马氏体转变特点
马氏体转变的特点
中内部相组成发生了变化,从而引起了钢的性能的变测得钢中马氏体是碳溶于α体,此,曾一度认为和固溶体四十年代前后,在亚点阵的概念发现,碳原子处于三种分布位置时,都能形成由碳原子构成的八面体,这种可能出现的原子阵列,称为点阵。
点阵,结果使的α度,称为新形成马氏体的正方度远高于公式给出的正方度,①切变共格和表面浮突现象变而使点阵发生改组,且一边凹陷,一边凸起,带动界面附近未转变的奥氏体也随之发生弹塑性马氏体转变切变示意图马氏体转变只有点阵改组而无成份变化,转变时原子做有规律的整体迁移,每个原子移动的距离不超过一个原子间距,且原子之间的相对位置不发生变化。
1、(有三种不同的取向,所以四种和{111}M但很快停止,不能进行到终了,需进一步降温。
始点种结构的过程。
①把面心立方点阵看做体心立方点阵,其轴比(为1.41长,使得轴比为①和马氏体板条具有平直界面,界面近似平行于奥氏体的面,所以一个奥氏体晶粒内可能形成四种马氏体板条束。
相同惯习面的马氏体板条平行排列构成马氏体板条群条间残余奥氏体薄膜的碳含量较高,在室温下很稳定,对钢的机械性能会产生显著影响。
亚结构:为与剧烈冷作硬化的光镜下片状马氏体是铁基合金中的另一种典型的马氏体组织,常见于淬火也称于氏体晶粒体的大小受到限制。
因此片状马氏体的大小不一,越是后形成向关系为中脊为高密度的相变孪晶区。
相变孪晶的存在是片状马氏体组织的重要特征。
孪晶间距大约为片的周围部分,存在高密度的位错(非孪晶区)。
1)蝶状马氏体板条状马氏体和片状马氏体的形成温度范围之间的温度区域这种马氏体的立体形态为Fe-18Ni-0.7Cr-0.5C蝶状马氏体的立体形状1)化学成分部亚结构的主要因素,其中尤以碳含量最为重要。
在随马氏体的形成温度降低马氏体;状。
马氏体转变
马氏体相变的
分子动力学模拟
200,000 Zr atoms 1024-node Intel Paragon XP/S-150
六. 不同材料中的马氏体转变 1. 有色合金 许多有色合金也存在马氏体转变。 马氏体外形基本上仍属条片状,金相形貌与铁基 马氏体有区别。 马氏体亚结构多为层错和孪晶,极少有位错型。
' '
薄板状马氏体
薄片状马氏体
三. 马氏体转变的热力学 1. 相变驱动力
G
T0为相同成分的马氏 体和奥氏体两相热力学 平衡温度,此时
ΔGγ→α′
ΔGγ→α’ = 0
ΔGγ→α’ 称为马氏体相 变驱动力。 Ms T0 Gα′ Gγ T
自由焓——温度曲线
2. 转变温度Ms和Mf 相变驱动力用来提供切变能 量、亚结构畸变能、膨胀应变 能、共格应变能、界面能等, 所以要有足够大相变驱动力。 Ms为马氏体转变起始温度, 是奥氏体和马氏体两相自由能 之差达到相变所需的最小驱动 力(临界驱动力)时的温度。 Mf为马氏体转变终了温度。 T
(3) 其它形貌马氏体 在高碳钢,高镍Fe-Ni-C合金中, 或在应力诱发作用下,会形成蝶 状马氏体。 呈V形柱状,成片出现。 两翼的惯习面为{225}γ,夹角 为136°,结合面为{100}γ。 位向关系为K-S关系。
蝶状马氏体 {100}γ
晶内亚结构为位错,无孪晶。
136°
蝶状马氏体示意图
(155)
(321) 和 (332) 之间
{111} {133} {8,8,11}β {344}β {344}β {100}β
2. 无机材料 1963年Wolten根据ZrO2中正方相t→单斜相m的转 变具有变温、无扩散及热滞的特征,将这种转变称 为马氏体转变,ZrO2中的t→m相变还表现出表面浮 凸及相变可逆的特点。 在无机和有机化合物、矿物质、陶瓷以及水泥的 一些晶态化合物中也有切变型转变。如压电材料 PbTiO3、BaTiO3、及K(Ta、Nb)O3等钙钛氧化物高 温顺电性立方相→低温铁电性正方相的转变;高温 超导体YBaCu2O7-x高温顺电相→超导立方相的转变 均为马氏体转变。
第五节马氏体转变
板条状M----低碳{111}、中碳{225} 片状M-------中高碳{225}、高碳{259}
惯习面与M形状的关系
4.转变的非恒温性和不完全性
Ms点以下形成M----在连续冷却条件下
未获100%M,有残余奥氏体存在—AR 冷处理—针对高碳钢、高碳合金钢和
某些中碳合金钢的Mf点低于室温,将 此类钢继续深冷至零下温度的操作。
重点: 1.马氏体转变的主要特点; 2.马氏体的组织形态; 3.马氏体的热力学分析; 4.马氏体的力学性能 难点: 1.马氏体转变的特点; 2.影响马氏体转变的因素。
§5-1马氏体相变的主要特征
一、马氏体的晶体结构
AM 无扩散型相变 只有点阵重构而无成分变化
C在-Fe中的过饱和固溶体
M或´
1.晶体结构----体心正方点阵
2.奥氏体的层错能
层错能低—利滑移—产生位错—板条M
层错能高—不利滑移—产生孪晶—片M
证明:①18-8型钢不锈钢,其A层错能较低,在液氮中淬火—板条M
②Fe-33Ni合金,层错能高,淬火后其孪晶区扩大
3.A和M的强度
Ms点处 s206MPa 低—{111} 板条M s206MPa {259} 片M
2.马氏体的反常正方度----M正方度与碳含量的关系不符合上式
1)无序分布,c/a
反常低正方度 碳原子在M中有序化转变
2)c原子几乎都处于同一组空隙位置(完全有序化):
T回升至室温无序转变c/a
二、马氏体转变的特点 1.切变共格和表面浮凸现象
①与M相交的表面,一边凹陷,一边突起,牵动相邻A也呈倾突现象; ②刻划一条直线,马氏体形成后变成一条折线 说明: ①马氏体转变以切变的方式实现; ②M和A的界面为共格界面
第五章 马氏体转变
第五章马氏体转变马氏体转变——当采用很快的冷却速度时(如水冷),奥氏体迅速过冷至不能进行扩散分解的低温M S点以下,此时得到的组织称为马氏体。
在转变过程中,铁原子和碳原子均不能扩散,因此其是一种非扩散型相变。
§5.1 马氏体转变的主要特征§5.2 钢中马氏体转变的晶体学§5.3 马氏体的组织形态及影响因素 §5.4 马氏体转变的热力学§5.5 马氏体转变动力学§5.6 马氏体的力学性能§5.1 马氏体转变的主要特征一、马氏体转变的非恒温性二、马氏体转变的共格性和表面浮凸现象三、马氏体转变的无扩散性四、具有特定的位向关系和惯习面五、马氏体转变的可逆性六、马氏体的亚结构一、马氏体转变的非恒温性马氏体转变开始点(M s)——必须将母相奥氏体以大于临界冷却速度的冷速过冷至某一温度以下才能发生马氏体转变,该转变温度即为M s。
马氏体转变终了点(M f)——当冷却至M s以下某一温度时,马氏体转变便不再继续进行,这个温度即为M f。
奥氏体被过冷至Ms点以下任一温度时,不需经过孕育,转变立即开始,且以极大速度进行,但转变很快停住,不能进行到终了。
为使转变能继续进行,必须降低温度,即马氏体转变是在不断降温的马氏体转变量是温度的函数,而与等温时间无关。
图5-2 马氏体转变量与温度的关系马氏体转变的非恒氏体二、马氏体转变的共格性和表面浮凸现象图5-3 钢因马氏体转变而产生的表面浮凸。
图5-4 马氏体浮凸示意图图5-5 马氏体和奥氏体切变共格交界面示意图马氏体与奥氏体之间界面上的原子既属于马氏体,又属于奥氏体,是共有的;并且整个相界面是互相牵制的,这种界面称之为“切变共格”界面。
三、马氏体转变的无扩散性马氏体转变的无扩散性:马氏体转变时只有点阵的改组而无成分的改变。
马氏体的成分与原奥氏体的成分完全一致,且碳原子在马氏体与奥氏体中相对于铁原子保持不变的间隙位置。
钢的热处理-马氏体转变
自由能
M
A F
T4 T1 T3 T T2
T0 温度
合金元素对Ms点的影响原因分 析
2.其它因素对Ms点的影响 (1)奥氏体晶粒大小的影响
一般情况是,增大奥氏体的晶粒尺寸会 使Ms点升高,反之使其降低。
2.奥氏体与马氏体的强度
实验发现,不论奥氏体中加入何种元素或 其Ms点如何变化,凡是在Ms点温度,奥氏 体的屈服强度极限小于某一极限值(约 2条1马0M氏P体a)或时{2,25就}γ片形状成马惯氏习体面;为当{1奥11氏}γ的体板的 屈服强度极限大于该极限值时,则形成惯 习面为 {259}γ片状马氏体;当相变过程中 在奥氏体与马氏体内均发生滑移变形时, 形成{111}γ马氏体;当在奥氏体中产生滑移 而在马氏体中发生孪生时,形成{225}γ 马 氏体;只在马氏体中发生孪生时才形成 {259}γ 马氏体。
这种因形变而促生的马氏体又称为应力诱发 马氏体,或加工诱发马氏体。
Md点:塑性变形能促生马氏体的最高温度,高于Md 点,则在变形温度下只能使奥氏体发生变形,不 形成马氏体。
注意: Md点以下的塑性变形对随后冷却时发生的马 氏体转变有抑制作用。
2. Md点以上塑性变形的影响
(1)对具有变温型马氏体转变的钢,奥氏体的预 先变形会降低Ms点,并减少冷却时产生的马氏体 量。变形温度越高,此作用越大。但总体来说, 变形对Ms点和马氏体量的影响并不十分明显。
二、马氏体的等温形成
具有等温马氏体转变方式的合金(尤其 是工业用钢)为数不多。
首先在Fe-Ni(22.5~26%)-Mn(2~4%)发现 马氏体的等温转变现象。
热处理原理之马氏体转变
马氏体转变过程中,存在熵变,熵变与热力学第二定律有关。
马氏体转变的相变驱动力与热力学关系
温度
温度是影响马氏体转变的重要因素之一 ,温度的升高或降低会影响马氏体的形 成和转变。
VS
应力
应力也是影响马氏体转变的因素之一,应 力可以促进或抑制马氏体的形成和转变。
马氏体转变过程中的热效应与热力学关系
马氏体转变的种类与形态
板条状马氏体
01
02
03
定义
板条状马氏体是一种具有 板条状结构的马氏体,通 常在低合金钢和不锈钢中 形成。
形态
板条状马氏体由许多平行 排列的板条组成,每个板 条内部具有单一的马氏体 相。
特点
板条状马氏体具有较高的 强度和硬度,同时具有良 好的韧性。
片状马氏体
定义
片状马氏体是一种具有片 状结构的马氏体,通常在 高速钢和高温合金中形成 。
这种转变主要在钢、钛、锆等金属及 其合金中发生,常温下不发生马氏体 转变。
马氏体转变的特点
01
马氏体转变具有明显的滞后效应,转变速度与温度 和时间有关。
02
转变过程中伴随着体积的收缩或膨胀,并伴随着能 量的吸收或释放。
03
马氏体转变过程中晶体结构发生改变,但化学成分 基本保持不变。
马氏体转变的应用
06
相关文献与进一步阅读建议
主要参考文献列表
01
张玉庭. (2004). 热处理工艺学. 科学出版社.
02
王晓军, 王心悦. (2018). 材料热处理技术原理与应用. 机械 工业出版社.
03
周志敏, 纪松. (2019). 热处理实用技术与应用实例. 化学工 业出版社.
相关书籍推荐
马氏体转变的基本特点
最终热处理: 为满足零件最终使 淬火、回火 用性能而进行的热 表面热处理 处理。 化学热处理
4、热处理的工艺要素:
温度、时间
5、热处理工艺曲线:
加热 保温 冷却
时间
温度
第一节、钢在加热时的转变
钢的临界点:
平衡临界点: A1、 A3、 Acm
加热临界点:
Ac1、Ac3、Accm
温度
Ac3 A3 Ar3
15%NaCl水溶液冷却
57~62
由此可见:
冷却条件不同,钢的性能不同。
*生产中常用冷却方式有 等温冷却和连续冷却两种。
A1
等温冷却
连续冷却
时间
(一)过冷A的等温转变
什么叫过冷A?
A在A1温度以上是稳定相,冷却至A1温 度以下就成了不稳定相,必然要发生转变。
但A并不是一冷却至A1温度以下就发生 转变,需停留一定时间(孕育)才能发生 转变。
但是,A连续冷却转变图测定较困难。生产中 常借用同种钢的A等温转变图分析过冷A连续冷 却转变产物的组织与性能。
下面以共析钢为例,用A 等温转变图来分析过冷A连 续冷却转变产物的组织与性
能:
A1
A
P
A’
T
S V1(P)
V2(S)
B
230
MS
V4(M+A’)
V3(M+T)
-50 Mf
时间
共析钢过冷A连续冷却转变产物的组织与性能
成分:含碳量较高,主要存在于高碳钢 的淬火组织中,故又称为高碳M。
性能:具有高的硬度、强度,但塑性与 韧性差,脆性较大。
基本相同,但有区别。因此,要研究A在 连续冷却条件下的转变规律,有必要引入A 连续冷却转变图。
马氏体转变
第一节 马氏体转变的主要特征
何谓马氏体转变? 何谓马氏体转变? 徐祖耀简化定义:置换原子无扩散切变(原子沿相界面作协作运动)、 徐祖耀简化定义:置换原子无扩散切变(原子沿相界面作协作运动)、 使其形状改变的转变。晶体通过切变进行的非扩散性相变,有如下特点: 使其形状改变的转变。晶体通过切变进行的非扩散性相变,有如下特点: 一、切变共格性和表面浮凸现 象 M转变时,预先磨光的试 样表面出现倾动,形成表面浮 凸:直线ACB,切变以后变成 折线ACC′B′。在显微镜光线照 射下,浮凸两边呈现明显的山 阴和山阳, →M转变是通过A均匀切变进 行的。A中转变为M的部分发 生宏观切变而使点阵发生改组, 带动靠近界面的还未转变的A 也发生弹塑性变形。
Cu-14.2Al-4.2Ni合金的马氏体浮凸
二、无扩散性 M成分与A成分完全一致; M可在极低温(例如-196℃)进行,置换原子、间隙原 子都极难扩散,而M生长速度可达103m/s,音速,不可能依 靠扩散来进行。 低碳钢M转变中存在碳扩散,无扩散指置换原子无扩散。 间隙原子可能扩散,但不是M转变的主要过程和必要条件。
三、具有特定的位向关系和惯习面
均匀切变所得M与原A间存在严格晶体学位向关系:钢中常见 K-S(kurdjumov-Sachs)关系:{111}γ//{011}α′;<110>γ//<111>α′。 西山(Nishiyama)关系:{111}γ//{011}α′;<112>γ//<110>α′。 G-T(Greninger-Troiano)关系:与K-S关系接近,角度存在一定偏差: {111}γ//{011}α′差1o;<110>γ//<111>α′差2o。 M转变有惯习面:M转变以切变共格方式进行,惯习面就是相界面。 惯习面为不畸变平面,或称不变平面,转变中不发生畸变和转动。 这种在不变平面上所产生的均匀应变称为不变平面应变。 三种不变平面应变:底面为不变平面,简单胀缩、切变、胀缩+切变。 + M转变属第三种。
金属材料热处理原理 第五章 马氏体转变
二、马氏体转变的主要特点 1. 切变共格和表面浮凸现象
钢因马氏体转变而产生的表面浮凸
马氏体形成时引起的表面倾动
马氏体是以切变方式形成的,马氏体与奥氏体 之间界面上的原子既属于马氏体,又属于奥氏体, 是共有的;并且整个相界面是互相牵制的,这种界 面称之为“切变共格”界面。
马氏体和奥氏体切变共格交界面示意图
4. 马氏体转变是在一个温度范围内完成的
马氏体转变量与温度的关系
Ms—马氏体转变开始温度;Mf—马氏体转变终了点; A、B—残留奥氏体。
5. 马氏体转变的可逆性
在某些铁合金中,奥氏体冷却转 变为马氏体,重新加热时,已形成的 马氏体又可以逆马氏体转变为奥氏体, 这就是马氏体转变的可逆性。一般将 马氏体直接向奥氏体转变称为逆转变。 逆转变开始点用As表示,逆转变终了 点用Af表示。通常As温度比Ms温度高。
2. 马氏体转变的无扩散性
马氏体转变的无扩散性有以下实验证据:
(1) 碳钢中马氏体转变前后碳的浓度没有 变化,奥氏体和马氏体的成分一致,仅发生晶 格改组:
γ-Fe(C) → α-Fe(C)
面心立方 体心正方
(2) 马氏体转变可以在相当低的温度范围 内进行,并且转变速度极快。
3. 具有一定的位向关系和惯习面
西山关系示意图
③ G-T关系
{111}γ∥{110}α′ 差1°;<110>γ∥<111>α′ 差2°。
(2) 惯习面
马氏体转变时,新相总是在母相的某个晶面族上 形成,这种晶面称为惯习面。在相变过程中从宏观上 看,惯习面是不发生转动和不畸变的平面,用它在母 相中的晶面指数来表示。
钢中马氏体的惯习面随碳含量及形成温度不同而 异,常见的有三种:(1) 含碳量小于0.6%时,为{111}γ; (2) 含碳量在0.6%~1.4%之间时,为{225}γ;(3) 含碳 量高于1.4%时,为{259}γ。随马氏体形成温度下降, 惯习面有向高指数变化的趋势。
马氏体转变及其应用
马氏体转变及其应用钢经奥氏体化后快速冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变为马氏体转变。
马氏体转变是钢件热处理强化的主要手段。
因此,马氏体转变的理论研究与热处理生产实践有着十分密切的关系。
1 马氏体转变的特点1.1 马氏体相变是无扩散型相变因为相变前后化学成分不变,新相(马氏体)和母相(奥氏体)碳的质量分数相同,只是晶格结构由面心立方晶格转变成了体心立方晶格而且马氏体相变可以在-196℃—-296℃低温下进行,这样低的温度原子扩散极困难,所以相变不可能以扩散方式进行,因此马氏体相变过程中,原子有规则移动,原来相邻的原子相变以后仍然相邻,原子不发生扩散就可以发生马氏体相变。
1.2 切变共格和表面浮凸现象人们早就发现,在高碳钢样品中产生马氏体转变之后,在其磨光的表面上出现倾动,形成表面浮凸。
这个现象说明转变和母相的宏观切变有着密切关系。
马氏体形成是以切变的方式实现的,同时马氏体和奥氏体之间界面上的原子是共有的,既属于马氏体,又属于奥氏体,而且整个相界面是互相牵制的,这种界面称为“切变共格”界面。
1.3 马氏体转变是在一个温度范围内形成就马氏体相变而言,不但在快冷的变温过程中有马氏体相变,而且在等温过程中,也有等温马氏体产生,如Fe - Ni26 - Cu3 合金所能发生等温马氏体相变,但钢的马氏体相变是在一个温度范围内形成的。
当奥氏体被冷却到Ms点以下任一温度时,不需经过孕育,转变立即开始,转变速度极快,但转变很快就停止了,不能进行到终了,为了使转变继续进行,必须降低温度,也就是说马氏体是在不断降温条件下才能形成。
这是因为在高温下母相奥氏体中某些与晶体缺陷有关的有利位置,通过能量起伏和结构起伏,预先形成了具有马氏体结构的微区。
这些微区随温度降低而被冻结到低温,在这些微区里存在一些粒子,这些粒子在没有成为可以长大成马氏体的晶核以前我们叫它核胚。
从高温冻结下来的核胚有大有小,从经典的相变理论可知:冷却达到的温度愈低,过冷度愈大,临界晶核尺寸就愈小,当奥氏体被过冷到某一温度时,尺寸大于该温度下的临界晶核尺寸的核胚就成为晶核,就能长成一片或一条马氏体。
材料科学基础-材料的亚稳态(3)
马氏体转变
马氏体转变是一类无扩散型的固态相变,马氏体为亚稳相。 将钢加热至奥氏体后快速淬火,所形成的高硬度的针片状组织。
转变特点: (1)无扩散性 (2)切变共格与表面浮凸 (3)惯习面及位向关系 (4)转变是在一个温度范围内进行的 (5)转变不完全
马氏体转变
性能:高强度、高硬度 相变强化 固溶强化 细晶强化
钢的化学成分对马氏体点的影响 变温马氏体相变,与温度有关,瞬间(几分 之一秒内)剧烈地 形成大量马氏体,有的高达70%M。
高镍钢中马氏体等温转变曲线(Ni: 23wt%) 等温马氏体转变:FeNiMn, FeNiCr, CuAu, CoPt
马氏体转变动点测量
❖ 膨胀法:利用母相与马氏体之间比容的不同 ❖ 电阻法:利用两相间电容的不同 ❖ 磁性法:奥氏体不具有铁磁性,马氏体具有铁磁性。只可用于钢
高碳马氏体
球墨铸铁淬火 G球+M+Aˊ
低碳马氏体
15钢淬火组织 M低
应力(磁、电)驱动的马氏体相变
形状记忆效应和形状记忆合金
在发生了塑性变形后,经过合适的热过程,能够回复到变形前的形状, 这种现象叫做形状记忆效应(SME)。 具有形状记忆效应的金属,称为形状记忆合金(SMA)。
形状记忆合金可以分为三种 (1)单程记忆效应 形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这 种只在加热过程中存在的形状记忆现象称为单程记忆效应。
Smith W F. Foundations of Materials Science and Engineering. McGRAW.HILL.3/E
马氏体片形成时产生的浮凸示意图
不变平面应变
❖ 倾动面一直保持为平面
第4章_马氏体转变
4.1.2 马氏体转变的特点
1. 表面浮凸效应和共格切变性
共格界面的界面能比非 共格界面小,但其弹性应 变能却较大。因此随着马 氏体的形成必定会在其周 围奥氏体点阵中产生一定 的弹性应变,从而积蓄一 定的弹性应变能 (或称共格 弹性能) 。
马氏体形成时在其周围奥氏体点阵 中引起的应变场(示意图)
4.1.2 马氏体转变的特点
马氏体转变量是在 Ms~Mf 范围内通过不断降温来增 加, 即马氏体转变量是温度的函数,与等温时间无关。
马氏体转变量与温度和等温时间的关系图
在很多情况下,冷却到Mf 温度后,并不能得到 100%的马氏体组织,仍然保留部分未转变的奥氏体, 称为残余奥氏体,以AR表示。这种现象称为马氏体 转变的不完全性。
另外,马氏体中的碳含量与原奥氏体完全一致,这表 明马氏体转变时也没有发生碳的扩散。因此,马氏体转 变属于无扩散型相变。这是它与其它类型相变相区别的 一个重要持点。
4.1.2 马氏体转变的特点
3. M转变的位向关系及惯习面
马氏体转变时马氏体与奥氏体存在着严格的晶体学关 .2 马氏体转变的特点
1. 表面浮凸效应和共格切变性
可见,马氏体形成是以切变的方式实现的,同时马氏 体和奥氏体之间界面上的原子为两相所共有,即新相和 母相间保持共格关系。
4.1.2 马氏体转变的特点
1. 表面浮凸效应和共格切变性
由于这种界面是以母相切变维持共格关系,故称为 “切变共格”界面,即原A中的任一平面在转变成M后 仍为一平面。M的长大便是依靠母相中原子做有规则的 迁移(切变)使界面推移而不改变界面上共格关系。
马氏体的正方度取决于其碳含量,碳含量愈高,其点 阵中被充填的碳原子数量愈多,则正方度便愈大。当 wC<0.25%时,c/a=1,马氏体为体心立方晶格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马氏体转变特点
马氏体转变是指钢铁材料在加热或冷却过程中发生的晶体结构变化。
马氏体转变具有以下几个特点。
1. 温度范围:马氏体转变温度范围较宽,通常在200℃到600℃之间。
这个范围内的温度变化会引起钢铁材料的晶体结构发生变化,从而影响材料的力学性能。
2. 马氏体相变:马氏体转变是指钢铁材料从奥氏体结构转变为马氏体结构的过程。
奥氏体是一种面心立方结构,具有较高的韧性和塑性,而马氏体是一种体心立方结构,具有较高的硬度和强度。
3. 形变机制:马氏体转变是通过固溶体的相变来实现的。
在加热过程中,钢铁材料中的固溶体会发生晶体结构的变化,形成马氏体。
在冷却过程中,马氏体会再次转变为固溶体,从而使材料恢复到原来的晶体结构。
4. 转变速率:马氏体转变的速率取决于转变温度和材料的成分。
通常情况下,转变速率较快,可以在几秒钟或几分钟内完成。
然而,在一些特殊情况下,如低温下或含有合金元素的材料中,马氏体转变速率会显著降低。
5. 影响因素:马氏体转变受多种因素的影响,包括材料的成分、冷却速率、加热温度等。
增加合金元素的含量或采用快速冷却方法可
以加速马氏体转变的速率。
6. 影响性能:马氏体转变对钢铁材料的力学性能具有显著影响。
马氏体具有较高的硬度和强度,但韧性和塑性较低。
因此,在一些特定的应用场合中,需要控制马氏体转变的程度,以获得适当的力学性能。
7. 相变组织:马氏体转变后的钢铁材料会形成不同的相组织。
常见的相组织包括全马氏体组织、马氏体和残余奥氏体组织、马氏体和贝氏体组织等。
不同的相组织具有不同的力学性能。
马氏体转变是钢铁材料在加热或冷却过程中发生的晶体结构变化,具有温度范围广、转变速率快、影响因素多等特点。
了解和掌握马氏体转变的特点对于钢铁材料的制备和应用具有重要意义。