高一数学函数经典题目及答案

合集下载

高一数学函数经典练习题(答案)

高一数学函数经典练习题(答案)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y ⑽ 4y = ⑾y x =-6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236xy x -=+的递减区间是 ;函数y =五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数试题及答案

高一数学函数试题及答案

高一数学函数试题及答案一、选择题1. 设函数f(x) = 2x² - 3x + 4,则f(-1)的值为多少?A. 1B. 5C. -7D. 11答案:C. -72. 已知函数g(x)的图像如下所示,那么在区间[-2, 2]上,g(x)的值域为:A. [-4, 4]B. [-3, 3]C. [-2, 2]D. [-1, 1]答案:A. [-4, 4]3. 若函数h(x) = 3x - 2, 则x = __ 是h(x) = 5的解。

A. -1B. 1C. 2D. 3答案:B. 1二、填空题1. 设函数f(x) = x³ + 2x² + ax + 5,若f(2) = 25,则a的值为 __。

答案:22. 函数y = 2x² - 3x + 1与x轴交点的个数为 __。

答案:23. 若函数f(x) = 2x + 3, g(x) = x² + 1,则(f ∘ g)(2)的值为 __。

答案:23三、解答题1. 设函数f(x) = x³ - 2x² + ax + 1,已知f(1) = 3和f(2) = 9,求a的值。

解:根据已知条件:f(1) = 3,代入函数f(x),得到1 - 2 + a + 1 = 3,化简得:a = 3。

f(2) = 9,代入函数f(x),得到8 - 8 + 2a + 1 = 9,化简得:2a = 8,解得a = 4。

所以,a的值为4。

2. 给定函数f(x) = 2x + 5和g(x) = x² - 3x + 2,请计算(f + g)(x)的表达式。

解: (f + g)(x) = f(x) + g(x)= (2x + 5) + (x² - 3x + 2)= x² - x + 7所以,(f + g)(x)的表达式为x² - x + 7。

四、解析题1. 已知函数f(x) = (x - 2)² + 1, 使用二次函数的知识,简要描述函数f(x)的图像特征。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。

2.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。

【考点】函数的单调性,抽象不等式解法,一元一次不等式组的解法。

点评:小综合题,利用函数的单调性,将抽象不等式转化成具体不等式,是此类问题的一般解法。

3.关于函数,有下面四个结论:(1)是奇函数;(2)恒成立;(3)的最大值是; (4) 的最小值是.其中正确结论的是_______________________________________.【答案】(2)(4)【解析】根据题意,由于函数,,那么利用奇偶性定义可知,函数为偶函数因此(1)错误。

对于(2)因为,故可知恒成立;正确,对于的最大值是,实际上取不到,因此错误,对于(4) 的最小值是,当x=0时,函数取得最小值为,因此成立,故答案为(2)(4)【考点】函数的性质点评:主要是考查了函数的奇偶性和单调性的运用,属于中档题。

4.设定义在上的奇函数f(x)在上是减函数,若f(1-m)< f(m)求的取值范围.【答案】【解析】解:∵f(x)是定义在上的奇函数,且f(x)在上是减函数∴f(x)在[-2,0] 也是减函数,∴f(x)在上单调递减故满足条件的m的值为【考点】函数的奇偶性;函数的单调性点评:解不是具体的不等式,像本题的f(1-m)< f(m),常结合函数的单调性求解。

5.若f(x)是偶函数,g(x)是奇函数,且,求f(x)和g(x)的解析式。

高一数学函数经典题目及答案

高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

高一数学知识点真题及答案

高一数学知识点真题及答案

高一数学知识点真题及答案一、函数与方程1. 已知函数 f(x) = x^2 - 3x + 2,求 f(2) 的值。

答案:将 x 替换为 2,计算得到 f(2) = 2^2 - 3(2) + 2 = 4 - 6 + 2 = 0。

2. 解方程 2x + 5 = 3x - 1。

答案:将方程中的 x 合并,得到 2x - 3x = -1 - 5,即 -x = -6,再将等号两边同时乘以 -1,得到 x = 6。

二、平面几何1. 已知矩形 ABCD 中,AB = 6 cm,AD = 4 cm,求矩形的周长和面积。

答案:周长为 2(AB + AD) = 2(6 + 4) = 2(10) = 20 cm,面积为AB × AD = 6 × 4 = 24 cm²。

2. 在直角三角形 ABC 中,∠B = 90°,AC = 5 cm,BC = 3 cm,求 AB 的长度。

答案:根据勾股定理,AB² = AC² - BC² = 5² - 3² = 25 - 9 = 16,因此AB = √16 = 4 cm。

三、概率与统计1. 甲乙两个人比赛掷硬币,甲掷10 次正面朝上的次数为7 次,乙掷 12 次正面朝上的次数为 8 次,哪个人掷正面的概率更大?答案:甲的掷正面概率为 7/10 = 0.7,乙的掷正面概率为 8/12 = 0.67。

因此甲的概率更大。

2. 一批产品生产中存在 5% 的次品率,随机抽取 100 件产品,请计算其中次品数的期望值。

答案:次品数的期望值计算公式为 E(X) = n × p,其中 n 为抽取样本数,p 为次品率。

所以期望值为 100 × 0.05 = 5。

四、解析几何1. 已知直线 L 的方程为 2x - 3y + 6 = 0,求直线 L 的斜率和与 y 轴的交点坐标。

答案:将方程化为斜截式方程 y = (2/3)x + 2,斜率为 2/3。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.已知函数在处取得最大值,则可能是( )A.B.C.D.【答案】【解析】根据函数解析式的特点,设,则根据正弦和角公式,可知函数,则其最值在处取得,所以.【考点】正余弦特殊值,正弦和角公式,正弦函数最值.2.下列函数在区间是增函数的是A.B.C.D.【答案】D【解析】(A)函数是上的减函数;(B)函数是R上的减函数;(C)的对称轴为,所以该函数是上的增函数;(D)是上的增函数,所以在区间是增函数,故D为正确答案.【考点】函数的单调性.3.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.4.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。

5.方程有唯一解,则实数的取值范围是()A.B.C.或D.或或【答案】D【解析】方程有唯一解,即半圆与直线只有一个公共点。

结合几何图形分析知,实数的取值范围是或或,选D。

【考点】直线与圆的位置关系点评:简单题,利用转化与化归思想,将方程解的个数问题,转化成直线与半圆的公共点个数问题。

6.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案

完整版)高一数学函数经典习题及答案函数练题一、求函数的定义域1、求下列函数的定义域:⑴y = (x-1)/(2x^2-2x-15)⑵y = 1-[(2x-1)+4-x^2]/[1/(x+1)+1/(x+3)-3]2、设函数f(x)的定义域为[0,1],则函数f(x-2)的定义域为[-2,-1];函数f(2x-1)的定义域为[(1/2,1)]。

3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-3/2,2];函数f(2)的定义域为[1,4]。

4、已知函数f(x)的定义域为[-1,1],且函数F(x) = f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。

二、求函数的值域5、求下列函数的值域:⑴y = x+2/x-3 (x∈R)⑵y = x+2/x-3 (x∈[1,2])⑶y = 2/(3x-1)-3/(x-1) (x∈R)⑷y = (x+1)/(x+1) if x≥5y = 5x^2+9x+4/2x-6 (x<5)⑸y = (x-3)/(x+2)⑹y = x-3+x+1⑺y = (x^2-x)/(2x-1)(x+2)⑼y = -x^2+4x+5⑽y = 4-1/(x^2+4x+5)⑾y = x-1-2x/(2x^2+ax+b)6、已知函数f(x) = 2x+1/(x∈R)的值域为[1,3],求a,b的值。

三、求函数的解析式1、已知函数f(x-1) = x-4x,求函数f(x),f(2x+1)的解析式。

2、已知f(x)是二次函数,且f(x+1)+f(x-1) = 2x-4x,求f(x)的解析式。

3、已知函数2f(x)+f(-x) = 3x+4,则f(x) = (3x+4)/5.4、设f(x)是R上的奇函数,且当x∈[0,+∞)时,f(x) =x/(1+x),则f(x)在R上的解析式为f(x) = x/(1+x)-2/(1-x^2)。

5、设f(x)与g(x)的定义域是{x|x∈R,且x≠±1},f(x)是偶函数,g(x)是奇函数,且f(x)+g(x) = 3x,则f(x) = x,g(x) = 3x-x^3.四、求函数的单调区间6、求下列函数的单调区间:⑴y = x+2/x+3⑵y = -x^2+2x+3⑶y = x-6/x-127、函数f(x)在[0,+∞)上是单调递减函数,则f(1-x)的单调递增区间是(0,1]。

高一函数练习题及答案

高一函数练习题及答案

高一函数练习题及答案高一函数练习题及答案高一阶段是学习数学的重要时期,其中函数是一个重要的内容。

函数作为数学的一个基础概念,对于学生来说是一个相对抽象的概念。

因此,通过练习题的方式来巩固和提高对函数的理解和运用能力是非常必要的。

本文将为大家提供一些高一函数练习题及答案,希望能够帮助大家更好地掌握函数的知识。

一、选择题1. 设函数f(x) = 2x + 3,那么f(4)的值是多少?A. 7B. 11C. 9D. 8答案:B. 11解析:将x = 4代入函数f(x) = 2x + 3中,得到f(4) = 2 × 4 + 3 = 8 + 3 = 11。

2. 已知函数g(x) = x^2 + 3x - 2,求g(-1)的值是多少?A. -6B. -2C. 2D. 6答案:C. 2解析:将x = -1代入函数g(x) = x^2 + 3x - 2中,得到g(-1) = (-1)^2 + 3 × (-1) - 2 = 1 - 3 - 2 = -4。

3. 函数h(x) = 3x^2 - 2x + 1,求h(2)的值是多少?A. 9B. 11C. 15D. 19答案:A. 9解析:将x = 2代入函数h(x) = 3x^2 - 2x + 1中,得到h(2) = 3 × 2^2 - 2 × 2 + 1 = 3 × 4 - 4 + 1 = 12 - 4 + 1 = 9。

二、填空题1. 设函数f(x) = 2x + 3,求f(-1)的值是多少?答案:1解析:将x = -1代入函数f(x) = 2x + 3中,得到f(-1) = 2 × (-1) + 3 = -2 + 3 = 1。

2. 已知函数g(x) = x^2 + 3x - 2,求g(0)的值是多少?答案:-2解析:将x = 0代入函数g(x) = x^2 + 3x - 2中,得到g(0) = 0^2 + 3 × 0 - 2 = 0 - 2 = -2。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

《函 数》复习题一、 求函数的定义域1、求下列函数的定义域:答案:x²又⑵y =答案:2111x x -⎛⎫≤ ⎪+⎝⎭, ()()22111x x -≤+, ()()2211x x -≤+,222121x x x x -+≤++,-4x ≤0, ∴x ≥0{|0}x x ≥⑶01(21)111y x x =+-+-答案:211011011210210104022x x x x x x x x x ⎧+≠⇒-≠-⇒≠⎪-⎪⎪-≠⇒≠⎨⎪-≠⇒≠⎪≥⇒-≥⇒-≤≤∴1{|220,,1}2x x x x x -≤≤≠≠≠且2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _2 f x ()-2的定义域为________;答案:函数f(x)的定义域为[0.1], 则0≤x ≤1于是0≤x ²≤1 解得-1≤x ≤1所以函数f x ()2的定义域为[-1,1]f∴4≤x ≤93、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1x 1(2)f x+的定义域为 。

答案:y=f(x+1)的定义域是【-2,3】注:y=f(x+1)的定义域是【-2,3】 指的是里面X 的定义域 不是括号内整体的定义域 即-2<=x<=3∴-1<=x+1<=4 ∴x+1 的范围为 [-1,4] f(x)括号内的范围相等y=f(2x-1)f(4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

答案解1:知函数f(x)的定义域为[-1.1],则对函数F (X )=f(m+x)-f(x-m)来说 -1≤m+x ≤1 -1≤x-m ≤11. 由-1≤m+x 和x-m ≤1 两式相加-1+x-m ≤m+x+1 解得2m ≥-2 m ≥-12. 由m+x ≤1和-1≤x-m 两式相加 m+x-1≤x-m+12m ≤2 解得m ≤1综上:-1≤m ≤1答案解2: -1<x+m<1 →→-1-m < x<1-m-1<x-m<1 → -1+m<x<1+m定义域存在,两者的交集不为空集,(注:则只需(-m-1,1-m )与(m-1,1-m )有交集即可。

高一数学函数试题及答案

高一数学函数试题及答案

函数与基本初等函数一、选择题1.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .y =-x 3,x ∈R B .y =sin x ,x ∈RC .y =x ,x ∈RD .y =(12)x ,x ∈R2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=( )A .log 2x B.12x C .log 12x D .2x -23.已知函数f (x )=ax 3+bx 2+c 是奇函数,则( )A .b =c =0B .a =0C .b =0,a ≠0D .c =0 4.函数f (x +1)为偶函数,且x <1时,f (x )=x 2+1, 则x >1时,f (x )的解析式为( )A .f (x )=x 2-4x +4B .f (x )=x 2-4x +5C .f (x )=x 2-4x -5D .f (x )=x 2+4x +55.函数f (x )=3x 21-x+lg(3x +1)的定义域是( )A .(-13,+∞)B .(-13,1)C .(-13,13) D .(-∞,-13) 6.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数7.设奇函数f (x )在(0,+∞)内为增函数,且f (1)=0,则不等式f (x )-f (-x )x<0的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)8.设a ,b ,c 均为正数,且2a =log 12a ,(12)b =log 12b ,(12)c =log 2c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c二、填空题9.函数y =log 12x +2的定义域是____________.10.已知函数f (x )=a x +b 的图象经过点(-2,134),其反函数y =f -1(x )的图象经过点(5,1),则f (x )的解析式是________.11.函数f (x )=ln 1+ax1+2x(a ≠2)为奇函数,则实数a 等于________.12.方程x 2-2ax +4=0的两根均大于1,则实数a 的范围是________.13.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.14.函数f (x )=log 0.5(3x 2-ax +5)在(-1,+∞)上是减函数,则实数a 的取值范围是________. 三、解答题15.设f (x )是奇函数,g (x )是偶函数,并且f (x )-g (x )=x 2-x ,求f (x ),g (x ).16.设不等式2(log 12x )2+9(log 12x )+9≤0的解集为M ,求当x ∈M 时,函数f (x )=(log 2x 2)(log 2x8)的最大、最小值.17.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.18.设函数f (x )=ax 2+1bx +c是奇函数(a ,b ,c 都是整数),且f (1)=2,f (2)<3.(1)求a ,b ,c 的值;(2)当x <0,f (x )的单调性如何?用单调性定义证明你的结论.参考答案1 B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,只是减函数;故选A.2 函数y =a x (a >0,且a ≠1)的反函数是f (x )=log a x ,又f (2)=1,即log a 2=1,所以,a =2,故f (x )=log 2x ,选A.3 ∵f (x )是奇函数,∴f (0)=0,∴c =0.∴-ax 3-bx 2=-ax 3+bx 2,∴b =0,故选A. 4 因为f (x +1)为偶函数,所以f (-x +1)=f (x +1),即f (x )=f (2-x );当x >1时,2-x <1,此时,f (2-x )=(2-x )2+1,即f (x )=x 2-4x +5. 5 ⎩⎨⎧1-x >03x +1>0,解得-13<x<1.故选B.6 令x =0,得f (0)=2f (0)+1,f (0)=-1,所以f (x -x )=f (x )+f (-x )+1=-1,而f (x )+f (-x )+1+1=0,即 f (x )+1=-,所以f (x )+1为奇函数,故选C. 7因为f (x )是奇函数,所以f (-x )=-f (x ),于是不等式变为2f (x )x<0,根据函数的单调性和奇偶性,画出函数的示意图(图略),可知不等式2f (x )x <0的解集为(-1,0)∪(0,1). 8如下图:∴a <b <c . A9 (0,4] 10 f (x )=2x +3 11依题意有f (-x )+f (x )=ln1-ax1-2x+ln 1+ax 1+2x =0,即1-ax 1-2x ·1+ax 1+2x =1,故1-a 2x 2=1-4x 2,解得a 2=4,但a ≠2,故a =-2.12 解法一:利用韦达定理,设方程x 2-2ax +4=0的两根为x 1、x 2,则⎩⎨⎧(x 1-1)(x 2-1)>0,(x 1-1)+(x 2-1)>0,解之得2≤a <52. 13 f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2是偶函数,则其图象关于y 轴对称.∴2a +ab =0⇒b =-2,∴f (x )=-2x 2+2a 2,且值域为(-∞,4],∴2a 2=4,∴f (x )=-2x 2+4. -2x 2+414设g (x )=3x 2-ax +5,已知⎩⎨⎧a 6≤-1,g (-1)≥0,解得-8≤a ≤-6.15 f (x )为奇函数,∴f (-x )=-f (x );g (x )为偶数,∴g (-x )=g (x ).f (x )-g (x )=x 2-x∴f (-x )-g (-x )=x 2+x从而-f (x )-g (x )=x 2+x ,即f (x )+g (x )=-x 2-x ,16 ∵2(log 12x )2+9(log 12x )+9≤0,∴(2log 12x +3)(log 12x +3)≤0.∴-3≤log 12x ≤-32.即log 12(12)-3≤log 12x ≤log 12(12)-32∴(12)-32≤x ≤(12)-3,即22≤x ≤8.从而M =.又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴32≤log 2x ≤3.∴当log 2x =2,即x =4时y min =-1;当log 2x =3,即x =8时,y max =0.⎩⎨⎧ f (x )-g (x )=x 2-x f (x )+g (x )=-x 2-x ⇒⎩⎨⎧f (x )=-xg (x )=-x 2 17 (1)求f (x )的解析式;(2)若g (x )=f (x )·x +ax ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.(1)设f (x )图象上任意一点的坐标为(x ,y ),点(x ,y )关于点A (0,1)的对称点(-x,2-y )在h (x )的图象上.∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x .(2)g (x )=(x +1x )·x +ax ,即g (x )=x 2+ax +1.g (x )在(0,2]上递减⇒-a 2≥2,∴a ≤-4.18 (1)由f (x )=ax 2+1bx +c是奇函数,得f (-x )=-f (x )对定义域内x 恒成立,则a (-x )2+1b (-x )+c =-ax 2+1bx +c ⇒-bx +c =-(bx +c )对定义域内x 恒成立,即c =0.又⎩⎨⎧f (1)=2f (2)<3⇒⎩⎪⎨⎪⎧a +1b =2 ①4a +12b <3 ②由①得a =2b -1代入②得2b -32b<0⇒0<b <32,又a ,b ,c 是整数,得b =a =1.(2)由(1)知,f (x )=x 2+1x =x +1x,当x <0,f (x )在(-∞,-1]上单调递增,在上单调递增.同理,可证f (x )在[-1,0)上单调递减.。

高一数学函数试题及答案

高一数学函数试题及答案

高一数学函数试题及答案一、选择题(每题3分,共15分)1. 函数f(x) = 2x + 3的值域是:A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)2. 已知函数f(x) = x^2 - 2x,x ∈ R,若f(x) = 0,则x的值为:A. 0B. 2C. -2D. 0 或 23. 函数y = sin(x) + cos(x)的周期是:A. πB. 2πC. π/2D. π/44. 若函数f(x) = |x| + 1是奇函数,则下列哪个函数也是奇函数:A. f(x) + 2B. f(x) - 2C. 2f(x)D. 3f(x)5. 已知f(x) = x^3 - 3x^2 + 2,求f(-1)的值是:A. 4B. 3C. 2D. 1二、填空题(每题2分,共10分)6. 若函数f(x) = 3x - 5的图象沿x轴向左平移2个单位,新的函数表达式为______。

7. 函数y = 2^x的反函数是______。

8. 函数f(x) = x^2 + 1在x = -1处的切线斜率是______。

9. 若函数f(x) = x^3 + ax^2 + bx + c的导数为f'(x) = 3x^2 + 2ax + b,当a = 2时,b的值为______。

10. 函数y = 1/x的图像关于______对称。

三、解答题(共75分)11. (15分)已知函数f(x) = x^2 - 4x + 4,求其在区间[0, 6]上的单调区间。

12. (15分)求函数f(x) = sin(x) - cos(x)的值域。

13. (15分)若函数f(x) = x^3 - 6x^2 + 9x + 2,求f'(x),并找出f(x)的极值点。

14. (15分)已知函数f(x) = 2x - 3,求f(x)的反函数,并证明其正确性。

15. (15分)证明函数f(x) = x^3在R上是增函数。

(完整版)高一函数大题训练及答案

(完整版)高一函数大题训练及答案

(完整版)高一函数大题训练及答案一、解答题1.已知a R ∈,当0x >时,()21log f x a x ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若函数()f x 过点()1,1,求此时函数()f x 的解析式; (Ⅱ)若函数()()22log g x f x x =+只有一个零点,求实数a 的值;(Ⅲ)设0a >,若对任意实数1,13t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在[],1t t +上的最大值与最小值的差不大于1,求实数a 的取值范围.2.(附加题,本小题满分10分,该题计入总分)已知函数()y f x =,若在区间()2,2-内有且仅有一个0x ,使得0()1f x =成立,则称函数()f x 具有性质M .(1)若()sin 2f x x =+,判断()f x 是否具有性质M ,说明理由; (2)若函数2()221f x x mx m =+++具有性质M ,试求实数m 的取值范围.3.已知函数21()|1|,R.f x x x =-∈我们定义211312()(()),()(()),,f x f f x f x f f x ==11()(()).n n f x f f x -=其中2,3,.n =(1)判断函数1()f x 的奇偶性,并给出理由; (2)求方程13()()f x f x =的实数根个数;(3)已知实数0x 满足00()(),i j f x f x m ==其中1,0 1.i j n m ≤<≤<<求实数m 的所有可能值构成的集合.4.已知2()2(1)3()=-++∈f ax x a x R a .(1)若函数()f x 在3[,3]2单调递减,求实数a 的取值范围;(2)令()()1=-f x h x x ,若存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立,求实数a 的取值范围.5.对于函数()f x ,若存在定义域中的实数a ,b 满足0b a >>且()()2()02a bf a f b f +==≠,则称函数()f x 为“M 类” 函数. (1)试判断()sin f x x =,x ∈R 是否是“M 类” 函数,并说明理由;(2)若函数()2|log 1|f x x =-,()0,x n ∈,*n N ∈为“M 类” 函数,求n 的最小值. 6.已知函数()2x f x =,2()log g x x =. (1)若0x 是方程3()2f x x =-的根,证明02x 是方程3()2g x x =-的根; (2)设方程5(1)2f x x -=-,5(1)2g x x -=-的根分别是1x ,2x ,求12x x +的值. 7.已知函数()y f x =,若存在实数(),0m k m ≠,使得对于定义域内的任意实数x ,均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(),m k 称为函数()f x 的“平衡”数对.(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化时,求证:()2f x x =与()2xg x a =+的“平衡”数对相同;(3)若12,m m R ∈,且1,2m π⎛⎫ ⎪⎝⎭、2,4m π⎛⎫ ⎪⎝⎭均为函数()2cos f x x =的“平衡”数对.当04x π<≤时,求2212m m +的取值范围.8.对于函数()()f x x D ∈,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≥成立,我们称函数()f x 为“T 同比不减函数”.(1)求证:对任意正常数T ,()2f x x =都不是“T 同比不减函数”;(2)若函数()sin f x kx x =+是“2π同比不减函数”,求k 的取值范围; (3)是否存在正常数T ,使得函数()11f x x x x =+--+为“T 同比不减函数”,若存在,求T 的取值范围;若不存在,请说明理由.9.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足: ①()f x 在[],m n 内是单调函数:②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()2112f x a a x=+-(,0a R a ∈≠)是区间[],m n 上的“保值函数”,求a 的取值范围;(3)对(2)中函数()f x ,若不等式()22a f x x ≤对1≥x 恒成立,求实数a 的取值范围.10.已知函数()y f x =,x D ∈,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有()()f x T mf x +>成立,则称函数()f x 是D 上的m 级类增周期函数,周期为T ,若恒有()()f x T mf x +=成立,则称函数()f x 是D 上的m 级类周期函数,周期为T .(1)已知函数2()f x x ax =-+是[3,)+∞上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知1T =,()y f x =是[0,)+∞上m 级类周期函数,且()y f x =是[0,)+∞上的单调递增函数,当[0,1)x ∈时,()2x f x =,求实数m 的取值范围;(3)是否存在实数k ,使函数()cos f x kx =是R 上的周期为T 的T 级类周期函数,若存在,求出实数k 和T 的值,若不存在,说明理由.11.已知函数()242 1.x xf x a =⋅--(1)当1a =时,求函数()f x 在[]3,0x ∈-的值域; (2)若()f x 存在零点,求a 的取值范围.12.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况. 13.若存在常数()0k k >,使得对定义域D 内的任意()1212,x x x x ≠,都有()()1212f x f x k x x -≤-成立,则称函数()f x 在其定义域 D 上是“k -利普希兹条件函数”.(1)若函数()(),14f x x x =≤≤是“k -利普希兹条件函数”,求常数k 的最小值; (2)判断函数()2log f x x =是否是“2-利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若()()y f x x R =∈是周期为2的“1-利普希兹条件函数”,证明:对任意的实数12,x x ,都有()()121f x f x -≤.14.对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数()sin()3f x x π=+,试判断()f x 是否为“M 类函数”?并说明理由;(2)设()2x f x m =+是定义在[1,1]-上的“M 类函数”,求是实数m 的最小值;(3)若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”,求实数m 的取值范围.15.已知函数()21log 21mx f x x x +⎛⎫=- ⎪-⎝⎭()m 为常数是奇函数.(1)判断函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上的单调性,并用定义法证明你的结论;(2)若对于区间[]2,5上的任意值,使得不等式()2xf x n ≤+恒成立,求实数的取值范围.【参考答案】一、解答题1.(Ⅰ)()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭;(Ⅱ)0a =或14-;(Ⅲ)3[,)2+∞【解析】 【详解】试题分析:(Ⅰ)将点()1,1 代入可得函数的解析式;(Ⅱ)函数有一个零点,即()22log 0f x x += ,根据对数运算后可得210ax x +-= ,将问题转化为方程有一个实根,分0a = 和0,0a ≠∆= 两种情况,得到a 值,最后再代入验证函数的定义域;(Ⅲ)首先根据单调性的定义证明函数的单调性,再根据函数的最大值减最小值()()11f t f t -+≤ 整理为()2110at a t ++-≥ ,对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,0a > 时,区间为函数的单调递增区间,所以只需最小值大于等于0,求解a 的取值范围. 试题解析:(Ⅰ)函数()21log f x a x ⎛⎫=+ ⎪⎝⎭过点()1,1,()()21log 11f a ∴=+=, 1a ∴=,∴此时函数()21log 1(0)f x x x ⎛⎫=+> ⎪⎝⎭(Ⅱ)由()22log 0f x x +=得221log 2log 0a x x ⎛⎫+== ⎪⎝⎭,211a x x ⎛⎫∴+⋅= ⎪⎝⎭化为210ax x +-=, 当0a =时,可得1x =,经过验证满足函数()g x 只有一个零点;当0a ≠时,令140a ∆=+=解得14a =-,可得2x =,经过验证满足函数()g x 只有一个零点, 综上可得:0a =或14-.(Ⅲ)任取()12,0,x x ∈+∞且12x x <,则210x x x ∆=->, ()()11221222212121211221211221211log log log ,0,0,0,01,x ax x y f x f x a a x x x ax x x x a x ax x x ax x x ax x x ax x ⎛⎫⎛⎫+∆=-=+-+= ⎪ ⎪+⎝⎭⎝⎭<∴<+<++∴<<+1122212log 0x ax x x ax x +∴<+,即0y ∆<,()f x ∴在()0,+∞上单调递减.∴函数()f x 在区间[],1t t +上的最大值与最小值分别为()(),1f t f t +, ()()22111log log 11f t f t a a t t ⎛⎫⎛⎫∴-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭,整理得()2110at a t ++-≥对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,令()()211h t at a t =++-,0,a >∴函数()h t 在区间1,13⎡⎤⎢⎥⎣⎦上单调递增,103h ⎛⎫∴≥ ⎪⎝⎭,即11093a a ++-≥,解得32a ≥, 故实数a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.【点睛】本题以对数函数为载体,考查了函数的零点,单调性,最值,恒成立问题,以及转化与化归的能力,综合性比较高,最后一问转化为了二次函数的问题,所以需熟练掌握二次函数的恒成立问题.2.(Ⅰ)()f x 具有性质M ; (Ⅱ)23m ≤-或2m >或0m =【解析】 【详解】试题分析:(Ⅰ)()sin 2f x x =+具有性质M .若存在()022x ∈﹣,,使得()01f x =,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数()2221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在()22﹣,上有且只有一个实根.设()222h x x mx m =++,即()222h x x mx m =++在()22﹣,上有且只有一个零点.讨论m 的取值范围,结合零点存在定理,即可得到m 的范围.试题解析:(Ⅰ)()sin 2f x x =+具有性质M .依题意,若存在0x ∈(2,2)-,使0()1f x =,则0x ∈(2,2)-时有0sin 21x +=,即0sin 1x =-,022x k ππ=-,k Z ∈.由于0x ∈(2,2)-,所以02x π=-.又因为区间(2,2)-内有且仅有一个02x π=-,使0()1f x =成立,所以()f x 具有性质M 5分(Ⅱ)依题意,若函数2()221f x x mx m =+++具有性质M ,即方程2220x mx m ++=在(2,2)-上有且只有一个实根.设2()22h x x mx m =++,即2()22h x x mx m =++在(2,2)-上有且只有一个零点. 解法一:(1)当2m -≤-时,即2m ≥时,可得()h x 在(2,2)-上为增函数, 只需(2)0,{(2)0,h h -<>解得2,{2,3m m >>-交集得2m >.(2)当22m -<-<时,即22m -<<时,若使函数()h x 在(2,2)-上有且只有一个零点,需考虑以下3种情况:(ⅰ)0m =时,2()h x x =在(2,2)-上有且只有一个零点,符合题意. (ⅱ)当20m -<-<即02m <<时,需(2)0,{(2)0,h h -≤>解得2,{2,3m m ≥>-交集得∅.(ⅲ)当02m <-<时,即20m -<<时,需(2)0,{(2)0,h h ->≤解得2,{2,3m m <≤-交集得223m -<≤-.(3)当2m -≥时,即2m ≤-时,可得()h x 在(2,2)-上为减函数 只需(2)0,{(2)0,h h -><解得2,{2,3m m <<-交集得2m ≤-.综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m >或0m = 14分 解法二: 依题意,(1)由(2)(2)0h h -⋅<得,(42)(64)0m m -+<,解得23m <-或2m >. 同时需要考虑以下三种情况: (2)由22,{0,m -<-<∆=解得0m =. (3)由20,{(2)0,m h -<-<-=解得02,{2,m m <<=不等式组无解. (4)由02,{(2)0,m h <-<=解得20,{2,3m m -<<=-解得23m =-. 综上所述,若函数()f x 具有性质M ,实数m 的取值范围是23m ≤-或2m > 或0m = 14分.考点:1.零点存在定理;2.分类讨论的思想.3.(1)偶函数;答案见解析;(2)实数根个数为11;(3)⎪⎪⎩⎭.【解析】(1)由函数奇偶性的定义运算即可得解;(2)令1()f x t =,转化条件为0=t 或1,再解方程即可得解;(3)按照m ⎛∈ ⎝⎭、m ⎫∈⎪⎪⎝⎭分类,结合函数的单调性可得()(1,2,,)k f m m k n ≠=,再代入m =.【详解】(1)因为1()f x 的定义域R 关于原点是对称的,又2211()|()1||1|()f x x x f x -=--=-=,故函数1()f x 是偶函数;(2)令1()f x t =,则0t ≥,于是()()2231211()()()|1|1t f x f f x f f t t ====--,于是22|1|1t t -=+或22|1|1.t t -=-又0t ≥,解得0=t 或1,则方程13()()f x f x =的实数根个数即为210x -=或1的根的总个数,解得1x =±或0或 所以方程13()()f x f x =的实数根个数为11; (3)因为01m <<,当(0,1)m ∈时,1()f m 在(0,1)单调递减,且1(0)1f =,1(1)0f =, 则12(),(),,()n f m f m f m 的值域均为(0,1),①当m ⎛∈ ⎝⎭时,21()1f m m ⎫=-∈⎪⎪⎝⎭,于是1()f m m >,因为当m ⎛∈ ⎝⎭时,210m m +-<, 所以()()()()42222211110m m m m m m m m m m m -+-=---=-+-<,所以()()()()2142221112f m f f m m m m m ==--=-+<,即2()f m m <, 注意到1()f x 在(0,1)单调递减,于是()()()3121413112()()(),()()()()f m f f m f m f m f f m f f m f m =>=<=,()()()()514123615134()()()(),()()()(),.f m f f m f f m f m f m f f m f f m f m =>==<=于是6421350()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,②当m ⎫∈⎪⎪⎝⎭时,类比同理可得5312460()()()()()()1f m f m f m m f m f m f m <<<<<<<<<<,于是当(0,1)m ∈且m ≠()(1,2,,)k f m m k n ≠=,若0()i f x m =,其中(0,1)m ∈,m ≠则().j i f m m -≠,即()00()()j i i i f f x f x -≠,也就是00()()j i f x f x ≠;当m =()i f x 的值域为[)0,+∞,所以存在0x 使得0()i f x =又1f ⎝⎭所以()()()()()01101110()()()j j i f x f f x f f f f x -====,即00()()i j f x f x ==所以实数m的所有可能值构成的集合为⎪⎪⎩⎭.【点睛】本题考查了函数奇偶性、函数与方程及函数单调性的应用,考查了运算求解能力,属于难题. 4.(1)12a ≤(2)4([,).5∈-∞⋃+∞a 【解析】【分析】(1)对a 讨论,0a =,0a >,0a <,结合二次函数的图象和单调性的性质,得到不等式组,解不等式即可得到a 的范围;(2)由题意可得在3[,3]2∈x 上,max min 1()()2+-≥a h x h x 成立, 1()(1)21ah x a x x -=-+--,令11[,2]2=-∈t x ,则11()2,[,2]2a g t a t t t -=⋅+-∈.对a 讨论,(i )当0a ≤时,(ii )当01a <<时,求出单调性和最值,即可得到a 的范围.【详解】(1)①当0a =时,()23f x x =-+,显然满足,②010123a a a a >⎧⎪⇒<<+⎨≥⎪⎩,③00132a a a a <⎧⎪⇒<+⎨≤⎪⎩, 综上实数a 的取值范围:12a ≤. (2)存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立即:在3[,3]2∈x 上,max min 1()()2+-≥a h x h x ,因为()1()(1)211-==-+---f x a h x a x x x ,令11[,2]2=-∈t x , 则11()2,[,2]2a g t a t t t -=⋅+-∈ (i )当0a ≤时,()g t 在1[,2]2t ∈上单调递减,所以max min 1()()2+-≥a g t g t ,等价于112()(2)227+-≥⇒≤a g g a ,所以0a ≤; (ii )当01a <<时,1()()2-=+-aa g t a t t ,()g t在上单调递减,在)+∞上单调递增. ①12≤时,即451a ≤<,()g t 在1[,2]2t ∈上单调递增.由max min 1()()2+-≥a g t g t 得到114(2)()225+-≥⇒≥a g g a ,所以451a ≤<. ②2≥时,即105a <≤,()g t 在1[,2]2t ∈上单调递减,由max min 1()()2+-≥a g t g t 得到112()(2)227+-≥⇒≤a g g a ,所以105a <≤. ③当122<<时,即1455a <<,min ()=g t g ,最大值则在(2)g 与1()2g 中取较大者,作差比较13(2)()322-=-g g a ,得到分类讨论标准:a .当1152<<a 时,13(2)()3022-=-<g g a ,此时max 1()()2=g t g ,由max min 1()()2+-≥a g t g t ,得到211()32409022a g g a a a +-≥⇒-+≥⇒≥或a ≤,所以15<≤ab .当1425≤<a 时,13(2)()3022-=->g g a ,此时max ()(2)=g t g , 由max min 1()()2+-≥a g t g t,得到14(2)25+-≥⇒≥≥a g g a a ,此时无解,在此类讨论中,4[,1).5∈⋃a c .当1a ≥,()g t 在1[,2]2t ∈上单调递增,由max min 1()()2+-≥a g t g t ,得到114(2)()225+-≥⇒≥a g g a ,所以1a ≥,综合以上三大类情况,4([,).5∈-∞⋃+∞a 【点睛】本题考查函数的单调性的应用,考查存在性问题的解法,注意运用分类讨论的思想方法,以及转化思想,考查运算能力,属于难题. 5.(1)不是.见解析(2)最小值为7. 【解析】(1)不是,假设()f x 为M 类函数,得到2b a k π=+或者2b a k ππ+=+,代入验证不成立.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,得到函数的单调区间,根据题意得到326480b b b ---=,得到()6,7b ∈,得到答案. 【详解】 (1)不是.假设()f x 为M 类函数,则存在0b a >>,使得sin sin a b =, 则2b a k π=+,k Z ∈或者2b a k ππ+=+,k Z ∈, 由sin 2sin2a ba +=, 当2b a k π=+,k Z ∈时,有()sin 2sin a a k π=+,k Z ∈, 所以sin 2sin a a =±,可得sin 0a =,不成立;当2b a k ππ+=+,k Z ∈时,有sin 2sin()2a k ππ=+,k Z ∈,所以sin 2a =±,不成立, 所以()f x 不为M 类函数.(2)()221log ,02log 1,2x x f x x x -<≤⎧=⎨->⎩,则()f x 在()0,2单调递减,在()2,+∞单调递增,又因为()f x 是M 类函数,所以存在02a b <<<,满足2221log log 12|log 1|2a ba b +-=-=-, 由等式可得:()2log 2ab =,则4ab =,所以()22142(4)0222a a b a a a -+-=+-=>,则2log 102a b +->,所以得22log 12log 12a b b +⎛⎫-=- ⎪⎝⎭, 从而有222log 1log 2a b b +⎛⎫+= ⎪⎝⎭,则有()224a b b +=,即248b b b ⎛⎫+= ⎪⎝⎭, 所以43288160b b b -++=,则()()3226480b b b b ----=,由2b >,则326480b b b ---=,令()32648g x x x x =---,当26x <<时,()()26480g x x x x =---<,且()6320g =-<,()7130g =>,且()g x 连续不断,由零点存在性定理可得存在()6,7b ∈, 使得()0g b =,此时()0,2a ∈,因此n 的最小值为7. 【点睛】本题考查了函数的新定义问题,意在考查学生对于函数的理解能力和应用能力.6.(1)证明见解析(2)72【解析】(1)因为0x 是方程3()2f x x =-的根,即00322x x =-,将02x 代入()g x 根据对数的运算性质可得.(2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x ,即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x ,令1t x =-,设方程322t t =-,23log 2t t =-的根分别为111t x =-,221t x =-,结合(1)的结论及函数的单调性可求. 【详解】解:(1)证明:因为0x 是方程3()2f x x =-的根, 所以00322xx =-,即00322x x =- ()0002032log 222x x x g x ===- 所以,02x 是方程3()2g x x =-的根. (2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x , 即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x , 令1t x =-设方程322tt =-,23log 2t t =-的根分别为111t x =-,221t x =-, 由(1)知1t 是方程322tt =-的根,则12t 是方程23log 2t t =-的根. 令23()log 2h t t t =+-,则12t 是()h t 的零点, 又因为()h t 是(0,)+∞上的增函数,所以,12t 是()h t 的唯一零点,即12t 是方程23log 2t t =-的唯一根. 所以122tt =,所以1121322tt t t +=+=,即()()123112x x -+-=,所以1237222x x +=+= 【点睛】本题考查函数方程思想,函数的零点问题,属于难题.7.(1)()sin f x x =是“可平衡”函数,详见解析(2)证明见解析(3)221218m m <+≤【解析】 【分析】(1)利用两角和差的正弦公式求解即可.(2)根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,再列式利用恒成立问题求解即可.(3)根据“平衡数对”的定义将12,m m 用关于x 的三角函数表达,再利用三角函数的取值范围求解即可. 【详解】(1)若1m =,则()sin m f x x ⋅=,()()()()sin sin f x k f x k x k x k ++-=++-2sin cos x k =,要使得()f x 为“可平衡”函数,需使故()12cos sin 0k x -⋅=对于任意实数x 均成立,只有1cos 2k =,此时23k n ππ=±,n Z ∈,故k 存在,所以()sin f x x =是“可平衡”函数.(2)()2f x x =及()2xg x a =+的定义域均为R ,根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,即22222mx x k =+,即()22220m x k --=对于任意实数x 恒成立,只有2m =,0k =,故函数()2f x x =的“平衡”数对为()2,0,对于函数()2xg x a =+而言,()222x x k x k m a a a +-⋅+=+++()2222x k k a -=+⋅+, 所以()()22222x x k km a a -⋅+=+⋅+,()()22220xkkm a m -⎡⎤⋅-++⋅-=⎣⎦,()2220k k m a m -⎧=+⎪⎨⋅-=⎪⎩, 即22m m ≥⎧⎨=⎩,故2m =,只有0k =,所以函数()2xg x a =+的“平衡”数对为()2,0, 综上可得函数()2f x x =与()2xg x a =+的“平衡”数对相同.(3)2221cos cos cos 22m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以221cos 2sin m x x =,2222cos cos cos 44m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以22cos 1m x =,由于04x π<≤,所以21cos 12x ≤<,故(]212tan 0,2m x =∈,(]22sec 1,2m x =∈, ()22224121tan 4tan m m x x +=++()22222145tan 2tan 15tan 55x x x ⎛⎫=++=++ ⎪⎝⎭, 由于04x π<≤,所以20tan 1x <≤时,2116tan 555x <+≤, ()2212tan 238x <+-≤,所以221218m m <+≤.【点睛】本题主要考查了新定义的函数问题,需要根据题意列出参数满足的关系式,利用恒成立问题或表达出参数满足的解析式再分析求范围等.属于难题.8.(1)证明见解析 (2)k π≥(3)存在,4T ≥【解析】 【分析】(1)取特殊值使得()()f x f x T ≤+不成立,即可证明;(2)根据“T 同比不减函数”的定义,sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,分离参数k ,构造函数,转化为k 与函数的最值关系,即可求出结果;(3)去绝对值化简函数()f x 解析式,根据“T 同比不减函数”的定义,取1x =-,因为()()()1113f T f f -+≥-==成立,求出T 的范围,然后证明对任意的x ∈R ,()()f x T f x +≥恒成立,即可求出结论. 【详解】证明:(1)任取正常数T ,存在0x T =-,所以00x T +=,因为()()()()2000f x f T T f f x T =-=>=+,即()()f x f x T ≤+不恒成立,所以()2f x x =不是“T 同比不减函数”.(2)因为函数()sin f x kx x =+是“2π同比不减函数”, 所以()2f x f x π⎛⎫+≥ ⎪⎝⎭恒成立,即sin sin 22k x x kx x ππ⎛⎫⎛⎫+++≥+ ⎪ ⎪⎝⎭⎝⎭恒成立,()2sin cos 4x x x k πππ⎛⎫- ⎪-⎝⎭≥=对一切x ∈R 成立.所以max4x k ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎪≥= ⎪⎪⎝⎭ (3)设函数()11f x x x x =+--+是“T 同比不减函数”, ()()()()211121x x f x x x x x ⎧-≥⎪=--<<⎨⎪+≤-⎩,当1x =-时,因为()()()1113f T f f -+≥-==成立, 所以13T -+≥,所以4T ≥, 而另一方面,若4T ≥, (Ⅰ)当(],1x ∈-∞-时,()()()112f x T f x x T x T x T x +-=+++--++-+ 112T x T x T =++--++-因为()()1111x T x T x T x T +--++≥-+--++2=-, 所以()()220f x T f x T +-≥--≥,所以有()()f x T f x +≥成立. (Ⅱ)当()1,x ∈-+∞时,()()()211f x T f x x T x x x +-=+--+--+211T x x =---++因为()()11112x x x x +--≥-+--=-, 所以()()220f x T f x T +-≥--≥, 即()()f x T f x +≥成立.综上,恒有有()()f x T f x +≥成立, 所以T 的取值范围是[)4,+∞. 【点睛】本题考查新定义的理解和应用,考查等价转化思想,考查从特殊到一般的解决问题方法,属于较难题.9.(1)证明见详解;(2)32a <-或12a >;(3)112a <≤【解析】 【分析】(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知()f m m =,()f n n =,转化为,m n 是方程2112x a a x+-=的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题. 【详解】(1)函数()22g x x x =-在[]0,1x ∈时的值域为[]1,0-,不满足“保值函数”的定义, 因此函数()22g x x x =-不是定义域[]0,1上的“保值函数”.(2)因为函数()2112f x a a x=+-在[],m n 内是单调增函数, 因此()f m m =,()f n n =, 因此,m n 是方程2112x a a x+-=的两个不相等的实根, 等价于方程()222210a x a a x -++=有两个不相等的实根.由()222240a a a ∆=+->解得32a <-或12a >.(3)()2212a f x a a x=+-,()22a f x x ≤()22a f x x⇔≤⇔21222a a x x+--≤≤, 即为22122,122,a a x x a a x x ⎧+≤+⎪⎪⎨⎪+≥-⎪⎩对1≥x 恒成立.令()12h x x x=+,易证()h x 在[)1,+∞单调递增, 同理()12g x x x=-在[)1,+∞单调递减. 因此,()()min 13h x h ==,()()min 11g x g ==-.所以2223,21,a a a a ⎧+≤⎨+≥-⎩解得312a -≤≤.又32a <-或12a >,所以a 的取值范围是112a <≤. 【点睛】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.10.(1)1a <;(2)2m ≥;(3)当1T =时,2k n π=,n ∈Z ;当1T =-时,(21)k n π=+,n ∈Z .【解析】 【分析】(1)由题意f (x +1)>2f (x )整理可求得a <x ﹣121x --,令x ﹣1=t (t ≥2),由g (t )=t 2t-在[2,+∞)上单调递增,即可求得实数a 的取值范围;(2)由x ∈[0,1)时,f (x )=2x ,可求得当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,利用f (x )在[0,+∞)上单调递增,可得m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1),从而可求实数m 的取值范围;(3)f (x +T )=Tf (x )对一切实数x 恒成立,即cos k (x +T )=T cos kx 对一切实数恒成立,分当k =0时,T =1;当k ≠0时,要使cos k (x +T )=T cos kx 恒成立,只有T =±1,于是可得答案. 【详解】(1)由题意可知:f (x +1)>2f (x ),即﹣(x +1)2+a (x +1)>2(﹣x 2+ax )对一切[3,+∞)恒成立,整理得:(x ﹣1)a <x 2﹣2x ﹣1,∵x ≥3,∴a ()22122111x x x x x ----==--<x ﹣121x --, 令x ﹣1=t ,则t ∈[2,+∞),g (t )=t 2t-在[2,+∞)上单调递增,∴g (t )min =g (2)=1, ∴a <1.(2)∵x ∈[0,1)时,f (x )=2x ,∴当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mf (x ﹣1)=m 2f (x ﹣2)=…=mnf (x ﹣n )=mn •2x ﹣n , 即x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,n ∈N *, ∵f (x )在[0,+∞)上单调递增,∴m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1), 即m ≥2.(3)由已知,有f (x +T )=Tf (x )对一切实数x 恒成立, 即cos k (x +T )=T cos kx 对一切实数恒成立, 当k =0时,T =1; 当k ≠0时, ∵x ∈R ,∴kx ∈R ,kx +kT ∈R ,于是cos kx ∈[﹣1,1], 又∵cos (kx +kT )∈[﹣1,1],故要使cos k (x +T )=T cos kx 恒成立,只有T =±1, 当T =1时,cos (kx +k )=cos kx 得到 k =2n π,n ∈Z 且n ≠0; 当T =﹣1时,cos (kx ﹣k )=﹣cos kx 得到﹣k =2n π+π, 即k =(2n +1)π,n ∈Z ;综上可知:当T =1时,k =2n π,n ∈Z ; 当T =﹣1时,k =(2n +1)π,n ∈Z . 【点睛】本题考查周期函数,着重考查函数在一定条件下的恒成立问题,综合考查构造函数、分析转化、分类讨论的数学思想与方法,难度大,思维深刻,属于难题. 11.(1)9,08⎡⎤-⎢⎥⎣⎦;(2)0a >【解析】 【分析】(1)当1a =时,函数()()22221x x f x =--,转化为二次函数问题,利用二次函数的性质,即可求解;(2)由(1)转化为二次函数存在零点,利用二次函数的图象与性质,即可求解. 【详解】(1)当1a =时,()()224212221x x x x f x =⋅--=--,令2x t =,[]3,0x ∈-,则1,18t ⎡⎤∈⎢⎥⎣⎦,故221921248y t t t ⎛⎫=--=-- ⎪⎝⎭,1,18t ⎡⎤∈⎢⎥⎣⎦,故值域为9,08⎡⎤-⎢⎥⎣⎦.(2)关于x 的方程()222210x x a --=有解,等价于方程2210ax x --=在()0,∞+上有解记()221g x ax x =--当0a =时,解为10x =-<,不成立; 当0a <时,开口向下,对称轴104x a=<,过点()0,1-,不成立; 当0a >时,开口向上,对称轴104x a=>,过点()0,1-,必有一个根为正, 所以,0a >. 【点睛】本题主要考查了函数值域的求解,以及函数的零点问题的应用,其中解答中合理转化为二次函数,利用二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,属于基础题.12.(1)()y f x =的图象是中心对称图形,对称中心为:()0,b ;(2)当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【解析】 【分析】(1)设()()h x f x b =-,通过奇偶性的定义可求得()h x 为奇函数,关于原点对称,从而可得()f x 的对称中心,得到结论;(2)()()0y f x g x =-=,可知0x =为一个解,从而将问题转化为222b x a =-解的个数的讨论,即22222a b x a b b+=+=的解的个数;根据b 的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果. 【详解】(1) 设()()11h x f x b x a x a=-=+-+ ()h x ∴定义域为:{}x x a ≠± ()()1111h x h x x a a x x a x a ⎛⎫-=+=-+=- ⎪---+-⎝⎭()h x ∴为奇函数,图象关于()0,0对称()y f x ∴=的图象是中心对称图形,对称中心为:()0,b (2)令()()110y f x g x bx x a x a=-=+-=-+()()20x b x a x a ⎡⎤∴-=⎢⎥-+⎢⎥⎣⎦,可知0x =为其中一个解,即0x =为一个零点 只需讨论222b x a =-的解的个数即可 ①当0b =时,222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 ②当0b >时 ,2220x a b =+>x ∴=222b x a =-的解 ()()y f x g x ∴=-有x =0x =共3个零点 ③当0b <时,22222a bx a b b+=+=(i )若220a b +<,即22b a <-时,220a bb+>x ∴=222b x a =-的解 ()()y f x g x ∴=-有x =0x =共3个零点 (ii )若220a b +=,即22b a =-时,222b x a =-的解为:0x = ()()y f x g x ∴=-有且仅有0x =一个零点(iii )若220a b +>,即220b a -<<时,220a bb+<,方程222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 综上所述:当0b >或22b a <-时,有3个零点;当220b a -≤≤时,有1个零点 【点睛】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程222b x a=-根的个数的讨论,从而根据b 的不同范围得到方程根的个数,进而得到零点个数,属于较难题.13.(1)12;(2)不是,理由见解析;(3)证明见解析. 【解析】 【详解】试题分析:(1)不妨设12x x >,则12k ≥恒成立.211114,42x x ≤≤≤∴<<,从而可得结果;(2)令1211,24x x ==,则()221111log log 1212424f f ⎛⎫⎛⎫-=-=---= ⎪ ⎪⎝⎭⎝⎭,从而可得函数()2log f x x =不是“2-利普希兹条件函数”; (3)设()f x 的最大值为M ,最小值为m ,在一个周期[]0,2,内()(),f a M f b m ==,利用基本不等式的性质可证明()()()()12221f x f x M m f a f b a b -≤-=-+≤--<.试题解析:(1)若函数f (x )=,(1≤x≤4)是“k ﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f (x1)﹣f (x2)|≤k|x1﹣x2|成立, 不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k 的最小值为 .(2)f (x )=log2x 的定义域为(0,+∞), 令x1=,x2=,则f ()﹣f ()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f (x1)﹣f (x2)>2|x1﹣x2|, ∴函数f (x )=log2x 不是“2﹣利普希兹条件函数”.(3)设f (x )的最大值为M ,最小值为m ,在一个周期[0,2]内f (a )=M ,f (b )=m , 则|f (x1)﹣f (x2)|≤M ﹣m=f (a )﹣f (b )≤|a ﹣b|. 若|a ﹣b|≤1,显然有|f (x1)﹣f (x2)|≤|a ﹣b|≤1. 若|a ﹣b|>1,不妨设a >b ,则0<b+2﹣a <1,∴|f (x1)﹣f (x2)|≤M ﹣m=f (a )﹣f (b+2)≤|a ﹣b ﹣2|<1. 综上,|f (x1)﹣f (x2)|≤1.14.(1)函数()sin()3f x x π=+是“M 类函数”;(2)54-;(3)[1,1)-.【解析】 【详解】试题分析:(1) 由()()f x f x -=-,得sin()sin()33x x ππ-+=-+整理可得02x R π=∈满足00()()f x f x -=-(2) 由题存在实数0[1,1]x ∈-满足00()()f x f x -=-,即方程2220x x m -++=在[1,1]-上有解.令12[,2]2xt =∈分离参数可得11()2m t t =-+,设11()()2g t t t =-+求值域,可得m 取最小值54-(3) 由题即存在实数0x ,满足00()()f x f x -=-,分02x ≥,022x -<<,02x ≤-三种情况讨论可得实数m 的取值范围.试题解析:(1)由()()f x f x -=-,得:sin()sin()33x x ππ-+=-+0x = 所以存在02x R π=∈满足00()()f x f x -=-所以函数()sin()3f x x π=+是“M 类函数”,(2)因为()2x f x m =+是定义在[1,1]-上的“M 类函数”, 所以存在实数0[1,1]x ∈-满足00()()f x f x -=-, 即方程2220x x m -++=在[1,1]-上有解. 令12[,2]2xt =∈则11()2m t t =-+,因为11()()2g t t t =-+在1[,1]2上递增,在[1,2]上递减所以当12t =或2t =时,m 取最小值54-(3)由220x mx ->对2x ≥恒成立,得1m <因为若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”所以存在实数0x ,满足00()()f x f x -=-①当02x ≥时,02x -≤-,所以22003log (2)x mx -=--,所以00142m x x =- 因为函数142y x x=-(2x ≥)是增函数,所以1m ≥- ②当022x -<<时,022x -<-<,所以33-=,矛盾③当02x ≤-时,02x -≥,所以2200log (2)3x mx +=,所以00142m x x =-+因为函数142y x x=-+(2)x ≤-是减函数,所以1m ≥-综上所述,实数m 的取值范围是[1,1)-点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解.15.(1)()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数;证明见解析 (2)25log 63n ≥- 【解析】 【详解】试题分析:(1)利用奇偶性,确定函数的解析式,然后利用函数单调性的定义,判断函数的单调性;(2)利用函数的单调性,结合不等式恒成立问题,求解参数的取值范围.试题解析:(1)由条件可得()()0f x f x -+=,即 2211log log 02121mx mx x x -+⎛⎫⎛⎫+= ⎪ ⎪---⎝⎭⎝⎭化简得222114m x x -=-,从而得2m =±;由题意2m =-舍去,所以2m =即()212log 21x f x x x +⎛⎫=- ⎪-⎝⎭, ()1,2f x x ∞⎛⎫∈+ ⎪⎝⎭在上为单调减函数, 证明如下:设1212x x <<<+∞, 则()()12f x f x -=122122121212log log 2121x x x x x x ⎛⎫⎛⎫++--+ ⎪ ⎪--⎝⎭⎝⎭因为1212x x <<<+∞,所以210x x ->,12210,210x x ->->; 所以可得1212122112112x x x x +-⋅>-+,所以()()120f x f x ->,即()()12f x f x >; 所以函数()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数, (2)设()()2x g x f x =- ,由(1)得()f x 在1,2x ∞⎛⎫∈+ ⎪⎝⎭上为单调减函数, 所以()()2x g x f x =-在[]2,5上单调递减;所以()()2x g x f x =-在[]2,5上的最大值为()252log 63g n =≥-. 由题意知()n g x ≥在[]2,5上的最大值,所以25log 63n ≥-.。

综合题高一数学函数经典习题及答案

综合题高一数学函数经典习题及答案

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼y =⑽4y =⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236xy x -=+的递减区间是;函数y =的递减区间是五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数试题及答案

高一数学函数试题及答案

4.二次函数的图象经过三点 A(1 , 3), B(1,3),C(2,3) ,则这个二次函数的 24
解析式为

5.已知函数
f
(x)

x2
1
(x 0) ,若 f (x) 10 ,则 x

2x (x 0)
三、解答题
1.求函数 y x 1 2x 的值域。 2.利用判别式方法求函数 y 2x2 2x 3 的值域。
A.1 B. 0
C. 0 或1
D.1或 2
3.已知集合 A 1, 2,3, k, B 4,7, a4, a2 3a ,且 a N*, x A, y B
使 B 中元素 y 3x 1 和 A 中的元素 x 对应,则 a, k 的值分别为( )
A. 2,3 B. 3, 4 C. 3,5 D. 2,5
函数及其表示[提高训练 C 组]
一、选择题
1.若集合 S y | y 3x 2, x R,T y | y x2 1, x R ,
则 S T 是( )
A. S
B. T
C.
D.有限集
2.已知函数 y f (x) 的图象关于直线 x 1对称,且当 x (0,) 时,

x2
,
0 x
0
的图象是抛物线,
其中正确的命题个数是____________。
三、解答题
1.判断一次函数 y kx b, 反比例函数 y k ,二次函数 y ax2 bx c 的 x
单调性。
2.已知函数 f (x) 的定义域为 1,1 ,且同时满足下列条件:(1) f (x) 是奇函数;
二、填空题
1.函数 f (x) (a 2)x2 2(a 2)x 4 的定义域为 R ,值域为 ,0 ,

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。

解:·=a·(-a)=-(-a)=-(-a).2.在f1(x)=x,f2(x)=x2,f3(x)=2x,f4(x)=log x四个函数中,x1>x2>1时,能使[f(x1)+f(x2)]<f()成立的函数是A.f1(x)=x B.f2(x)=x2C.f3(x)=2x D.f4(x)=log x【答案】A【解析】主要考查基本初等函数的图象和性质。

由图形可直观得到:只有f1(x)=x为“上凸”的函数.3.甲、乙两人解关于的方程:甲写错了常数b,得到根为,乙写错了常数c,得到根为.求方程的真正根。

【答案】4或8【解析】主要考查对数方程解法。

解:原方程可变形为:4.已知,若,则的值是()A.B.或C.,或D.【答案】D【解析】该分段函数的三段各自的值域为,而∴∴;5.·等于A.-B.-C.D.【答案】A【解析】主要考查根式的运算、根式与分数指数幂的关系。

解:·=a·(-a)=-(-a)=-(-a).6.若方程有解,则a的取值范围是()A.a>0或a≤-8B.a>0C.D.【答案】D【解析】主要考查解指数方程的换元法,一元二次方程根的分布讨论。

解答过程中巧妙地转化为求函数的值域。

解:方程有解,等价于求的值域∵∴,则a的取值范围为,故选D。

7.函数(1),(2) ,(3) ,(4) 中在上为增函数的有[ ]A.(1)和(2)B.(2)和(3)C.(3)和(4)D.(1)和(4)【答案】C【解析】主要考查函数单调性的概念及函数单调性判定方法。

解:当时为减函数。

为④两函数在(-∞,0)上是增函数.8.如果函数在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥-3B.a≤-3C.a≤5D.a≥3【答案】B【解析】主要考查函数单调性的概念及二次函数单调区间判定方法。

高一数学函数试题答案及解析

高一数学函数试题答案及解析

高一数学函数试题答案及解析1.函数在上的单调性为()A.减函数B.增函数.C.先增后减.D.先减后增【答案】B【解析】主要考查函数单调性的概念及函数单调性判定方法。

由定义法或利用结论x的系数为正,一次函数是增函数,故选B。

2.函数的单调增区间为()A.B.C.D.【答案】A【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

函数图象开口向下,对称轴x=0,所以函数的单调增区间为,选A。

3.函数,当时是增函数,当时是减函数,则等于()A.-3B.13C.7D.由m而定的常数【答案】B【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

解:因为函数,当时是增函数,当时是减函数,所以函数对称轴为=-2,=-8,所以=13,故选B。

4.函数的定义域是[-2,0],则f(x)的单调递减区间是____.【答案】[-1,1].【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

解:令t=x+1,∵-2≤x≤0,∴-1≤t≤1,∴f(t)=(t-1)2-2(t-1)+1=t2-4t+4,即f(x)=x2-4x+4=(x-2)2在区间[-1,1]上是减函数.5.如果函数在区间上是增函数,那么的取值范围是__________________.【答案】;【解析】主要考查函数单调性的概念及二次函数单调性判定方法。

解:因为函数在区间上是增函数,函数图象开口向上,所以在对称轴的右侧,即,解得,从而11。

6.函数的奇偶性是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数【答案】C【解析】主要考查函数奇偶性的概念与判定方法。

由于定义域不关于原点对称,所以函数是非奇非偶函数。

故选C。

7.已知是定义在R上的奇函数,且为周期函数,若它的最小正周期为T,则A.0B.C.D.【答案】A【解析】主要考查函数奇偶性的概念、性质及周期函数的概念。

由已知,所以,即,0.故选A。

8.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则A.f(sin)<f(cos)B.f(sin1)>f(cos1)C.f(cos)<f(sin)D.f(cos2)>f(sin2)【答案】D【解析】主要考查函数奇偶性的概念、性质及函数单调性判定方法。

高一数学函数与方程练习题及答案

高一数学函数与方程练习题及答案

高一数学函数与方程练习题及答案1. 题目:已知函数f(x) = 2x - 3,求f(4)的值。

解答:将x = 4代入函数f(x),得到f(4) = 2(4) - 3 = 8 - 3 = 5。

答案:f(4) = 5。

2. 题目:已知函数g(x) = x^2 - 4x + 3,求g(2)的值。

解答:将x = 2代入函数g(x),得到g(2) = (2)^2 - 4(2) + 3 = 4 - 8 + 3 = -1。

答案:g(2) = -1。

3. 题目:已知函数h(x) = 3x + 2,求满足h(x) = 10的x的值。

解答:将h(x) = 10转化为方程3x + 2 = 10,然后解方程得到x = (10 - 2) / 3 = 8 / 3。

答案:x = 8 / 3。

4. 题目:已知函数k(x) = x^2 - 6x + 8,求满足k(x) = 0的x的值。

解答:将k(x) = 0转化为方程x^2 - 6x + 8 = 0,然后解方程得到x = 2 或 x = 4。

答案:x = 2或 x = 4。

5. 题目:已知函数m(x) = 2x^2 - 3x + 1,求m(3)的值。

解答:将x = 3代入函数m(x),得到m(3) = 2(3)^2 - 3(3) + 1 = 18 - 9 + 1 = 10。

答案:m(3) = 10。

通过以上练习题的解答,我们巩固了高一数学中关于函数与方程的知识。

在解题过程中,我们学会了如何代入特定的x值来求函数的值,以及如何解方程来求满足特定条件的x值。

这些知识将在数学学习中起到重要的作用,为我们解决实际问题提供了基础。

通过不断的练习和实践,我们将更加熟练地运用这些知识。

高一数学函数经典题目及答案

高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f 2函数值域的特殊求法例1.求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

完整版高一函数大题训练附答案解析

完整版高一函数大题训练附答案解析

完整版高一函数大题训练附答案解析一、解答题1.已知a R ∈,当0x >时,()21log f x a x ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若函数()f x 过点()1,1,求此时函数()f x 的解析式; (Ⅱ)若函数()()22log g x f x x =+只有一个零点,求实数a 的值;(Ⅲ)设0a >,若对任意实数1,13t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在[],1t t +上的最大值与最小值的差不大于1,求实数a 的取值范围. 2.已知偶函数满足:当时,,当时,.(1)求当时,的表达式; (2)试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.3.已知有穷数列{}n a 、{}n b (1,2,,n k =⋅⋅⋅),函数1122()||||||k k f x a x b a x b a x b =-+-+⋅⋅⋅+-.(1)如果{}n a 是常数列,1n a =,n b n =,3k =,在直角坐标系中在画出函数()f x 的图象,据此写出该函数的单调区间和最小值,无需证明;(2)当n n a n b ==,7k m =(m ∈*N )时,判断函数()f x 在区间[5,51]m m +上的单调性,并说明理由;(3)当n a n =,1n b n=,100=k 时,求该函数的最小值. 4.已知函数()ln ()f x x ax a R =-∈有两个不同的零点. (1)求a 的取值范围;(2)记两个零点分别为12,x x ,且12x x <,已知0λ>,若不等式121ln ln x x λλ+<+恒成立,求λ的取值范围.5.已知函数()()21f x x x a x R =--+∈. (1)当1a =时,求函数()y f x =的零点.(2)当30,2a ⎛⎫∈ ⎪⎝⎭,求函数()y f x =在[]1,2x ∈上的最大值;(3)对于给定的正数a ,有一个最大的正数()T a ,使()0,x T a ∈⎡⎤⎣⎦时,都有()1f x ≤,试求出这个正数()T a 的表达式.6.已知2()2(1)3()=-++∈f ax x a x R a .(1)若函数()f x 在3[,3]2单调递减,求实数a 的取值范围;(2)令()()1=-f x h x x ,若存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立,求实数a 的取值范围.7.已知函数()2x f x =,2()log g x x =. (1)若0x 是方程3()2f x x =-的根,证明02x 是方程3()2g x x =-的根; (2)设方程5(1)2f x x -=-,5(1)2g x x -=-的根分别是1x ,2x ,求12x x +的值. 8.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足: ①()f x 在[],m n 内是单调函数:②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()2112f x a a x=+-(,0a R a ∈≠)是区间[],m n 上的“保值函数”,求a 的取值范围;(3)对(2)中函数()f x ,若不等式()22a f x x ≤对1≥x 恒成立,求实数a 的取值范围.9.已知函数()y f x =,x D ∈,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有()()f x T mf x +>成立,则称函数()f x 是D 上的m 级类增周期函数,周期为T ,若恒有()()f x T mf x +=成立,则称函数()f x 是D 上的m 级类周期函数,周期为T .(1)已知函数2()f x x ax =-+是[3,)+∞上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知1T =,()y f x =是[0,)+∞上m 级类周期函数,且()y f x =是[0,)+∞上的单调递增函数,当[0,1)x ∈时,()2x f x =,求实数m 的取值范围;(3)是否存在实数k ,使函数()cos f x kx =是R 上的周期为T 的T 级类周期函数,若存在,求出实数k 和T 的值,若不存在,说明理由.10.已知函数()242 1.x xf x a =⋅--(1)当1a =时,求函数()f x 在[]3,0x ∈-的值域; (2)若()f x 存在零点,求a 的取值范围. 11.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况.12.已知定义在R 上的偶函数()f x 和奇函数()g x ,且()()xf xg x e +=.(1)求函数()f x ,()g x 的解析式;(2)设函数()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭,记()1231n H n F F F F n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()*,2n N n ∈≥.探究是否存在正整数()2n n ≥,使得对任意的(]0,1x ∈,不等式()()()2g x H n g x >⋅恒成立?若存在,求出所有满足条件的正整数n 的值;若不存在,请说明理由.13.对于函数f (x ),若f (x 0)=x 0,则称x 0为f (x )的“不动点”;若f [f (x 0)]=x 0,则称x 0为f (x )的“稳定点”满足函数f (x )的“不动点”和“稳定点”的集合分别记为A 和B ,即A ={x |f (x )=x },B ={x |f [f (x )]=x }. (Ⅰ)设f (x )=x 2-2,求集合A 和B ; (Ⅱ)若f (x )=x 2-a ,且满足∅A =B ,求实数a 的取值范围.14.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x 使得()()()0011f x f x f +=+成立.(1)函数()21f x x=+是否属于集合M ?请说明理由; (2)函数()2ln1af x x =∈+M ,求a 的取值范围; (3)设函数()23x f x x =+,证明:函数()f x ∈M .15.记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数. (1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2xg x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.【参考答案】一、解答题1.(Ⅰ)()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭;(Ⅱ)0a =或14-;(Ⅲ)3[,)2+∞【解析】 【详解】试题分析:(Ⅰ)将点()1,1 代入可得函数的解析式;(Ⅱ)函数有一个零点,即()22log 0f x x += ,根据对数运算后可得210ax x +-= ,将问题转化为方程有一个实根,分0a = 和0,0a ≠∆= 两种情况,得到a 值,最后再代入验证函数的定义域;(Ⅲ)首先根据单调性的定义证明函数的单调性,再根据函数的最大值减最小值()()11f t f t -+≤ 整理为()2110at a t ++-≥ ,对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,0a > 时,区间为函数的单调递增区间,所以只需最小值大于等于0,求解a 的取值范围. 试题解析:(Ⅰ)函数()21log f x a x ⎛⎫=+ ⎪⎝⎭过点()1,1,()()21log 11f a ∴=+=, 1a ∴=,∴此时函数()21log 1(0)f x x x ⎛⎫=+> ⎪⎝⎭(Ⅱ)由()22log 0f x x +=得221log 2log 0a x x ⎛⎫+== ⎪⎝⎭,211a x x ⎛⎫∴+⋅= ⎪⎝⎭化为210ax x +-=, 当0a =时,可得1x =,经过验证满足函数()g x 只有一个零点;当0a ≠时,令140a ∆=+=解得14a =-,可得2x =,经过验证满足函数()g x 只有一个零点, 综上可得:0a =或14-.(Ⅲ)任取()12,0,x x ∈+∞且12x x <,则210x x x ∆=->,()()11221222212121211221211221211log log log ,0,0,0,01,x ax x y f x f x a a x x x ax x x x a x ax x x ax x x ax x x ax x ⎛⎫⎛⎫+∆=-=+-+= ⎪ ⎪+⎝⎭⎝⎭<∴<+<++∴<<+1122212log 0x ax x x ax x +∴<+,即0y ∆<,()f x ∴在()0,+∞上单调递减.∴函数()f x 在区间[],1t t +上的最大值与最小值分别为()(),1f t f t +, ()()22111log log 11f t f t a a t t ⎛⎫⎛⎫∴-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭,整理得()2110at a t ++-≥对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,令()()211h t at a t =++-,0,a >∴函数()h t 在区间1,13⎡⎤⎢⎥⎣⎦上单调递增,103h ⎛⎫∴≥ ⎪⎝⎭,即11093a a ++-≥,解得32a ≥, 故实数a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.【点睛】本题以对数函数为载体,考查了函数的零点,单调性,最值,恒成立问题,以及转化与化归的能力,综合性比较高,最后一问转化为了二次函数的问题,所以需熟练掌握二次函数的恒成立问题.2.(1)()()(2)f x x a x =+--;(2)①23a <+时,34m =;②4a =时,1m =;③10473a +>时,23201216a a m -+=. 【解析】 【详解】(1)因为f(x)为偶函数,只需用-x 代替中的x 即可得到当时,的表达式; (2)零点,与交点有4个且均匀分布.所以,然后再分或24a <<或或四种情况讨论求出m 的值.解:(1)设则,又偶函数所以,………………………3分(2)零点,与交点有4个且均匀分布(Ⅰ)时, 得,所以时, …………………………5分 (Ⅱ)24a <<且时 , ,所以 时,……………………………7分(Ⅲ)时m=1时 符合题意………………… ……8分(IV )时,,,m此时所以 (舍) 且时,时存在 ………10分综上: ①时,②时,③时,符合题意 ………12分3.(1)图象见解析;递减区间(],2-∞,递增区间[)2,+∞,最小值()22f =;(2)单调递增;理由见解析;(3)292071. 【解析】(1)根据条件采用零点分段的方法作出函数()f x 的图象,根据图象确定出()f x 的单调区间和最小值;(2)写出()f x 的解析式,根据[]5,51x m m ∈+分析函数()f x 的结构,从而判断出()f x 的单调性;(3)先根据条件证明出()f x 的单调性然后即可求解出()f x 的最小值. 【详解】 (1)如图所示,由图象可知:单调递减区间(],2-∞,单调递增区间[)2,+∞,最小值()22f =; (2)因为()112233...77f x x x x m x m =⋅-+-+-++-且[]5,51x m m ∈+, 所以()()()()()()()()()()12233...555151...77f x x x x m x m m m x m m x =-+-+-++-+++-++-, 所以()()()()()()()()()222222155517212...55152 (72)2m m m m m f x x m x m m m +⋅++⋅=-+++-++++++ , 所以()()()()()()()222222222552425152...712 (52)m m m m f x x m m m m +--=++++++-+++,所以()()()()()()()2222222+35152...712 (52)m m f x x m m m m =++++++-+++且2302m m+>, 所以()f x 在[]5,51m m +上单调递增;(3)因为()12131...1001f x x x x x =-+-+-++-,显然当[)1,x ∈+∞时,()f x 单调递增,当(],0x ∈-∞时,()f x 单调递减, 设存在一个值()1*t N t ∈,使得10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,此时最小值即为1f t ⎛⎫⎪⎝⎭,下面证明1t存在:因为若要10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,则有12112100......t t t t t t t t t-+++++>+++,解得:71t ≥,且()1221100 (1111111)t t t t t t t t t t -++++<+++≠------,解得:171t -<, 所以7172t ≤<,所以71t =,所以存在1171t =满足条件,故假设成立,综上可知:()f x 在1,71⎛⎫-∞ ⎪⎝⎭上单调递减,在1+71⎛⎫∞ ⎪⎝⎭,上单调递增, ()()()()()()()min 1112170721731100171f x f x x x x x x ⎛⎫==-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+- ⎪⎝⎭292041971x =+=【点睛】本题考查数列与函数的综合应用,其中着重考查了函数单调性方面的内容,对学生的理解与分析能力要求较高,难度较难. 4.(1)10a e<<(2)1λ≥ 【解析】 【详解】试题分析:(Ⅰ)方程ln 0x ax -=在()0,+∞有两个不同跟等价于函数()ln xg x x=与函数y a =的图像在()0,+∞上有两个不同交点,对()g x 进行求导,通过单调性画出()g x 的草图,由()g x 与y a =有两个交点进而得出a 的取值范围; (Ⅱ)分离参数得:121a x x λλ+>+,从而可得()1122lnx a x x x =-恒成立;再令()12,0,1x t t x =∈,从而可得不等式()()11ln t t t λλ+-<+在()0,1t ∈上恒成立,再令()()()11ln t h t t t λλ+-=-+,从而利用导数化恒成立问题为最值问题即可.试题解析:(I )依题意,函数()f x 的定义域为()0,+∞, 所以方程ln 0x ax -=在()0,+∞有两个不同跟等价于函数()ln xg x x=与函数y a =的图像在()0,+∞上有两个不同交点.又()21ln xg x x-'=,即当0x e <<时,()0g x '>;当x e >时,()0g x '<, 所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减. 从而()()max 1g x g e e==. 又()g x 有且只有一个零点是1,且在0x →时,()g x →∞,在x →+∞时,()0g x →,所以()g x 的草图如下:可见,要想函数()ln x g x x =与函数y a =在图像()0,+∞上有两个不同交点,只需10a e<<. (Ⅱ)由(I )可知12,x x 分别为方程ln 0x ax -=的两个根,即11ln x ax =,22ln x ax =, 所以原式等价于()12121ax ax a x x λλλ+<+=+. 因为0λ>,120x x <<,所以原式等价于121a x x λλ+>+. 又由11ln x ax =,22ln x ax =作差得,()1122ln x a x x x =-,即1212ln x x a x x =-. 所以原式等价于121212ln1x x x x x x λλ+>-+. 因为120x x <<,原式恒成立,即()()1212121ln x x x x x x λλ+-<+恒成立. 令()12,0,1x t t x =∈,则不等式()()11ln t t t λλ+-<+在()0,1t ∈上恒成立. 令()()()11ln t h t t t λλ+-=-+,则()()()()()()222111t t h t t t t t λλλλ--+=-=++', 当21λ≥时,可见()0,1t ∈时,()0h t '>,所以()h t 在()0,1t ∈上单调递增,又()()10,0h h t =<在()0,1t ∈恒成立,符合题意;当21λ<时,可见当()20,t λ∈时,()0h t '>;当()2,1t λ∈时,()0h t '<, 所以()h t 在()20,t λ∈时单调递增,在()2,1t λ∈时单调递减.又()10h =,所以()h t 在()0,1t ∈上不能恒小于0,不符合题意,舍去.综上所述,若不等式121ln ln x x λλ+<+恒成立,只须21λ≥,又0λ>,所以1λ≥. 【点睛】本题考查了利用导数研究函数的极值,单调性,不等式恒成立问题,考查分类讨论思想,转化思想,考查学生灵活运用所学知识分析解决问题的能力,本题综合性较强,能力要求较高,属于难题,其中(2)问中对两根12,x x 的处理方法非常经典,将两个参数合并成一个参数t ,然后再构造函数,利用导函数进行分类讨论求解.5.(1)零点为11;(2)max12,0,21()1,1,2354,1,2a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()a a T a a a ⎧≥⎪=⎨+<<⎪⎩【解析】 【分析】(1)将1a =代入,令()0f x =,去掉绝对值直接求解即可得出零点;(2)依题意,最大值在()()()1,2,2f f f a 中取得,然后分类讨论即可得出答案; (3)问题可转化为在给定区间内()1f x ≥-恒成立,分211a -+≤-及211a -+>-讨论得出答案. 【详解】(1)当1a =时,()2221,22121,2x x x f x x x x x x ⎧-++≥=--+=⎨-+<⎩,令2210-++=x x,解得:1x =1舍); 令2210x x -+=,解得:1x =; ∴函数()y f x =的零点为11;(2)由题意得:()2221,221,2x ax x af x x ax x a ⎧-++≥=⎨-+<⎩,其中()()021f f a ==,30,2a ⎛⎫∈ ⎪⎝⎭,∴最大值在()()()1,2,2f f f a 中取. 当021a <≤,即102a <≤时,()f x 在[]1,2上单调递减,()()max 12f x f a ∴==; 当122a a <<<,即112a <<时,()f x 在[]1,2a 上单调递增,[]2,2a 上单调递减, ()()max 21f x f a ∴==;当122a a ≤<<,即12a ≤<时,()f x 在[]1,a 上单调递减,[],2a 上单调递增,()()(){}max max 1,2f x f f ∴=;()()()()122254230f f a a a -=---=-<,()()max 254f x f a ∴==-;综上所述:()max12,0211,12354,12a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()0,x ∈+∞时,0x -<,20x a -≥,()max 1f x ∴=,∴问题转化为在给定区间内()1f x ≥-恒成立.()21f a a =-+,分两种情况讨论:当211a -+≤-时,()T a 是方程2211x ax -+=-的较小根,即a ≥()T a a =当211a -+>-时,()T a 是方程2211x ax -++=-的较大根,即0a <<()T a a =;综上所述:()a a T a a a ⎧⎪=⎨<<⎪⎩ 【点睛】本题考查函数的最值及其几何意义,函数的零点与方程根的关系,属于难题. 6.(1)12a ≤(2)4([,).5∈-∞⋃+∞a 【解析】 【分析】(1)对a 讨论,0a =,0a >,0a <,结合二次函数的图象和单调性的性质,得到不等式组,解不等式即可得到a 的范围;(2)由题意可得在3[,3]2∈x 上,max min 1()()2+-≥a h x h x 成立, 1()(1)21ah x a x x -=-+--,令11[,2]2=-∈t x ,则11()2,[,2]2a g t a t t t -=⋅+-∈.对a 讨论,(i )当0a ≤时,(ii )当01a <<时,求出单调性和最值,即可得到a 的范围.【详解】(1)①当0a =时,()23f x x =-+,显然满足,②010123a a a a >⎧⎪⇒<<+⎨≥⎪⎩,③00132a a a a <⎧⎪⇒<+⎨≤⎪⎩, 综上实数a 的取值范围:12a ≤. (2)存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立即:在3[,3]2∈x 上,max min 1()()2+-≥a h x h x ,因为()1()(1)211-==-+---f x a h x a x x x ,令11[,2]2=-∈t x , 则11()2,[,2]2a g t a t t t -=⋅+-∈ (i )当0a ≤时,()g t 在1[,2]2t ∈上单调递减,所以max min 1()()2+-≥a g t g t ,等价于112()(2)227+-≥⇒≤a g g a ,所以0a ≤; (ii )当01a <<时,1()()2-=+-aa g t a t t ,()g t 在上单调递减,在)+∞上单调递增.①12≤时,即451a ≤<,()g t 在1[,2]2t ∈上单调递增.由max min 1()()2+-≥a g t g t 得到114(2)()225+-≥⇒≥a g g a ,所以451a ≤<.②2≥时,即105a <≤,()g t 在1[,2]2t ∈上单调递减,由max min 1()()2+-≥a g t g t 得到112()(2)227+-≥⇒≤a g g a ,所以105a <≤.③当122<<时,即1455a <<,min ()=g t g ,最大值则在(2)g 与1()2g 中取较大者,作差比较13(2)()322-=-g g a ,得到分类讨论标准:a .当1152<<a 时,13(2)()3022-=-<g g a ,此时max 1()()2=g t g ,由max min 1()()2+-≥a g t g t ,得到211()32409022a g g a a a +-≥⇒-+≥⇒≥或a ≤,所以15<≤ab .当1425≤<a 时,13(2)()3022-=->g g a ,此时max ()(2)=g t g ,由max min 1()()2+-≥a g t g t ,得到14(2)25+-≥⇒≥≥a g g a a ,此时无解,在此类讨论中,54(0,[,1).85-∈⋃a c .当1a ≥,()g t 在1[,2]2t ∈上单调递增,由max min 1()()2+-≥a g t g t ,得到114(2)()225+-≥⇒≥a g g a ,所以1a ≥,综合以上三大类情况,4([,).5∈-∞⋃+∞a 【点睛】本题考查函数的单调性的应用,考查存在性问题的解法,注意运用分类讨论的思想方法,以及转化思想,考查运算能力,属于难题.7.(1)证明见解析(2)72【解析】(1)因为0x 是方程3()2f x x =-的根,即00322x x =-,将02x 代入()g x 根据对数的运算性质可得.(2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x ,即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x ,令1t x =-,设方程322t t =-,23log 2t t =-的根分别为111t x =-,221t x =-,结合(1)的结论及函数的单调性可求. 【详解】解:(1)证明:因为0x 是方程3()2f x x =-的根, 所以00322xx =-,即00322x x =- ()0002032log 222x x x g x ===- 所以,02x 是方程3()2g x x =-的根. (2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x , 即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x , 令1t x =-设方程322tt =-,23log 2t t =-的根分别为111t x =-,221t x =-, 由(1)知1t 是方程322tt =-的根,则12t 是方程23log 2t t =-的根. 令23()log 2h t t t =+-,则12t 是()h t 的零点, 又因为()h t 是(0,)+∞上的增函数,所以,12t 是()h t 的唯一零点,即12t 是方程23log 2t t =-的唯一根. 所以122tt =,所以1121322tt t t +=+=,即()()123112x x -+-=,所以1237222x x +=+=【点睛】本题考查函数方程思想,函数的零点问题,属于难题. 8.(1)证明见详解;(2)32a <-或12a >;(3)112a <≤【解析】 【分析】(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知()f m m =,()f n n =,转化为,m n 是方程2112x a a x+-=的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题. 【详解】(1)函数()22g x x x =-在[]0,1x ∈时的值域为[]1,0-,不满足“保值函数”的定义, 因此函数()22g x x x =-不是定义域[]0,1上的“保值函数”.(2)因为函数()2112f x a a x=+-在[],m n 内是单调增函数, 因此()f m m =,()f n n =, 因此,m n 是方程2112x a a x+-=的两个不相等的实根, 等价于方程()222210a x a a x -++=有两个不相等的实根.由()222240a a a ∆=+->解得32a <-或12a >.(3)()2212a f x a a x=+-,()22a f x x ≤()22a f x x⇔≤⇔21222a a x x+--≤≤, 即为22122,122,a a x x a a x x ⎧+≤+⎪⎪⎨⎪+≥-⎪⎩对1≥x 恒成立.令()12h x x x=+,易证()h x 在[)1,+∞单调递增, 同理()12g x x x=-在[)1,+∞单调递减. 因此,()()min 13h x h ==,()()min 11g x g ==-.所以2223,21,a a a a ⎧+≤⎨+≥-⎩解得312a -≤≤.又32a <-或12a >,所以a 的取值范围是112a <≤. 【点睛】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.9.(1)1a <;(2)2m ≥;(3)当1T =时,2k n π=,n ∈Z ;当1T =-时,(21)k n π=+,n ∈Z .【解析】 【分析】(1)由题意f (x +1)>2f (x )整理可求得a <x ﹣121x --,令x ﹣1=t (t ≥2),由g (t )=t 2t-在[2,+∞)上单调递增,即可求得实数a 的取值范围;(2)由x ∈[0,1)时,f (x )=2x ,可求得当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,利用f (x )在[0,+∞)上单调递增,可得m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1),从而可求实数m 的取值范围;(3)f (x +T )=Tf (x )对一切实数x 恒成立,即cos k (x +T )=T cos kx 对一切实数恒成立,分当k =0时,T =1;当k ≠0时,要使cos k (x +T )=T cos kx 恒成立,只有T =±1,于是可得答案. 【详解】(1)由题意可知:f (x +1)>2f (x ),即﹣(x +1)2+a (x +1)>2(﹣x 2+ax )对一切[3,+∞)恒成立,整理得:(x ﹣1)a <x 2﹣2x ﹣1, ∵x ≥3,∴a ()22122111x x x x x ----==--<x ﹣121x --, 令x ﹣1=t ,则t ∈[2,+∞),g (t )=t 2t-在[2,+∞)上单调递增,∴g (t )min =g (2)=1, ∴a <1.(2)∵x ∈[0,1)时,f (x )=2x ,∴当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mf (x ﹣1)=m 2f (x ﹣2)=…=mnf (x ﹣n )=mn •2x ﹣n , 即x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,n ∈N *, ∵f (x )在[0,+∞)上单调递增,∴m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1), 即m ≥2.(3)由已知,有f (x +T )=Tf (x )对一切实数x 恒成立,即cos k (x +T )=T cos kx 对一切实数恒成立, 当k =0时,T =1; 当k ≠0时, ∵x ∈R ,∴kx ∈R ,kx +kT ∈R ,于是cos kx ∈[﹣1,1], 又∵cos (kx +kT )∈[﹣1,1],故要使cos k (x +T )=T cos kx 恒成立,只有T =±1, 当T =1时,cos (kx +k )=cos kx 得到 k =2n π,n ∈Z 且n ≠0; 当T =﹣1时,cos (kx ﹣k )=﹣cos kx 得到﹣k =2n π+π, 即k =(2n +1)π,n ∈Z ;综上可知:当T =1时,k =2n π,n ∈Z ; 当T =﹣1时,k =(2n +1)π,n ∈Z . 【点睛】本题考查周期函数,着重考查函数在一定条件下的恒成立问题,综合考查构造函数、分析转化、分类讨论的数学思想与方法,难度大,思维深刻,属于难题. 10.(1)9,08⎡⎤-⎢⎥⎣⎦;(2)0a >【解析】 【分析】(1)当1a =时,函数()()22221x x f x =--,转化为二次函数问题,利用二次函数的性质,即可求解;(2)由(1)转化为二次函数存在零点,利用二次函数的图象与性质,即可求解. 【详解】(1)当1a =时,()()224212221x x x x f x =⋅--=--, 令2x t =,[]3,0x ∈-,则1,18t ⎡⎤∈⎢⎥⎣⎦,故221921248y t t t ⎛⎫=--=-- ⎪⎝⎭,1,18t ⎡⎤∈⎢⎥⎣⎦,故值域为9,08⎡⎤-⎢⎥⎣⎦.(2)关于x 的方程()222210x x a --=有解,等价于方程2210ax x --=在()0,∞+上有解记()221g x ax x =--当0a =时,解为10x =-<,不成立; 当0a <时,开口向下,对称轴104x a=<,过点()0,1-,不成立; 当0a >时,开口向上,对称轴104x a=>,过点()0,1-,必有一个根为正, 所以,0a >.【点睛】本题主要考查了函数值域的求解,以及函数的零点问题的应用,其中解答中合理转化为二次函数,利用二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,属于基础题.11.(1)()y f x =的图象是中心对称图形,对称中心为:()0,b ;(2)当0b >或22b a <-时,有3个零点;当220b a-≤≤时,有1个零点 【解析】 【分析】(1)设()()h x f x b =-,通过奇偶性的定义可求得()h x 为奇函数,关于原点对称,从而可得()f x 的对称中心,得到结论;(2)()()0y f x g x =-=,可知0x =为一个解,从而将问题转化为222b x a =-解的个数的讨论,即22222a b x a b b+=+=的解的个数;根据b 的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果. 【详解】(1) 设()()11h x f x b x a x a=-=+-+ ()h x ∴定义域为:{}x x a ≠± ()()1111h x h x x a a x x a x a ⎛⎫-=+=-+=- ⎪---+-⎝⎭()h x ∴为奇函数,图象关于()0,0对称()y f x ∴=的图象是中心对称图形,对称中心为:()0,b (2)令()()110y f x g x bx x a x a=-=+-=-+ ()()20x b x a x a ⎡⎤∴-=⎢⎥-+⎢⎥⎣⎦,可知0x =为其中一个解,即0x =为一个零点 只需讨论222b x a=-的解的个数即可 ①当0b =时,222b x a=-无解 ()()y f x g x ∴=-有且仅有0x =一个零点②当0b >时 ,2220x a b =+> x ∴=222b x a =-的解()()y f x g x ∴=-有x =0x =共3个零点 ③当0b <时,22222a bx a b b+=+=(i )若220a b +<,即22b a <-时,220a bb+>x ∴=222b x a =-的解 ()()y f x g x ∴=-有x =0x =共3个零点 (ii )若220a b +=,即22b a =-时,222b x a =-的解为:0x = ()()y f x g x ∴=-有且仅有0x =一个零点(iii )若220a b +>,即220b a -<<时,220a bb+<,方程222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 综上所述:当0b >或22b a <-时,有3个零点;当220b a-≤≤时,有1个零点 【点睛】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程222b x a =-根的个数的讨论,从而根据b 的不同范围得到方程根的个数,进而得到零点个数,属于较难题. 12.(1)见解析;(2)2,3n = 【解析】 【分析】(1)已知()()x f x g x e +=,结合函数的奇偶性可得()()xf xg x e --=,解方程组即可得函数解析式;(2)由函数奇偶性的性质可知()()g x f x 为奇函数,图象关于()0,0对称,则()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭的图象关于点1,12⎛⎫⎪⎝⎭中心对称,利用对称性可得()H n ,然后利用恒成立问题解()()()2g x H n g x >⋅即可. 【详解】 (1)()()x f x g x e +=,()()x f x g x e --+-=函数()f x 为偶函数,()g x 为奇函数, ∴ ()()x f x g x e --=,()2x x e e f x -+∴=,()2x xe e g x --=. (2)易知()()g x f x 为奇函数,其函数图象关于()0,0中心对称,∴函数()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭的图象关于点1,12⎛⎫⎪⎝⎭中心对称, 即对任意的x R ∈,()()12F x F x -+=成立. ()12H n F F n n ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭ 31n F F n n -⎛⎫⎛⎫+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭,()12n n H n F F n n --⎛⎫⎛⎫∴=++ ⎪ ⎪⎝⎭⎝⎭ 31n F F n n -⎛⎫⎛⎫+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭.两式相加,得()112n H n F F n n ⎡⎤-⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2233n n F F F F n n n n ⎡⎤⎡⎤--⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦11n F F n n ⎡⎤-⎛⎫⎛⎫+⋅⋅⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.即()()221H n n =-.()1H n n ∴=-.()()()2g x H n g x ∴>⋅,即()()221x x x x e e n e e --->--.()()()10x x x xe e e e n --⎡⎤∴-+-->⎣⎦.(]0,1x ∈,0x x e e -∴-> 1x x e e n -∴++>恒成立.令x t e =,(]1,t e ∈.则11y t t =++在(]1,e 上单调递增.1x x y e e -∴=++在(]0,1上单调递增.3n ∴≤.又已知2n ≥,2,3n ∴=. 【点睛】本题考查由函数奇偶性求函数解析式,考查由函数的对称性求值问题,考查恒成立问题的解法,属于中档题.13.(Ⅰ)A ={-1,2};B-13}(Ⅱ)[-14,34]【解析】 【分析】(Ⅰ)由f (x )=x 得x 2-x -2=0,解得x =-1,x =2,故A ={-1,2};由f (f (x ))=x ,可得f (x 2-2)=x ,即(x 2-2)2-(x 2-2)-2=x ;求解x 可得集合B .(Ⅱ)理解A =B 时,它表示方程x 2-a =x 与方程(x 2-a )2-a =x 有相同的实根,根据这个分析得出关于a 的方程求出a 的值. 【详解】(Ⅰ)由f (x )=x 得x 2-x -2=0,解得x =-1,x =2,故A ={-1,2}; 由f (f (x ))=x ,可得f (x 2-2)=x ,即(x 2-2)2-(x 2-2)-2=x ; 即x 4-2x 3-6x 2+6x +9=0,即(x +1)(x -3)(x 2-3)=0,解得x =-1,x =3,xxB-13}; (Ⅱ)∵∅A =B ,∴x 2-a =x 有实根,即x 2-x -a =0有实根,则△=1+4a ≥0,解得a ≥-14由(x 2-a )2-a =x ,即x 4-2ax 2-x +a 2-a =0的左边有因式x 2-x -a , 从而有(x 2-x -a )(x 2+x -a +1)=0. ∵A =B ,∴x 2+x -a +1=0要么没有实根,要么实根是方程x 2-x -a =0的根. 若x 2+x -a +1=0没有实根,则a <34;若x 2+x -a +1=0有实根且实根是方程x 2-x -a =0的根, 由于两个方程的二次项系数相同,一次项系数不同, 故此时x 2+x -a +1=0有两个相等的根-12,此时a =34方程x 2-x -a =0可化为:方程x 2-x -34=0满足条件,故a 的取值范围是[-14,34].【点睛】本题考查对新概念的理解和运用的能力,同时考查了集合间的关系和方程根的相关知识,解题过程中体现了分类讨论的数学思想.14.(1)见解析;(2)[33a ∈+;(3)见解析 【解析】 【分析】(1)直接进行验证或用反证法求解;(2)由()2ln 1af x x =∈+M 得到方程()22lnlnln 1211aa ax x =++++在定义域内有解,然后转化成二次方程的问题求解;(3)验证函数()f x 满足()()()0011f x f x f +=+即可得到结论成立. 【详解】 (1)()21f x M x=+∉.理由如下: 假设()21f x M x=+∈, 则在定义域内存在0x ,使得()()()0011f x f x f +=+成立, 即00221131x x +=+++,整理得2003320x x ++=,∵方程2003320x x ++=无实数解,∴假设不成立,∴()21f x M x=+∉. (2)由题意得()2ln+1a f x M x =∈, ()22ln ln ln 1211a a a x x ∴=++++在定义域内有解, 即()222220a x ax a ---+=在实数集R 内有解,当2a =时,12x =-,满足题意; 当2a ≠时,由0∆≥,得2640a a -+≤,解得33a ≤2a ≠,综上33a ≤∴实数a 的取值范围为33⎡⎣.(3)证明:∵()23x f x x =+,∴()()()()()000212000003113134232x x x f x f x f x x x +⎛⎫+-+=++---=+- ⎪⎝⎭, 又函数3x y =的图象与函数32y x =-+的图象有交点, 设交点的横坐标为a ,则3302a a +-=, ∴003302x x +-=,其中0x a =, ∴ 存在0x 使得()()()0011f x f x f +=+成立,∴()f x M ∈.【点睛】本题以元素与集合的关系为载体考查函数与方程的知识,解题的关键是根据题意中集合元素的特征将问题进行转化,然后再结合方程或函数的相关知识进行求解,考查转化能力和处理解决问题的能力.15.(1) 是ψ函数(2)见解析(3) 函数()h x 为周期函数【解析】【详解】试题分析:()1求出()11f x x=-的定义域,()()f a x f a x b -++=对任意x a ≠±恒成立转化成()()2222b a x a +-=对任意x a ≠±恒成立,解出20b a =-=,,使得()11f x x=-为ψ函数()2只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,化简求得1b t=,2log a t =,满足条件()3图象关于直线x m =对称,结合()()h a x h a x b -++=,整体换元得()()()44h x m a b b h x h x ⎡⎤+-=--=⎣⎦,从而证明结论解析:(1)()11f x x =-是ψ函数 理由如下:()11f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立.由()()f a x f a x b -++=,得112b a x a x+-=-+,即()()2a x a x b a x a x ++-+=-+. 所以()()2222b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-=从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立.所以()11f x x=-是ψ函数. (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时, ()()g a x g a x b -++=恒成立,即1122a x a x b t t -++=++恒成立. 所以()()2222a x a x a x a x t t b t t +-+-+++=++, 化简得,()()()2212222a x a x a bt b t t +--+=+-. 所以10bt -=,()22220a b t t +-=. 因为0t ≠,可得1b t =,2log a t =, 即存在实数a ,b 满足条件,从而()12x g x t=+是ψ函数. (3)函数()h x 的图象关于直线x m =(m 为常数)对称,所以()()h m x h m x -=+ (1),又因为()()h a x h a x b -++= (2),所以当m a ≠时,()()222h x m a h m x m a ⎡⎤+-=++-⎣⎦由(1) ()()()22h m x m a h a x h a a x ⎡⎤⎡⎤=-+-=-=+-⎣⎦⎣⎦由(2) ()()b h a a x b h x ⎡⎤=---=-⎣⎦ (3)所以()()()44222222h x m a h x m a m a b h x m a ⎡⎤+-=+-+-=-+-⎣⎦(取22t x m a =+-由(3)得)再利用(3)式,()()()44h x m a b b h x h x ⎡⎤+-=--=⎣⎦.所以()f x 为周期函数,其一个周期为44m a -.当m a =时,即()()h a x h a x -=+,又()()h a x b h a x -=-+,所以()2b h a x +=为常数. 所以函数()h x 为常数函数, ()()12b h x h x +==,()h x 是一个周期函数. 综上,函数()h x 为周期函数点睛:本题主要考查知识点的是新定义函数,证明函数的特性,本题的解题关键是抓住新定义中的概念,可将问题迎刃而解.对于这类问题,我们要弄清问题的本质,在解题中适当的变形,已知条件的运用,函数周期性等的证明即可得证,本题有一定难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x) 例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式 例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f 2函数值域的特殊求法例1.求函数]2,1[x ,5x 2x y 2-∈+-=的值域。

例2. 求函数22x 1x x 1y +++=的值域。

例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。

例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y ③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(- (B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。

(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。

例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时 12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

解法一(换元法):令t=1+x 则x=t 2-1, t ≥1代入原式有1)1(2)1()(22-=-+-=t t t t f∴1)(2-=x x f (x ≥1)解法二(定义法):1)1(22-+=+x x x ∴1)1()1(2-+=+x x f 1+x ≥1∴1)(2-=x x f (x ≥1)4代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

解:设),(y x M 为)(x g y =上任一点,且),(y x M '''为),(y x M 关于点)3,2(-的对称点则⎪⎩⎪⎨⎧=+'-=+'3222y y x x ,解得:⎩⎨⎧-='--='y y x x 64 ,点),(y x M '''在)(x g y =上x x y '+'='∴2把⎩⎨⎧-='--='y y x x 64代入得:整理得672---=x x y∴67)(2---=x x x g例5构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

∵已知x x f x f 3)1()(2=+ ①,将①中x 换成x 1得x x f xf 3)()1(2=+ ②, ①×2-②得x x x f 36)(3-= ∴x x x f 12)(-=.值域求法例1 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]2. 判别式法例2. 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211故函数的值域为⎥⎦⎤⎢⎣⎡23,21当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例3求函数y=(x+1)/(x+2)的值域。

点拨:先求出原函数的反函数,再求出其定义域。

解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y -1),其定义域为y≠1的实数,故函数y 的值域为{y ∣y≠1,y ∈R }。

点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。

这种方法体现逆向思维的思想,是数学解题的重要方法之一。

练习:求函数y=(10x+10-x)/(10x -10-x)的值域。

(答案:函数的值域为{y ∣y<-1或y>1}5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。

例4. 求函数1e 1e y x x +-=的值域。

解:由原函数式可得:1y 1y e x -+= ∵0e x >∴01y 1y >-+解得:1y 1<<-故所求函数的值域为)1,1(-例1(定义域不同)(定义域不同) (定义域、值域都不同)例3解: (1)()()()6,f a b f a f b +=+- 令0a b ==,得(0)6f =令2,2a b ==-,得(2)0f =(2)证明:设12,x x 是R 上的任意两个实数,且12x x <,即210x x ->,从而有21()6f x x -<,则212111()()[()]()f x f x f x x x f x -=-+-2111()()6()f x x f x f x =-+--21()60f x x =--< ∴21()()f x f x <即()f x 是R 上的减函数(3)()()()6,f a b f a f b +=+-令1,1a b ==,得(1)3f =∵(2)(2)3f k f k -<- ∴(2)3(2)f k f k -+<,又(1)3f =,(2)0f =即有(2)(1)(2)(2)f k f f k f -+<+∴(2)(1)6(2)(2)6f k f f k f -+-<+-∴[(2)1][(2)2]f k f k -+<+又∵()f x 是R 上的减函数 ∴(2)1(2)2k k -+>+即3k <-(A)∴实数k 的取值范围是3k <-例4分析:假设存在,a b 使得(1)成立,得到a 与b 的关系后与22x y +≤14联立,然后讨论联立的不等式组.解:假设存在实数,a b ,使得A B ≠∅,(,)a b C ∈同时成立,则集合{(,)|,,A x y x n y an b n ===+∈Z }与集合2{(,)|,315,B x y x m y m m ===+∈Z }分别对应集合1{(,)|,A x y y ax b x ==+∈Z }与21{(,)|315,B x y y x x ==+∈Z },1A 与1B 对应的直线y ax b =+与抛物线2315y x =+至少有一个公共点,所以方程组2315y ax b y x =+⎧⎨=+⎩有解,即方程2315x ax b +=+必有解.因此212(15)a b ∆=--≥20a ⇒-≤12180b -,①又∵22a b +≤14 ②由①②相加,2b 得≤1236b -,即2(6)b -≤0.∴6b =.将6b =代入①得2a ≥108,再将6b =代入②得2a ≤108,因此a =±将a =±6b =代入方程2315x ax b +=+得2390x ±+=,解得x =Z .所以不存在实数,a b ,使得(1),(2)同时成立.证明题11解:设F (x )=()f x -121[()()]2f x f x +,则方程 ()f x =121[()()]2f x f x + ①与方程 F (x )=0 ② 等价∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x -F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠ ∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在.。

相关文档
最新文档