope12. 土坡稳定分析瑞典圆弧滑动法Swedish circle method12. 土坡稳定分析斯宾赛法Spencer method12. 土坡稳定分析泰勒法Taylor method12. 土坡稳定分析条分法slice method12. 土坡稳定分析土坡slope12. 土坡稳定分析土坡稳定分析slope stability analysis12. 土坡稳定分析土坡稳定极限分析法limit analysis method of slope stability 12. 土坡稳定分析土坡稳定极限平衡法limit equilibrium method of slope stability 12. 土坡稳定分析休止角angle of repose12. 土坡稳定分析扬布普遍条分法Janbu general slice method12. 土坡稳定分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity13. 土的动力性质波的弥散特性dispersion of waves13. 土的动力性质波速法wave velocity method13. 土的动力性质材料阻尼material damping13. 土的动力性质初始液化initial liquefaction13. 土的动力性质地基固有周期natural period of soil site13. 土的动力性质动剪切模量dynamic shear modulus of soils13. 土的动力性质动力布西涅斯克解dynamic solution of Boussinesq13. 土的动力性质动力放大因素dynamic magnification factor13. 土的动力性质动力性质dynamic properties of soils13. 土的动力性质动强度dynamic strength of soils13. 土的动力性质骨架波akeleton waves in soils13. 土的动力性质几何阻尼geometric damping13. 土的动力性质抗液化强度liquefaction stress13. 土的动力性质孔隙流体波fluid wave in soil13. 土的动力性质损耗角loss angle13. 土的动力性质往返活动性reciprocating activity13. 土的动力性质无量纲频率dimensionless frequency13. 土的动力性质液化liquefaction13. 土的动力性质液化势评价evaluation of liquefaction potential13. 土的动力性质液化应力比stress ratio of liquefaction13. 土的动力性质应力波stress waves in soils13. 土的动力性质振陷dynamic settlement13. 土的动力性质阻尼damping of soil13. 土的动力性质阻尼比damping ratio14. 挡土墙挡土墙retaining wall14. 挡土墙挡土墙排水设施14. 挡土墙挡土墙稳定性stability of retaining wall14. 挡土墙垛式挡土墙14. 挡土墙扶垛式挡土墙counterfort retaining wall14. 挡土墙后垛墙(台)counterfort retaining wall14. 挡土墙基础墙foundation wall14. 挡土墙加筋土挡墙reinforced earth bulkhead14. 挡土墙锚定板挡土墙anchored plate retaining wall14. 挡土墙锚定式板桩墙anchored sheet pile wall14. 挡土墙锚杆式挡土墙anchor rod retaining wall14. 挡土墙悬壁式板桩墙cantilever sheet pile wall14. 挡土墙悬壁式挡土墙cantilever sheet pile wall14. 挡土墙重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile15. 板桩结构物板桩结构sheet pile structure15. 板桩结构物钢板桩steel sheet pile15. 板桩结构物钢筋混凝土板桩reinforced concrete sheet pile15. 板桩结构物钢桩steel pile15. 板桩结构物灌注桩cast-in-place pile15. 板桩结构物拉杆tie rod15. 板桩结构物锚定式板桩墙anchored sheet pile wall15. 板桩结构物锚固技术anchoring15. 板桩结构物锚座Anchorage15. 板桩结构物木板桩wooden sheet pile15. 板桩结构物木桩timber piles15. 板桩结构物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts16. 基坑开挖与降水电渗法electro-osmotic drainage16. 基坑开挖与降水管涌piping16. 基坑开挖与降水基底隆起heave of base16. 基坑开挖与降水基坑降水dewatering16. 基坑开挖与降水基坑失稳instability (failure) of foundation pit16. 基坑开挖与降水基坑围护bracing of foundation pit16. 基坑开挖与降水减压井relief well16. 基坑开挖与降水降低地下水位法dewatering method16. 基坑开挖与降水井点系统well point system16. 基坑开挖与降水喷射井点eductor well point16. 基坑开挖与降水铅直边坡的临界高度critical height of vertical slope 16. 基坑开挖与降水砂沸sand boiling16. 基坑开挖与降水深井点deep well point16. 基坑开挖与降水真空井点vacuum well point16. 基坑开挖与降水支撑围护braced cuts17. 浅基础杯形基础17. 浅基础补偿性基础compensated foundation17. 浅基础持力层bearing stratum17. 浅基础次层(台)substratum17. 浅基础单独基础individual footing17. 浅基础倒梁法inverted beam method17. 浅基础刚性角pressure distribution angle of masonary foundation 17. 浅基础刚性基础rigid foundation17. 浅基础高杯口基础17. 浅基础基础埋置深度embeded depth of foundation17. 浅基础基床系数coefficient of subgrade reaction17. 浅基础基底附加应力net foundation pressure17. 浅基础交叉条形基础cross strip footing17. 浅基础接触压力contact pressure17. 浅基础静定分析法(浅基础)static analysis (shallow foundation)17. 浅基础壳体基础shell foundation17. 浅基础扩展基础spread footing17. 浅基础片筏基础mat foundation17. 浅基础浅基础shallow foundation17. 浅基础墙下条形基础17. 浅基础热摩奇金法Zemochkin s method17. 浅基础柔性基础flexible foundation17. 浅基础上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 17. 浅基础谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation 17. 浅基础条形基础strip footing17. 浅基础下卧层substratum17. 浅基础箱形基础box foundation17. 浅基础柱下条形基础18. 深基础贝诺托灌注桩Benoto cast-in-place pile18. 深基础波动方程分析Wave equation analysis18. 深基础场铸桩(台)cast-in-place pile18. 深基础沉管灌注桩diving casting cast-in-place pile18. 深基础沉井基础open-end caisson foundation18. 深基础沉箱基础box caisson foundation18. 深基础成孔灌注同步桩synchronous pile18. 深基础承台pile caps18. 深基础充盈系数fullness coefficient18. 深基础单桩承载力bearing capacity of single pile18. 深基础单桩横向极限承载力ultimate lateral resistance of single pile18. 深基础单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile18. 深基础单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile18. 深基础单桩竖向抗压极限承载力vertical allowable load capacity of single pile18. 深基础低桩承台low pile cap18. 深基础地下连续墙diaphgram wall18. 深基础点承桩(台)end-bearing pile18. 深基础动力打桩公式dynamic pile driving formula18. 深基础端承桩end-bearing pile18. 深基础法兰基灌注桩Franki pile18. 深基础负摩擦力negative skin friction of pile18. 深基础钢筋混凝土预制桩precast reinforced concrete piles18. 深基础钢桩steel pile18. 深基础高桩承台high-rise pile cap18. 深基础灌注桩cast-in-place pile18. 深基础横向载荷桩laterally loaded vertical piles18. 深基础护壁泥浆slurry coat method18. 深基础回转钻孔灌注桩rotatory boring cast-in-place pile18. 深基础机挖异形灌注桩18. 深基础静力压桩silent piling18. 深基础抗拔桩uplift pile18. 深基础抗滑桩anti-slide pile18. 深基础摩擦桩friction pile18. 深基础木桩timber piles18. 深基础嵌岩灌注桩piles set into rock18. 深基础群桩pile groups18. 深基础群桩效率系数efficiency factor of pile groups18. 深基础群桩效应efficiency of pile groups18. 深基础群桩竖向极限承载力vertical ultimate load capacity of pile groups 18. 深基础深基础deep foundation18. 深基础竖直群桩横向极限承载力18. 深基础无桩靴夯扩灌注桩rammed bulb ile18. 深基础旋转挤压灌注桩18. 深基础桩piles18. 深基础桩基动测技术dynamic pile test18. 深基础钻孔墩基础drilled-pier foundation18. 深基础钻孔扩底灌注桩under-reamed bored pile18. 深基础钻孔压注桩starsol enbesol pile18. 深基础最后贯入度final set19. 地基处理表层压密法surface compaction19. 地基处理超载预压surcharge preloading19. 地基处理袋装砂井sand wick19. 地基处理地工织物geofabric, geotextile19. 地基处理地基处理ground treatment, foundation treatment19. 地基处理电动化学灌浆electrochemical grouting19. 地基处理电渗法electro-osmotic drainage19. 地基处理顶升纠偏法19. 地基处理定喷directional jet grouting19. 地基处理冻土地基处理frozen foundation improvement19. 地基处理短桩处理treatment with short pile19. 地基处理堆载预压法preloading19. 地基处理粉体喷射深层搅拌法powder deep mixing method19. 地基处理复合地基composite foundation19. 地基处理干振成孔灌注桩vibratory bored pile19. 地基处理高压喷射注浆法jet grounting19. 地基处理灌浆材料injection material19. 地基处理灌浆法grouting19. 地基处理硅化法silicification19. 地基处理夯实桩compacting pile19. 地基处理化学灌浆chemical grouting19. 地基处理换填法cushion19. 地基处理灰土桩lime soil pile19. 地基处理基础加压纠偏法19. 地基处理挤密灌浆compaction grouting19. 地基处理挤密桩compaction pile, compacted column19. 地基处理挤淤法displacement method19. 地基处理加筋法reinforcement method19. 地基处理加筋土reinforced earth19. 地基处理碱液法soda solution grouting19. 地基处理浆液深层搅拌法grout deep mixing method19. 地基处理降低地下水位法dewatering method19. 地基处理纠偏技术19. 地基处理坑式托换pit underpinning19. 地基处理冷热处理法freezing and heating19. 地基处理锚固技术anchoring19. 地基处理锚杆静压桩托换anchor pile underpinning19. 地基处理排水固结法consolidation19. 地基处理膨胀土地基处理expansive foundation treatment19. 地基处理劈裂灌浆fracture grouting19. 地基处理浅层处理shallow treatment19. 地基处理强夯法dynamic compaction19. 地基处理人工地基artificial foundation19. 地基处理容许灌浆压力allowable grouting pressure19. 地基处理褥垫pillow19. 地基处理软土地基soft clay ground19. 地基处理砂井sand drain19. 地基处理砂井地基平均固结度average degree of consolidation of sand-drained ground 19. 地基处理砂桩sand column19. 地基处理山区地基处理foundation treatment in mountain area19. 地基处理深层搅拌法deep mixing method19. 地基处理渗入性灌浆seep-in grouting19. 地基处理湿陷性黄土地基处理collapsible loess treatment19. 地基处理石灰系深层搅拌法lime deep mixing method19. 地基处理石灰桩lime column, limepile19. 地基处理树根桩root pile19. 地基处理水泥土水泥掺合比cement mixing ratio19. 地基处理水泥系深层搅拌法cement deep mixing method19. 地基处理水平旋喷horizontal jet grouting19. 地基处理塑料排水带plastic drain19. 地基处理碎石桩gravel pile, stone pillar19. 地基处理掏土纠偏法19. 地基处理天然地基natural foundation19. 地基处理土工聚合物Geopolymer19. 地基处理土工织物geofabric, geotextile19. 地基处理土桩earth pile19. 地基处理托换技术underpinning technique19. 地基处理外掺剂additive19. 地基处理旋喷jet grouting19. 地基处理药液灌浆chemical grouting19. 地基处理预浸水法presoaking19. 地基处理预压法preloading19. 地基处理真空预压vacuum preloading19. 地基处理振冲法vibroflotation method19. 地基处理振冲密实法vibro-compaction19. 地基处理振冲碎石桩vibro replacement stone column19. 地基处理振冲置换法vibro-replacement19. 地基处理振密、挤密法vibro-densification, compacting19. 地基处理置换率(复合地基)replacement ratio19. 地基处理重锤夯实法tamping19. 地基处理桩式托换pile underpinning19. 地基处理桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity20. 动力机器基础等效集总参数法constant strain rate consolidation test20. 动力机器基础地基固有周期natural period of soil site20. 动力机器基础动基床反力法dynamic subgrade reaction method20. 动力机器基础动力放大因素dynamic magnification factor20. 动力机器基础隔振isolation20. 动力机器基础基础振动foundation vibration20. 动力机器基础基础振动半空间理论elastic half-space theory of foundation vibr ation20. 动力机器基础基础振动容许振幅allowable amplitude of foundation vibration 20. 动力机器基础基础自振频率natural frequency of foundation20. 动力机器基础集总参数法lumped parameter method20. 动力机器基础吸收系数absorption coefficient20. 动力机器基础质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site21. 地基基础抗震地震earthquake, seism, temblor21. 地基基础抗震地震持续时间duration of earthquake21. 地基基础抗震地震等效均匀剪应力equivalent even shear stress of earthquake 21. 地基基础抗震地震反应谱earthquake response spectrum21. 地基基础抗震地震烈度earthquake intensity21. 地基基础抗震地震震级earthquake magnitude21. 地基基础抗震地震卓越周期seismic predominant period21. 地基基础抗震地震最大加速度maximum acceleration of earthquake21. 地基基础抗震动力放大因数dynamic magnification factor21. 地基基础抗震对数递减率logrithmic decrement21. 地基基础抗震刚性系数coefficient of rigidity21. 地基基础抗震吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test22. 室内土工试验变水头渗透试验falling head permeability test22. 室内土工试验不固结不排水试验unconsolidated-undrained triaxial test22. 室内土工试验常规固结试验routine consolidation test22. 室内土工试验常水头渗透试验constant head permeability test22. 室内土工试验单剪仪simple shear apparatus22. 室内土工试验单轴拉伸试验uniaxial tensile test22. 室内土工试验等速加荷固结试验constant loading rate consolidatin test22. 室内土工试验等梯度固结试验constant gradient consolidation test22. 室内土工试验等应变速率固结试验equivalent lumped parameter method22. 室内土工试验反复直剪强度试验repeated direct shear test22. 室内土工试验反压饱和法back pressure saturation method22. 室内土工试验高压固结试验high pressure consolidation test22. 室内土工试验各向不等压固结不排水试验consoidated anisotropically undrained test 22. 室内土工试验各向不等压固结排水试验consolidated anisotropically drained test 22. 室内土工试验共振柱试验resonant column test22. 室内土工试验固结不排水试验consolidated undrained triaxial test22. 室内土工试验固结快剪试验consolidated quick direct shear test22. 室内土工试验固结排水试验consolidated drained triaxial test22. 室内土工试验固结试验consolidation test22. 室内土工试验含水量试验water content test22. 室内土工试验环剪试验ring shear test22. 室内土工试验黄土湿陷试验loess collapsibility test22. 室内土工试验击实试验22. 室内土工试验界限含水量试验Atterberg limits test22. 室内土工试验卡萨格兰德法Casagrande s method22. 室内土工试验颗粒分析试验grain size analysis test22. 室内土工试验孔隙水压力消散试验pore pressure dissipation test22. 室内土工试验快剪试验quick direct shear test22. 室内土工试验快速固结试验fast consolidation test22. 室内土工试验离心模型试验centrifugal model test22. 室内土工试验连续加荷固结试验continual loading test22. 室内土工试验慢剪试验consolidated drained direct shear test22. 室内土工试验毛细管上升高度试验capillary rise test22. 室内土工试验密度试验density test22. 室内土工试验扭剪仪torsion shear apparatus22. 室内土工试验膨胀率试验swelling rate test22. 室内土工试验平面应变仪plane strain apparatus22. 室内土工试验三轴伸长试验triaxial extension test22. 室内土工试验三轴压缩试验triaxial compression test22. 室内土工试验砂的相对密实度试验sand relative density test22. 室内土工试验筛分析sieve analysis。
土木工程专业英语完整版本
Contents
The engineers determine pipeline design, the economic and environmental impact of a project on regions it must traverse, the type of materials to be used-steel, concrete, plastic, or combination of various materials installation techniques, methods for testing pipeline strength, and controls for maintaining proper pressure and rate of flow of materials being transported.
结构工程是最重要的一个专业,它包括:将结构的不同部分进行 定位和布置,从而形成一个确定的形式以获得最好的利用;确定结 构必须抵抗的力,结构的自重,风和飓风,使施工材料产生的膨胀 和收缩的温度变化,以及地震力。
Contents
They also determine the combination appropriate materials: steel, concrete, plastic, stone, asphalt, brick, aluminum, or other construction materials.
Structural engineering is the most important specialization, it includes: positioning and arranging the various parts of the structure into a definite form to achieve best utilization; determining the forces that a structure must resist, its own weight, wind and hurricane forces, and temperature change that expand or contract construction materials, and earthquake.
土木工程专业英语完整版本
The engineering marvels of the world, starting from the pyramids to today’s shell structure, are the results of the development in civil engineering.
他们还要确定合适的材料组合,包括钢材、混凝土、塑料、石头、 沥青、砖、铝及其它建筑材
Most structural engineer work for apartment or public construction and factory constructions.
大多数结构工程师从事公寓建筑、公共建筑和厂房建筑工作。
除了仅仅作为住处之外,由土木工程师建造的住处提供了一个和 平而舒适的生活。
Since then, the term civil engineer has often been to refer to engineers who build public facilities, although the field is much broader.
从那时起,土木工程师这个词用来指建设公共设施的工程师,尽 管这一领域非常广阔。
Contents
The scope of civil engineering is broad, depending on the type of the project and the skills needed.
土木工程的范围很广,这取决于项目的类型及所需的技术。
这些工程师要分析支撑结构和影响结构性能的土壤及岩石的性能。 They evaluate and work to minimize the potential settlement of buildings and other structures, which stems from the pressure of their weight on the earth. 他们评估并采取措施使建筑物和其他结构的重量对地面的压力引 起的潜在的沉降最小化。
土木工程类英文专业词汇
土木工程类英文专业词汇土木工程是一个涉及土地开发、设计、建造和维护的复杂领域。
在这个领域中,有许多具有专业性、特定含义和用途的英文术语。
掌握这些专业词汇对于在这个领域工作或学习的人来说非常必要。
本文将介绍土木工程常用的英语专业词汇。
1.Civil engineering –土木工程学Civil engineering is a discipline that deals with the design, construction, and maintenance of the built environment, including buildings, roads, bridges, and other infrastructure.2.Architecture –建筑学Architecture is the art and science of designing and building structures, such as buildings and bridges.3.Planning –规划Planning is the process of making a detailed plan or layout for a project, including determining what resources will be needed to complete the project.4.Surveying –测量Surveying is the process of measuring and mapping the surface of the Earth, including land, water bodies, and buildings.5.Structural engineering –结构工程Structural engineering is a sub-discipline of civil engineering that deals with the design and analysis of structures, such as buildings, bridges, and other infrastructure.6.Geotechnical engineering –岩土工程Geotechnical engineering is a sub-discipline of civil engineering that deals with the study of soil and rock mechanics, and the design and construction of structures that are built on or in the ground.7.Transportation engineering –交通运输工程Transportation engineering is a sub-discipline of civil engineering that dealswith the design and construction of transportation infrastructure, such as roads, highways, and airports.8.Hydrology –水文学Hydrology is the study of water and its movement on the surface of the Earth, including precipitation, streams, rivers, and groundwater.9.Water resources engineering –水资源工程Water resources engineering is a sub-discipline of civil engineering that deals with the study of water resources and the design and construction of structures that manage and distribute water, including dams, reservoirs, and water treatment plants.10.Environmental engineering –环境工程Environmental engineering is a sub-discipline of civil engineering that deals with the study of environmental engineering principles and the design and construction of structures that protect the environment, such as water treatment plants and wastewater treatment plants.11.Construction –建造Construction refers to the process of building structures from design plans and specifications.12.Industrial engineering –工业工程Industrial engineering is a discipline that deals with the optimization of complex processes, systems, and organizations, with the goal of improving efficiency, productivity, and safety.13.Quantity surveying –工程测量Quantity surveying is the process of determining the quantity, cost, and value of materials needed to complete a construction project.14.Building –建筑物Building refers to a structure that is built for a specific purpose, such as a house, office building, or factory.15.Foundation –基础Foundation refers to the part of a structure that is in direct contact with the ground and supports the weight of the structure.16.Reinforcement –钢筋加固Reinforcement refers to the process of adding materials, such as steel bars, to strengthen a structure.17.Retaining wall –挡土墙A retaining wall is a structure that is built to support soil and prevent it from sliding down a slope.18.Roadway –道路A roadway is a paved surface that is designed for vehicles and pedestrians to travel on.19.Bridge –桥梁A bridge is a structure that is built to span a physical obstacle, such as a river or gorge, and provide a safe means of transportation.20.Culvert –排水管A culvert is a structure that is built to allow water to pass under a roadway or other structure.21.Dam –水坝A dam is a structure that is built to control the flow of water and to provide water for human consumption, irrigation, and hydroelectric power.22.Pile –桩A pile is a foundation support structure that is driven into the ground to supporta structure.23.Slab –地板A slab is a flat, horizontal surface that is used as a flooring material or to supporta structure.24.Tunnel –隧道A tunnel is an underground structure that is built for transportation, utilities, or other purposes.25.Asphalt –沥青Asphalt is a sticky, black, and highly viscous liquid that is used as a binder for paving materials.以上就是土木工程类英文专业词汇的介绍,这些专业词汇对于在土木工程领域中工作或学习的人来说都是非常重要的。
土木工程专业英语翻译
土木工程专业英语翻译Ch 2 Overview of Engineering MechanicsAs we look around us we see a world full of ‘things’: machines, devices, tools; things that we have designed, 当我们环顾四周,我们可以看到充满物质的世界:机器,仪器,工具:这些被我设计、建造和使用过built and used; things made of wood, metals, ceramics, and plastics. We know from experience that some 的东西:这些东西是由木头,金属,陶瓷和塑料做成。
我们从经验可以知道一些东西比别的东things are better than others; they last longer, cost less, are quieter, look better, or are easier to use.比别的东西好:他们比较耐用,低成本,安静,看起来好点,或者使用比较简单。
Ideally, however, every such item has been designed according to some set of ‘functional requirements; as 不管怎么样,最理想的是这样一个东西都是被设计者所认为的那样根据某些“使用要求”设计出来的。
perceived by the designers—that is, it has been designed so as to answer the question, ‘Exactly what function也就是说他的设计是为了回答这些问题,确切的说它应该执行怎么样的功should it perform?’ In the world of engineering, the major function frequently is to support some type of 能?在工程的领域里,最主要的功能是经常支持一些由于重力,惯性,压力等作用产loading due to weight, inertia, pressure etc. From the beams in our homes to the wings of an airplane, there 生的荷载。
土木工程 专业外语词汇大全中英翻译
土木工程专业外语词汇大全中英翻译1. 综合类大地工程geotechnical engineering反分析法back analysis method基础工程foundation engineering临界状态土力学critical state soil mechanics数值岩土力学numerical geomechanics土soil, earth土动力学soil dynamics土力学soil mechanics岩土工程geotechnical engineering应力路径stress path应力路径法stress path method2. 工程地质及勘察变质岩metamorphic rock标准冻深standard frost penetration冰川沉积glacial deposit冰积层(台)glacial deposit残积土eluvial soil, residual soil层理beding长石feldspar沉积岩sedimentary rock承压水confined water次生矿物secondary mineral地质年代geological age地质图geological map地下水groundwater断层fault断裂构造fracture structure工程地质勘察engineering geological exploration海积层(台)marine deposit海相沉积marine deposit花岗岩granite滑坡landslide化石fossil化学沉积岩chemical sedimentary rock阶地terrace节理joint解理cleavage喀斯特karst矿物硬度hardness of minerals砾岩conglomerate流滑flow slide陆相沉积continental sedimentation泥石流mud flow, debris flow年粘土矿物clay minerals凝灰岩tuff牛轭湖ox-bow lake浅成岩hypabyssal rock潜水ground water侵入岩intrusive rock取土器geotome砂岩sandstone砂嘴spit, sand spit山岩压力rock pressure深成岩plutionic rock石灰岩limestone石英quartz松散堆积物rickle围限地下水(台)confined ground water 泻湖lagoon岩爆rock burst岩层产状attitude of rock岩浆岩magmatic rock, igneous rock岩脉dike, dgke岩石风化程度degree of rock weathering 岩石构造structure of rock岩石结构texture of rock岩体rock mass页岩shale原生矿物primary mineral云母mica造岩矿物rock-forming mineral褶皱fold, folding钻孔柱状图bore hole columnar section3. 土的分类饱和土saturated soil超固结土overconsolidated soil冲填土dredger fill充重塑土冻土frozen soil, tjaele非饱和土unsaturated soil分散性土dispersive soil粉土silt, mo粉质粘土silty clay高岭石kaolinite过压密土(台)overconsolidated soil红粘土red clay, adamic earth黄土loess, huangtu(China)蒙脱石montmorillonite泥炭peat, bog muck年粘土clay年粘性土cohesive soil, clayey soil膨胀土expansive soil, swelling soil欠固结粘土underconsolidated soil区域性土zonal soil人工填土fill, artificial soil软粘土soft clay, mildclay, mickle砂土sand湿陷性黄土collapsible loess, slumping loess素填土plain fill塑性图plasticity chart碎石土stone, break stone, broken stone, channery, chat, crushed sto ne, deritus未压密土(台)underconsolidated clay无粘性土cohesionless soil, frictional soil, non-cohesive soil岩石rock伊利土illite有机质土organic soil淤泥muck, gyttja, mire, slush淤泥质土mucky soil原状土undisturbed soil杂填土miscellaneous fill正常固结土normally consolidated soil正常压密土(台)normally consolidated soil自重湿陷性黄土self weight collapse loess4. 土的物理性质阿太堡界限Atterberg limits饱和度degree of saturation饱和密度saturated density饱和重度saturated unit weight比重specific gravity稠度consistency不均匀系数coefficient of uniformity, uniformity coefficient触变thixotropy单粒结构single-grained structure蜂窝结构honeycomb structure干重度dry unit weight干密度dry density塑性指数plasticity index含水量water content, moisture content活性指数级配gradation, grading结合水bound water, combined water, held water界限含水量Atterberg limits颗粒级配particle size distribution of soils, mechanical composi tion of soil可塑性plasticity孔隙比void ratio孔隙率porosity粒度granularity, grainness, grainage粒组fraction, size fraction毛细管水capillary water密度density密实度compactionness年粘性土的灵敏度sensitivity of cohesive soil平均粒径mean diameter, average grain diameter曲率系数coefficient of curvature三相图block diagram, skeletal diagram, three phase diagram三相土tri-phase soil湿陷起始应力initial collapse pressure湿陷系数coefficient of collapsibility缩限shrinkage limit土的构造soil texture土的结构soil structure土粒相对密度specific density of solid particles土中气air in soil土中水water in soil团粒aggregate, cumularpharolith限定粒径constrained diameter相对密度relative density, density index相对压密度relative compaction, compacting factor, percent compa ction, coefficient of compaction絮状结构flocculent structure压密系数coefficient of consolidation压缩性compressibility液限liquid limit液性指数liquidity index游离水(台)free water有效粒径effective diameter, effective grain size, effective size有效密度effective density有效重度effective unit weight重力密度unit weight自由水free water, gravitational water, groundwater, phreatic water 组构fabric最大干密度maximum dry density最优含水量optimum water content5. 渗透性和渗流达西定律Darcy s law管涌piping浸润线phreatic line临界水力梯度critical hydraulic gradient流函数flow function流土flowing soil流网flow net砂沸sand boiling渗流seepage渗流量seepage discharge渗流速度seepage velocity渗透力seepage force渗透破坏seepage failure渗透系数coefficient of permeability渗透性permeability势函数potential function水力梯度hydraulic gradient6. 地基应力和变形变形deformation变形模量modulus of deformation泊松比Poisson s ratio布西涅斯克解Boussinnesq s solution残余变形residual deformation残余孔隙水压力residual pore water pressure超静孔隙水压力excess pore water pressure沉降settlement沉降比settlement ratio次固结沉降secondary consolidation settlement次固结系数coefficient of secondary consolidation地基沉降的弹性力学公式elastic formula for settlement calculation 分层总和法layerwise summation method负孔隙水压力negative pore water pressure附加应力superimposed stress割线模量secant modulus固结沉降consolidation settlement规范沉降计算法settlement calculation by specification回弹变形rebound deformation回弹模量modulus of resilience回弹系数coefficient of resilience回弹指数swelling index建筑物的地基变形允许值allowable settlement of building剪胀dilatation角点法corner-points method孔隙气压力pore air pressure孔隙水压力pore water pressure孔隙压力系数Apore pressure parameter A孔隙压力系数Bpore pressure parameter B明德林解Mindlin s solution纽马克感应图Newmark chart切线模量tangent modulus蠕变creep三向变形条件下的固结沉降three-dimensional consolidation settl ement瞬时沉降immediate settlement塑性变形plastic deformation谈弹性变形elastic deformation谈弹性模量elastic modulus谈弹性平衡状态state of elastic equilibrium体积变形模量volumetric deformation modulus先期固结压力preconsolidation pressure压缩层压缩模量modulus of compressibility压缩系数coefficient of compressibility压缩性compressibility压缩指数compression index有效应力effective stress自重应力self-weight stress总应力total stress approach of shear strength最终沉降final settlement7. 固结巴隆固结理论Barron s consolidation theory比奥固结理论Biot s consolidation theory超固结比over-consolidation ratio超静孔隙水压力excess pore water pressure次固结secondary consolidation次压缩(台)secondary consolidatin单向度压密(台)one-dimensional consolidation多维固结multi-dimensional consolidation固结consolidation固结度degree of consolidation固结理论theory of consolidation固结曲线consolidation curve固结速率rate of consolidation固结系数coefficient of consolidation固结压力consolidation pressure回弹曲线rebound curve井径比drain spacing ratio井阻well resistance曼代尔-克雷尔效应Mandel-Cryer effect潜变(台)creep砂井sand drain砂井地基平均固结度average degree of consolidation of sand-drained ground 时间对数拟合法logrithm of time fitting method时间因子time factor太沙基固结理论Terzaghi s consolidation theory太沙基-伦杜列克扩散方程Terzaghi-Rendulic diffusion equation先期固结压力preconsolidation pressure压密(台)consolidation压密度(台)degree of consolidation压缩曲线cpmpression curve一维固结one dimensional consolidation有效应力原理principle of effective stress预压密压力(台)preconsolidation pressure原始压缩曲线virgin compression curve再压缩曲线recompression curve主固结primary consolidation主压密(台)primary consolidation准固结压力pseudo-consolidation pressureK0固结consolidation under K0 condition8. 抗剪强度安息角(台)angle of repose不排水抗剪强度undrained shear strength残余内摩擦角residual angle of internal friction残余强度residual strength长期强度long-term strength单轴抗拉强度uniaxial tension test动强度dynamic strength of soils峰值强度peak strength伏斯列夫参数Hvorslev parameter剪切应变速率shear strain rate抗剪强度shear strength抗剪强度参数shear strength parameter抗剪强度有效应力法effective stress approach of shear strength 抗剪强度总应力法total stress approach of shear strength库仑方程Coulomb s equation摩尔包线Mohr s envelope摩尔-库仑理论Mohr-Coulomb theory内摩擦角angle of internal friction年粘聚力cohesion破裂角angle of rupture破坏准则failure criterion十字板抗剪强度vane strength无侧限抗压强度unconfined compression strength有效内摩擦角effective angle of internal friction有效粘聚力effective cohesion intercept有效应力破坏包线effective stress failure envelope有效应力强度参数effective stress strength parameter有效应力原理principle of effective stress真内摩擦角true angle internal friction真粘聚力true cohesion总应力破坏包线total stress failure envelope总应力强度参数total stress strength parameter9. 本构模型本构模型constitutive model边界面模型boundary surface model层向各向同性体模型cross anisotropic model超弹性模型hyperelastic model德鲁克-普拉格准则Drucker-Prager criterion邓肯-张模型Duncan-Chang model动剪切强度非线性弹性模量nonlinear elastic model盖帽模型cap model刚塑性模型rigid plastic model割线模量secant modulus广义冯·米赛斯屈服准则extended von Mises yield criterion广义特雷斯卡屈服准则extended tresca yield criterion加工软化work softening加工硬化work hardening加工硬化定律strain harding law剑桥模型Cambridge model柯西弹性模型Cauchy elastic model拉特-邓肯模型Lade-Duncan model拉特屈服准则Lade yield criterion理想弹塑性模型ideal elastoplastic model临界状态弹塑性模型critical state elastoplastic model流变学模型rheological model流动规则flow rule摩尔-库仑屈服准则Mohr-Coulomb yield criterion内蕴时间塑性模型endochronic plastic model内蕴时间塑性理论endochronic theory年粘弹性模型viscoelastic model切线模量tangent modulus清华弹塑性模型Tsinghua elastoplastic model屈服面yield surface沈珠江三重屈服面模型Shen Zhujiang three yield surface method双参数地基模型双剪应力屈服模型twin shear stress yield criterion双曲线模型hyperbolic model松岗元-中井屈服准则Matsuoka-Nakai yield criterion塑性形变理论谈弹塑性模量矩阵elastoplastic modulus matrix谈弹塑性模型elastoplastic modulus谈弹塑性增量理论incremental elastoplastic theory谈弹性半空间地基模型elastic half-space foundation model谈弹性变形elastic deformation谈弹性模量elastic modulus谈弹性模型elastic model魏汝龙-Khosla-Wu模型Wei Rulong-Khosla-Wu model文克尔地基模型Winkler foundation model修正剑桥模型modified cambridge model准弹性模型hypoelastic model10. 地基承载力冲剪破坏punching shear failure次层(台)substratum地基subgrade, ground, foundation soil地基承载力bearing capacity of foundation soil地基极限承载力ultimate bearing capacity of foundation soil地基允许承载力allowable bearing capacity of foundation soil地基稳定性stability of foundation soil汉森地基承载力公式Hansen s ultimate bearing capacity formula极限平衡状态state of limit equilibrium加州承载比(美国)California Bearing Ratio局部剪切破坏local shear failure临塑荷载critical edge pressure梅耶霍夫极限承载力公式Meyerhof s ultimate bearing capacity formula 普朗特承载力理论Prandel bearing capacity theory斯肯普顿极限承载力公式Skempton s ultimate bearing capacity formula太沙基承载力理论Terzaghi bearing capacity theory魏锡克极限承载力公式Vesic s ultimate bearing capacity formula 整体剪切破坏general shear failure11. 土压力被动土压力passive earth pressure被动土压力系数coefficient of passive earth pressure极限平衡状态state of limit equilibrium静止土压力earth pressue at rest静止土压力系数coefficient of earth pressur at rest库仑土压力理论Coulomb s earth pressure theory库尔曼图解法Culmannn construction朗肯土压力理论Rankine s earth pressure theory朗肯状态Rankine state谈弹性平衡状态state of elastic equilibrium土压力earth pressure主动土压力active earth pressure主动土压力系数coefficient of active earth pressure12. 土坡稳定分析安息角(台)angle of repose分析毕肖普法Bishop method分析边坡稳定安全系数safety factor of slope分析不平衡推理传递法unbalanced thrust transmission method分析费伦纽斯条分法Fellenius method of slices分析库尔曼法Culmann method分析摩擦圆法friction circle method分析摩根斯坦-普拉斯法Morgenstern-Price method分析铅直边坡的临界高度critical height of vertical slope分析瑞典圆弧滑动法Swedish circle method分析斯宾赛法Spencer method分析泰勒法Taylor method分析条分法slice method分析土坡slope分析土坡稳定分析slope stability analysis分析土坡稳定极限分析法limit analysis method of slope stability分析土坡稳定极限平衡法limit equilibrium method of slope stability 分析休止角angle of repose分析扬布普遍条分法Janbu general slice method分析圆弧分析法circular arc analysis13. 土的动力性质比阻尼容量specific gravity capacity波的弥散特性dispersion of waves波速法wave velocity method材料阻尼material damping初始液化initial liquefaction地基固有周期natural period of soil site动剪切模量dynamic shear modulus of soils动力布西涅斯克解dynamic solution of Boussinesq 动力放大因素dynamic magnification factor动力性质dynamic properties of soils动强度dynamic strength of soils骨架波akeleton waves in soils几何阻尼geometric damping抗液化强度liquefaction stress孔隙流体波fluid wave in soil损耗角loss angle往返活动性reciprocating activity无量纲频率dimensionless frequency液化liquefaction液化势评价evaluation of liquefaction potential液化应力比stress ratio of liquefaction应力波stress waves in soils振陷dynamic settlement阻尼damping of soil阻尼比damping ratio14. 挡土墙挡土墙retaining wall挡土墙排水设施挡土墙稳定性stability of retaining wall垛式挡土墙扶垛式挡土墙counterfort retaining wall后垛墙(台)counterfort retaining wall基础墙foundation wall加筋土挡墙reinforced earth bulkhead锚定板挡土墙anchored plate retaining wall锚定式板桩墙anchored sheet pile wall锚杆式挡土墙anchor rod retaining wall悬壁式板桩墙cantilever sheet pile wall悬壁式挡土墙cantilever sheet pile wall重力式挡土墙gravity retaining wall15. 板桩结构物板桩sheet pile物板桩结构sheet pile structure物钢板桩steel sheet pile物钢筋混凝土板桩reinforced concrete sheet pile物钢桩steel pile物灌注桩cast-in-place pile物拉杆tie rod物锚定式板桩墙anchored sheet pile wall物锚固技术anchoring物锚座Anchorage物木板桩wooden sheet pile物木桩timber piles物悬壁式板桩墙cantilever sheet pile wall16. 基坑开挖与降水板桩围护sheet pile-braced cuts电渗法electro-osmotic drainage管涌piping基底隆起heave of base基坑降水dewatering基坑失稳instability (failure) of foundation pit基坑围护bracing of foundation pit减压井relief well降低地下水位法dewatering method井点系统well point system喷射井点eductor well point铅直边坡的临界高度critical height of vertical slope砂沸sand boiling深井点deep well point真空井点vacuum well point支撑围护braced cuts17. 浅基础补偿性基础compensated foundation持力层bearing stratum次层(台)substratum单独基础individual footing倒梁法inverted beam method刚性角pressure distribution angle of masonary foundation 刚性基础rigid foundation高杯口基础基础埋置深度embeded depth of foundation基床系数coefficient of subgrade reaction基底附加应力net foundation pressure交叉条形基础cross strip footing接触压力contact pressure静定分析法(浅基础)static analysis (shallow foundation)壳体基础shell foundation扩展基础spread footing片筏基础mat foundation浅基础shallow foundation墙下条形基础热摩奇金法Zemochkin s method柔性基础flexible foundation上部结构-基础-土共同作用分析structure- foundation-soil interactionanalysis 谈弹性地基梁(板)分析analysis of beams and slabs on elastic foundation条形基础strip footing下卧层substratum箱形基础box foundation18. 深基础贝诺托灌注桩Benoto cast-in-place pile波动方程分析Wave equation analysis场铸桩(台)cast-in-place pile沉管灌注桩diving casting cast-in-place pile沉井基础open-end caisson foundation沉箱基础box caisson foundation成孔灌注同步桩synchronous pile承台pile caps充盈系数fullness coefficient单桩承载力bearing capacity of single pile单桩横向极限承载力ultimate lateral resistance of single pile单桩竖向抗拔极限承载力vertical ultimate uplift resistance of single pile单桩竖向抗压容许承载力vertical ultimate carrying capacity of single pile单桩竖向抗压极限承载力vertical allowable load capacity of single pile低桩承台low pile cap地下连续墙diaphgram wall点承桩(台)end-bearing pile动力打桩公式dynamic pile driving formula端承桩end-bearing pile法兰基灌注桩Franki pile负摩擦力negative skin friction of pile钢筋混凝土预制桩precast reinforced concrete piles钢桩steel pile高桩承台high-rise pile cap灌注桩cast-in-place pile横向载荷桩laterally loaded vertical piles护壁泥浆slurry coat method回转钻孔灌注桩rotatory boring cast-in-place pile静力压桩silent piling抗拔桩uplift pile抗滑桩anti-slide pile摩擦桩friction pile木桩timber piles嵌岩灌注桩piles set into rock群桩pile groups群桩效率系数efficiency factor of pile groups群桩效应efficiency of pile groups群桩竖向极限承载力vertical ultimate load capacity of pile groups 深基础deep foundation竖直群桩横向极限承载力无桩靴夯扩灌注桩rammed bulb ile桩piles桩基动测技术dynamic pile test钻孔墩基础drilled-pier foundation钻孔扩底灌注桩under-reamed bored pile钻孔压注桩starsol enbesol pile最后贯入度final set19. 地基处理表层压密法surface compaction超载预压surcharge preloading袋装砂井sand wick地工织物geofabric, geotextile地基处理ground treatment, foundation treatment电动化学灌浆electrochemical grouting电渗法electro-osmotic drainage顶升纠偏法定喷directional jet grouting冻土地基处理frozen foundation improvement短桩处理treatment with short pile堆载预压法preloading粉体喷射深层搅拌法powder deep mixing method复合地基composite foundation干振成孔灌注桩vibratory bored pile高压喷射注浆法jet grounting灌浆材料injection material灌浆法grouting硅化法silicification夯实桩compacting pile化学灌浆chemical grouting换填法cushion灰土桩lime soil pile挤密灌浆compaction grouting挤密桩compaction pile, compacted column挤淤法displacement method加筋法reinforcement method加筋土reinforced earth碱液法soda solution grouting浆液深层搅拌法grout deep mixing method降低地下水位法dewatering method坑式托换pit underpinning冷热处理法freezing and heating锚固技术anchoring锚杆静压桩托换anchor pile underpinning排水固结法consolidation膨胀土地基处理expansive foundation treatment劈裂灌浆fracture grouting浅层处理shallow treatment强夯法dynamic compaction人工地基artificial foundation容许灌浆压力allowable grouting pressure褥垫pillow软土地基soft clay ground砂井sand drain砂井地基平均固结度average degree of consolidation of sand-drained ground 砂桩sand column山区地基处理foundation treatment in mountain area深层搅拌法deep mixing method渗入性灌浆seep-in grouting湿陷性黄土地基处理collapsible loess treatment石灰系深层搅拌法lime deep mixing method石灰桩lime column, limepile树根桩root pile水泥土水泥掺合比cement mixing ratio水泥系深层搅拌法cement deep mixing method水平旋喷horizontal jet grouting塑料排水带plastic drain碎石桩gravel pile, stone pillar天然地基natural foundation土工聚合物Geopolymer土工织物geofabric, geotextile土桩earth pile托换技术underpinning technique外掺剂additive旋喷jet grouting药液灌浆chemical grouting预浸水法presoaking预压法preloading真空预压vacuum preloading振冲法vibroflotation method振冲密实法vibro-compaction振冲碎石桩vibro replacement stone column振冲置换法vibro-replacement振密、挤密法vibro-densification, compacting置换率(复合地基)replacement ratio重锤夯实法tamping桩式托换pile underpinning桩土应力比stress ratio20. 动力机器基础比阻尼容量specific gravity capacity等效集总参数法constant strain rate consolidation test地基固有周期natural period of soil site动基床反力法dynamic subgrade reaction method动力放大因素dynamic magnification factor隔振isolation基础振动foundation vibration基础振动半空间理论elastic half-space theory of foundation vibration 基础振动容许振幅allowable amplitude of foundation vibration基础自振频率natural frequency of foundation集总参数法lumped parameter method吸收系数absorption coefficient质量-弹簧-阻尼器系统mass-spring-dushpot system21. 地基基础抗震地基固有周期natural period of soil site地震earthquake, seism, temblor地震持续时间duration of earthquake地震等效均匀剪应力equivalent even shear stress of earthquake地震反应谱earthquake response spectrum地震烈度earthquake intensity地震震级earthquake magnitude地震卓越周期seismic predominant period地震最大加速度maximum acceleration of earthquake动力放大因数dynamic magnification factor对数递减率logrithmic decrement刚性系数coefficient of rigidity吸收系数absorption coefficient22. 室内土工试验比重试验specific gravity test变水头渗透试验falling head permeability test不固结不排水试验unconsolidated-undrained triaxial test常规固结试验routine consolidation test常水头渗透试验constant head permeability test单剪仪simple shear apparatus单轴拉伸试验uniaxial tensile test等速加荷固结试验constant loading rate consolidatin test等梯度固结试验constant gradient consolidation test等应变速率固结试验equivalent lumped parameter method反复直剪强度试验repeated direct shear test反压饱和法back pressure saturation method高压固结试验high pressure consolidation test各向不等压固结不排水试验consoidated anisotropically undrained test 各向不等压固结排水试验consolidated anisotropically drained test共振柱试验resonant column test固结不排水试验consolidated undrained triaxial test固结快剪试验consolidated quick direct shear test固结排水试验consolidated drained triaxial test固结试验consolidation test含水量试验water content test环剪试验ring shear test黄土湿陷试验loess collapsibility test界限含水量试验Atterberg limits test卡萨格兰德法Casagrande s method颗粒分析试验grain size analysis test孔隙水压力消散试验pore pressure dissipation test快剪试验quick direct shear test快速固结试验fast consolidation test离心模型试验centrifugal model test连续加荷固结试验continual loading test慢剪试验consolidated drained direct shear test毛细管上升高度试验capillary rise test密度试验density test扭剪仪torsion shear apparatus膨胀率试验swelling rate test平面应变仪plane strain apparatus三轴伸长试验triaxial extension test三轴压缩试验triaxial compression test砂的相对密实度试验sand relative density test筛分析sieve analysis渗透试验permeability test湿化试验slaking test收缩试验shrinkage test塑限试验plastic limit test缩限试验shrinkage limit test土工模型试验geotechnical model test土工织物试验geotextile test无侧限抗压强度试验unconfined compression strength test无粘性土天然坡角试验angle of repose of cohesionless soils test压密不排水三轴压缩试验consolidated undrained triaxial compression test 压密排水三轴压缩试验consolidated drained triaxial compressure test压密试验consolidation test液塑限联合测定法liquid-plastic limit combined method液限试验liquid limit test应变控制式三轴压缩仪strain control triaxial compression apparatus应力控制式三轴压缩仪stress control triaxial compression apparatus有机质含量试验organic matter content test真三轴仪true triaxial apparatus振动单剪试验dynamic simple shear test直剪仪direct shear apparatus直接剪切试验direct shear test直接单剪试验direct simple shear test自振柱试验free vibration column testK0固结不排水试验K0 consolidated undrained testK0固结排水试验K0 consolidated drained test23. 原位测试标准贯入试验standard penetration test表面波试验surface wave test超声波试验ultrasonic wave test承载比试验Califonia Bearing Ratio Test单桩横向载荷试验lateral load test of pile单桩竖向静载荷试验static load test of pile动力触探试验dynamic penetration test静力触探试验static cone penetration test静力载荷试验plate loading test跨孔试验cross-hole test块体共振试验block resonant test螺旋板载荷试验screw plate test旁压试验pressurementer test轻便触探试验light sounding test深层沉降观测deep settlement measurement十字板剪切试验vane shear test无损检测nondestructive testing下孔法试验down-hole test现场渗透试验field permeability test原位孔隙水压力量测in situ pore water pressure measurement原位试验in-situ soil test最后贯入度final set。
土木工程英语(全面完整版)
专业英语的结构特点及其翻译
① 顺译法:依照英语原文顺序依次译出 In the course of designing a structure, you have to take into consideration what kind of load the above mentioned structure will be subjected to, where on the structure the said load will do what is expected and whether the load on the structure is put into position all of a sudden or applied by degree. 结构设计时,你必须考虑到设计的结构受到什么样 的荷载,这一荷载在结构的什么位置起(预计 的)作用,以及这一荷载是突然施加,还是逐 渐加到结构指定位置的。
glossary
• 100 major words
• 土木工程专业常用英语词汇
第一节 一般术语
• 1. 工程结构 building and civil engineering structures 房屋建筑和土木工程的建筑物、构筑物及其相关组成部分 的总称。 2. 房屋建筑工程 building engineering 一般称建筑工程。 3. 土木工程 civil engineering 除房屋建筑外,为新建、改建或扩建各类工程的建筑物、 构筑物和相关配套设施等所进行的勘察、规划、设计、施 工、安装和维护等各项技术工作和完成的工程实体。 4. 公路工程 highway engineering 5. 铁路工程 railway engineering 6. 港口与航道工程 port ( harbor ) and waterway engineering 7. 建筑物(构筑物) construction works 房屋建筑或土木工程中的单项工程实体。 8. 地基 foundation soil • 9. 木结构 timber structure 10. 工业建筑 industrial building;民用建筑 civil building; civil architecture
(完整版)土木工程专业英语课文原文及对照翻译
Civil EngineeringCivil engineering, the oldest of the engineering specialties, is the planning, design, construction, and management of the built environment. This environment includes all structures built according to scientific principles, from irrigation and drainage systems to rocket-launching facilities.土木工程学作为最老的工程技术学科,是指规划,设计,施工及对建筑环境的管理。
此处的环境包括建筑符合科学规范的所有结构,从灌溉和排水系统到火箭发射设施。
Civil engineers build roads, bridges, tunnels, dams, harbors, power plants, water and sewage systems, hospitals, schools, mass transit, and other public facilities essential to modern society and large population concentrations. They also build privately owned facilities such as airports, railroads, pipelines, skyscrapers, and other large structures designed for industrial, commercial, or residential use. In addition, civil engineers plan, design, and build complete cities and towns, and more recently have been planning and designing space platforms to house self-contained communities.土木工程师建造道路,桥梁,管道,大坝,海港,发电厂,给排水系统,医院,学校,公共交通和其他现代社会和大量人口集中地区的基础公共设施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)Concrete and reinforced concrete are used as building materials in every country. In many, including Canada and the United States, reinforced concrete is a dominant structural material in engineered construction.(1)混凝土和钢筋混凝土在每个国家都被用作建筑材料。
在许多国家,包括加拿大和美国,钢筋混凝土是一种主要的工程结构材料。
(2)The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction.(2) 钢筋混凝土建筑的广泛存在是由于钢筋和制造混凝土的材料,包括石子,沙,水泥等,可以通过多种途径方便的得到,同时兴建混凝土建筑时所需要的技术也相对简单。
(3)Concrete and reinforced concrete are used in bridges, building of all sorts, underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships.(3)混凝土和钢筋混凝土被应用于桥梁,各种形式的建筑,地下结构,蓄水池,电视塔,海上石油平台,以及工业建筑,大坝,甚至船舶等。
(4)Reinforce concrete structures consist of a series of individual members that interact to support the loads placed on the structure. The floor of concrete buildings is often built of concrete joist-slab construction.(4)钢筋混凝土结构由一系列单独构件组成,这些构件通过相互作用共同抵抗施加在结构上的荷载。
混凝土建筑的楼层通常采用肋梁楼盖的形式。
(5)A series of parallel ribs or joists support the load from the top slab. The reactions supporting the joists apply load to the beams, which in turn are supported by the columns.(5)一系列的平行梁肋或次梁抵抗其上楼板传来的荷载,次梁的反力作为荷载施加在主粱上,主粱则支承在柱上。
(6)The slab transfers load laterally to the joists, and serves as the top flange of the joists, which act as T-shaped beams that transmit the load to the beams running at right angles to the joists.(6)楼板将荷载垂直传递给次梁,并且作为上翼缘和次梁一起形成T形截面梁,将荷载传递给与次梁正交的主粱。
(7)Some floors of have a slab-and-beam design in which the slab spans between beams, which in turn apply loads to the columns.(7)一些楼层被设计成梁板结构,即楼板直接支承在相邻的主粱上,主粱再将荷载传递到柱上。
(8)Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage or temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete.(8)混凝土的抗压能力很强但抗拉能力很弱。
因此,当荷载、受约束的收缩或温度变化所引起的拉应力超过其抗拉强度时,混凝土中的裂缝就会开展。
(9)The construction of a reinforced concrete member involves building a form or mould in the shape of the member being built. The form must be strong enough to support the weight and hydrostatic pressure of the wet concrete.(9)钢筋混凝土构件的制作需要一个与构件形状相同的模子,其必须具有足够的强度以抵抗湿混凝土的重量和流动压力。
(10)The reinforcement is placed in this form and held in place during the concretingoperation. After the concrete has hardened, the forms are removed.(10)在混凝土浇注的过程中,钢筋被放置在模子中的固定位置。
在混凝土硬化之后,模板才能被移除。
(11)一个结构到底是采用混凝土,钢材,砌体,还是木材进行建造,取决于材料是否容易获得和其他一些经济上的考虑。
通常,最先考虑的因素是结构的总造价。
(12)结构的总造价是材料费用,人工费,以及建造过程持续时间的函数。
(13)通常,结构的总造价受到施工时间长短的影响,这是因为承包商和业主必须为施工过程提供资金,而且这些资金一直要到建筑物可以使用后才能得到收益。
(14)兴建钢筋混凝土结构所需要的材料可以很容易的通过多种渠道获得,在施工过程中需要时可以随时制作,与此相反,兴建钢结构时所需要的材料必须向钢材加工厂预定并为此提前支付部分款项。
(15)设计者对设计和制作所采取的任何标准化的措施都可以减少建筑的总造价。
例如,可以在不同的楼层布置相同尺寸的柱以节省模板的费用,而不同楼层柱荷载的不同则可以通过改变柱混凝土强度等级或配筋率来考虑。
(16)The occupants of a building may be disturbed if their building oscillates in the wind or the floors vibrate an people walk by. Due to the greater stiffness and mass of a concrete structure, vibrations are seldom a problem.(17)在混凝土结构的施工过程中,新浇混凝土的重量由模板来承担,这些模板通常支承在下层楼板上。
另外,建筑材料经常堆放在楼板或屋面上。
(18)砂子,石子,水泥以及搅拌混凝土的设备可以很方便地通过多种方式获得,并且钢筋比型钢更容易运送到工地。
因此,一些偏远的地区经常使用钢筋混凝土。
(19)混凝土的抗拉强度比其抗压强度低得多,因此混凝土会开裂。
在结构中,这个问题通过使用钢筋来解决。
(20)与类似的钢结构相比,混凝土结构需要使用更多的材料,重量也更大。
因此,大跨度的结构通常使用钢材来建造。
(21)The limit states for reinforced concrete structures can be divided into five basic groups: durability, fire resistance, ultimate limit states, serviceability limit states, and special limit states.(21)混凝土结构的极限状态包括五个内容:耐久性,耐火性,承载力极限状态,正常使用极限状态,以及特殊极限状态。
(22)Durability means that the structure should withstand environmental exposure without excessive deterioration of the concrete or corrosion of the reinforcement. Fire resistance means the structure must have the resistance required by the applicable provincial building code.(22)耐久性是指结构能够暴露在环境中而不会发生混凝土材料性能的急剧退化或钢筋的锈蚀。
耐火性是指结构必须具有本地区建筑规范所要求的抗火能力。
(23)The ultimate limit states involve a structural collapse of part or all of the structure. Such a limit state should have a very low probability of occurrence since it may lead to loss of life and major financial losses.(23)承载力极限状态指结构局部倒塌或整体倒塌。
因为这种极限状态会造成生命和大量财产的损失,其发生的可能性必须被降到很低。
(24)The ultimate limit states include loss of equilibrium of a part or all of the structure, rupture of critical parts of the structure, progressive collapse, formation of a plastic mechanism, and instability.(24)承载力极限状态包括结构局部或整体失去平衡,结构关键部位的破坏,渐进式的倒塌,塑性机构形成,以及失稳。