2015年高考数学中的新定义型试题例析
2015年全国统一高考数学试卷(理科)(新课标i)附详细解析
2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。
2015年福建省高考数学试题及答案(理科)【解析版】
图表型;算法和程序框图.
分析:
模拟执行程序框图,依次写出每次循环得到的i,S的值,当i=6时满足条件
i>5,退出循环,输出S的值为0.
解答:
解:模拟执行程序框图,可得
i=1,S=0
c兀•c
S=cos,i=2
2
jr
不满足条件i>5,S=cos——+cosn,i=3
2
jr<?jr
不满足条件i>5,S=cos +cosn+cos,i=4
••• |PF2|=9.
故选:B.
点评:
本题考查双曲线的标准方程,考查双曲线的定义,属于基础题.
4.(5分)(2015?福建)为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社 区5户家庭,得到如下统计数据表:
收入x(万兀)
8.2
8.6
10.0
11.3
11.9
支出y(万兀)
6.2
7.5
8.0
2 2
不满足条件i>5,S=cos1+cosn+cos+cos2n,i=5
22
不满足条件i>5,S=cos1+cosn+cos ' +cos2n+cos ' =0-1+0+1+0=0,i=6
222
满足条件i>5,退出循环,输出S的值为0,
故选:C.
点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的i,S的
偶函数.
B.f(-x)=|sin(-x)|=|sinx|=f(x),贝Uf(x)为偶函数.
C.y=cosx为偶函数.
高考数学新定义型试题赏析
高考数学新定义型试题赏析2015年全国高考数学新定义型试题异彩纷呈,主要体现在新定义的概念,引入新的符号和定义新的运算.这些题在全面考查学生的数学知识、方法及数学思想的基础上,还着力考查学生的创新研究能力与学习潜力等综合素质.本文对高考新定义型试题的三种题型进行解析,揭秘其解题策略.一、定义新的概念例1.(2015湖北,理6)已知符号函数sgnx=1,x>0,0,x=0,-1,x<0.f(x)是R上的增函数,g(x)=f(x)-f(ax)(a>1),则()A.sgn[g(x)]=sgnxB.sgn[g(x)]=-sgnxC.sgn[g(x)]=sgn[f(x)]D.sgn[g(x)]=-sgn[f (x)]解析:不妨令f(x)=x+1,a=2,则g(x)=f(x)-f(2x)=-x,则sgn[g(x)]=sgn(-x),排除A;sgn[f(x)]=sgn (x+1)是把x+1与0比较,排除C,D,故选B.赏析:此题选自高等数学中“符号函数”编拟适合高中生的试题,体现了高等数学与中学数学的和谐美.以高等数学知识为背景,定义一个新函数,要求学生深刻理解新函数的内涵及本质,并能合理迁移运用已学的知识加以解决.此类问题较好地考查了学生的知识迁移能力、转化能力,开发了学生探究性学习的潜能,是备受高考命题者青睐的题型,例如2009年湖南理科第8题,2008年湖南文科第15题.二、引入新的符号例2.(2015山东,文14)定义运算“?茚”:x?茚y=x,y∈R,xy≠0).当x>0,y>0时,x?茚y+(2y)?茚x的最小值为?摇?摇?摇?摇.解析:由已知定义可得x?茚y+(2y)?茚x=+=+,利用基本不等式可得x?茚y+(2y)?茚x的最小值为,当且仅当x=y时等号成立.赏析:在高考试题中引入新的符号,通过定义一种新的运算,考查学生的自学能力和探究能力,而这类题目给中学教师一种启发,就是在实际教学中要注意培养学生的独立思考能力及自主探索的能力.三、定义新的运算例3.(2015福建卷,理15)一个二元码是由和组成的数字串x,x…x(n∈N),其中x(k=1,2,…,n)称为第k位元码.二元码是通信中常用的码,但在通信过程中有时会发生元码错误(即元码由0变为1,或由1变为0).已知某种二元码xx…x的元码满足如下校验方程组: x?茌x?茌x?茌x=0,x?茌x?茌x?茌x=0,x?茌x?茌x?茌x=0其中运算定义为:0?茌0=0,0?茌1=1,1?茌0=1,1?茌1=0.现已知一个这种二元码在通信过程中仅在第k为发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于?摇?摇?摇?摇.解析:将代入校验方程组依次验证,发现x有误,即k=5.赏析:本题所定义的运算法则实质上是计算机中的二进制运算,引导学生关注生活,注重应用意识,掌握计算机知识已成为现代公民的基本素养,对于新运算应该紧扣新运算法则,通过推导判断,从而获得正确的结论.定义一种新的运算,运用新的运算法则展开计算,考查学生现学现用的能力,体现了高考命题指出的“由知识立意向能力立意过渡”的指导思想.2008陕西理科第12题,2011湖南理科第16题均涉及二进制.解题策略:首先要对新定义型试题进行信息提取,明确新定义的符号和名称;其次仔细品味新定义的概念,运算法则,对新定义型试题所提取出的信息进行加工,探求解决方法,必要时可寻找相近知识点,然后明确他们的共同点及不同点;最后对新定义型试题中提出的知识进行转换,有效的输出,其中对定义信息中的提取和化归转化是解此类题的关键,也是解题的难点.。
2015高考数学-玩转集合新定义问题
A. A N *, B N B. A x 1 x 3, B x x 8或0 x 10 C. A x 0 x 1, B R D. A Z , B Q
【2012 高考真题湖北理 7】定义在 ( , 0) (0, ) 上 的函数 f ( x ) ,如果对于任意给定的等比数列 {an } ,
破解秘籍:在原来基础知识之上,脱离原来知识的限制,要按新定义的规定做题
(2011 年高考四川卷理科 16) 函数 f ( x ) 的定义域为 A, 若 x1 , x2 A 且 f ( x1 ) f ( x2 ) 时总有 x1 x2 则称 f ( x ) 为单函数.例如,函数
f ( x ) 2 x 1( x R ) 是单函数.下列命题:
)
b0
bb
a
C.对任意的 R ,有 ( a) D. (a
b (a
2
b)
b)2 (ab)2 a b
2
(2009· 浙江理 10)对于正实数 ,记 M 为满足下述条件 的函数 f ( x ) 构成的集合: x1 , x2 R 且 x2 x1 ,有
( x2 x1 ) f ( x2 ) f ( x1 ) ( x2 x1 ) .下列结论
题型透析
题型特点
新颖、信息丰富、能较好地考查学生分析问题,解决问题的能力,有些同学遇 “新”而害怕,而新课程理念要求在掌握知识和技能之外,更加注重思维灵活性 和发散性及信息迁移能力的培养
答题瓶颈
考生答题瓶颈
破解技巧
题型题眼
给出现概念、新定义、新性质、新形式等
通性通法
新定义综合(数列新定义、函数新定义、集合新定义)(2015-2024)高考真题数学分项汇编全国通用
专题25新定义综合(数列新定义、函数新定义、集合新定义及其他新定义)考点十年考情(2015-2024)命题趋势考点1数列新定义(10年10考)2024·全国新Ⅰ卷、2024·北京卷、2023·北京卷2022·北京卷、2021·全国新Ⅱ卷、2021·北京卷2020·全国新Ⅱ卷、2020·北京卷2020·江苏卷2019·江苏卷、2018·江苏卷、2017·北京卷2017·江苏卷、2016·江苏卷、2016·北京卷2016·上海卷、2016·上海卷、2015·北京卷新高考数学新结构体系下,新定义类试题更综合性的考查学生的思维能力和推理能力;以问题为抓手,创新设问方式,搭建思维平台,引导考生思考,在思维过程中领悟数学方法。
题目更加注重综合性、应用性、创新性,本题分值最高,试题容量明显增大,对学科核心素养的考查也更深入。
压轴题命题打破了试题题型、命题方式、试卷结构的固有模式,增强试题的灵活性,采取多样的形式多角度的提问,考查学生的数学能力,新定义题型的特点是;通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移达到灵活解题的目的;遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义照章办事”逐条分析、验证、运算,使问题得以解决,难度较难,需重点特训。
考点2函数新定义(10年4考)2024·上海、2020·江苏、2018·江苏2015·湖北、2015·福建考点3集合新定义(10年3考)2020·浙江卷、2018·北京卷2015·山东卷、2015·浙江卷考点4其他新定义(10年2考)2020·北京卷、2016·四川卷考点01数列新定义一、小题1.(2021·全国新Ⅱ卷·高考真题)(多选)设正整数010112222k kk k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则()A .()()2n n ωω=B .()()231n n ωω+=+C .()()8543n n ωω+=+D .()21nnω-=2.(2020·全国新Ⅱ卷·高考真题)0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ∈= ,且存在正整数m ,使得(1,2,)i m i a a i +== 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i +== 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)m i i k i C k a a k m m +===-∑ 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k ≤=的序列是()A .11010B .11011C .10001D .11001二、大题1.(2024·全国新Ⅰ卷·高考真题)设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.2.(2024·北京·高考真题)已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω ,其中()(),,,1,2,,t t t t t T i j k w M t s =∈= ,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21s T T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.3.(2023·北京·高考真题)已知数列{}{},n n a b 的项数均为m (2)m >,且,{1,2,,},n n a b m ∈ {}{},n n a b 的前n项和分别为,n n A B ,并规定000A B ==.对于{}0,1,2,,k m ∈ ,定义{}max ,{0,1,2,,}k i k r iB A i m =≤∈∣ ,其中,max M 表示数集M 中最大的数.(1)若1231232,1,3,1,3,3a a a b b b ======,求0123,,,r r r r 的值;(2)若11a b ≥,且112,1,2,,1,j j j r r r j m +-≤+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q s t m ∈ ,满足,,p q s t >>使得t p s q A B A B +=+.4.(2022·北京·高考真题)已知12:,,,k Q a a a 为有穷整数数列.给定正整数m ,若对任意的{1,2,,}n m ∈ ,在Q 中存在12,,,,(0)i i i i j a a a a j +++≥ ,使得12i i i i j a a a a n +++++++= ,则称Q 为m -连续可表数列.(1)判断:2,1,4Q 是否为5-连续可表数列?是否为6-连续可表数列?说明理由;(2)若12:,,,k Q a a a 为8-连续可表数列,求证:k 的最小值为4;(3)若12:,,,k Q a a a 为20-连续可表数列,且1220k a a a +++< ,求证:7k ≥.5.(2021·北京·高考真题)设p 为实数.若无穷数列{}n a 满足如下三个性质,则称{}n a 为p ℜ数列:①10a p +≥,且20a p +=;②414,1,2,n n a a n -<=⋅⋅⋅();③{},1m n m n m n a a a p a a p +∈+++++,(),1,2,m n =⋅⋅⋅.(1)如果数列{}n a 的前4项为2,-2,-2,-1,那么{}n a 是否可能为2ℜ数列?说明理由;(2)若数列{}n a 是0ℜ数列,求5a ;(3)设数列{}n a 的前n 项和为n S .是否存在p ℜ数列{}n a ,使得10n S S ≥恒成立?如果存在,求出所有的p ;如果不存在,说明理由.6.(2020·北京·高考真题)已知{}n a 是无穷数列.给出两个性质:①对于{}n a 中任意两项,()i j a a i j >,在{}n a 中都存在一项m a ,使2i m ja a a =;②对于{}n a 中任意项(3)n a n ,在{}n a 中都存在两项,()k l a a k l >.使得2k n la a a =.(Ⅰ)若(1,2,)n a n n == ,判断数列{}n a 是否满足性质①,说明理由;(Ⅱ)若12(1,2,)n n a n -== ,判断数列{}n a 是否同时满足性质①和性质②,说明理由;(Ⅲ)若{}n a 是递增数列,且同时满足性质①和性质②,证明:{}n a 为等比数列.7.(2020·江苏·高考真题)已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为Sn .设λ与k 是常数,若对一切正整数n ,均有11111k k k n n n S S a λ++-=成立,则称此数列为“λ~k ”数列.(1)若等差数列{}n a 是“λ~1”数列,求λ的值;(2)若数列{}n a 是2”数列,且an >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ~3”数列,且an ≥0?若存在,求λ的取值范围;若不存在,说明理由,8.(2019·江苏·高考真题)定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值.9.(2018·江苏·高考真题)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).10.(2017·北京·高考真题)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(Ⅰ)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,n cM n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.11.(2017·江苏·高考真题)对于给定的正整数k ,若数列{an }满足a a a a a a a --+-++-++++++=1111......2n k n k n n n k n k nk 对任意正整数n(n>k)总成立,则称数列{an }是“P(k)数列”.(1)证明:等差数列{an }是“P(3)数列”;(2)若数列{an }既是“P(2)数列”,又是“P(3)数列”,证明:{an }是等差数列.12.(2016·江苏·高考真题)记{}1,2,,100U = .对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t = ,定义12k T t t t S a a a =+++ .例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .(1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,,T k ⊆ ,求证:1T k S a +<;(3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S ⋂+≥.13.(2016·北京·高考真题)设数列A :1a ,2a ,…N a (2N ≥).如果对小于n (2n N ≤≤)的每个正整数k 都有k a <n a ,则称n 是数列A 的一个“G 时刻”.记“()G A 是数列A 的所有“G 时刻”组成的集合.(1)对数列A :-2,2,-1,1,3,写出()G A 的所有元素;(2)证明:若数列A 中存在n a 使得n a >1a ,则()G A ≠∅;(3)证明:若数列A 满足n a -1n a -≤1(n=2,3,…,N ),则()G A 的元素个数不小于N a -1a .14.(2016·上海·高考真题)若无穷数列{}n a 满足:只要*(,)p q a a p q N =∈,必有11p q a a ++=,则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且12451,2,3,2a a a a ====,67821a a a ++=,求3a ;(2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ==,5181b c ==,n n n a b c =+判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知*1sin ()n n n a b a n N +=+∈.求证:“对任意{}1,n a a 都具有性质P ”的充要条件为“{}n b 是常数列”.15.(2016·上海·高考真题)对于无穷数列{n a }与{n b },记A={x |x =n a ,*N n ∈},B={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B = ,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由;(2)若n a =2n 且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式.16.(2015·北京·高考真题)已知数列{}n a 满足:*1a N ∈,136a ≤,且1218{23618n n n n n a a a a a +≤=->,,,()12n =⋯,,.记集合{}*|n M a n N =∈.(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数;(Ⅲ)求集合M 的元素个数的最大值.考点02函数新定义一、小题1.(2015·湖北·高考真题)已知符号函数1,0,sgn {0,0,1,0.x x x x >==-<()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-2.(2015·福建·高考真题)一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,{0,0,x x x x x x x x x x x x ⊕⊕⊕=⊕⊕⊕=⊕⊕⊕=其中运算⊕定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于.二、大题1.(2024·上海·高考真题)对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =-+-,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”.(1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”;(2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数()g x 在定义域R 上恒正,设点()()()11,M t f t g t --,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.2.(2020·江苏·高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()2222()f x x x g x x x D =+=-+=-∞+∞,,,,求h (x )的表达式;(2)若2()1()ln (),(0)f x x x g x k x h x kx k D =-+==-=+∞,,,,求k 的取值范围;(3)若()()()()422342248432(0f x x x g x x h x t t x t t t =-=-=--+<≤,,,[],D m n ⎡=⊆⎣,求证:n m -≤3.(2018·江苏·高考真题)记()(),f x g x ''分别为函数()(),f x g x 的导函数.若存在0x R ∈,满足()()00f x g x =且()()00f x g x ='',则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与()222g x x x =+-不存在“S 点”;(2)若函数()21f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数()2f x x a =-+,()xbe g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”,并说明理由.考点03集合新定义一、小题1.(2020·浙江·高考真题)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T ②对于任意x ,y ∈T ,若x <y ,则yx∈S ;下列命题正确的是()A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素2.(2015·山东·高考真题)集合M ,N ,S 都是非空集合,现规定如下运算:M N S = ()()(){|x x M N N S S M ∈⋂⋃⋂⋃⋂且}x M N S ∉⋂⋂.假设集合{}A x a x b =<<,{}B x c x d =<<,{}C x e x f =<<,其中实数a ,b ,c ,d ,e ,f 满足:(1)0ab <,0cd <;0ef <;(2)b a d c f e -=-=-;(3)b a d c f e +<+<+.计算A B C =.3.(2015·浙江·高考真题)设A ,B 是有限集,定义(,)()()d A B card A B card A B =⋃-⋂,其中card()A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“(,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,A .命题①和命题②都成立B .命题①和命题②都不成立C .命题①成立,命题②不成立D .命题①不成立,命题②成立4.(2015·湖北·高考真题)已知集合{}22(,)|1,,A x y x y x y Z =+≤∈,{}(,)|2,2,,B x y x y x y Z =≤≤∈,定义集合{}12121122(,)|(,),(,)A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30二、大题1.(2018·北京·高考真题)设n 为正整数,集合A =(){}12{|,,,,0,1,1,2,,}n k t t t t k n αα=∈= .对于集合A 中的任意元素()12,,,n x x x α= 和()12,,,n y y y β= ,记M (αβ,)=()()()1111222212n n n n x y x y x y x y x y x y ⎡⎤+--++--+++--⎣⎦ .(Ⅰ)当n =3时,若()1,1,0α=,()0,1,1β=,求M (,αα)和M (,αβ)的值;(Ⅱ)当n =4时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,M (αβ,)是奇数;当,αβ不同时,M (αβ,)是偶数.求集合B 中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,M (αβ,)=0.写出一个集合B ,使其元素个数最多,并说明理由.考点04其他新定义1.(2020·北京·高考真题)2020年3月14日是全球首个国际圆周率日(πDay ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是().A .30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B .30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C .60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭D .60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭2.(2016·四川·高考真题)在平面直角坐标系中,当(,)P x y 不是原点时,定义P 的“伴随点”为2222(,)y xP x y x y-++,当P 是原点时,定义“伴随点”为它自身,现有下列命题:①若点A 的“伴随点”是点A ',则点A '的“伴随点”是点A .②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.。
2015年湖南省高考数学试题及答案(理科)【解析版】
2015年湖南省高考数学试卷〔理科〕参考答案与试题解析一、选择题,共10小题,每题5分,共50分1.〔5分〕〔2015•湖南〕已知=1+i〔i为虚数单位〕,则复数z=〔〕A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法法则,求得z的值.解答:解:∵已知=1+i〔i为虚数单位〕,∴z===﹣1﹣i,故选:D.点评:此题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.〔5分〕〔2015•湖南〕设A、B是两个集合,则“A∩B=A”是“A⊆B”的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑.分析:直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.解答:解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.点评:此题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.〔5分〕〔2015•湖南〕执行如下列图的程序框图,如果输入n=3,则输出的S=〔〕A.B.C.D.考点:程序框图.分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环.解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B点评:此题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.〔5分〕〔2015•湖南〕假设变量x、y满足约束条件,则z=3x﹣y的最小值为〔〕A.﹣7 B.﹣1 C.1D.2考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C〔0,﹣1〕.由解得A〔﹣2,1〕,由,解得B〔1,1〕∴z=3x﹣y的最小值为3×〔﹣2〕﹣1=﹣7.故选:A.点评:此题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.〔5分〕〔2015•湖南〕设函数f〔x〕=ln〔1+x〕﹣ln〔1﹣x〕,则f〔x〕是〔〕A.奇函数,且在〔0,1〕上是增函数B.奇函数,且在〔0,1〕上是减函数C.偶函数,且在〔0,1〕上是增函数D.偶函数,且在〔0,1〕上是减函数考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.解答:解:函数f〔x〕=ln〔1+x〕﹣ln〔1﹣x〕,函数的定义域为〔﹣1,1〕,函数f〔﹣x〕=ln〔1﹣x〕﹣ln〔1+x〕=﹣[ln〔1+x〕﹣ln〔1﹣x〕]=﹣f〔x〕,所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f〔0〕=0;x=时,f〔〕=ln〔1+〕﹣ln〔1﹣〕=ln3>1,显然f〔0〕<f〔〕,函数是增函数,所以B错误,A正确.故选:A.点评:此题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.〔5分〕〔2015•湖南〕已知〔﹣〕5的展开式中含x的项的系数为30,则a=〔〕A.B.﹣C.6D.﹣6考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x 的指数为求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.点评:此题考查二项式定理的应用,此题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.〔5分〕〔2015•湖南〕在如下列图的正方形中随机投掷10000个点,则落入阴影部分〔曲线C为正态分布N〔0,1〕的密度曲线〕的点的个数的估计值为〔〕附“假设X﹣N=〔μ,a2〕,则P〔μ﹣σ<X≤μ+σ〕=0.6826.p〔μ﹣2σ<X≤μ+2σ〕=0.9544.A.2386 B.2718 C.3413 D.4772考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:求出P〔0<X≤1〕=×0.6826=0.3413,即可得出结论.解答:解:由题意P〔0<X≤1〕=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.点评:此题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.〔5分〕〔2015•湖南〕已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,假设点P的坐标为〔2,0〕,则||的最大值为〔〕A.6B.7C.8D.9考点:圆的切线方程.专题:计算题;直线与圆.分析:由题意,AC为直径,所以||=|2+|=|4+|.B为〔﹣1,0〕时,|4+|≤7,即可得出结论.解答:解:由题意,AC为直径,所以||=|2+|=|4+|.所以B为〔﹣1,0〕时,|4+|≤7.所以||的最大值为7.故选:B.点评:此题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.〔5分〕〔2015•湖南〕将函数f〔x〕=sin2x的图象向右平移φ〔0<φ<〕个单位后得到函数g〔x〕的图象.假设对满足|f〔x1〕﹣g〔x2〕|=2的x1、x2,有|x1﹣x2|min=,则φ=〔〕A.B.C.D.考点:函数y=Asin〔ωx+φ〕的图象变换.专题:三角函数的图像与性质.分析:利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.解答:解:因为将函数f〔x〕=sin2x的周期为π,函数的图象向右平移φ〔0<φ<〕个单位后得到函数g〔x〕的图象.假设对满足|f〔x1〕﹣g〔x2〕|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g〔x〕在x2=,取得最小值,sin〔2×﹣2φ〕=﹣1,此时φ=,不合题意,x1=,x2=,即g〔x〕在x2=,取得最大值,sin〔2×﹣2φ〕=1,此时φ=,满足题意.故选:D.点评:此题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.〔5分〕〔2015•湖南〕某工件的三视图如下列图.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为〔材料利用率=〕〔〕A.B.C.D.考点:简单空间图形的三视图.专题:创新题型;空间位置关系与距离;概率与统计.分析:根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=〔1﹣〕,0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.解答:解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=〔1﹣〕,0<x<2,∴长方体的体积Ω=2〔1﹣〕2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断〔0,〕单调递增,〔,2〕单调递减,Ω最大值=2〔1﹣〕2×=,∴原工件材料的利用率为=×=,故选:A点评:此题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每题5分,共25分11.〔5分〕〔2015•湖南〕〔x﹣1〕dx=0.考点:定积分.专题:导数的概念及应用.分析:求出被积函数的原函数,代入上限和下限求值.解答:解:〔x﹣1〕dx=〔﹣x〕|=0;故答案为:0.点评:此题考查了定积分的计算;关键是求出被积函数的原函数.12.〔5分〕〔2015•湖南〕在一次马拉松比赛中,35名运发动的成绩〔单位:分钟〕的茎叶图如下列图.假设将运发动成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运发动人数是4.考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.解答:解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运发动人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运发动应抽取7×=4〔人〕.故答案为:4.点评:此题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.〔5分〕〔2015•湖南〕设F是双曲线C:﹣=1的一个焦点.假设C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设F〔c,0〕,P〔m,n〕,〔m<0〕,设PF的中点为M〔0,b〕,即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.解答:解:设F〔c,0〕,P〔m,n〕,〔m<0〕,设PF的中点为M〔0,b〕,即有m=﹣c,n=2b,将点〔﹣c,2b〕代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.点评:此题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.〔5分〕〔2015•湖南〕设S n为等比数列{a n}的前n项和,假设a1=1,且3S1,2S2,S3成等差数列,则a n=3n﹣1.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:利用已知条件列出方程求出公比,然后求解等比数列的通项公式.解答:解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,假设a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4〔1+q〕=1+q+q2+3,q=3.∴a n=3n﹣1.故答案为:3n﹣1.点评:此题考查等差数列以及等比数列的应用,基本知识的考查.15.〔5分〕〔2015•湖南〕已知函数f〔x〕=假设存在实数b,使函数g〔x〕=f 〔x〕﹣b有两个零点,则a的取值范围是{a|a<0或a>1}.考点:函数的零点.专题:计算题;创新题型;函数的性质及应用.分析:由g〔x〕=f〔x〕﹣b有两个零点可得f〔x〕=b有两个零点,即y=f〔x〕与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围解答:解:∵g〔x〕=f〔x〕﹣b有两个零点,∴f〔x〕=b有两个零点,即y=f〔x〕与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f〔x〕的图象如下列图,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f〔x〕在定义域R上单调递增,故不符合题意③当0<a<1时,函数f〔x〕单调递增,故不符合题意④a=0时,f〔x〕单调递增,故不符合题意⑤当a<0时,函数y=f〔x〕的图象如下列图,此时存在b使得,y=f〔x〕与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}点评:此题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.〔6分〕〔2015•湖南〕如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:〔1〕∠MEN+∠NOM=180°〔2〕FE•FN=FM•FO.考点:相似三角形的判定.专题:选作题;推理和证明.分析:〔1〕证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°〔2〕证明△FEM∽△FON,即可证明FE•FN=FM•FO.解答:证明:〔1〕∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°〔2〕在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.点评:此题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.〔6分〕〔2015•湖南〕已知直线l:〔t为参数〕.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.〔1〕将曲线C的极坐标方程化为直坐标方程;〔2〕设点M的直角坐标为〔5,〕,直线l与曲线C的交点为A,B,求|MA|•|MB|的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:选作题;坐标系和参数方程.分析:〔1〕曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;〔2〕直线l的方程化为普通方程,利用切割线定理可得结论.解答:解:〔1〕∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为〔x﹣1〕2+y2=1;〔2〕直线l:〔t为参数〕,普通方程为,〔5,〕在直线l上,过点M作圆的切线,切点为T,则|MT|2=〔5﹣1〕2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.点评:此题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲18.〔2015•湖南〕设a>0,b>0,且a+b=+.证明:〔ⅰ〕a+b≥2;〔ⅱ〕a2+a<2与b2+b<2不可能同时成立.考点:不等式的证明.专题:不等式的解法及应用.分析:〔ⅰ〕由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;〔ⅱ〕运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b>0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.解答:证明:〔ⅰ〕由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;〔ⅱ〕假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.点评:此题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.19.〔2015•湖南〕设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.〔Ⅰ〕证明:B﹣A=;〔Ⅱ〕求sinA+sinC的取值范围.考点:正弦定理.专题:解三角形.分析:〔Ⅰ〕由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;〔Ⅱ〕由题意可得A∈〔0,〕,可得0<sinA<,化简可得sinA+sinC=﹣2〔sinA﹣〕2+,由二次函数区间的最值可得.解答:解:〔Ⅰ〕由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin〔+A〕又B为钝角,∴+A∈〔,π〕,∴B=+A,∴B﹣A=;〔Ⅱ〕由〔Ⅰ〕知C=π﹣〔A+B〕=π﹣〔A++A〕=﹣2A>0,∴A∈〔0,〕,∴sinA+sinC=sinA+sin〔﹣2A〕=sinA+cos2A=sinA+1﹣2sin2A=﹣2〔sinA﹣〕2+,∵A∈〔0,〕,∴0<sinA<,∴由二次函数可知<﹣2〔sinA﹣〕2+≤∴sinA+sinC的取值范围为〔,]点评:此题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.〔2015•湖南〕某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假设都是红球,则获一等奖,假设只有1个红球,则获二等奖;假设没有红球,则不获奖.〔1〕求顾客抽奖1次能获奖的概率;〔2〕假设某顾客有3次抽奖时机,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:〔1〕记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.〔2〕顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.解答:解:〔1〕记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P〔A1〕=,P〔A2〕=,所以,P〔B1〕=P〔A1〕P〔A2〕==,P〔B2〕=P〔〕+P〔〕=+==,故所求概率为:P〔C〕=P〔B1+B2〕=P〔B1〕+P〔B2〕=.〔2〕顾客抽奖1次可视为3次独立重复试验,由〔1〕可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P〔X=0〕==,P〔X=1〕==,P〔X=2〕==,P〔X=3〕==.故X的分布列为:X 0 1 2 3PE〔X〕=3×=.点评:期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.〔2015•湖南〕如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.〔1〕假设P是DD1的中点,证明:AB1⊥PQ;〔2〕假设PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角;空间向量及应用.分析:〔1〕首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q〔6,y1,0〕,只需求即可;〔2〕设P〔0,y2,z2〕,根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P〔0,y2,12﹣2y2〕.由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q〔6,y2,0〕,设平面PQD的法向量为,根据即可表示,平面AQD的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.解答:解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z轴,建立如下列图空间直角坐标系,则:A〔0,0,0〕,B〔6,0,0〕,D〔0,6,0〕,A1〔0,0,6〕,B1〔3,0,6〕,D1〔0,3,6〕;Q在棱BC上,设Q〔6,y1,0〕,0≤y1≤6;∴〔1〕证明:假设P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;〔2〕设P〔0,y2,z2〕,y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴〔0,y2﹣6,z2〕=λ〔0,﹣3,6〕;∴;∴z2=12﹣2y2;∴P〔0,y2,12﹣2y2〕;∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6〔y1﹣y2〕=0;∴y1=y2;∴Q〔6,y2,0〕;设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8〔舍去〕;∴P〔0,4,4〕;∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ=.点评:考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.〔13分〕〔2015•湖南〕已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1〔a>b>0〕的一个焦点.C1与C2的公共弦长为2.〔Ⅰ〕求C2的方程;〔Ⅱ〕过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.〔ⅰ〕假设|AC|=|BD|,求直线l的斜率;〔ⅱ〕设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:创新题型;圆锥曲线中的最值与范围问题.分析:〔Ⅰ〕根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;〔Ⅱ〕设出点的坐标,〔ⅰ〕根据向量的关系,得到〔x1+x2〕2﹣4x1x2=〔x3+x4〕2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;〔ⅱ〕根据导数的几何意义得到C1在点A处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.解答:解:〔Ⅰ〕抛物线C1:x2=4y的焦点F的坐标为〔0,1〕,因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为〔±,〕,所以=1,②,联立①②得a2=9,b2=8,故C2的方程为+=1.〔Ⅱ〕设A〔x1,y1〕,B〔x2,y2〕,C〔x3,y3〕,A〔x4,y4〕,〔ⅰ〕因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是〔x1+x2〕2﹣4x1x2=〔x3+x4〕2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得〔9+8k2〕x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16〔k2+1〕=+,即16〔k2+1〕=,所以〔9+8k2〕2=16×9,解得k=±.〔ⅱ〕由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1〔x﹣x1〕,即y=x1x﹣x12,令y=0,得x=x1,M〔x1,0〕,所以=〔x1,﹣1〕,而=〔x1,y1﹣1〕,于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.点评:此题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.23.〔13分〕〔2015•湖南〕已知a>0,函数f〔x〕=e ax sinx〔x∈[0,+∞]〕.记x n为f〔x〕的从小到大的第n〔n∈N*〕个极值点.证明:〔Ⅰ〕数列{f〔x n〕}是等比数列;〔Ⅱ〕假设a≥,则对一切n∈N*,x n<|f〔x n〕|恒成立.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:创新题型;导数的综合应用;等差数列与等比数列;不等式的解法及应用.分析:〔Ⅰ〕求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;〔Ⅱ〕由sinφ=,可得对一切n∈N*,x n<|f〔x n〕|恒成立.即为nπ﹣φ<e a〔nπ﹣φ〕恒成立⇔<,①设g〔t〕=〔t>0〕,求出导数,求得最小值,由恒成立思想即可得证.解答:证明:〔Ⅰ〕f′〔x〕=e ax〔asinx+cosx〕=•e ax sin〔x+φ〕,tanφ=,0<φ<,令f′〔x〕=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,假设〔2k+1〕π<x+φ<〔2k+2〕π,即〔2k+1〕π﹣φ<x<〔2k+2〕π﹣φ,则f′〔x〕<0,因此在〔〔m﹣1〕π,mπ﹣φ〕和〔mπ﹣φ,mπ〕上f′〔x〕符号总相反.于是当x=nπ﹣φ,n∈N*,f〔x〕取得极值,所以x n=nπ﹣φ,n∈N*,此时f〔x n〕=e a〔nπ﹣φ〕sin〔nπ﹣φ〕=〔﹣1〕n+1e a〔nπ﹣φ〕sinφ,易知f〔x n〕≠0,而==﹣e aπ是常数,故数列{f〔x n〕}是首项为f〔x1〕=e a〔π﹣φ〕sinφ,公比为﹣e aπ的等比数列;〔Ⅱ〕由sinφ=,可得对一切n∈N*,x n<|f〔x n〕|恒成立.即为nπ﹣φ<e a〔nπ﹣φ〕恒成立⇔<,①设g〔t〕=〔t>0〕,g′〔t〕=,当0<t<1时,g′〔t〕<0,g〔t〕递减,当t>1时,g′〔t〕>0,g〔t〕递增.t=1时,g〔t〕取得最小值,且为e.因此要使①恒成立,只需<g〔1〕=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g〔ax n〕>g〔1〕=e=,故①亦恒成立.综上可得,假设a≥,则对一切n∈N*,x n<|f〔x n〕|恒成立.点评:此题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.2015年湖南省高考数学试卷〔理科〕一、选择题,共10小题,每题5分,共50分1.〔5分〕〔2015•湖南〕已知=1+i〔i为虚数单位〕,则复数z=〔〕A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.〔5分〕〔2015•湖南〕设A、B是两个集合,则“A∩B=A”是“A⊆B”的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.〔5分〕〔2015•湖南〕执行如下列图的程序框图,如果输入n=3,则输出的S=〔〕A.B.C.D.4.〔5分〕〔2015•湖南〕假设变量x、y满足约束条件,则z=3x﹣y的最小值为〔〕A.﹣7 B.﹣1 C.1D.25.〔5分〕〔2015•湖南〕设函数f〔x〕=ln〔1+x〕﹣ln〔1﹣x〕,则f〔x〕是〔〕A.奇函数,且在〔0,1〕上是增函数 B.奇函数,且在〔0,1〕上是减函数C.偶函数,且在〔0,1〕上是增函数 D.偶函数,且在〔0,1〕上是减函数6.〔5分〕〔2015•湖南〕已知〔﹣〕5的展开式中含x的项的系数为30,则a=〔〕A.B.﹣C.6D.﹣67.〔5分〕〔2015•湖南〕在如下列图的正方形中随机投掷10000个点,则落入阴影部分〔曲线C为正态分布N〔0,1〕的密度曲线〕的点的个数的估计值为〔〕附“假设X﹣N=〔μ,a2〕,则P〔μ﹣σ<X≤μ+σ〕=0.6826.p〔μ﹣2σ<X≤μ+2σ〕=0.9544.A.2386 B.2718 C.3413 D.47728.〔5分〕〔2015•湖南〕已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,假设点P的坐标为〔2,0〕,则||的最大值为〔〕A.6B.7C.8D.99.〔5分〕〔2015•湖南〕将函数f〔x〕=sin2x的图象向右平移φ〔0<φ<〕个单位后得到函数g〔x〕的图象.假设对满足|f〔x1〕﹣g〔x2〕|=2的x1、x2,有|x1﹣x2|min=,则φ=〔〕A.B.C.D.10.〔5分〕〔2015•湖南〕某工件的三视图如下列图.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为〔材料利用率=〕〔〕A.B.C.D.二、填空题,共5小题,每题5分,共25分11.〔5分〕〔2015•湖南〕〔x﹣1〕dx=.12.〔5分〕〔2015•湖南〕在一次马拉松比赛中,35名运发动的成绩〔单位:分钟〕的茎叶图如下列图.假设将运发动成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运发动人数是.13.〔5分〕〔2015•湖南〕设F是双曲线C:﹣=1的一个焦点.假设C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.14.〔5分〕〔2015•湖南〕设S n为等比数列{a n}的前n项和,假设a1=1,且3S1,2S2,S3成等差数列,则a n=.15.〔5分〕〔2015•湖南〕已知函数f〔x〕=假设存在实数b,使函数g〔x〕=f 〔x〕﹣b有两个零点,则a的取值范围是.三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.〔6分〕〔2015•湖南〕如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:〔1〕∠MEN+∠NOM=180°〔2〕FE•FN=FM•FO.选修4-4:坐标系与方程17.〔6分〕〔2015•湖南〕已知直线l:〔t为参数〕.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.〔1〕将曲线C的极坐标方程化为直坐标方程;〔2〕设点M的直角坐标为〔5,〕,直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选修4-5:不等式选讲18.〔2015•湖南〕设a>0,b>0,且a+b=+.证明:〔ⅰ〕a+b≥2;〔ⅱ〕a2+a<2与b2+b<2不可能同时成立.19.〔2015•湖南〕设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.〔Ⅰ〕证明:B﹣A=;〔Ⅱ〕求sinA+sinC的取值范围.20.〔2015•湖南〕某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,假设都是红球,则获一等奖,假设只有1个红球,则获二等奖;假设没有红球,则不获奖.〔1〕求顾客抽奖1次能获奖的概率;〔2〕假设某顾客有3次抽奖时机,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.21.〔2015•湖南〕如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.〔1〕假设P是DD1的中点,证明:AB1⊥PQ;〔2〕假设PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.22.〔13分〕〔2015•湖南〕已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1〔a>b>0〕的一个焦点.C1与C2的公共弦长为2.〔Ⅰ〕求C2的方程;〔Ⅱ〕过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.〔ⅰ〕假设|AC|=|BD|,求直线l的斜率;〔ⅱ〕设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.23.〔13分〕〔2015•湖南〕已知a>0,函数f〔x〕=e ax sinx〔x∈[0,+∞]〕.记x n为f〔x〕的从小到大的第n〔n∈N*〕个极值点.证明:〔Ⅰ〕数列{f〔x n〕}是等比数列;〔Ⅱ〕假设a≥,则对一切n∈N*,x n<|f〔x n〕|恒成立.。
2015年高考数学(理)真题分项解析:专题14+推理与证明、新定义
专题十四 推理与证明、新定义1.【2015高考湖北,理9】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 【答案】C【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.【考点定位】1.集合的相关知识,2.新定义题型.【名师点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.2.【2015高考广东,理8】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3 【答案】C .【解析】显然正三角形和正四面体的顶点是两两距离相等的,即3n =或4n =时命题成立,由此可排除A 、B 、D ,故选C .【考点定位】空间想象能力,推理能力,含有量词命题真假的判断.【名师点睛】本题主要考查学生的空间想象能力,推理求解能力和含有量词命题真假的判断,此题属于中高档题,如果直接正面解答比较困难,考虑到是选择题及选项信息可以根据平时所积累的平面几何、空间几何知识进行排除则不难得出正确答案C ,由于3n =时易知正三角形的三个顶点是两两距离相等的从而可以排除A 、B ,又当4n =时易知正四面体的四个顶点也是两两距离相等的从而可以排除D .3.【2015高考浙江,理6】设A ,B 是有限集,定义(,)()()d A B card AB card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 【答案】A.【考点定位】集合的性质【名师点睛】本题是集合的阅读材料题,属于中档题,在解题过程中需首先理解材料中相关概念与已知的集合相关知识点的结合,即可知命题①正确,同时注重数形结合思想的运用,若用韦恩图表示三个集合A ,B ,C ,则可将问题等价转化为比较集合区域的大小,即可确定集合中元素个数大小的比较.4.【2015高考北京,理8】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 【答案】D【解析】“燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,选D.考点:本题考点定位为函数应用问题,考查学生对新定义“燃油效率”的理解和对函数图象的理解.【名师点睛】本题考查对新定义“燃油效率”的理解和读图能力,本题属于中等题,有能力要求,贴近学生生活,要求按照“燃油效率”的定义,汽车每消耗1升汽油行驶的里程,可以断定“燃油效率”高的车省油,相同的速度条件下,“燃油效率”高的汽车,每消耗1升汽油行驶的里程必然大,需要学生针对四个选择只做出正确判断. 5.【2015高考福建,理15】一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 . 【答案】5.【考点定位】推理证明和新定义.【名师点睛】本题以二元码为背景考查新定义问题,解决时候要耐心读题,并分析新定义的特点,按照所给的数学规则和要求进行逻辑推理和计算等,从而达到解决问题的目的. 6.【2015高考山东,理11】观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【考点定位】1、合情推理;2、组合数.【名师点睛】本题考查了合情推理与组合数,重点考查了学生对归纳推理的理解与运用,意在考查学生观察、分析、归纳、推理判断的能力,关键是能从前三个特殊的等式中观察、归纳、总结出一般的规律,从而得到结论.此题属基础题. 7.【2015江苏高考,23】(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除=}n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.【答案】(1)13(2)()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩【解析】试题分析:(1)根据题意按a 分类计数:1,1,2,3,4,5,6;a b ==2,1,2,4,6;a b ==3,1,3,6;a b ==共13个(2)由(1)知1,1,2,3,,;a b n ==2,1,2,4,,2;a b k ==*3,1,3,,3;()a b k k N ==∈,所以当6n ≥时,()f n 的表达式要按236⨯=除的余数进行分类,最后不难利用数学归纳法进行证明试题解析:(1)()613f =.()2,1k +,()3,1k +中产生,分以下情形讨论:1)若16k t +=,则()615k t =-+,此时有()()12132323k k f k f k k --+=+=++++ ()111223k k k ++=++++,结论成立; 2)若161k t +=+,则6k t =,此时有()()112123k kf k f k k +=+=++++ ()()()11111223k k k +-+-=++++,结论成立; 3)若162k t +=+,则61k t =+,此时有()()11122223k k f k f k k --+=+=++++ ()()1211223k k k +-+=++++,结论成立; 4)若163k t +=+,则62k t =+,此时有()()2122223k k f k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立;5)若164k t +=+,则63k t =+,此时有()()1122223k kf k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立; 6)若165k t +=+,则64k t =+,此时有()()1112123k k f k f k k -+=+=++++ ()()()11121223k k k +-+-=++++,结论成立.综上所述,结论对满足6n ≥的自然数n 均成立. 【考点定位】计数原理、数学归纳法【名师点晴】用数学归纳法证明一个与正整数有关的命题时,其步骤为: ①归纳奠基:证明当取第一个自然数0n 时命题成立;②归纳递推:假设n k =,(k N *∈,0k n ≥)时,命题成立,证明当1n k =+时,命题成立; ③由①②得出结论.8.【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 【解析】(Ⅰ)由已知121823618n n n n n a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.考点定位:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.【名师点睛】本题考查数列的有关知识及归纳法证明方法,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二、三两步难度较大,适合选拔优秀学生.【2015高考上海,理23】对于定义域为R 的函数()g x ,若存在正常数T ,使得()cos g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R .设()f x 单调递增,()00f =,()4f πT =. (1)验证()sin3xh x x =+是以π6为周期的余弦周期函数; (2)设b a <.证明对任意()(),c f a f b ∈⎡⎤⎣⎦,存在[]0,x a b ∈,使得()0f x c =; (3)证明:“0u 为方程()cos 1f x =在[]0,T 上得解”的充要条件是“0u +T 为方程()cos 1f x =在[],2T T 上有解”,并证明对任意[]0,x ∈T 都有()()()f x f x f +T =+T .【答案】(1)详见解析(2)详见解析(3)详见解析(2)由于()f x 的值域为R ,所以对任意()(),c f a f b ∈⎡⎤⎣⎦,c 都是一个函数值,即有0R x ∈,使得()0f x c =.若0x a <,则由()f x 单调递增得到()()0c f x f a =<,与()(),c f a f b ∈⎡⎤⎣⎦矛盾,所以0x a ≥.同理可证0x b ≤.故存在[]0,x a b ∈使得()0f x c =.(3)若0u 为()cos 1f x =在[]0,T 上的解,则()0cos 1f u =,且[]0,2u +T∈T T ,()()00cos cos 1f u f u +T ==,即0u +T 为方程()cos 1f x =在[],2T T 上的解.同理,若0u +T 为方程()cos 1f x =在[],2T T 上的解,则0u 为该方程在[]0,T 上的解. 以下证明最后一部分结论.由(2)所证知存在012340x x x x x =<<<<=T ,使得()i f x i π=,0i =,1,2,3,4.而[]1,i i x x +是函数()cos f x 的单调区间,0i =,1,2,3.与之前类似地可以证明:0u 是()cos 1f x =-在[]0,T 上的解当且仅当0u +T 是()cos 1f x =-在[],2T T 上的解.从而()cos 1f x =±在[]0,T 与[],2T T 上的解的个数相同.故()()4i i f x f x π+T =+,0i =,1,2,3,4. 对于[]10,x x ∈,()[]0,f x π∈,()[]4,5f x ππ+T ∈,而()()cos cos f x f x +T =,故()()()()4f x f x f x f π+T =+=+T .类似地,当[]1,i i x x x +∈,1i =,2,3时,有()()()f x f x f +T =+T . 结论成立.【考点定位】新定义问题【名师点睛】新定义问题一般先考察对定义的理解,这时只需一一验证定义中各个条件即可.二是考查满足新定义的函数的简单应用,如在某些条件下,满足新定义的函数有某些新的性质,这也是在新环境下研究“旧”性质,此时需结合新函数的新性质,探究“旧”性质.三是考查综合分析能力,主要将新性质有机应用在“旧”性质,创造性证明更新的性质.11。
2015年江苏省高考数学试卷答案与解析
2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题: 概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题: 图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m ﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点: 指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题: 三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和"可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和"方法、“裂项求和"方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题: 计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题: 综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x )与φ(x)=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g(x )|=1实根的个数为4. 故答案为:4. 点评:本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k •a k+1)的值为.考点:数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分析: 利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 解答解:=+:=++++=++ =++,∴(a k •a k+1)=+++++++…+++++++…+=+0+0 =.故答案为:9.点评: 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤) 15.(14分)(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.考点: 余弦定理的应用;二倍角的正弦. 专题: 解三角形. 分析:(1)直接利用余弦定理求解即可. (2)利用正弦定理求出C 的正弦函数值,然后利用二倍角公式求解即可. 解答:解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB •ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB <BC ,∴C 为锐角, 则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点: 直线与平面平行的判定;直线与平面垂直的性质.专题: 证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2。
2015年高考理科数学新课标全国1卷 逐题解析
2015年高考理科数学试卷全国卷1(解析版)1.设复数z 满足11zz+-=i ,则|z|=( )(A )1 (B (C (D )2 【答案】A 【解析】由11z i z +=-得,11i z i-+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点:本题主要考查复数的运算和复数的模等. 2.o o o o sin 20cos10cos160sin10- =( )(A )(B (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 3.设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2nn N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2nn N n ∀∈≤ (D )2,=2nn N n ∃∈【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C.考点:本题主要考查特称命题的否定4.投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式5.已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-3,3) (B )(-6,6)(C )(223-,223) (D )(233-,233) 【答案】A【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •= 0000(3,)(3,)x y x y ---•-- =2220003310x y y +-=-<,解得03333y -<<,故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
6 利用演绎法解题题型例析 高中常用数学方法的介绍 例析 体验 练习
【学生版】例析利用演绎法解题题型数学证明以逻辑推理为基础,它是从假定假设的真实性出发,运用有效的演绎推理确定结论的真实性的过程;总的来说,数学证明也可以叫演绎证明;演绎法作为一种数学逻辑方法,在当前高中数学的教育与学习中发挥着重要的作用。
所谓演绎法:又称演绎推理,就是指从一般性的知识的前提推出一个特殊性的知识的结论,即从一般过渡到特殊;演绎推理的一般模式:(1)大前提:已知一般原理;(2)小前提:所研究的特殊情况;(3)结论:根据一般原理,对特殊情况做出判断;也就是:根据一类事物都有的一般属性、关系、本质来推断其中的个别事物具有的属性、关系和本质的推理形式和思维方法;是从该认识的已知部分推知事物的未知部分思维方法;是由一般到个别的认识方法。
在高中数学中,演绎法可用下面两种形式;1、直接证法:它的格式可以写成“因为……,所以……,于是……,从而……,这就证明了所需要的结果”。
2、间接证法:常用的是反证法,它的格式可以写成“假设所需要的结果不成立,则……,于是……,从而……,这就导出矛盾,因此所需要的结果成立”,反证法有时要与穷举法结合起来运用,即将所需要的结果的反面的所有可能情况一一列出,然后分别导出矛盾。
演绎推理的相关知识:(1)、概念:由定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,叫做演绎推理;(2)、特点:当前提为真且推理形式正确时,结论必然为真,演绎推理是由一般到特殊的推理;(3)、三段论推理规则:如果a b ⇒,b c ⇒,则a c ⇒。
例1、试用演绎法,证明:函数2f (x)x 2x =-+在x (,1]∈-∞上是增函数。
【提示】 【解析】 【评注】例2、已知函数y f (x)=是R 上的增函数.(1)、若a ,b R ∈且a b 0+≥,求证:f (a)f (b)f (a)f (b)+≥-+-; (2)、写出(1)中的命题的逆命题,判断真假并证明你的结论。
例3、在不等边三角形中,a 为最大边, 要想得到A ∠为钝角的结论, 则三边a ,b ,c 应满足例4、已知正数a ,b ,c 成等差数列且公差d 0≠,求证:1a ,1b ,1c不可能成等差数列。
2015年全国统一高考数学试卷(完整版+答案解析)(新课标ⅱ)
2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)(2015•新课标Ⅱ)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)(2015•新课标Ⅱ)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)(2015•新课标Ⅱ)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)(2015•新课标Ⅱ)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)(2015•新课标Ⅱ)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)(2015•新课标Ⅱ)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)(2015•新课标Ⅱ)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)(2015•新课标Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体=V C﹣AOB===36,故积最大,设球O的半径为R,此时V O﹣ABCR=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)(2015•新课标Ⅱ)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tan x,AP==,此时f(x)=+tan x,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tan x=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tan x,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)(2015•新课标Ⅱ)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x ﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)(2015•新课标Ⅱ)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)(2015•新课标Ⅱ)若x,y满足约束条件,则z=2x+y的最大值为8.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)(2015•新课标Ⅱ)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)(2015•新课标Ⅱ)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y =ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.(2015•新课标Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC (Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.(2015•新课标Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,P(∁A),P(∁B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记∁A表示事件:“A地区用户的满意度等级为不满意”,∁B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(∁A)=(0.01+0.02+0.03)×10=0.6得P(∁B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)(2015•新课标Ⅱ)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.(2015•新课标Ⅱ)椭圆C:=1,(a>b>0)的离心率,点(2,)在C 上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.(2015•新课标Ⅱ)设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a 的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)(2015•新课标Ⅱ)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;﹣S (2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC计算即可.△AEF【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)(2015•新课标Ⅱ)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=x tanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)(2015•新课标Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年江苏省高考数学试卷答案与解析
2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.那么这组数据的平均数为:3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.|z||z|=|3+4i|=故答案为:4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为..故答案为:.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.解:向量,m+n,解得7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).28.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.=,=9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.解:由题意可知,原来圆锥和圆柱的体积和为:则新圆锥和圆柱的体积和为:,解得:故答案为:10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.d=,,11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.=+2+1=..{.{项的和为故答案为:.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.的距离,即故答案为:13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(ak •a k+1)的值为.答=+:+,++++++.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.×=7.==cosC==×16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.y=,利用导数,确定单调性,即可求出当y=,,y=,,﹣()=t=10,)时,10时,函数=15时,公路1518.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.=,=3,,即有椭圆方程为+y==()==()|PC|==19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.(﹣+b(﹣+b时,时,=或﹣.,﹣)∪(,))上单调递增,在(﹣)∪(﹣,,﹣)时,(﹣,)上单调递减;(﹣+b(﹣(时,时,),,)∪(,()∪(20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.)证明:∵=2,,,依次构成等比数列;t=(﹣<,不是上面方程的解,矛盾,所以假设不成立,t=,[>)在(﹣,三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.A=,可得=2,即,即A=【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.ρ﹣[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.”“<,或.时,原不等式化为,≥时,原不等式化为【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.,>≤,,∴=,=,得,,得=,>=;)∵=λ==,则===,>=,>≤,即=,的最大值为,BP==,∴BP=26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.+=13=6+2+=13.=6+2+=13+2+,+1=k+2++ ++2=k+2++ ++2=k+2++ ++2=k+2++ ++2=k+2++ +。
2015年高考理科数学新课标全国1卷逐题解析
2015年高考理科数学试卷全国卷1(解析版)1.设复数z 满足11zz+-=i ,则|z|=( )(A )1 ( (C )2 【答案】A 【解析】由11z i z +=-得,11i z i-+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点:本题主要考查复数的运算和复数的模等. 2.o o o o sin 20cos10cos160sin10- =( )(A )2-(B )2 (C)12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式。
3.设命题p :2,2n n N n ∃∈>,则p ⌝为( )(A )2,2n n N n ∀∈> (B )2,2n n N n ∃∈≤ (C )2,2n n N n ∀∈≤ (D )2,=2n n N n ∃∈ 【答案】C【解析】p ⌝:2,2n n N n ∀∈≤,故选C 。
考点:本题主要考查特称命题的否定4.投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0。
6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0。
432 (C )0。
36 (D )0。
312 【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0。
648,故选A 。
考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式5.已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(B )((C)(3-,3) (D )()【答案】A【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •= 0000(3,)(3,)x y x y ---•-- =2220003310x y y +-=-<,解得03333y -<<,故选A. 考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法。
2015年江苏省高考数学试卷答案与解析
所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.
故答案为:.
点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.
13.(5分)(2015?江苏)已知函数f(x)=|lnx|,g(x)=,则方程
|f(x)+g(x)|=1实根的个数为4.
点本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期
评性,考查了推理能力与计算能力,属于中档题.
:
二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)
15.(14分)(2015?江苏)在△ABC中,已知AB=2,AC=3,A=60°.
(1)求BC的长;
考点分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结
论.
解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.
g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;
5
将其分别代入y=,得,
解得,
9
(2)①由(1)y=(5≤x≤20),P(t,),
∴y′=﹣,
∴an=.
4
∴=2.
∴数列{}的前n项的和Sn=
=
=.
∴数列{}的前10项的和为.
故答案为:.
点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考
查了推理能力与计算能力,属于中档题.
22
﹣y
12.(5分)(2015?江苏)在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动
2015年湖北省高考数学试题及答案(理科)【解析版】
2015年湖北省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•湖北)i为虚数单位,i607的共轭复数为()A .i B.﹣i C.1 D.﹣1考点:虚数单位i及其性质.专题:数系的扩充和复数.分析:直接利用复数的单位的幂运算求解即可.解答:解:i607=i604+3=i3=﹣i,它的共轭复数为:i.故选:A.点评:本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.2.(5分)(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A .134石B.169石C.338石D.1365石考点:随机抽样和样本估计总体的实际应用.专题:计算题;概率与统计.分析:根据254粒内夹谷28粒,可得比例,即可得出结论.解答:解:由题意,这批米内夹谷约为1534×≈169石,故选:B.点评:本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.3.(5分)(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A .212B.211C.210D.29考点:二项式定理;二项式系数的性质.专题:二项式定理.分析:直接利用二项式定理求出n,然后利用二项式定理系数的性质求出结果即可.解答:解:已知(1+x)n的展开式中第4项与第8项的二项式系数相等,可得,可得n=3+7=10.(1+x )10的展开式中奇数项的二项式系数和为:=29.故选:D .点评: 本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力.4.(5分)(2015•湖北)设X ~N (μ1,ς12),Y ~N (μ2,ς22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A . P (Y ≥μ2)≥P (Y ≥μ1)B . P (X ≤ς2)≤P(X ≤ς1) C . 对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t )考点: 正态分布曲线的特点及曲线所表示的意义. 专题: 概率与统计.分析: 直接利用正态分布曲线的特征,集合概率,直接判断即可.解答:解:正态分布密度曲线图象关于x=μ对称,所以μ1<μ2,从图中容易得到P (X ≤t )≥P (Y ≤t ). 故选:C .点评:本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差ς这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.5.(5分)(2015•湖北)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 12+a 22+…+a n ﹣12)(a 22+a 32+…+a n 2)=(a 1a 2+a 2a 3+…+a n ﹣1a n )2,则( )A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件考点:等比数列的性质.专题:等差数列与等比数列;简易逻辑.分析:运用柯西不等式,可得:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)≥(a1a2+a2a3+…+a n﹣1a n)2,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到.解答:解:由a1,a2,…,a n∈R,n≥3.运用柯西不等式,可得:(a12+a22+…+a n﹣12)(a22+a32+…+a n2)≥(a1a2+a2a3+…+a n﹣1a n)2,若a1,a2,…,a n成等比数列,即有==…=,则(a12+a22+…+a n﹣12)(a22+a32+…+a n2)=(a1a2+a2a3+…+a n﹣1a n)2,即由p推得q,但由q推不到p,比如a1=a2=a3=…=a n=0,则a1,a2,…,a n不成等比数列.故p是q的充分不必要条件.故选:A.点评:本题考查充分必要条件的判断,同时考查等比数列的定义,注意运用定义法和柯西不等式解题是关键.6.(5分)(2015•湖北)已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]函数与方程的综合运用.考点:专函数的性质及应用.题:直接利用特殊法,设出函数f(x),以及a的值,判断选项即可.分析:解答:解:由于本题是选择题,可以常用特殊法,符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),不妨令f(x)=x,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn[g(x)]=﹣sgnx.所以A不正确,B正确,sgn[f(x)]=sgnx,C不正确;D正确;对于D,令f(x)=x+1,a=2,则g(x)=f(x)﹣f(ax)=﹣x﹣1,sgn[f(x)]=sgn(x+1)=;sgn[g(x)]=sgn(﹣x﹣1)=,﹣sgn[f(x)]=﹣sgn(x+1)=;所以D不正确;故选:B.点评:本题考查函数表达式的比较,选取特殊值法是解决本题的关键,注意解题方法的积累,属于中档题.7.(5分)(2015•湖北)在区间[0,1]上随机取两个数x,y,记P1为事件“x+y≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则()A .P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P1考点:几何概型.专题:概率与统计.分析:作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可.解答:解:分别作出事件对应的图象如图(阴影部分):P1:D(0,),F(,0),A(0,1),B(1,1),C(1,0),则阴影部分的面积S1=1×1﹣=1﹣=,S2=1×1﹣2×=1﹣=,S3=1×+dx=+lnx|=﹣ln=+ln2,∴S2<S3<S1,即P2<P3<P1,故选:B.点评:本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.8.(5分)(2015•湖北)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e2考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:分别求出双曲线的离心率,再平方作差,即可得出结论.解答:解:由题意,双曲线C1:c2=a2+b2,e1=;双曲线C2:c′2=(a+m)2+(b+m)2,e2=,∴=﹣=,∴当a>b时,e1<e2;当a<b时,e1>e2,故选:D.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.9.(5分)(2015•湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A .77 B.49 C.45 D.30考点:集合中元素个数的最值.专题:新定义;开放型;集合.分析:由题意可得,A={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)},根据定义可求解答:解:∵A={(x,y)|x2+y2≤1,x,y∈Z}={(0,0),(0,1),(0,﹣1),(1,0),(﹣1,0),B={(x,y)||x|≤2,|y|≤2,x,y∈Z}={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2)(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2)}∵A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},∴A⊕B={(0,0),(0,1),(0,2),(0,﹣1),(0,﹣2),(1,0),(1,1),(1,2)(1,﹣1),(1,﹣2)(2,0),(2,1),(2,2),(2,﹣1),(2,﹣2),(﹣1,﹣2),(﹣1,﹣1),(﹣1,0),(﹣1,1),(﹣1,2),(﹣2,﹣2),(﹣2,﹣1),(﹣2,0),(﹣2,1),(﹣2,2),(﹣2,3),(﹣2,﹣3),(0,﹣3),(2,﹣3),(﹣1,3),(﹣1,﹣3),(1,3),(2,3),(0,3),(3,﹣1),(3,0)(3,1),(3,2),(3,﹣2)(﹣3,2)(﹣3,1),(1,﹣3),(﹣3,﹣1),(﹣3,0),(﹣3,﹣2)}共45个元素故选:C.点评:本题以新定义为载体,主要考查了几何的基本定义及运算,解题中需要取得重复的元素.10.(5分)(2015•湖北)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是()A .3 B.4 C.5 D.6考点:进行简单的演绎推理.专题:创新题型;简易逻辑.分析:由新定义可得t的范围,验证可得最大的正整数n为4解答:解:∵[t]=1,∴t∈[1,2),又∵[t2]=2,∴t2∈[2,3),∴t∈[,),又t2∈[2,3),∴t4∈[4,9),∴[t4]=4,∴正整数n的最大值4故选:B.点评:本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2015•湖北)已知向量⊥,||=3,则•=9.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知结合平面向量是数量积运算求得答案.解答:解:由⊥,得•=0,即•()=0,∵||=3,∴.故答案为:9.点评:本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.12.(5分)(2015•湖北)函数f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|的零点个数为2.考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:利用二倍角公式化简函数的解析式,求出函数的定义域,画出函数的图象,求出交点个数即可.解答:解:函数f(x)的定义域为:{x|x>﹣1}.f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|=2sinx﹣|ln(x+1)|=sin2x﹣|ln(x+1)|,分别画出函数y=sin2x,y=|ln(x+1)|的图象,由函数的图象可知,交点个数为2.所以函数的零点有2个.故答案为:2.点评:本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.13.(5分)(2015•湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=100m.考点:解三角形的实际应用.专题:计算题;解三角形.分析:设此山高h(m),在△BCD中,利用仰角的正切表示出BC,进而在△ABC中利用正弦定理求得h.解答:解:设此山高h(m),则BC=h,在△ABC中,∠BAC=30°,∠CBA=105°,∠BCA=45°,AB=600.根据正弦定理得=,解得h=100(m)故答案为:100.点评:本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.14.(5分)(2015•湖北)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为(x﹣1)2+(y﹣)2=2;(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:①=;②﹣=2;③+=2.其中正确结论的序号是①②③.(写出所有正确结论的序号)考点:命题的真假判断与应用;圆与圆的位置关系及其判定.专题:创新题型;简易逻辑.分析:(1)取AB的中点E,通过圆C与x轴相切于点T,利用弦心距、半径与半弦长之间的关系,计算即可;(2)设M(cosα,sinα),N(cosβ,sinβ),计算出、、的值即可.解答:解:(1)∵圆C与x轴相切于点T(1,0),∴圆心的横坐标x=1,取AB的中点E,∵|AB|=2,∴|BE|=1,则|BC|=,即圆的半径r=|BC|=,∴圆心C(1,),则圆的标准方程为(x﹣1)2+(y﹣)2=2,故答案为:(x﹣1)2+(y﹣)2=2.(2)∵圆心C(1,),∴E(0,),又∵|AB|=2,且E为AB中点,∴A(0,﹣1),B(0,+1),∵M、N在圆O:x2+y2=1上,∴可设M(cosα,sinα),N(cosβ,sinβ),∴|NA|=====,|NB|====,∴===,同理可得=,∴=,①成立,﹣=﹣()=2,②正确.+=+()=,③正确.故答案为:①②③.点评:本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.选修4-1:几何证明选讲15.(5分)(2015•湖北)如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则=.考点:与圆有关的比例线段.专题:推理和证明.分析:利用切割线定理推出PA=2PB,利用相似三角形求出比值即可.解答:解:由切割线定理可知:PA2=PB•PC,又BC=3PB,可得PA=2PB,在△PAB与△PAC中,∠P=∠P,∠PAB=∠PCA(同弧上的圆周角与弦切角相等),可得△PAB∽△PAC,∴==.故答案为:.点评:本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.选修4-4:坐标系与参数方程16.(2015•湖北)在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ﹣3cosθ)=0,曲线C的参数方程为(t为参数),l与C相交于A,B两点,则|AB|=.考点:简单曲线的极坐标方程;双曲线的参数方程.专题:坐标系和参数方程.分析:化极坐标方程化直角坐标方程,参数方程化普通方程,联立直线方程和双曲线方程后求得交点坐标,由两点间的距离公式得答案.解答:解:由ρ(sinθ﹣3cosθ)=0,得y﹣3x=0,由C的参数方程为(t为参数),两式平方作差得:x2﹣y2=﹣4.联立,得,即.∴A(),B(),∴|AB|=.故答案为:.点评:本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(11分)(2015•湖北)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0 π2πxAsin(ωx+φ)0 5 ﹣5 0(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.从而可补全数据,解得函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)及函数y=Asin(ωx+φ)的图象变换规律得g(x)=5sin(2x+2θ﹣).令2x+2θ﹣=kπ,解得x=,k∈Z.令=,解得θ=,k∈Z.由θ>0可得解.解答:解:(1)根据表中已知数据,解得A=5,ω=2,φ=﹣.数据补全如下表:ωx+φ0 π2πxAsin(ωx+φ)0 5 0 ﹣5 0且函数表达式为f(x)=5sin(2x﹣).(2)由(Ⅰ)知f(x)=5sin(2x﹣),得g(x)=5sin(2x+2θ﹣).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ﹣=kπ,解得x=,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令=,解得θ=,k∈Z.由θ>0可知,当K=1时,θ取得最小值.点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换规律的应用,属于基本知识的考查.18.(12分)(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.数列的求和.考点:等差数列与等比数列.专题:(1)利用前10项和与首项、公差的关系,联立方程组计算即可;分析:(2)当d>1时,由(1)知c n=,写出T n、T n的表达式,利用错位相减法及等比数列的求和公式,计算即可.解解:(1)设a1=a,由题意可得,答:解得,或,当时,a n=2n﹣1,b n=2n﹣1;当时,a n=(2n+79),b n=9•;(2)当d>1时,由(1)知a n=2n﹣1,b n=2n﹣1,∴c n==,∴T n=1+3•+5•+7•+9•+…+(2n﹣1)•,∴T n=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴T n=2+++++…+﹣(2n﹣1)•=3﹣,∴T n=6﹣.点评:本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.19.(12分)(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD 中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.考点:用空间向量求平面间的夹角;直线与平面垂直的判定.专题:空间位置关系与距离;空间向量及应用.分析:解法1)(1)直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角.(2)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可.解法2)(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可.2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.根据数量积得出夹角的余弦即可得出所求解的答案.解答:解法1)(1)因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面ABCD.而DE⊂平面PDC,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)如图1,在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ACBD的交线.由(Ⅰ)知,PB⊥平面DEF,所以PB⊥DG.又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD.所以DG⊥DF,DG⊥DB故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有BD=,在Rt△PDB中,由DF⊥PB,得∠DGF=∠FDB=,则tan=tan∠DPF===,解得.所以==故当面DEF与面ABCD所成二面角的大小为时,=.(解法2)(1)以D为原点,射线DA,DC,DP分别为x,y,z轴的正半轴,建立空间直角坐标系.设PD=DC=1,BC=λ,则D(0,0,0),P(0,0,1),B(λ,1,0),C(0,1,0),=(λ1,﹣1),点E是PC的中点,所以E(0,,),=(0,,),于是=0,即PB⊥DE.又已知EF⊥PB,而ED∩EF=E,所以PB⊥平面DEF.因=(0,1,﹣1),=0,则DE⊥PC,所以DE⊥平面PBC.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.(2)由PD⊥底面ABCD,所以=(0,0,1)是平面ACDB的一个法向量;由(Ⅰ)知,PB⊥平面DEF,所以=(﹣λ,﹣1,1)是平面DEF的一个法向量.若面DEF与面ABCD所成二面角的大小为,则运用向量的数量积求解得出cos==,解得.所以所以==故当面DEF与面ABCD所成二面角的大小为时,=.点评:本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.20.(12分)(2015•湖北)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W 12 15 18P 0.3 0.5 0.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.考点:简单线性规划的应用;离散型随机变量的期望与方差.专题:不等式的解法及应用;概率与统计.分析:(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,列出可行域,目标函数,通过当W=12时,当W=15时,当W=18时,分别求出目标函数的最大获利,然后得到Z的分布列.求出期望即可.(2)判断概率类型是二项分布,然后求解所求概率即可.解答:(12分)解:(1)设每天A,B两种产品的生产数量分别为x,y,相应的获利为z,则有,①如图1,目标函数为:z=1000x+1200y.当W=12时,①表示的平面区域如图1,三个顶点分别为A(0,0),B(2.4,4.8),C(6,0).将z=1000x+1200y变形为,当x=2.4,y=4.8时,直线l:在y轴上的截距最大,最大获利Z=Z max=2.4×1000+4.8×1200=8160.当W=15时,①表示的平面区域如图2,三个顶点分别为A(0,0),B(3,6),C(7.5,0)..将z=1000x+1200y变形为,当x=3,y=6时,直线l:在y轴上的截距最大,最大获利Z=Z max=3×1000+6×1200=10200.当W=18时,①表示的平面区域如图3,四个顶点分别为A(0,0),B(3,6),C (6,4),D(9,0).将z=1000x+1200y变形为:,当x=6,y=4时,直线l:y=﹣56x+z1200在y轴上的截距最大,最大获利Z=Z max=6×1000+4×1200=10800.故最大获利Z的分布列为:Z 8160 10200 10800P 0.3 0.5 0.2因此,E(Z)=8160×0.3+10200×0.5+10800×0.2=9708(2)由(Ⅰ)知,一天最大获利超过10000元的概率P1=P(Z>10000)=0.5+0.2=0.7,由二项分布,3天中至少有1天最大获利超过10000元的概率为:.点评:本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.21.(14分)(2015•湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON 可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:创新题型;开放型;圆锥曲线中的最值与范围问题.分析:(1)根据条件求出a,b即可求椭圆C的方程;(2)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.解答:解:(1)∵|OM|≤|MN|+|NO|=3+1=4,当M,N在x轴上时,等号成立,同理|OM|≥|MN|﹣|NO|=3﹣1=2,当D,O重合,即MN⊥x轴时,等号成立.∴椭圆C的中心为原点O,长半轴长为4,短半轴长为2,其方程为.(2)①当直线l的斜率k不存在时,直线l为:x=4或x=﹣4,都有S△OPQ=,②直线l的斜率k存在时,直线l为:y=kx+m,(k),由消去y,可得(1+4k2)x2+8kmx+4m2﹣16=0,∵直线l总与椭圆C有且只有一个公共点,∴△=64k2m2﹣4(1+4k2)(4m2﹣16)=0,即m2=16k2+4,①,由,可得P(,),同理得Q(,),原点O到直线PQ的距离d=和|PQ|=•|x P﹣x Q|,可得S△OPQ=|PQ|d=|m||x P﹣x Q|=|m|||=||②,将①代入②得S△OPQ=||=8||,当k2>时,S△OPQ=8()=8(1+)>8,当0≤k2<时,S△OPQ=8||=﹣8()=8(﹣1+),∵0≤k2<时,∴0<1﹣4k2≤1,≥2,∴S△OPQ=8(﹣1+)≥8,当且仅当k=0时取等号,∴当k=0时,S△OPQ的最小值为8,综上可知当直线l与椭圆C在四个顶点处相切时,三角形OPQ的面积存在最小值为8.点评:本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.22.(14分)(2015•湖北)已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.(1)求函数f(x)=1+x﹣e x的单调区间,并比较(1+)n与e的大小;(2)计算,,,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n),数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<eS n.考点:数列与不等式的综合.专题:创新题型;导数的综合应用;点列、递归数列与数学归纳法;不等式的解法及应用.分析:(1)求出f(x)的定义域,利用导数求其最大值,得到1+x<e x.取x=即可得到答案;(2)由b n=n(1+)n a n(n∈N+),变形求得,,,由此推测=(n+1)n.然后利用数学归纳法证明.(3)由c n的定义、=(n+1)n、算术﹣几何平均不等式、b n的定义及,利用放缩法证得T n<eS n.解答:(1)解:f(x)的定义域为(﹣∞,+∞),f′(x)=1﹣e x.当f′(x)>0,即x<0时,f(x)单调递增;当f′(x)<0,即x>0时,f(x)单调递减.故f(x)的单调递增区间为(﹣∞,0),单调递减区间为(0,+∞).当x>0时,f(x)<f(0)=0,即1+x<e x.令,得,即.①(2)解:;=;.由此推测:=(n+1)n.②下面用数学归纳法证明②.(1)当n=1时,左边=右边=2,②成立.(2)假设当n=k时,②成立,即.当n=k+1时,,由归纳假设可得=.∴当n=k+1时,②也成立.根据(1)(2),可知②对一切正整数n都成立.(3)证明:由c n的定义,②,算术﹣几何平均不等式,b n的定义及①得T n=c1+c2+…+c n=====<ea1+ea2+…+ea n=eS n.即T n<eS n.点评:本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.2015年湖北省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•湖北)i 为虚数单位,i 607的共轭复数为( ) A . i B . ﹣i C . 1 D . ﹣1 2.(5分)(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A . 134石 B . 169石 C . 338石 D . 1365石3.(5分)(2015•湖北)已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A . 212B . 211C . 210D . 294.(5分)(2015•湖北)设X ~N (μ1,ς12),Y ~N (μ2,ς22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A . P (Y ≥μ2)≥P (Y ≥μ1)B . P(X ≤ς2)≤P (X ≤ς1) C . 对任意正数t ,P (X ≤t )≥P (Y ≤t ) D . 对任意正数t ,P(X ≥t )≥P (Y ≥t )5.(5分)(2015•湖北)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 12+a 22+…+a n ﹣12)(a 22+a 32+…+a n 2)=(a 1a 2+a 2a 3+…+a n ﹣1a n )2,则( ) A . p 是q 的充分条件,但不是q 的必要条件 B . p 是q 的必要条件,但不是q 的充分条件 C . p 是q 的充分必要条件 D . p 既不是q 的充分条件,也不是q 的必要条件6.(5分)(2015•湖北)已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则()A.s gn[g(x)]=sgnx B.s gn[g(x)]=﹣sgnx C.s gn[g(x)]=sgn[f(x)]D.s gn[g(x)]=﹣sgn[f(x)]7.(5分)(2015•湖北)在区间[0,1]上随机取两个数x,y,记P1为事件“x+y≥”的概率,P2为事件“|x﹣y|≤”的概率,P3为事件“xy≤”的概率,则()A.P1<P2<P3B.P2<P3<P1C.P3<P1<P2D.P3<P2<P18.(5分)(2015•湖北)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e29.(5分)(2015•湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.3010.(5分)(2015•湖北)设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是()A.3B.4C.5D.6二、填空题:本大题共4小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)(2015•湖北)已知向量⊥,||=3,则•=.12.(5分)(2015•湖北)函数f(x)=4cos2cos(﹣x)﹣2sinx﹣|ln(x+1)|的零点个数为.13.(5分)(2015•湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.14.(5分)(2015•湖北)如图,圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为;(2)过点A任作一条直线与圆O:x2+y2=1相交于M,N两点,下列三个结论:①=;②﹣=2;③+=2.其中正确结论的序号是.(写出所有正确结论的序号)选修4-1:几何证明选讲15.(5分)(2015•湖北)如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则=.选修4-4:坐标系与参数方程16.(2015•湖北)在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sinθ﹣3cosθ)=0,曲线C的参数方程为(t为参数),l与C相交于A,B两点,则|AB|=.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(11分)(2015•湖北)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0 π2πxAsin(ωx+φ)0 5 ﹣5 0(1)请将上表数据补充完整,填写在相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(,0),求θ的最小值.18.(12分)(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.19.(12分)(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P﹣ABCD 中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF与面ABCD所成二面角的大小为,求的值.20.(12分)(2015•湖北)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W 12 15 18P 0.3 0.5 0.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(1)求Z的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.21.(14分)(2015•湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON 可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.22.(14分)(2015•湖北)已知数列{a n}的各项均为正数,b n=n(1+)n a n(n∈N+),e为自然对数的底数.。
2015年全国各地高考数学试题及解答分类大全(集合)
(A)(1,3) (B)(1,4)
(C)(2,3)
【答案】C
【解析】因为 A x x2 4x 3 0 x 1 x 3 ,
(D)(2,4)
所以 A B x 1 x 3 x 2 x 4 x 2 x 3.
故选:C. 【考点定位】1、一元二次不等式;2、集合的运算. 【名师点睛】本题考查集合的概念与运算,利用解一元二次不等式的解法化简集合并求两集合的交 集,本题属基础题,要求学生最基本的算运求解能力.
ðU
.
【答案】1, 4
【解析】因为 B {x | 2 x 3},所以 CU B {x | x 2 或 x 3},又因为 A {1,2,3,4}, 所以 A (CU B) {1,4} .
【考点定位】集合运算
第 6页 (共 7页)
第 7页 (共 7页)
15.(2015 四川理)设集合 A {x | (x 1)(x 2) 0} ,集合 B {x |1 x 3} ,则 A B =(
)
(A){x | 1 x 3}
(B) {x | 1 x 1} (C ) {x |1 x 2} (D) {x | 2 x 3}
【答案】A
【考点定位】集合的基本运算.
考点:1、一元二次方程;2、对数不等式;3、集合的并集运算.
14、(2015 四川文)设集合 A={x|-1<x<2},集合 B={x|1<x<3},则 A∪B=(
)
(A){x|-1<x<3} (B){x|-1<x<1}
(C){x|1<x<2}
(D){x|2<x<3}
【答案】A
【考点定位】本题主要考查集合的概念,集合的表示方法和并集运算. 【名师点睛】集合的运算通常作为试卷的第一小题,是因为概念较为简单,学生容易上手,可 以让考生能够信心满满的尽快进入考试状态. 另外,集合问题一般与函数、方程、不等式及其性质关 联,也需要考生熟悉相关知识点和方法.本题最后求两个集合的并集,相对来说比较容易,与此相关 的交集、补集等知识点也是常考点,应多加留意.属于简单题.
2015年高考数学试卷真题附详细解析
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)(2015•真题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2]C.(1,2)D.[1,2]2.(5分)(2015•真题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•真题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•真题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>nC.∂n0∈N*,f(n0)∉N*且f(n0)>n0D.∂n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•真题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•真题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•真题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinx B.f(sin2x)=x2+xC.f(x2+1)=|x+1| D.f(x2+2x)=|x+1|8.(5分)(2015•真题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•真题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•真题)已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.11.(6分)(2015•真题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•真题)若a=log43,则2a+2﹣a=.13.(4分)(2015•真题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•真题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•真题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•真题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•真题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•真题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•真题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•真题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(真题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∂n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC 通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),析:由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年高考数学中的新定义型试题例析
纵观近几年的高考数学命题,可以发现“新定义”问题越来越受到重视.这类题目以能力立意为目标,集应用性、探索性和开放性于一体,在全面考查学生的数学知识、方法及数学思想的基础上,进一步考查学生的创新探究能力与学习潜力等综合素质.
新定义题,是指在中学数学教材中没有学过的新概念、新符号、新运算等,需要学生利用已有知识、能力进行阅读理解,并结合新概念解决问题的题目.下面对2015年高考中新定义型试题的三种题型进行分析.1函数新定义
例1(2015年湖北理6)已知符号函数sgnx=1,x>0,
0,x=0,
-1,x1),则().
A.sgn[g(x)]=sgnx
B.sgn[g(x)]=sgn[f(x)]
C.sgn[g(x)]=-sgnx
D.sgn[g(x)]=-sgn[f(x)]
解析分类比较x与ax的大小,根据f(x)的单调性确定g(x)的符号,从而确定sgn[g(x)],再结合选项进行判断.
因为a>1,所以当x>0时,x0,sgn[g(x)]=1=-sgn(x);
当x=0时,g(x)=0,sgn[g(x)]=0=-sgn(x)也成立,故C 正确.
点评此题结合高等数学中“符号函数”来编拟适合高中生的试题,体现了高等数学与中学数学的和谐美.本题较好地考查了学生的知识迁移能力、转化能力及探究能力,是高考命题者喜欢的题型.2实数运算新定义
例2(2015年山东文14)定义运算“”:xy=x2-y2xyx,y ∈R,xy≠0.当x>0,y>0时,xy+2yx的最小值为.
解析先利用定义的新运算写出解析式:
xy+2yx=x2-y2xy+4y2-x22xy=x2y+yx,再利用基本不等式求得
xy+2yx的最小值为2,当且仅当x=2y时等号成立.
点评在高考题中引入新的符号,通过定义一种新的运算,考查学生的自学能力和探究能力.通过分析这类题目,给中学老师一种启发,就是在实际教学过程中,一定要注意培养学生的独立思考能力及自主探索的能力.
例3(2015年福建理15)一个二元码是由0和1组成的数字串x1x2…xn(n∈N*),其中xk(k=1,2,…,n)称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码x1x2…x7的码元满足如下校验方程组:x4?x5?x6?x7=0,x2?x3?x6?x7=0,
x1?x3?x5?x7=0,其中?运算定义为:0?0=0,0?1=1,1?0=1,
1?1=0.
现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定
k等于.
解析二元码在通信过程中仅在第k位发生码元错误后变成了1101101,说明在x1=1,x2=1,x3=0,x4=1,x5=1,x6=0,
x7=1中仅有一个等式错误.根据?定义可得
x2?x3?x6?x7=1?0?0?1=0,所以x2=1,,x3=0,x6=0,x7=1是正确的.又因为
x4?x5?x6?x7=1?1?0?1=1≠0,x1?x3?x5?x7=1?0?1?1=1≠0,故x1,x4,x5都错误,或仅x5错误.因为条件中要求仅在第
k位发生码元错误,故只有x5错误.
点评本题所定义的运算法则实质上是计算机中的二进
制运算.掌握计算机知识已成为现代公民的基本素养,所以在日常教学中应引导学生关注生活,注重应用.对于新运算应该紧扣运算法则,通过推导判断,从而获得正确的结论.3集合运算新定义
例4(2015年浙江理6)设集合A,B是有限集,定义d (A,B)=card(A∪B)-card(A∩B),
其中card(A)表示有限集A中元素的个数.
命题①:对于任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;
命题②:对于任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C).
A.命题①和命题②都成立
B.命题①和命题②都不成立
C.命题①成立,命题②不成立
D.命题①不成立,命题②成立
解法一命题①成立,若A≠B,则card(A∪B)>card(A ∩B),
所以d(A,B)=card(A∪B)-card(A∩B)>0成立.反之可以把上述过程逆推,故“A≠B”是“d(A,B)>0”的充分必要条件;
命题②成立,由Venn图知card(A∪B)=card(A)+card (B)-card(A∩B),
d(A,C)=card(A)+card(C)-2card(A∩C),
d(B,C)=card(B)+card(C)-2card(B∩C),
d(A,B)+d(B,C)-d(A,C)
=card(A)+card(B)-2card(A∩B)+card(B)+card (C)-2card(B∩C)
-[card(A)+card(C)-2card(A∩C)]
=2card(B)-2card(A∩B)-2card(B∩C)+2card(A∩C)
=2card(B)+2card(A∩C)-2[card(A∩B)+card(B∩
C)] ≥2card(B)+2card(A∩C)-2[card((A∪C)∩B)+card(A∩B∩C)]
=[2card(B)-2card((A∪C)∩B)]+[2card(A∩C)-card (A∩B∩C)]≥0.
所以d(A,C)≤d(A,B)+d(B,C)得证.选A.
解法二画集合的Venn图,ni(ni≥0)表示区域内元素的个数.
由图甲知d(A,B)=(n1+n3+n2)-n3=n1+n2,A≠B等价于d(A,B)>0,命题①成立.
由图乙知d(A,C)=(n1+n4)+(n3+n6)=n1+n3+n4+n6.
d(A,B)+d(B,C)=[(n1+n5)+(n2+n6)]+[(n2+n4)+(n3+n5)]=(n1+n3+n4+n6)+2(n2+n5).
d(A,C)≤d(A,B)+d(B,C),当A=B=C时等号成立,命题②成立,故选A.
点评本题是结合集合概念以及充要条件判断的新定义
问题,考查学生的阅读理解能力、创新能力及推理论证能力.
例5(2015年湖北理9文10)已知集合A={(x,y)x2+y2≤1,x,y∈Z},B={(x,y)x≤2,y≤2,x,y∈Z},定义集合A?B={(x1+x2,y1+y2)(x1,y1)∈A,(x2,y2)∈B},则A?B中元素的个数为().
A.77
B.49
C.45
D.30
解析集合A={(x,y)x2+y2≤1,x,y∈Z}={(x,y)x=
±1,y=0;或x=0,y=±1;或x=0,y=0},
集合B={(x,y)x≤2,y≤2,x,y∈Z}={(x,y)x=-2,-1,0,1,2;y=-2,-1,0,1,2}.
集合A?B表示点集.
由x1=-1,0,1,x2=-2,-1,0,1,2,得x1+x2=-3,-2,-1,0,1,2,3共7种取值可能.
同理,由y1=-1,0,1,y2=-2,-1,0,1,2,可得y1+y2=-3,-2,-1,0,1,2,3共7种取值可能.
当x1+x2=-3或3时,y1+y2可以为-2,-1,0,1,2中的一个值,分别构成5个不同的点;
当x1+x2为-2,-1,0,1,2时,y1+y2可以为-3,-2,-1,0,1,2,3中的一个值,分别构成7个不同的点;
故A?B共有5×2+5×7=45(个)元素,选C.
点评在集合知识的基础上,引入集合新运算,考查了知识迁移能力,以及分析问题解决问题的能力.在确定集合A?B 中元素的个数时,考查了数据的处理能力以及分类讨论思想的应用.
在高考命题“由知识立意向能力立意过渡”指导思想的要求下,新定义题型会受到命题者更多青睐,须引起广大师生的重视.
作者简介魏巍,1980年生,山东青岛人,中学一级教师,教育硕士.工作期间,多次被评为优秀教师、三八红旗手,2007
年参加济宁市优质课评比获二等奖.。