(完整版)新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题

合集下载

浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)

浙教版数学七年级上册 第五章一元一次方程单元测试 (含答案)

浙教版数学七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x−1B .x−1=0C .x 2=9D .3x−52.下列利用等式的基本性质变形错误的是( )A .若x−2=7,则x =7+2B .若−5x =15,则x =−3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x−a =0的解,则a 的值是( )A .2B .1C .−1D .−24.由x 2−y3=1可以得到用x 表示y 的式子是( )A .y =3x−22B .y =32x−12C .y =3−32xD .y =32x−35.解方程x−13=1−3x +16,去分母后正确的是( )A .2x−1=1−(3x +1)B .2(x−1)=1−(3x +1)C .2(x−1)=6−(3x +1)D .(x−1)=6−3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100−x )=100B .3x +100−x3=100C .x3−3(100−x )=100D .3x−100−x3=1007.下列方程的变形中,正确的是( )A .方程3x−2=2x +1,移项,得3x−2x =−1+2;B .方程3−x =2−5(x−1),去括号,得3−x =2−5x−1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x−12−x5=1化成5(x−1)−2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a−1|+(ab−2)2=0,则关于x 的方程xab+x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .−2020C .2019D .−2019二、填空题11.已知4x +2y =3,用含x 的式子表示y =  .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为  ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13−6x−16=1.18.当m 为何值时,关于x 的方程x−m 2−1=2x +m3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x−1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b−a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4−2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23. 某条城际铁路线共有A ,B ,C 三个车站,每日上午均有两班次列车从A 站驶往C 站,其中D1001次列车从A 站始发,经停B 站后到达C 站,G1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1−d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32−2x12.【答案】−113.【答案】1914.【答案】2315.【答案】33−216.【答案】15;310517.【答案】x=−3218.【答案】m≤−6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25−x)千米/时.由题意,得{4(25+x)=y6(25−x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120−m25−5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=−121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①5 6;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1−d2|=d1−d2,∴4t−4.8(t−25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1−d2|=d1−d2,∴360−4.8(t−25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1−d2|=d2−d1,∴4.8(t−25)−[360+4(t−110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1−d2|=60.。

浙教版数学七年级上册5.1《一元一次方程》ppt课件

浙教版数学七年级上册5.1《一元一次方程》ppt课件
教材分析: 1、学生通过自学,小组合作能掌握的知识点是列出一元一次方程。 (Zx.拟xk 设计4个自学导学题引导自学)。 2、学生自学不能掌握的知识点是一元一次方程的概念,以及方程的解的概念 (拟设计2个例题讲解及4个师生互动题加以理解掌握) 3、拟设计2个有代表性的题目加以展示从中发现存在的问题
教学流程设计:自学,合作学习(用时12分钟) →一元一次方程概念(用时4分钟)→一元一 次方程的解的概念(用时20分钟)→当堂检测
(用时9分钟)
教学板书设计:
4个方程
一元一次方程 及解的概念
例题板演
合作学习:在小学我们已经学过,方程是指含有未知数的等式. 运用已学的知识,根据下列问题中的条件,分别列出方程:
◆⑴一射击运动员两次射击的成绩都是整数,平均成绩是6.5环,
其中第二次射击的成绩为9环,问第一次射击的成绩是多少环?
x 9
2

6.5

同学们,请猜想 一下,结合实际,x 能取哪些数呢?
显然,0 x 6,且x为自然数,所以,
x只能取0,1,2,3,4,5,6。
把这些值分别代入方程左边的代数 式 x 9 ,求出代数式的值,如下表:
2
x0123456
x 9 4.5 5 5.5 6 6.5 7 7.5
2
设第一次的射击成绩为x环,可列出方程
x
9 2

6.5

◆⑵国庆期间,“东兴”搞促销活动,一件衣服按8折销售的售
价为72元,问这件衣服的原价是多少元?
设这件衣服的原Z.x.x. K价为x元,可列出方程 0.8x=72

◆⑶有一棵树,刚移栽时,树高为2m,假设以后平均每年长
0.3m,几年后树高为5m?

第五章一元一次方程 单元练习(含答案)浙教版数学七年级上册

第五章一元一次方程 单元练习(含答案)浙教版数学七年级上册

七年级上册第五章一元一次方程一、选择题1.下列方程是一元一次方程的是( )A .y =2x ―1B .x ―1=0C .x 2=9D .3x ―52.下列利用等式的基本性质变形错误的是( )A .若x ―2=7,则x =7+2B .若―5x =15,则x =―3C .若13x =9,则x =3D .若2x +1=6,则2x =53.若x =2是关于x 的方程x ―a =0的解,则a 的值是( )A .2B .1C .―1D .―24.由x 2―y3=1可以得到用x 表示y 的式子是( )A .y =3x ―22B .y =32x ―12C .y =3―32xD .y =32x ―35.解方程x ―13=1―3x +16,去分母后正确的是( )A .2x ―1=1―(3x +1)B .2(x ―1)=1―(3x +1)C .2(x ―1)=6―(3x +1)D .(x ―1)=6―3x +16.我国明代珠算家程大位的名著《直指算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设小和尚有x 人,依题意列方程得( )A .x3+3(100―x )=100B .3x +100―x 3=100C .x3―3(100―x )=100D .3x ―100―x 3=1007.下列方程的变形中,正确的是( )A .方程3x ―2=2x +1,移项,得3x ―2x =―1+2;B .方程3―x =2―5(x ―1),去括号,得3―x =2―5x ―1;C .方程23x =32,未知数系数化为1,得x =1;D .方程x ―12―x5=1化成5(x ―1)―2x =10.8. 将 6 块形状、大小完全相同的小长方形,放入长为 m ,宽为 n 的长方形中,当两块阴影部分A,B 的面积 相等时, 小长方形其较短一边长的值为( )A .m 6B .m 4C .n 6D .n 49.已知|a ―1|+(ab ―2)2=0,则关于x 的方程xab +x (a +1)(b +1)+x (a +2)(b +2)+⋅⋅⋅+x(a +2021)(b +2021)=2022的解是( )A .2021B .2022C .2023D .202410.我国古代的“九宫图”是由3×3的方格构成的,每个方格均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫图”的一部分,请推算x 的值是( )2025x 23A .2020B .―2020C .2019D .―2019二、填空题11.已知4x +2y =3,用含x 的式子表示y =  .12.如图,在数轴上,点A,B 表示的数分别为a,b ,且a +b =0,若AB =2,则点A 表示的数为 .13.一张试卷有25道必答题,答对一题得4分,答错一题扣1分,某学生解答了全部试题共得70分,他答对了 道题.14.甲对乙说:“当我岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在岁数时,你61岁.”则乙现在为 岁.15.如图,数轴上A ,B 点对应的实数分别是1和3.若点A 关于点B 的对称点为点C (即2AB =BC ),则点C 所对应的实数为 .16.一个四位正整数M ,如果千位数字与十位数字之和的两倍等于百位数字与个位数字之和,则称M 为“共进退数”,并规定F (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之和,G (M )等于M 的前两位数所组成的数字与后两位数所组成的数字之差,如果F (M )=60,那么M 各数位上的数字之和为  ;有一个四位正整数N =1101+1000x +10y +z (0≤x ≤4,0≤y ≤9,0≤z ≤8,且为整数)是一个“共进退数”,且F (N )是一个平方数,G (N )13是一个整数,则满足条件的数N 是 .三、解答题17.解方程:2x +13―6x ―16=1.18.当m 为何值时,关于x 的方程x ―m 2―1=2x +m 3的解是非负数.19.一艘轮船从A 地顺水航行到B 地用了4小时,从B 地逆水航行返回A 地比顺水航行多用了2小时,已知轮船在静水中的速度是25千米/时.(1)求水流的速度和A ,B 两地之间的距离;(2)若在A ,B 两地之间的C 地建立新的码头,使该轮船从A 地顺水航行到C 码头的时间是它从B 地逆水航行到C 码头所用时间的一半,问A ,C 两地相距多少千米?20.关于x 的两个一元一次方程x ―1=a ①,3x +1=2a ②,已知方程①的解比方程②的解大1,求a的值.21.我们规定,若关于x 的一元一次方程ax =b 的解为x =b ―a ,则称该方程为“差解方程”.例如:2x =4的解为x =2,且2=4―2,则该方程2x =4是差解方程.(1)判断:方程3x =4.5差解方程(填“是”或“不是”)(2)若关于x 的一元一次方程4x =m +3是差解方程,求m 的值.22.甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.23.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A站B站C站车次发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了 分钟,从B站到C站行驶了 分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①v1v=▲;2②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1―d2|=60,求t的值.答案解析部分1.【答案】B2.【答案】C3.【答案】A4.【答案】D5.【答案】C6.【答案】A7.【答案】D8.【答案】A9.【答案】C10.【答案】D11.【答案】32―2x12.【答案】―113.【答案】1914.【答案】2315.【答案】33―216.【答案】15;310517.【答案】x=―3218.【答案】m≤―6519.【答案】(1)解:设水流的速度为x千米/时,A,B两地之间的距离为y千米,则轮船在顺水中的速度为(25+x)千米/时,在逆水中的速度为(25―x)千米/时.由题意,得{4(25+x)=y6(25―x)=y,解得{x=5 y=120.答:水流的速度为5千米/时,A,B两地之间的距离为120千米.(2)解:设A,C两地相距m千米.由题意,得m25+5=12×120―m25―5,解得m=3607.答:A,C两地相距3607千米.20.【答案】a=―121.【答案】(1)是(2)7322.【答案】(1)甲每天加工零件个数为20个,乙每天加工15个(2)两人合作的天数15天23.【答案】(1)90;60(2)解:①56;②解法示例:∵v1=4(千米/分钟),v1v2=56,∴v2=4.8(千米/分钟).∵4×90=360,∴A与B站之间的路程为360.∵360÷4.8=75,∴当t=100时,G1002次列车经过B站.由题意可如,当90≤t≤110时,D1001次列车在B站停车.∴G1002次列车经过B站时,D1001次列车正在B站停车.ⅰ.当25≤t<90时,d1>d2,∴|d1―d2|=d1―d2,∴4t―4.8(t―25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1―d2|=d1―d2,∴360―4.8(t―25)=60,t=87.5(分钟),不合题意,舍去;ⅲ.当100<t≤110时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―360=60,t=112.5(分钟),不合题意,舍去;ⅳ.当110<t≤150时,d1<d2,∴|d1―d2|=d2―d1,∴4.8(t―25)―[360+4(t―110)]=60,t=125(分钟).综上所述,当t=75或125时,|d1―d2|=60.。

新学期七年级上册数学第五章知识点:一元一次方程

新学期七年级上册数学第五章知识点:一元一次方程

新学期七年级上册数学第五章知识点:一元一次方程每一门功课都有它自身的规律,有它自身的特点,数学当然也不例外。

下面是有关七年级上册数学第五章知识点的内容,供你学习参考!一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2.一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程.⑵方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么ac=bc (2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c0),那么ac=bc三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1、去分母(方程两边同乘各分母的最小公倍数)2、去括号(按去括号法则和分配律)3、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4、合并(把方程化成ax=b(a0)形式)5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=ba).六、用方程思想解决实际问题的一般步骤1、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2.、设:设未知数(可分直接设法,间接设法)3、列:根据题意列方程.4、解:解出所列方程.5、检:检验所求的解是否符合题意.6、答:写出答案(有单位要注明答案)七、有关常用应用类型题及各量之间的关系1、和、差、倍、分问题:(1)倍数关系:通过语是几倍,增加几倍,增加到几倍,增加百分之几,增长率来体现.(2)多少关系:通过语多、少、和、差、不足、剩余来体现.2、等积变形问题:等积变形是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.3、劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4、数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且19,09,09)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n2表示;奇数用2n+1或2n1表示.5、工程问题:工程问题中的三个量及其关系为:工作总量=工作效率工作时间6、行程问题:(1)行程问题中的三个基本量及其关系:路程=速度时间.(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行;行船问题;环形跑道问题.7、商品销售问题有关关系式:商品利润=商品售价商品进价=商品标价折扣率商品进价商品利润率=商品利润/商品进价商品售价=商品标价折扣率8、储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金利率期数本息和=本金+利息利息税=利息税率(20%)这就是我们为大家准备的七年级上册数学第五章知识点的内容,希望符合大家的实际需要。

浙教版数学七年级上册第五单元一元一次方程知识点+例题

浙教版数学七年级上册第五单元一元一次方程知识点+例题

知识点一 方程的概念 含有未知数的等式叫方程方程必须具备两个条件 一是等式,二是含有未知数注意:方程中的未知数可以用x 表示,也可以用其他字母表示,方程中的未知数的个数不一定是一个,可以是两个或两个以上。

知识点二 解方程和方程的解1.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

2解方程是一个过程,方程的解是一个结果。

3检验一个数是不是方程的解,只需要将这个数代入原方程即可。

若方程两边相等,则这个数是方程的解,反之则不是。

例2 x=5方程23)36(3)42(=-++x x 的解吗?解:将x=5代入原方程,两边成立,所以,x=5是原方程的解。

解一元一次方程的一般步骤(重点)解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化为1.这些步骤不是固定不变的,有时可以省略某个步骤,主要是根据方程的特点灵活选用。

解含分数系数的一元一次方程的一般步骤总结如下表:注意(1)解一元一次方程时,应灵活运用一般步骤中的各种做法,采取哪些步骤要看解什么样的方程,有分母则去分母,有括号就去括号(2)解一元一次方程时,不一定是按照上表中自上而下的顺序解方程,有时要根据方程的形式、特点灵活安排求解步骤,熟练后还可以合并或简化某些步骤. 解方程2.04.05.05.15.05.0-x 2.0x+=+ 知识点三 一元一次方程的特点一元一次方程的定义:只有一个未知数,未知数的次数都是1的方程。

特点:1只有一个未知数; 2未知数的次数是1;3可带分母,但分母不能带有未知数。

如421=-x 就不是一元一次方程。

例3下列各式哪些是一元一次方程?①56-1=55;②2x+6=0;③6x=0;④8y-3=12;⑤0532=+-x x ;⑥2x 十5z=23;⑦11-x 22x 1=++例4已知43654=+-n x 是一元一次方程,求n 的值。

【变式2】若关于的方程是一元一次方程,则_______【变式3】若关于的方程()523=+--mx x m m 是一元一次方程,则_______. 【变式4】若关于的方程()5)2()2(22=+++-x m x m m 是一元一次方程,则_______.知识点四 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七上数学第五章一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2−4x=3B.3x−1=x2C.x+2y=1D.xy−3=52.下列等式变形正确的是( )A.若a=b,则a+c=b−c B.若ac=bc,则a=bC.若a=b,则ac=bcD.若(m2+1)a=(m2+1)b,则a=b3.已知关于x的方程8−3x=ax的解是x=−2,则a的值为( )A.1B.7C.52D.−74.把方程3x+2x−13=3−x+12去分母正确的是( )A.18x+2(2x−1)=18−3(x+1)B.3x+(2x−1)=3−(x+1)C.18x+(2x−1)=18−(x+1)D.3x+2(2x−1)=3−3(x+1)5.若x=1是关于x的方程3x−2m=1的解,则m的值是( )A.−1B.1C.−2D.36.如图,数轴上依次有A,B,C三点,它们对应的数分别是a,b,c,若BC=2AB=6,a+b+c=0,则点C对应的数为( )A.4B.5C.6D.87.如图,是2024年1月的月历,任意选取“十”字型中的五个数(比如图中阴影部分),若移动“十”字型后所得五个数之和为115,那么该“十”字型中正中间的号数为( )A.20B.21C.22D.238.《九章算术》中有如下问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?设绳长为x尺,则根据题意,可列方程为( )A.x3+4=x4+1B.x3−4=x4−1C.x3−1=x4−4D.x3−4=x4+19.如图,线段AB=24cm,动点P从A出发,以2cm/s的速度沿AB运动,M为AP的中点,N为BP的中点.以下说法正确的是( )①运动4s后,PB=2AM;②PM+MN的值随着运动时间的改变而改变;③2BM−BP的值不变;④当AN=6PM时,运动时间为2.4s.A.①②B.②③C.①②③D.②③④10.有一组非负整数:a1,a2,…,a2022.从a3开始,满足a3=|a1−2a2|,a4=|a2−2a3|,a5=|a3−2 a4|,…,a2022=|a2020−2a2021|.某数学小组研究了上述数组,得出以下结论:①当a1=2,a2=4时,a4=6;②当a1=3,a2=2时,a1+a2+a3+⋯+a20=142;③当a1=2x−4,a2=x,a5=0时,x=10;④当a1=m,a2=1(m≥3,m为整数)时,a2022=2020m−6059.其中正确的结论个数有( )A.1个B.2个C.3个D.4个二、填空题11.由a=b,得ac =bc,那么c应该满足的条件是 .12.如果方程3x m+1+2=0是关于x的一元一次方程,那么m的值是 .13.如果|x+8|=5,那么x= .14.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解互为相反数,则a= .15.对于非零自然数a和b,规定符号⊗的含义是:a⊗b=m×a+b2×a×b(m是一个确定的整数).如果1⊗4=2⊗3,那么3⊗4等于 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是 元时,甲、乙两家超市实付款一样.三、解答题17.解方程:(1)3x+5=2(x+4)(2)3x−14=1−x+8618.已知a-2(4-x)=5a是关于x的方程,且与方程6-x=x+32有相同的解.(1)求a的值.(2)求多项式8a2−2a+7−5的值.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x−2=0是方程x−1=0的“后移方程”19.判断方程2x+1=0是否为方程2x+3=0的“后移方程”;20.若关于x的方程3(x−1)−m=m+32是关于x的方程2(x−3)−1=3−(x+1)的“后移方程”,求m的值.21.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?22.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.23.用A,B两种型号的机器生产相同的产品,产品装入同样规格的包装箱后运往仓库.已知每台B型机器比A型机器一天多生产2件产品,3台A型机器一天生产的产品恰好能装满5箱,4台B型机器一天生产的产品恰好能装满7箱.每台A型机器一天生产多少件产品?每箱装多少件产品?下面是解决该问题的两种方法,请选择其中的一种方法,完成分析填空和解答.【方法一】分析:设每箱装x件产品,则3台A型机器一天共生产①▲)件产品,4台B型机器一天共生产( ▲)件产品,再根据题意列方程.【方法二】分析:设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产(①▲)件产品,4台B型机器一天共生产(②▲)件产品,再根据题意列方程.解:设每箱装x 件产品.答:(写出完整的解答过程)解:设每台A 型机器一天生产x 件产品答:(写出完整的解答过程)24.如图,点A 、B 、C 、D 在数轴上,点A 表示的数是−3,点D 表示的数是9,AB =2,CD =1.(1)线段BC =______.(2)若点B 以每秒1个单位长度的速度向右匀速运动,同时点C 以每秒2个单位长度的速度向左匀速运动,运动t 秒后,BC =3,求t 的值.(3)若线段AB 以每秒1个单位长度的速度向左匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动,M 是AC 中点,N 为BD 中点,运动t 秒后(0<t <9),求线段MN 的长度.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】c≠012.【答案】013.【答案】-13或-314.【答案】-415.【答案】111216.【答案】75017.【答案】(1)x=3(2)x=−1 1118.【答案】(1)解:6-x=x+32,去分母得:12-2x=x+3,移项合并得:-3x=-9,解得:x=3,把x=3代入a-2(4-x)=5a得:a-2=5a,解得:a=-1 2.(2)解:当a=-12时,原式=-2【答案】19.方程2x+1=0是方程2x+3=0的后移方程20.m=521.【答案】解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1,由题意得:(110+115+120)x+(115+120)(6−x)=1,解得:x=3,答:甲队实际工作了3小时22.【答案】(1)解:设中间数为x,则另4个数分别为x−16、x+16、x−2、x+2,所以十字框中五个数之和为x+(x−16)+(x+16)+(x−2)+(x+2)=5x.(2)解:设中间的数为x,依题意可得:5x=2024,解得:a=404.8因为a=404.8不是整数,与题目的a是奇数不符,所以5数之和不能等于2024.23.【答案】解:【方法一】①设每箱装x件产品,则3台A型机器一天共生产3x件产品,4台B型机器一天共生产7x件产品,依题意列方程,得5x3+2=7x4,解得:x=24,故5x3=40,即每台A型机器一天生产40件产品,每箱装24产品.【方法二】设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产3x件产品,4台B型机器一天共生产4(x+2)件产品,依题意列方程,得3x5=4(x+2)7,解得:x=40,故3x5=24,即每台A型机器一天生产40件产品,每箱装24产品. 24.【答案】(1)9(2)2或4(3)3 2。

七年级数学上册 第五章《一元一次方程》期末复习知识点及典型例题(二)(新版)浙教版

七年级数学上册 第五章《一元一次方程》期末复习知识点及典型例题(二)(新版)浙教版

期末复习六一元一次方程(二)要求知识与方法了解问题解决的四个步骤列方程解应用题的一般步骤理解根据具体问题中的关系找寻相等关系根据相等关系列方程运用利用一元一次方程解决简单的实际问题一、必备知识:1.问题解决的基本步骤:____________,____________,____________,____________。

2.行程问题:速度×时间=路程,速度和×时间=总路程,速度差×时间=追及的路程.3.工程问题:工作效率×工作时间=工作总量,甲、乙合作的工作效率=甲的工作效率+乙的工作效率.4.利率问题:本金×利率×存期=利息,利息×税率=利息税,本金+利息-利息税=实得本利和.二、防范点:1.各类问题中的数量关系要理清.如行程问题中速度、时间、路程之间的关系,工程问题中工作效率、工作时间、工作总量之间的关系等.利用常见的相等关系列方程.2.调配问题中要分清是内部调配还是外部调配,配套问题中注意两个量之间的比例关系不要搞错.3.题意比较复杂时要用线段图示、列表等方法分析题意.一元一次方程的应用例1(1)小华带x元钱去买甜点,若全买红豆汤圆,刚好可买30杯;若全买豆花,刚好可买40杯.已知豆花每杯比红豆汤圆便宜1元,依据题意可列出的方程是________________.(2)如图,要求以下的”□"内填入同一个数字.求这个数字是________.9□1×3□763(3)要锻造一个边长为50mm的立方体零件毛坯,需要取直径为100mm的圆钢长为________mm(结果保留π).(4)小华的爸爸三年前为小华存了一份5000元的教育储蓄,今年到期时的本息和是5405元,请你帮小华算一算,这种储蓄的年利率是________.(5)植树节期间,我市某初中学校组织植树活动,已知在甲处植树的有13人,在乙处植树的有17人.现调15人去支援,使在甲处植树的人数是乙处植树人数的错误!,问应调往甲、乙两处各多少人?(6)甲、乙两人分别从A、B两地出发,甲骑摩托车,乙骑自行车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲少行驶了90千米,相遇后经1小时甲到达B地.问甲、乙行驶的速度分别是多少?【反思】列一元一次方程解应用题关键在于寻找未知量与已知量之间的一个相等关系.然后根据这个相等关系,设相应的未知量为未知数,列出一元一次方程.往往设未知数的方法有两种:一种是直接设法,还有一种是间接设法.利用一元一次方程解决方案决策问题例2一家电信公司推出两种移动电话计费方法:计费方法A 是每月收月租费58元,通话时间不超过160分钟的部分免费,超过160分钟的按每分钟0。

一元一次方程-七年级数学上册课件(浙教版)

一元一次方程-七年级数学上册课件(浙教版)
程叫做解方程.
x
x
思考:x=420是 1方程的解吗?
60 70
420 420
解:当x=420时,方程左边= - =7-6=1,右边=1,左边=右边,
60 70
所以x=420是此方程的解.
例3 x=1000和x=2000中哪一个是方程 0.52x-(1-0.52)x=80的解?
解:当x=1000时,方程左边=0.52×1000-(1-0.52)×1000=520-480=40,
由题意列方程为5x+4(5-x)=21.
【点睛】本题考查了列一元一次方程,找准等量关系是解题关键.
14
3
2+0.3x 5
问题1:每个方程中,各含有几个未知数? 1个
问题2:说一说每个方程中未知数的次数.
1次
问题3:等号两边的式子有什么共同点?
都是整式
一元一次方程的概念
只含有一个未知数,未知数的次数都是1,等号两边都是整式,
这样的方程叫做一元一次方程.
练一练
下列哪些是一元一次方程?
(1) 2 x 1 ;
(1) 2 5 3 ( × )
(2) 3x 1 7
( √ )
(3) 2a b
(× )
(4) x 3
( ×)
(5) x y 8
(√ )
(6) 2 x 2 5 x 1 0 ( √ )
含有未知数的等式叫做方程.
知识点一 一元一次方程的概念
请用已学知识,根据下列问题中的条件分别列出方程.
9.只列方程,不解方程
(1)某班有男生25人,比女生的2倍少15人,这个班女生有多少人?
(2)小明买苹果和梨共5千克,用去21元,其中苹果每千克5元,梨每

一元一次方程 浙教版2019-2020学年度七年级数学上册讲义+分层训练(含答案)

一元一次方程 浙教版2019-2020学年度七年级数学上册讲义+分层训练(含答案)

浙江版2019-2020学年度七年级数学上册第5章一元一次方程 5.1 一元一次方程【知识清单】 一、一元一次方程:1.方程:含有未知数的等式叫做方程.2.方程的解:使方程左右两边的值都相等的未知数的值叫做方程的解3.一元一次方程:只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程. 二、方程的判定方法归纳:1.判断一个式子是不是方程必须看两点:一是等式,二是含有未知数,二者缺一不可;2.判定一个方程是不是一元一次方程,要看方程是否只含一个未知数并且未知数的指数都是1,而且是整式方程. 【经典例题】例题1、下列方程中,是一元一次方程的是( )A .x 2-2x =1B .-5x =0C .3x +2y =5D .x =x1【考点】一元一次方程的定义.【分析】根据一元一次方程的定义判断即可.【解答】A 、方程的次数是2次,即不是一元一次方程,故本选项错误;B 、是一元一次方程,故本选项正确;C 、含有两个未知数,即不是一元一次方程,故本选项错误;D 、不是整式方程,即不是一元一次方程,故本选项错误; 故选B .【点评】本题考查了对一元一次方程的定义的应用,熟练掌握一元一次方程的定义是解决问题的关键.例题2、如果方程(m -2)1-m x+26=0是关于x 的一元一次方程,那么m 的取值是______.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,高于一次的项系数是0.据此可得出关于m 的方程,继而可求出m 的值. 【解答】由一元一次方程的定义,得⎩⎨⎧=-≠-1102m m ,解得m =-2.故填:-2.【点评】本题主要考查了一元一次方程的定义,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.【夯实基础】1.下列方程中,是一元一次方程的是( )A .2x =3y B.y 1+1=0 C .2x 2+3x =2 D. )2(31-x =1 2.下列说法正确的是( )A .x =-2是方程2x +5=0的解B .y =0是方程0.5(5-2y )=2.5的解C .方程3x -4=)3(31-x )的解是x =3D .方程43-x =2的解是x =383.一件高于成本50%标价的上衣,按8折销售仍可获利40元.设这件上衣的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+50%)×0.8-x =30B . ( x +50%)×0.8-x =30C .x (1+50%)×0.8=30-xD .( x +50%)×0.8=30-x 4.关于|x -2|=2的说法正确的是 ( )A .不是方程B .是方程其解为0C .是方程其解为4D .是方程其解为0或45.若关于x 的方程(3k -2)x 2- (3k +2)x +5=0是一元一次方程,则k 的值为 .6.如图,两边都放着物体的天平处于平衡状态,用等式表示天平两边所放物体的质量关系为__ __________.7.下列不是方程的是__________.(填序号)① 1+2=3; ② 2x +1; ③ 2m +15=3; ④ x 2-6=0; ⑤ 3x +2y =9; ⑥ 3a +9>15.8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解)【提优特训】10.若5x -6与2x -8是一个正数两个平方根,则可列方程来表示为( )A .5x -6=2x -8B .5x -6+2x -8=0C .5x +6+2x +8=0D .5x +6+2x -8=0 11.若方程(3a -2)x 2+bx +c =0是关于x 的一元一次方程,则字母系数a ,b ,c 的值满足( )A .a =32,b =0,c 为任意数 B .a ≠32,b ≠0,c =0 C .a =32,b ≠0,c 为任意数 D .a =32,b ≠0,c ≠0 12.下列方程中,解为x =-2的方程是( )A .21x +3=x B . x -2=0 C .2x =4 D .321)63(31-=-x x 13.已知单项式-ma 3b m -1与单项式4a 3b 2是同类项,则关于m 的方程一定正确的是( )A .-m +4=0B .-m -4=0C .m -1+2=0D . m -1=2 14.已知53-m x-1=m 是关于x 的一元一次方程,则这个方程的解 .15.对于有理数a ,b ,c ,d ,规定一种运算bc ad dbc a -=,如43525342⨯-⨯==-2. 若32331=----x x ,则所得到的方程为 .16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程.19.汽车的油箱内储油40kg,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t(h) 耗油量p(kg) 剩油量m(kg)1 2.5 40-2.5=37.52 5 40-5=353 7.5 40-7.5=32.54 10 40-10=30………(1)写出工作10h后,油箱内的剩油量;(2)写出工作t h后,油箱内的剩油量为7.5kg,请你列出关于t的方程(不解方程).20.如图用火柴棒搭正方形,用n表示所搭正方形的个数,从而计算火柴棒的根数,当n=1,所需火柴棒为4根,当n=2,所需火柴棒为7根,当n=3,所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?【中考链接】21.(2018•临安)(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.522.(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数7.0 为例进行说明:设7.0 =x ,由7.0 =0.7777…可知,l0x =7.7777…,所以l0x -x =7,解方程,得x =97,于是.得7.0 =97.将63.0 写成分数的形式是 .参考答案1、D2、B3、A4、D5、326、x+4=107、①②⑥ 10、B 11、C 12、D 13、D 14、-1或3 15、-(x -2)+3(3-x )=3 21、D 22、114 8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值. 解:∵方程5a -2x =9的解为x =3,∴5a -2×3=9, ∴a =3.∴(-a )2-2a +1 =(-3)2-2×3+1=4.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解) 解:设x 小时后乙蜡烛的长度是甲蜡烛长度的一半,则1-101x =31(1-121x ). 16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁. 16.解:1.(1)65x -5=6; (2) 5x =2x -18;(3) (1-20%)x =60%x -5; (4) 3x +6=12;2.解:(1)由长方形的长为3x ,得宽为2x ,则2(5x +3x )=64.(2)根据题意,得3x -4=38.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值. 解:∵ax 2+x b-3-2=0是关于x 的一元一次方程,∴a =0,b -3=1, ∴a =0,b =4, ∴x -2=0, ∴x =2. ∴x a +b =24=16.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程. 18. 解:(1)6个.(2)有3个一元一次方程,它们分别是5x -3=-6,6261-=-x ,5x -3=261-x . 19.汽车的油箱内储油40kg ,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t (h) 耗油量p (kg) 剩油量m (kg) 1 2.5 40-2.5=37.5 2 5 40-5=35 3 7.5 40-7.5=32.5 4 10 40-10=30 ………(1)写出工作10h 后,油箱内的剩油量;(2)写出工作t h 后,油箱内的剩油量为7.5kg ,请你列出关于t 的方程(不解方程). 解: (1)40-10×2.5=15;工作10h 后,油箱内的剩油量为15 kg ; (2)根据题意,得40-2.5t =7.5.20.如图用火柴棒搭正方形,用n 表示所搭正方形的个数,从而计算火柴棒的根数,当n =1,所需火柴棒为4根,当n =2, 所需火柴棒为7根,当n =3, 所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?解:根据图形特点和题意可得:第1个图形n=1,火柴棒为3×1+1=4根,第2个图形n=2,火柴棒为3×2+1=7根,第3个图形n=3,火柴棒为3×3+1=10根,…(1)第5个图形中火柴棒有3×5+1=16根,(2)第n个图形中火柴棒有3×n+1=(3n+1)根,(3)3n+1=781,解得n=260,答:这个图形由260个正方形组成.。

浙教版七年级数学上第五章 《一元一次方程》 实际应用专项练习含答案

浙教版七年级数学上第五章 《一元一次方程》 实际应用专项练习含答案

《一元一次方程》实际应用题综合提优训练1.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收入﹣进货总成本)2.某服装厂生产一款T恤和帽子,T恤每件定价200元,每顶帽子定价40元,厂方在开展促销活动期间,向客户提供两种优惠方案.①买一件T恤送一顶帽子②T恤和帽子都按定价的九折付款现某客户要到该服装厂购买T恤40件,帽子x顶(x>40),(1)请用含x的代数式表示:若该客户拨方案①购买,需付款元;若该客户按方案②购买,需付款元;(2)当x为多少时,方案①和方案②需支付的费用一样?3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟.求:(1)一个月内通话多少分钟,两种通话方式的费用相同?(2)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?4.小红:昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?5.某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗的数量应满足怎样的条件?6.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m地面未铺瓷砖;同样时间内6名二级技工铺4个宿2舍刚好完成,已知每名一级技工比二级技工一天多铺3m瓷砖.2(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m的走廊需要铺瓷砖,某工程队有4名一级技工2和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?7.为方便市民出行,减轻城市中心交通压力,我市正在修建贯穿城市东西、南北的地铁1号线、地铁2号线一期工程.已知修建地铁1号线23千米和2号线一期18千米共需投资310.6亿;若2号线一期每千米的平均造价比1号线每千米的平均造价多0.4亿元.(1)求1号线,2号线一期每千米的平均造价分别是多少亿元?(2)除1号线,2号线一期外,我市政府规划到2020年后还将再建2号线2期,3号线和4号线,从而形成102km的地铁线网.据预算,这61千米的地铁网每千米的平均造价将比1号线每千米的平均造价多20%,则还需投资多少亿元?8.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?9.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额不超过380元优惠措施不优惠超过380元,但不超过500元按售价打九折超过500元按售价打八折按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二天只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?10.甲、乙两个班到集市上购买苹果,苹果的价格如下:所购苹果数量每千克价格不超过30kg3元30kg以上但不超过50kg2.5元50kg以上2元甲班两次共购买48kg(第二次多于第一次),乙班一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126元,则甲班第一次、第二次分别购买苹果多少千克?(3)若丙班两次共付费196元,则丙班第一次、第二次分别购买苹果多少千克?参考答案1.解:(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100﹣x)箱,根据题意得:40(100﹣x)﹣50x=400,解得:x=40,∴100﹣x=60.答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱.(2)设其余的每箱应打y折销售,×25﹣40×60﹣50×40≥1300,根据题意得:60×75+60×解得:y≥8.答:其余的每箱至少应打8折销售.2.解:(1)该客户按方案①购买,需付款200×40+40(x﹣40)=(40x+6400)元;该客户按方案②购买,需付款0.9×(200×40+40x)=(36x+7200)元.故答案为:(40x+6400);(36x+7200).(2)根据题意得:40x+6400=36x+7200,解得:x=200.答:购买T恤200件时,两种方案付款金额相同.3.解:(1)设一个月内通话x分钟时,两种通话方式的费用相同,根据题意得:0.2x+50=0.4x,解得:x=250.答:一个月内通话250分钟时,两种通话方式的费用相同.(2)使用“全球通”通话方式可使用时间为(120﹣50)÷0.2=350(分钟),使用“神州行”通话方式可使用时间为120÷0.4=300(分钟),∵350>300,∴选择“全球通”通话方式比较合算.4.解:设去了x名学生,(60﹣x)名老师,依题意得:30(60﹣x)+20x=1240解之得:x=56所以老师:60﹣56=4(名),答:共去了4位老师,56位学生.5.(1)解:设甲购买x株,则乙购买(800﹣x)株由题意可列方程为:24x+30(800﹣x)=2100解方程可得:x=500则800﹣x=800﹣500=300答:甲购买500株,乙购买300株;(2)设购买甲y株,则乙购买(800﹣y)株.由题意可列不等式为:85%y+90%(800﹣y)≥800×88%解得:y≤320∴购买甲的数量应大于等于0株且小于等于320株.6.解:(1)设每个宿舍需要铺瓷砖的地板面积为x m,则依题意列出方程:2﹣=3,解方程得:x=18.答:每个宿舍需要铺瓷砖的地板面积为18m.2(2)设需要再安排y名二级技工才能按时完成任务,∵每名一级技工每天可铺砖面积:=15m,2每名二级技工每天可铺砖面积:15﹣3=12m,2∴15×4×6+3×12y=20×18+36.解得:y=1.答:需要再安排1名二级技工才能按时完成任务.7.解:(1)设地铁1号线每千米的平均造价为x亿元,则地铁2号线一期每千米的平均造价为(x+0.4)亿元,根据题意得:23x+18(x+0.4)=310.6,解得:x=7.4,∴x+0.4=7.8.答:地铁1号线每千米的平均造价为7.4亿元,地铁2号线一期每千米的平均造价为7.8亿元.(2)61×7.4×(1+20%)=541.68(亿元).答:还需投资541.68亿元.8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;。

第5章 一元一次方程(单元小结)七年级数学上册(浙教版)

第5章 一元一次方程(单元小结)七年级数学上册(浙教版)
解:∵方程 ( a 4) x
a 3
2 0 是关于x的一元一次方程,
∴|a|-3=1且a-4≠0,
解得:a=-4,
即方程为-8x+2=0,
1
解得:x .
4
单元小结
考点训练三 等式的基本性质
【例3】下列说法正确的是
( D )
A. x +1 = 2+2x 变形得到 1= x
B. 2x = 3x 变形得到 2 = 3
解:设B车行了x小时后与A车相遇,根据题意列方程得
50x+30x+80=240
解得 x=2
答:设B车行了2小时后与A车相距80千米。
单元小结
5. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推
出不同的优惠方案:在甲超市累计购买商品超出 300 元之后,超出部分按
原价 8 折优惠;在乙超市累计购买商品超出 200 元之后,超出部分按原价
(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何
购票才最省钱?
单元小结
解:(1)设初一(1)班有x人,则列方程
3x+11(104-x)=1240
解得x=48。
∴初一(1)班48人,初一(2)班56人;
(2)1024-104×9=304,答:可省304元.
(3)要想享受优惠,由(1)可以知道初一(1)班48人,只

10
④ 商品售价 = 商品进价+商品利润
= 商品进价+商品进价×利润率
= 商品进价×(1+利润率).
单元小结
考点训练一 方程的有关概念
【例1】若关于x的方程(m-4) −3 =0是一元一次方程,则m的值是( B )

浙教版七年级数学上册第5章《一元一次方程》课件

浙教版七年级数学上册第5章《一元一次方程》课件
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/82021/11/82021/11/811/8/2021 7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察 是思考和识记之母。”2021/11/82021/11/8November 8, 2021 8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8
作业:
P1Zx2.xk 4:《目标与评定》 第1,2,3,5,6,7题
Zx.xk
乐于合作
解方程: xx12x2 233
解:去分母,得
6 x 3 x 1 4 2 x 4……①
即 3 x 1 : 2 x 8……②
移项, 3x得 2x : 8 …1…③
合并同类项,得 x: 7 ……④
x7……⑤
上述解方程的过程中,是否有错误?答:__有__错__误____; 如果有错误,则错在___①____②___步。 如果上述解方程有错误,请你给出正确的解题过程:
1
0

(2)7x6y0

(3) 3x0
是 (4)x22x10否
(5) x2x2否 (6) 2y312 是
乐于合作
1. 若 3x4n750 是一元一次方程,
则 n 2 。 2. 若方程 ax33x6是一元一次 方程,则 a应满足 a≠3 。
3. 若 x1 是方程 3a xx2x5a 的解,则代数式 a2004 1 。
化为关于x的代数式表示; 2)、列出满足条件的关于x 的方程; 3)、解这个方程,求出x的值; 4)、对所求得的x值进行检验。

浙教版数学七上5.1 一元一次方程 课件(共16张PPT)

浙教版数学七上5.1 一元一次方程 课件(共16张PPT)
问经过多少年后,树长高为5米?
设它经过y年后树高为5米, 可列出方程 2 0.3y 5 .
②小明家门前有棵树,刚移栽时,树高为2 米,假设以后平均每年以0.3米的速度长高,
问经过多少年后,树长高为5米? 设它经过y年后树高为5米,可列出方程:
2 0.3y 5 y=10
使一元一次方程左右两边的值相等的 未知数的值叫做一元一次方程的解,也 叫作方程的根.
(3)3x-2y=1 (4) y2=4+y
(5)1-x
(6) 3x=4
2.判断下列t的值是不是方程
2t+1=7-t的解:
(1 )t=-2 (2) t=2
3.当x取下列何正整数时,代数式8x与代数 式x+21的值相等?
A.1 B.2 C.3 D.4 4.聪聪在做作业时,不小心把墨水滴到 了作业本上,有一道方程题被盖住了一 个常数,这个方程是 2x 3 x □.怎么 办?已知书后答案中本题的解是x=2, 请问□中的常数是多少?
(5) 1-x
( x) (6) 3x=4 ( √ )
判断方程的两要素:
①有未知数 ②是等式
合作探究
(根据下列问题中的条件列出方程)
①周末,小明
去东兴生活广场 买衣服,一件衣
如果设这件衣服
的原价为x元,
服按8折销售的 售价为72元,这
可列出方程 80%x=72
.
件衣服的原价是
多少元?
②小明家门前有棵树,刚移栽时,树高为2 米,假设以后平均每年以0.3米的速度长高,
少环?
设第2枪的成绩为x环,可列出方程:x 9.3 9.8 2
张梦雪第二枪到底打了多少环呢?
x=
张梦雪第二枪到底打了多少环呢?

浙教版七年级数学上第五章 《一元一次方程》 实际应用专项练习含答案

浙教版七年级数学上第五章 《一元一次方程》 实际应用专项练习含答案

《一元一次方程》实际应用题综合提优训练1.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收入﹣进货总成本)2.某服装厂生产一款T恤和帽子,T恤每件定价200元,每顶帽子定价40元,厂方在开展促销活动期间,向客户提供两种优惠方案.①买一件T恤送一顶帽子②T恤和帽子都按定价的九折付款现某客户要到该服装厂购买T恤40件,帽子x顶(x>40),(1)请用含x的代数式表示:若该客户拨方案①购买,需付款元;若该客户按方案②购买,需付款元;(2)当x为多少时,方案①和方案②需支付的费用一样?3.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟.求:(1)一个月内通话多少分钟,两种通话方式的费用相同?(2)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?4.小红:昨天老师带着我们班同学去深圳少年宫玩,我们一共去了60人(包括老师),买门票共花了1240元.玩得可开心了!小明:真羡慕你们,不过听说门票还是挺贵的.小红:是的,老师票每张30元,学生票每张20元.那你能猜出我们去了几位老师,几位学生吗?小明:去了……根据以上的对话,你能用解方程的知识帮助小明回答小红的提问吗?5.某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.甲、乙两种树苗的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗的数量应满足怎样的条件?6.某学校刚完成一批结构相同的学生宿舍的修建,这些宿舍地板需要铺瓷砖,一天4名一级技工去铺4个宿舍,结果还剩12m2地面未铺瓷砖;同样时间内6名二级技工铺4个宿舍刚好完成,已知每名一级技工比二级技工一天多铺3m2瓷砖.(1)求每个宿舍需要铺瓷砖的地板面积.(2)现该学校有20个宿舍的地板和36m2的走廊需要铺瓷砖,某工程队有4名一级技工和6名二级技工,一开始有4名一级技工来铺瓷砖,3天后,学校根据实际情况要求3天后必须完成剩余的任务,所以决定加入一批二级技工一起工作,问需要安排多少名二级技工才能按时完成任务?7.为方便市民出行,减轻城市中心交通压力,我市正在修建贯穿城市东西、南北的地铁1号线、地铁2号线一期工程.已知修建地铁1号线23千米和2号线一期18千米共需投资310.6亿;若2号线一期每千米的平均造价比1号线每千米的平均造价多0.4亿元.(1)求1号线,2号线一期每千米的平均造价分别是多少亿元?(2)除1号线,2号线一期外,我市政府规划到2020年后还将再建2号线2期,3号线和4号线,从而形成102km的地铁线网.据预算,这61千米的地铁网每千米的平均造价将比1号线每千米的平均造价多20%,则还需投资多少亿元?8.由甲地到乙地前三分之二的路是高速公路,后三分之一的路是普通公路,高速公路和普通公路交界处是丙地,A车在高速公路和普通公路的行驶速度都是80千米/时;B车在高速公路上的行驶速度是100千米/时,在普通公路上的行驶速度是70千米/时,A、B两车分别从甲、乙两地同时出发相向行驶,在高速公路上距离丙地40千米处相遇,求甲、乙两地之间的距离是多少?9.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施不超过380元不优惠超过380元,但不超过500按售价打九折元超过500元按售价打八折按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二天只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?10.甲、乙两个班到集市上购买苹果,苹果的价格如下:所购苹果数量不超过30kg30kg以上但不超过50kg50kg以上每千克价格3元 2.5元2元甲班两次共购买48kg(第二次多于第一次),乙班一次购买苹果48kg,丙班两次共购买苹果90kg.(1)若甲班第一次购买16kg,第二次购买32kg,则乙班比甲班少付多少元?(2)若甲班两次共付费126元,则甲班第一次、第二次分别购买苹果多少千克?(3)若丙班两次共付费196元,则丙班第一次、第二次分别购买苹果多少千克?参考答案1.解:(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100﹣x)箱,根据题意得:40(100﹣x)﹣50 x=400,解得:x=40,∴100﹣x=60.答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱.(2)设其余的每箱应打y折销售,根据题意得:60×75+60××25﹣40×60﹣50×40≥1300,解得:y≥8.答:其余的每箱至少应打8折销售.2.解:(1)该客户按方案①购买,需付款200×40+40(x﹣40)=(40x+6400)元;该客户按方案②购买,需付款0.9×(200×40+40x)=(36x+7200)元.故答案为:(40x+6400);(36x+7200).(2)根据题意得:40x+6400=36x+7200,解得:x=200.答:购买T恤200件时,两种方案付款金额相同.3.解:(1)设一个月内通话x分钟时,两种通话方式的费用相同,根据题意得:0.2x+50=0.4x,解得:x=250.答:一个月内通话250分钟时,两种通话方式的费用相同.(2)使用“全球通”通话方式可使用时间为(120﹣50)÷0.2=350(分钟),使用“神州行”通话方式可使用时间为120÷0.4=300(分钟),∵350>300,∴选择“全球通”通话方式比较合算.4.解:设去了x名学生,(60﹣x)名老师,依题意得:30(60﹣x)+20x=1240解之得:x=56所以老师:60﹣56=4(名),答:共去了4位老师,56位学生.5.(1)解:设甲购买x株,则乙购买(800﹣x)株由题意可列方程为:24x+30(800﹣x)=2100解方程可得:x=500则800﹣x=800﹣500=300答:甲购买500株,乙购买300株;(2)设购买甲y株,则乙购买(800﹣y)株.由题意可列不等式为:85%y+90%(800﹣y)≥800×88%解得:y≤320∴购买甲的数量应大于等于0株且小于等于320株.6.解:(1)设每个宿舍需要铺瓷砖的地板面积为x m2,则依题意列出方程:﹣=3,解方程得:x=18.答:每个宿舍需要铺瓷砖的地板面积为18m2.(2)设需要再安排y名二级技工才能按时完成任务,∵每名一级技工每天可铺砖面积:=15m2,每名二级技工每天可铺砖面积:15﹣3=12m2,∴15×4×6+3×12y=20×18+36.解得:y=1.答:需要再安排1名二级技工才能按时完成任务.7.解:(1)设地铁1号线每千米的平均造价为x亿元,则地铁2号线一期每千米的平均造价为(x+0.4)亿元,根据题意得:23x+18(x+0.4)=310.6,解得:x=7.4,∴x+0.4=7.8.答:地铁1号线每千米的平均造价为7.4亿元,地铁2号线一期每千米的平均造价为7.8亿元.(2)61×7.4×(1+20%)=541.68(亿元).答:还需投资541.68亿元.8.解:设甲、乙两地之间的距离是x千米.根据题意得:=+,解得x=252.答:甲、乙两地之间的距离是252千米.9.解:(1)(80﹣30)=50(元)(60﹣40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50﹣x)=2100,解得:x=10;乙种商品:50﹣10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小明这两天在该商场购买甲、乙两种商品一共13或14件.10.解:(1)甲班费用16×3+32×2.5=128(元),乙班费用48×2.5=120(元),128﹣120=8,答:乙班比甲班少付8元.(2)设甲班第一次购买苹果x千克,甲班第二次购买苹果(48﹣x)千克,由题意:48﹣x>x,即x<24,①当48﹣x≤30,即18≤x<24时,3x+3(48﹣x)=126,不合题意;②当x<18时,3x+2.5(48﹣x)=126,解得x=12,答:甲班第一次购买苹果12千克,甲班第二次购买苹果36千克.(3)设丙班第一次购买苹果x千克,丙班第二次购买苹果(90﹣x)千克,①当x≤30时,90﹣x≥60,3x+2(90﹣x)=196,x=16,②当30<x<40时,90﹣x>50,2.5x+2(90﹣x)=196,x=32,③当40≤x<50时,40<90﹣x≤50,2.5x+2.5(90﹣x)=196,不合题意,④当50≤x≤60时,30≤90﹣x≤40,2x+2.5(90﹣x)=196,x=58,⑤当x>60时,90﹣x<30,2x+3(90﹣x)=196,x=74,综上所述,丙班第一次、第二次分别购买苹果16千克和74千克;32千克和58千克;58千克和32千克;74千克和16千克;。

最新浙教版七年级上册第五章一元一次方程 知识点总结及配套练习

最新浙教版七年级上册第五章一元一次方程 知识点总结及配套练习

一元一次方程(一)一、必备知识:1.方程的两边都是____________,只含有____________未知数,并且未知数的指数是____________,这样的方程叫做一元一次方程.2.等式的性质1:等式的两边都加上(或都减去)____________数或式,所得结果仍是等式.等式性质2:等式的两边都乘或除以同一个____________(除数不能为0),所得结果仍是等式.3.解方程常见的变形有____________,____________,____________,____________,____________.【答案】1.整式 一个 一次 2.同一个 数或式 3.去分母 去括号 移项 合并同类项 两边同除以未知数的系数 二、防范点:1.利用等式性质2时,注意除数或式不能为0. 2.移项要注意变位置,变符号两个变.3.去分母时不要漏乘没分母的单项式,去掉分母后,分子部分为一个整体,要添加括号. 4.用分配律去括号时注意不要漏项,并注意每一项的符号变化. 考点精练一元一次方程的概念例1 (1)下列方程中,是一元一次方程的是( )A .x 2-4x =3B .x +2y =1C .x -1=0D .x -1=1x(2)关于x 的方程(m -1)x n -2-3=0是一元一次方程,则m ,n 应满足的条件为:m________,n________.【答案】(1)C (2)≠1 =3一元一次方程的解例2 (1)请写出一个未知数x 的系数为2,且解为x =-3的一元一次方程________. (2)若x =-2是关于x 的方程2x +3m +5=0的解,则m 的值为________.(3)已知关于x 的方程9x -3=kx +14有整数解,那么满足条件的所有整数k =__________.【答案】(1)答案不唯一,如2x =-6 (2)-13(3)8,10,-8,26等式的基本性质例3 (1)如果a =b ,那么下列式子不一定成立的是( )A .a +c =b +cB .c -a =c -bC .ac =bcD .a c =b c(2)已知2x +y =0,且x≠0,则yx的值为( )A .-2B .-12 C .2 D .12(3)在括号内填写解方程中一些步骤的依据: 2-x 4=x3+1. 解:去分母,得:3(2-x)=4x +12( ), 去括号,得:6-3x =4x +12( ), 移项,得:-3x -4x =12-6( ), 合并同类项,得:-7x =6, 系数化为1,得:x =-67( ).【答案】(1)D (2)A (3)等式性质2 去括号法则或分配律 等式性质1 等式性质2解一元一次方程例4 (1)解方程2x 0.3+0.5-0.1x0.2=1时,把分母化为整数正确的是( )A .20x 3+5-x 2=10B .20x 3+5-x 2=1C .20x 3+0.5-0.1x 2=10 D .2x 3+5-x2=1(2)某同学在解关于y 的方程2y -13=y +a2-1去分母时,方程右边的-1没有乘6,结果求得方程的解为y =2,试求a 的值及此方程的解.(3)解方程:①5(x +8)-5=6(2x -7);②3y -14-1=5y -76; ③0.1x -0.20.02-x +10.5=3.【答案】 (1)B (2)a =13,y =-3. (3)①x=11; ②y=-1; ③x=5.课后练习1.下列各项正确的是( )A .7x =4x -3移项得7x -4x =3B .由2x -13=1+x -32去分母得2(2x -1)=1+3(x -3) C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=1 D .由2(x +1)=x +7去括号、移项、合并同类项得x =52.关于x 的方程|m -1|x|n -2|-13=0是一元一次方程,则m ,n 应满足的条件为:m____________,n____________.3.定义新运算a※b 满足:(a +b)※c=a※c+b ,a ※(b +c)=a※b-c ,并规定:1※1=5,则关于x 的方程(1+4x)※1+1※(1+2x)=12的解是x =____________.4.当x 取何值时,代数式3x +26和x -2是互为相反数?5.解方程:(1)1-3x -52=1+5x 3;(2)32[23(x4-1)-2]-x =2.【答案】1.D 2.≠1 =3或1 3.14.由题意得3x +26+x -2=0,解方程得x =109.5.(1)x =1 (2)x =-8一元一次方程(二)一、必备知识:1.问题解决的基本步骤:____________,____________,____________,____________. 2.行程问题:速度×时间=路程,速度和×时间=总路程,速度差×时间=追及的路程. 3.工程问题:工作效率×工作时间=工作总量,甲、乙合作的工作效率=甲的工作效率+乙的工作效率.4.利率问题:本金×利率×存期=利息,利息×税率=利息税,本金+利息-利息税=实得本利和.【答案】1.理解问题 制订计划 执行计划 回顾 二、防范点:1.各类问题中的数量关系要理清.如行程问题中速度、时间、路程之间的关系,工程问题中工作效率、工作时间、工作总量之间的关系等.利用常见的相等关系列方程.2.调配问题中要分清是内部调配还是外部调配,配套问题中注意两个量之间的比例关系不要搞错.3.题意比较复杂时要用线段图示、列表等方法分析题意. 考点精练一元一次方程的应用例1 (1)小华带x 元钱去买甜点,若全买红豆汤圆,刚好可买30杯;若全买豆花,刚好可买40杯.已知豆花每杯比红豆汤圆便宜1元,依据题意可列出的方程是________________.(2)如图,要求以下的”□”内填入同一个数字.求这个数字是________.9□1× 3 □763(3)要锻造一个边长为50mm 的立方体零件毛坯,需要取直径为100mm 的圆钢长为________mm (结果保留π).(4)小华的爸爸三年前为小华存了一份5000元的教育储蓄,今年到期时的本息和是5405元,请你帮小华算一算,这种储蓄的年利率是________.(5)植树节期间,我市某初中学校组织植树活动,已知在甲处植树的有13人,在乙处植树的有17人.现调15人去支援,使在甲处植树的人数是乙处植树人数的12,问应调往甲、乙两处各多少人?(6)甲、乙两人分别从A 、B 两地出发,甲骑摩托车,乙骑自行车,沿同一条路线相向匀速行驶.出发后经3小时两人相遇.已知在相遇时乙比甲少行驶了90千米,相遇后经1小时甲到达B 地.问甲、乙行驶的速度分别是多少?【答案】(1)x 30=x 40+1 (2)2 (3)50π(4)2.7% (5)调往甲处2人,调往乙处13人. (6)甲的速度是45千米/小时,乙的速度是15千米/小时.利用一元一次方程解决方案决策问题例2 一家电信公司推出两种移动电话计费方法:计费方法A 是每月收月租费58元,通话时间不超过160分钟的部分免费,超过160分钟的按每分钟0.25元加收通话费;计费方法B 是每月收取月租费88元,通话时间不超过250分钟的部分免费,超过250分钟的按每分钟0.20元收通话费.现在设通话时间是x 分钟.(1)当通话时间超过160分钟,请用含x 的代数式表示计费方法A 的通话费用; (2)当通话时间超过250分钟,请用含x 的代数式表示计费方法B 的通话费用; (3)用计费方法A 的用户一个月累计通话360分钟所需的话费,若改用计费方法B ,则可通话多少分钟?(4)请你分析,当通话时间超过多少分钟时采用计费方法B 合算?【答案】(1)A:58+0.25(x-160)=(0.25x+18)元;(2)B:88+0.2(x-250)=(0.2x+38)元;(3)由题意得:0.2x+38=0.25×360+18,解得:x=350.(4)由于超过一定时间后,B的计费方式每分钟费用小于A的计费方式,因此时间越多,B 的计费方式越合算.当用x分钟时,两种计费方式所需费用一样,得0.2x+38=0.25x+18,解得:x=400.答:当通话时间超过400分钟时,采用计费方法B合算.例3霞霞和瑶瑶两位学生在数学活动课中,把长为30cm,宽为10cm的长方形白纸条黏合起来.霞霞按图1所示方法黏合起来得到长方形ABCD,黏合部分的长度为a cm;瑶瑶按图2所示方法黏合起来得到长方形A1B1C1D1,黏合部分的长度为b cm.【图形理解】若霞霞和瑶瑶两位学生按各自要求分别黏合两张白纸条(如图3),则DC=____________cm,D1C1=____________cm(用含a或b的代数式表示);若霞霞和瑶瑶两位学生按各自要求分别黏合n张白纸条(如图1、2),则DC=____________cm(用含a和n的代数式表示),D1C1=____________cm(用含b和n的代数式表示);【问题解决】若a=b=6,霞霞用7张长为30cm,宽为10cm的长方形白纸条黏合成一个长方形ABCD,瑶瑶用n张长为30cm,宽为10cm的长方形白纸条黏合成一个长方形A1B1C1D1.若长方形ABCD的面积与长方形A1B1C1D1的面积相等,求n的值?【拓展应用】若a=6,b=4,长为30cm,宽为10cm的长方形白纸条共有30张.问如何分配30张长方形白纸条,才能使霞霞和瑶瑶按各自要求黏合起来的长方形面积相等(要求30张长方形白纸条全部用完)?若能,请求出霞霞和瑶瑶分别分配到几张长方形白纸条;若不能,请说明理由.【答案】图形理解:(60-a) (20-b) [30n-a(n-1)] [10n-b(n-1)]问题解决:由题知:10×[30×7-6×(7-1)]=30×[10n-6×(n-1)],∴1560=120n,∴n=13.答:n的值为13.拓展应用:设长为30cm,宽为10cm的长方形白纸条分配给霞霞x张,则瑶瑶(30-x)张.∴10×[30x-6×(x-1)]=30×[10×(30-x)-4×(30-x-1)],∴24x+6=3(300-10x -120+4x+4),∴x=13,∴30-x=30-13=17(张).答:长为30cm,宽为10cm的长方形白纸条分配给霞霞13张,瑶瑶17张.课后练习1.甲、乙两人分别从相距162千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,相向匀速行驶.已知乙的速度是甲的3倍.经过2小时后,乙的摩托车发生故障,停在路边等待甲,又经过了1小时两人相遇,问甲、乙两人的速度各是多少?2.民航规定:旅客可以免费携带a kg物品,若超过a kg,则要收取一定的费用,当携带物品的质量为b kg(b>a)时,所交费用为Q=10b-200(单位:元).(1)若小明携带了35kg物品,质量大于a kg,则他应该交多少费用?(2)若小王交了100元费用,则他携带了多少千克的物品?(3)若收费标准以超重部分的质量m(kg)计算,在保证所交费用Q不变的情况下,试用m 表示Q.3.某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接销售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说明理由.【答案】1.设甲的速度是x千米/小时,则乙的速度是3x千米/小时,由题意可得:2(x+3x)+x =162,解得x=18,∴3x=54千米/小时.答:甲的速度是18千米/小时,乙的速度是54千米/小时.2.(1)Q=35×10-200=150元.(2)设小王携带了x kg物品,由10x-200=100,得x=30.(3)由10a-200=0,得a=20,则m=b-a=b-20,即b=m+20,Q=10b-200=10m元.3.方案一:4000×140=560000(元);方案二:15×6×7000+(140-15×6)×1000=680000(元);方案三:设精加工x吨,则x6+140-x16=15,解得x=60,7000×60+4000×(140-60)=740000(元).答:选择第三种方案.。

一元一次方程的解法-七年级数学上册课件(浙教版)

一元一次方程的解法-七年级数学上册课件(浙教版)
x 1
2 x
(1)
1 2

2
4
解:去分母(方程两边乘4),得
2(x+1) -4 = 8+ (2 -x).
去括号,得 2x+2 -4 = 8+2 -x.
移项,得
2x+x = 8+2 -2+4.
合并同类项,得 3x = 12.
系数化为1,得
x = 4.
x 1
2x 1
(2)3 x
3
1.已知x=3是关于x的方程2x+3a=3的解,则a的值是( )
A.1 B.-1 C.2 D.-2
【答案】B
【分析】把x=3代入方程2x+3a=3得出6+3a=3,求出方程的解即可.
【详解】解:把x=3代入方程2x+3a=3得:6+3a=3,
解得a=-1,
故选:B.

2.已知关于x的一元一次方程

(1) 3 x 7 32 2 x ;
解:移项,得
3x 2x 32 7.
合并同类项 ,得
5x 25.
系数化为1,得
x 5.
移项时需要移哪些项?为什么?
解:移项,得
3
x x 1 3.
2
合并同类项,得
1
x 4.
2
系数化为1,得
x 8.
解一元一次方程ax+b=cx+d(a,b,c,d均为常数,且a≠c)的一般
移项的定义
一般地,把方程中的某些项改变符号后,从方程的一边移到另一
边,这种变形叫做移项.
移项的依据及注意事项
移项实际上是利用等式的性质1.

5.3 一元一次方程和它的解七年级上册数学浙教版

5.3 一元一次方程和它的解七年级上册数学浙教版

1

①未知数不出现在分母上,如 等不是整式;②未知数不出现在根
号内,如 − 1等不是整式
这样的方程叫作一元一次方程。
2.一元一次方程必备的三个要素:①只含有一个未知数;②未知数
的次数都是一次;③两边都是整式。三者缺一不可。
典例1 已知下列方程:① − 2 =
2
;②

0.3 = 1;③

2
(1)4 = 8 − 12;
(2)0.4 − 0.2 = 1.6 − 0.5。
(2)方程的两边都加上0.5,得
0.4 − 0.2 + 0.5 = 1.6 − 0.5 + 0.5。
合并同类项,得0.9 − 0.2 = 1.6。
两边都加上0.2,得0.9 = 1.8。
两边都除以0.9,得 = 2。
典例3 利用等式的性质求下列方程的解。
(1)4 = 8 − 12;
(2)0.4 − 0.2 = 1.6 − 0.5。
解:(1)方程的两边都减去8,得4 − 8 = 8 − 12 − 8。
合并同类项,得−4 = −12。
两边都除以−4,得 = 3。
典例3 利用等式的性质求下列方程的解。
联系
方程的解
解方程
是一个具体的数。
求方程的解的过程。
方程的解是通过解方程求得的。
典例2 判断下列的值是不是方程2 − 3 = 5( − 3)的解。
(1) = 6; (2) = 4。
解:(1)当 = 6时,左边= 2 × 6 − 3 = 9,右边= 5 × (6 − 3)
= 15,左边≠右边,所以 = 6不是方程2 − 3 = 5( − 3)的解。
(2)当 = 4时,左边= 2 × 4 − 3 = 5,右边= 5 × (4 − 3) = 5,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新浙教版七年级上册数学第五章《一元一次方程》知识点及典型例题关于一元一次方程概念的拓展教材中的概念:方程两边都是整式,只含有一个未知数,未知数的指数是一次的方程是一元一次方程,那么 x+2=x+3是一元一次方程吗?从概念上来看,是一元一次方程,但稍作变形,就是2=3,是不是觉得很可笑?因此,一元一次方程的概念应该是:方程两边都是整式,只含有一个未知数,未知数的指数是一次,并且能变形为ax=b (a ≠0,a 、b 均为常数)的方程是一元一次方程,也就是说,一元一次方程一定只有一个解。

关于用方程解应用题的秘诀:相关条件设未知数,剩余条件列方程将考点与相应习题联系起来考点一、判断方程是不是一元一次方程及一元一次方程概念的简单应用 1、下列等式中是一元一次方程的是( )A .3x=y-1B .2(1)21x x -=+C .3(x-1)= -2x-3D .3x 2-2=3E .11x x=+ 2、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个 3、如果06312=+--a x是一元一次方程,那么=a ,方程的解为 。

(特别注意)考点二、关于在解方程过程中的某些变形问题,只能以选择题的形式出现 1、已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3532+=b a 2、解方程2631xx =+-,去分母,得( ) (A )133x x --= (B )633x x --= (C )633x x -+= (D )133x x -+=3、下列方程变形中,正确的是( )(A )方程1223+=-x x ,移项,得;2123+-=-x x (B )方程()1523--=-x x ,去括号,得;1523--=-x x (C )方程2332=t ,未知数系数化为1,得;1=t (D )方程110.20.5x x --=化成101010125x x --= 考点三、解一元一次方程(1)x x 3.15.67.05.0-=-; (2)错误!未找到引用源。

;(3)1676352212--=+--x x x ; (4)4.06.0-x 错误!未找到引用源。

3.011.0+x .考点四、列一元一次方程,解与实际生活无关的题目(可以是选择题、填空题、解答题)1、方程432-=+x m x 与方程6)16(21-=-x 的解相同,则m 的值为__________. 2、已知5x+3=8x -3和65a x +=37这两个方程的解是互为相反数,则a= . 3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、若错误!未找到引用源。

与错误!未找到引用源。

互为相反数,则错误!未找到引用源。

的值是 .5、一个两位数,个位上的数字是十位上的数字的3倍,它们的和是12,那么这个两位数是 .6、写出一个以x=-21为解的一元一次方程 7、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:11222y y -=- 怎么办呢?小明想了一想,便翻看书后答案,此方程的解是53y =-,于是很快就补好了这个常数,你能补出这个常数吗?它应是( ) A.1 B.2 C.3 D.48、已知21=x 是方程32142m x m x -=--的根,求代数式()⎪⎭⎫ ⎝⎛---+-121824412m m m 的值.★★★已知关于x 的一元一次方程b x x +=+2301121的解为2=x ,那么关于y 的一元一次方程b y y ++=++)()(123101121的解为 .考点五、列一元一次方程解与实际生活有关的题目(可以是选择题、填空题、解答题) 1、日历上竖列相邻的三个数,它们的和是39,则第一个数是( )A.6B.12C.13D.142、有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车;若每辆客车乘43人,则还有1人不能上车.有下列四个等式:①4010431m m +=-;②1014043n n ++=;③1014043n n --=;④4010431m m +=+.其中正确的是( )A.①②B.②④C.②③D.③④ 3、某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是 ( ) A.不赚不亏 B.赚8元 C.亏8元 D. 赚15元4、一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( ) A.40% B.20% C.25% D.15%5、小强比他叔叔小30岁,而两年前,小强的年龄是他叔叔的41,则小强的叔叔今年____________岁. 6、一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了2天未完成,剩下的工作量由乙完成,还需的天数为 ( )(A).1 天 (B)2 天 (C)3 天 (D)4天 7、小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元8、银行教育储蓄的年利率如右下表:小明现正读七年级,今年7月他父母为他在银行存款30000元,以供3年后上高中使用. 要使3年后的收益最大,则小明的父母应该采用( ) (A )直接存一个3年期;(B )先存一个1年期的,1年后将利息和自动转存一个2年期; (C )先存一个1年期的,1年后将利息和自动转存两个1年期; (D )先存一个2年期的,2年后将利息和自动转存一个1年期.9、某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是 元.10、某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是___________。

11、国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是 元.12、(和、差、倍、分问题)1、“希望工程”委员会将2000元奖金发给全校25名三好学生,其中市级三好学生每人得奖金200元,校级三好学生每人得奖金50元,问全校市级三好学生、校级三好学生各有多少人?13、(等积变形问题)要锻造一个直径为8cm ,高为4cm 的圆柱形毛坯,应截取直径为4cm 的圆钢多少cm 。

一年期 二年期 三年期 2.252.432.7014、(调配问题)某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?15、(行程问题)一队学生去学校外进行军事训练,他们以每小时5千米的速度行进了18分钟,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以每小时14千米的速度按原路追上去,通讯员需要多少时间可以追上学生队伍?某桥长1000米,一列火车从桥上通过,测得火车从开始上桥到过完桥共用60秒。

而整列火车完全在桥上的时间是40秒,求火车的速度和长度。

16、(工程问题)一项工程,甲、单独做需20天完成,乙单独做需30天完成,如果先由甲单独做8天,再由乙单独做3天,剩下的由甲,乙两人合作还需要几天完成?17、(利润率问题)某商品按定价销售,每个可获利45元,现在按定价的8.5折出售8个所能获得的利润与按定价每个减价35元出售12个所获得利润一样。

问这种商品每个的进价、定价各是多少元?18、(银行储蓄问题)小丽的爸爸前年存了年利率为2.25%的二年期定储蓄,今年到期后,扣除利息的20%作为利息税,所得利息正好为小丽买了一只价值36元的计算器,问小丽爸爸前年存了多少元钱?19、(数字问题)有一个三位数,十位数字是个位数字2倍,百位数字比个位数字大3,如果把十位上的数字与百位上的数字对调,新的三位数与原来三位数和为1246,求原来的三位数。

20、(年龄问题)其基本数量关系:大小两个年龄差不会变。

现在儿子的年龄是8岁,父亲的年龄是儿子年龄的4倍,多少年后父亲的年龄是儿子年龄的3倍?。

21、(比例类应用题)甲、乙二人去商店买东西,他们所带钱数的比是7:6,甲用掉50元,乙用掉60元,则二人余下的钱数比为3:2,求二人余下的钱数分别是多少?22、(重叠类数学问题)七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?巩 固 练 习一、选择题(每小题3分,共30分) 1.下列方程是一元一次方程的是 ( ) A.x+2y=5 B.11-x =2 C.x 2=8x -3 D.y=1 2.下列方程中,解是x=2的是 ( ) A.2x -2=0 B.21x=4 C.4x=2 D.21+x -1=213.将方程5x -1=4x 变形为5x -4x=1,这个过程利用的性质是 ( ) A.等式性质1 B.等式性质2 C.移项 D.以上说法都不对4.方程3-21-x =1变形如下,正确的是 ( ) A.6-x+1=2 B.3-x+1=2 C.6-x+1=1 D.6-x -1=2 5.如果x=-8是方程3x+8=4x-a 的解,则a 的值为 ( ) A.-14 B.14 C.30 D.-306.某工作,甲单独完成需4天,乙单独完成需8天,现甲先工作1天后和乙共同完成余下的工作,甲一共做了 ( )A.2天B.3天C.4天D.5天7.小明存入100元人民币,存期一年,年利率为2%,到期应缴纳所获利息的20%的利息税,那么小明存款到期交利息税后共得款 ( )A.106元B.102元C.111.6元D.101.6元8.某种商品的标价为132元.若以标价的9折出售,仍可获利10%,则该商品的进价为 ( ) A.105元 B.100元 C.108元 D.118元9.某工地调来72人挖土和运土,已知3人挖的±1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工,解决此问题可设x 人挖土,其他人运土,列方程(1) x x 372-=3;(2)72-x=3x ;(3)x x-72=3;(4)x+3x=72,上述所列方程正确的是 ( )A.1个B.2个C.3个D.4个10.某轮船在两个码头之间航行,顺水航行需4h ,逆水航行需6h ,水流速度是2km /h ,求两个码头之间的距离,我们可以设两个码头之间的距离为xkm ,得到方程 ( ) A.42-x =62+x B.4x -2=6x +2 C.4x -6x =2 D.642+x =4x-2 二、填空题(每小题4分,共24分)11.若2的2倍与3的差等于2的一半,则可列方程为 .12.写出一个以x=-21为解的一元一次方程 13.已知5x+3=8x -3和65a x +=37这两个方程的解是互为相反数,则a= .14.小强的速度为5千米/时,小刚的速度为4千米/时.两人同时出发,相向而行.经过x 小时相遇,则两地相距 千米.15.某酒店为招揽生意,对消费者实施如下优惠:凡订餐5桌以上,多于5桌的部分按定价的7折收费.小叶集团公司组织工会活动,预定了10桌,缴纳现金2550元,那么每桌定价是 元.16.国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:(1)稿费低于800元的不纳税;(2)稿费高于800元,又不高于4000元,应纳超过800元的那一部分稿费的14%的税;(3)稿费高于4000元,应缴纳全部稿费的11%的税.某作家缴纳了280元税,那么他获得的稿费是 元. 三、解答题(共66分) 17.(6分)解下列方程:(1)4x -2(x -3)=x ; (2)x -6231+=-x x -1.18.(6分)当x 取何值时,代数式623+x 和x -2是互为相反数?19.(6分)若代数式3a 3b 4-5n“与-6a6-(m+1)b m -1是同类项,求m 2-5mn 的值.20.(8分)如图,小明将一个正方形纸片剪去一个宽为4厘米的长条后,再从剩下的长方形纸片上剪去一个宽为5厘米的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?21.(8分)一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,则两队合作,几个月可以完工?22.(10分)某市按以下规定收取每月水费:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过部分每立方米按2元收费.如果某居民在某月所交水费的平均水价为每立方米1.5元,那么这个月他共用了多少立方米水?23.(10分)小强、小芳、小亮在郊游,看到远处一列火车匀速通过一个隧道后,产生了以下对话.各位同学,请根据他们的对话求出这列火车的长.24.(12分)温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台.现在决定给武汉8台,南昌6台.每台机器的运费如下表.设杭州运往南昌的机器为x台.(1)用x的代数式来表示总运费(单位:百元);(2)若总运费为8400元,则杭州运往南昌的机器应为多少台?(3)试问有无可能使总运费是7400元?若有可能,请写出相应的调运方案;若无可能,请说明理由.春田教育 11 参考答案:1.D2.D3.A4.A5.B6.B7.D8.C9.B 10.B11.2x -3=21x12.略13.2414.9x15.30016.280017.(1)x=-6 (2)x=-7218.解:由题意,得623+x +x -2=0 解得x=91019.解:由题意,得{1543)1(6-=-=+-m n m解得:m=2,n=53. 把m=2,n=53代入m 2-5mn 得 原式=22-5×2×53=-2.20.解:设了正方形边长为x 厘米,由题意,得4x=5(x -4) 解得x=20所以4×20=80答:每一个长条的面积为80平方厘米.21.解:设两队合作2个月完成,由题意,得x=1解得x=5答:两队合作,5个月可以完工.22.解:(1)∵1.5>1.2 ∴用水量超过20立方米. 设超过了x 立方米 1.2×20+2x=1.5(20+x) 解得x=12. ∴1.2×10+20=32. 答:这个月他共用了32立方米水.23.解:设火车的长为x 米,由题意,得30500x+=20500x- 解得x=100.答:这列火车长100米.24.解:(1)总运费为4(6-x)+8.(4+x)+3x+5(4-x)=2x+76.(2)2x+76=84. x=4.答:运往南昌的机器应为4台.(3)若2x+76=74,解得x=-1.∵x 不能为负数,∴不存在. 答:略.。

相关文档
最新文档