万有引力定律高考题汇编

合集下载

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理-万有引力定律-专题练习(一)(含答案与解析)

高考物理专题练习(一)万有引力定律1.(多选)中俄联合火星探测器,2009年10月出发,经过3.5亿公里的漫长飞行,在2010年8月29日抵达了火星。

双方确定对火星及其卫星“火卫一”进行探测。

火卫一在火星赤道正上方运行,与火星中心的距离为9 450 km ,绕火星1周需7 h39 min 。

若其运行轨道可看作圆形轨道,万有引力常量为1122G 6.6710Nm /kg -=⨯,则由以上信息能确定的物理量是( )A .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度2.(多选)经长期观测人们在宇宙中已经发现了“双星系统”。

“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体。

如图,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做匀速圆周运动。

现测得两颗星之间的距离为L ,质量之比为12:3:2=m m ,则可知( )A .1m 、2m 做圆周运动的角速度之比为2:3B .1m 、2m 做圆周运动的线速度之比为3:2C .1m 做圆周运动的半径为2L /5D .1m 、2m 做圆周运动的向心力大小相等3.2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

10月19日凌晨,神舟十一号飞船与天宫二号自动交会对接成功,对接时的轨道高度是393公里,比神舟十号与天宫一号对接时的轨道高了50公里,这与未来空间站的轨道高度基本相同,为我国载人航天发展战略的第三步——建造空间站做好了准备。

下列说法正确的是( )A .在近圆形轨道上运行时天宫一号的周期比天宫二号的长B .在近圆形轨道上运行时天宫一号的加速度比天宫二号的小C .天宫二号由椭圆形轨道进入近圆形轨道需要减速D .交会对接前神舟十一号的运行轨道要低于天宫二号的运行轨道4.【2017·天津市五区县高三上学期期末考试】2016年9月16日,北京航天飞行控制中心对天宫二号成功实施变轨控制,使天宫二号由椭圆形轨道的远地点进入近圆形轨道,等待神舟十一号到来。

高考题库 万有引力定律

高考题库 万有引力定律

万有引力定律2010年考题1.(2010·江苏高考)2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有( ) A.在轨道Ⅱ上经过A 的速度小于经过B 的速度B.在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度【解析】选ABC 根据开普勒定律可知,卫星在近地点的速度大于远地点的速度,A 正确;由I 轨道变到II 轨道要减速,所以B 正确;类比于行星椭圆运动,由开普勒定律第三定律可知,k TR =23,12<R R ,所以12<T T ,C 正确;根据2RGMa =,在A 点时加速度相等,D 错误。

2.(2010·安徽高考)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。

假设探测器在离火星表面高度分别为1h 和2h 的圆轨道上运动时,周期分别为1T 和2T 。

火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。

仅利用以上数据,可以计算出( )A .火星的密度和火星表面的重力加速度B .火星的质量和火星对“萤火一号”的引力C .火星的半径和“萤火一号”的质量D .火星表面的重力加速度和火星对“萤火一号”的引力【解析】选A.设火星的半径为R ,火星的质量为M ,由向万F =F 可得:2121214)(m )(M GT h R h R m π+=+,2222224)(m )(M G T h R h R m π+=+,联立可以求出火星的半径为R ,火星的质量为M ,由密度公式334M M R V πρ==,可进一步求出火星的密度;由mg M G 2=R m,可进一步求出火星表面的重力加速度,A 正确。

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析

高考物理万有引力定律的应用题20套(带答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hRt【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR, 解得该星球的第一宇宙速度为:2hRv gR ==2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8)(1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度.【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】(1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a =又有:sin cos mg mg ma θμθ+= 解得:27.5m/s g =(2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有:2mv mg R=3310m/s v ==⨯3.一宇航员站在某质量分布均匀的星球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该星球半径为R ,引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的密度;(3)该星球的“第一宇宙速度”.【答案】(1)02v g t = (2) 032πv RGt ρ=(3)v = 【解析】(1) 根据竖直上抛运动规律可知,小球上抛运动时间02v t g= 可得星球表面重力加速度:02v g t=. (2)星球表面的小球所受重力等于星球对小球的吸引力,则有:2GMmmg R =得:2202v R gR M G Gt ==因为343R V π=则有:032πv M V RGtρ== (3)重力提供向心力,故2v mg m R=该星球的第一宇宙速度v ==【点睛】本题主要抓住在星球表面重力与万有引力相等和万有引力提供圆周运动向心力,掌握竖直上抛运动规律是正确解题的关键.4.如图轨道Ⅲ为地球同步卫星轨道,发射同步卫星的过程可以筒化为以下模型:先让卫星进入一个近地圆轨道Ⅰ(离地高度可忽略不计),经过轨道上P 点时点火加速,进入椭圆形转移轨道Ⅱ.该椭圆轨道Ⅱ的近地点为圆轨道Ⅰ上的P 点,远地点为同步圆轨道Ⅲ上的Q 点.到达远地点Q 时再次点火加速,进入同步轨道Ⅲ.已知引力常量为G ,地球质量为M ,地球半径为R ,飞船质量为m ,同步轨道距地面高度为h .当卫星距离地心的距离为r 时,地球与卫星组成的系统的引力势能为p GMmE r=-(取无穷远处的引力势能为零),忽略地球自转和喷气后飞船质量的変化,问:(1)在近地轨道Ⅰ上运行时,飞船的动能是多少?(2)若飞船在转移轨道Ⅱ上运动过程中,只有引力做功,引力势能和动能相互转化.已知飞船在椭圆轨道Ⅱ上运行中,经过P 点时的速率为1v ,则经过Q 点时的速率2v 多大? (3)若在近地圆轨道Ⅰ上运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器可以到达离地心无穷远处),则探测器离开飞船时的速度3v (相对于地心)至少是多少?(探测器离开地球的过程中只有引力做功,动能转化为引力势能) 【答案】(1)2GMm R (22122GM GM v R h R +-+32GMR【解析】 【分析】(1)万有引力提供向心力,求出速度,然后根据动能公式进行求解; (2)根据能量守恒进行求解即可;(3)将小探测器射出,并使它能脱离地球引力范围,动能全部用来克服引力做功转化为势能; 【详解】(1)在近地轨道(离地高度忽略不计)Ⅰ上运行时,在万有引力作用下做匀速圆周运动即:22mM v G m R R=则飞船的动能为2122k GMmE mv R==; (2)飞船在转移轨道上运动过程中,只有引力做功,引力势能和动能相互转化.由能量守恒可知动能的减少量等于势能的増加量:221211()22GMm GMm mv mv R h R-=--+ 若飞船在椭圆轨道上运行,经过P 点时速率为1v ,则经过Q 点时速率为:22122GM GMv v R h R=+-+; (3)若近地圆轨道运行时,飞船上的发射装置短暂工作,将小探测器射出,并使它能脱离地球引力范围(即探测器离地心的距离无穷远),动能全部用来克服引力做功转化为势能 即:2312Mm Gmv R = 则探测器离开飞船时的速度(相对于地心)至少是:32GMv R=. 【点睛】本题考查了万有引力定律的应用,知道万有引力提供向心力,同时注意应用能量守恒定律进行求解.5.如图所示是一种测量重力加速度g 的装置。

高考物理万有引力定律应用真题汇编(含答案)含解析

高考物理万有引力定律应用真题汇编(含答案)含解析

高考物理万有引力定律的应用真题汇编( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“天宫一号”是我国自主研发的目标飞翔器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞翔器运转周期T,地球半径为R,地球表面的重力加快度为g,“天宫一号”围绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【分析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运转的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力供给圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243.以下图 ,P 、 Q 为某地域水平川面上的两点 ,在 P 点正下方一球形地区内储蓄有石油 .假定地区四周岩石均匀散布 ,密度为 ρ;石油密度远小于 ρ,可将上述球形地区视为空腔 .假如没有这一空腔 ,则该地域重力加快度 (正常值 )沿竖直方向 ;当存在空腔时 ,该地域重力加快度的大小和方向会与正常状况有细小偏离 .重力加快度在原竖直方向 (即 PO 方向 )上的投影相关于正常值的偏离叫做 “重力加快度失常 ”为.了探访石油地区的地点和石油储量,常利用 P 点邻近重力加快度失常现象 .已知引力常数为 G.(1)设球形空腔体积为 V,球心深度为 d(远小于地球半径 ), PQ x, 求空腔所惹起的 Q 点处的重力加快度失常 ;(2)若在水平川面上半径为 L 的范围内发现 :重力加快度失常值在δ与 k δ (k>1)之间变化 ,且重力加快度失常的最大值出此刻半径为 L 的范围的中心 .假如这类失常是因为地下存在某一球形空腔造成的 ,试求此球形空腔球心的深度和空腔的体积.G Vd(2) VL 2 k .【答案】(1)x 2 )3/2 G( k 2/31)( d 2【分析】【详解】(1)假如快要地表的球形空腔填满密度为 ρ的岩石 ,则该地域重力加快度便回到正常值.所以 ,重力加快度失常可经过填补后的球形地区产生的附带引力来计算,Mm Gr2m g ①式中 m 是 Q 点处某质点的质量 ,M 是填补后球形地区的质量 .M=ρV ②而 r 是球形空腔中心O 至 Q 点的距离 r= d 2 x2③Δg 在数值上等于因为存在球形空腔所惹起的Q 点处重力加快度改变的大小 ?Q 点处重力加 速度改变的方向沿 OQ ,g ′ 方向 重力加快度失常是这一改变在竖直方向上的投影dg ′= g ④rG Vd联立 ①②③④ 式得g ′=22 )3/2 ⑤(dx(2) 由 ⑤ 式得 ,重力加快度失常g 的′最大值和最小值分别为(G Vg max ′)=d2⑥(minG Vd 3/2⑦g ′)=22( d L )由题设有 ( g max ′)=k δ ,(min g=′)δ⑧联立 ⑥⑦⑧式得 ,地下球形空腔球心的深度和空腔的体积分别为LV L 2 k .dG ( k 2/3k 2/311)4. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为 5m ,且物体只受该星球引力作用求:( 1 )该星球表面重力加快度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2) 1;10【分析】(1)依据平抛运动的规律:x =v 0t得t = x = 5s =1s v 0 5由 h = 1gt 22得: g = 22h = 2 2 2m / s 2=4m / s 2t1G M 星 m(2)依据星球表面物体重力等于万有引力:mg =R 星2G M 地 m地球表面物体重力等于万有引力:mg =R 地22=4( 1 )2则 M 星 = gR 星21 M 地 g R 地 10210点睛:本题是平抛运动与万有引力定律的综合题,重力加快度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5. 以下图,质量分别为m 和M的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 二者中心之间距离为L .已知A 、B 的中心和O 三点一直共线,A 和B 分别在 O 的双侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L,m L,( 2) 2πL 3【答案】 (1) R=r=m Mm MG M m【分析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力供给,则有:G mMmR 4 2 Mr 4 2L 2T 2T 2可得R=M,又因为 LRrrm所以能够解得: M L , r m L ;RmMmM(2)依据( 1)能够获得 : GmM4 24 2 M 2m2Rm2LLTTMm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不可以把它们的距离当作轨道半径 .6. 以下图,返回式月球软着陆器在达成了对月球表面的观察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加快度为 g ,月球的半径为月球中心的距离为 r ,引力常量为 G ,不考虑月球的自转.求:R ,轨道舱到( 1)月球的质量 M ;( 2)轨道舱绕月飞翔的周期 T .gR 22 r r【答案】 (1) M( 2) TgGR【分析】【剖析】月球表面上质量为m 1 的物体 ,依据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞翔的周期 ;【详解】解: (1)设月球表面上质量为m 1 的物体 ,其在月球表面有 : GMm 1 m 1g GMm 1 m 1gR2R2gR 2 月球质量 : MG(2)轨道舱绕月球做圆周运动,设轨道舱的质量为mMm2π 2Mm 2 2由牛顿运动定律得:rG r 2m TrG2m() rT2 r r解得: TgR7.“嫦娥一号 ”在西昌卫星发射中心发射升空,正确进入预约轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.以下图,暗影部分表示月球,假想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞翔 n 圈所用时间为 t ,抵达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在抵达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,尔后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞翔 n 圈所用时间为 .不考虑其余星体对飞船的影响,求:( 1)月球的均匀密度是多少?( 2)假如在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞翔方向同样,某时辰两飞船相距近来(两飞船在月球球心的同侧,且两飞船与月球球心在同向来线上),则经过多长时间,他们又会相距近来?2mt【答案】( 1) 192n;( 2) t1,2,3 )( mGt 27n【分析】试题剖析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力供给向心力有:8nG Mmm22RR 2T又: M4 33 192 n 2 .R ,联立得:GT 32Gt 23(2)设飞船在轨道I 上的角速度为1 、在轨道 III 上的角速度为23 ,有:1T 1所以32设飞飞船再经过t 时间相距近来,有:3t ﹣ 1t2m 所以有:T 3tmtm ,, ).(7n 1 2 3考点:人造卫星的加快度、周期和轨道的关系【名师点睛】本题主要观察万有引力定律的应用,开普勒定律的应用.同时依据万有引力供给向心力列式计算.8. 我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,对月球进行科学探测。

(完整版)全国高中物理万有引力定律高考真题

(完整版)全国高中物理万有引力定律高考真题

b
e i n
g a
r e
g 買鲷鴯譖昙膚遙闫撷凄。

点.卫星在圆弧上运动时发出的信号被遮BE ,万有引力常量为G ,根据万有引力定律有:
n d
g
s i
n t
h e i r 图4-1
绕行方向与地球自转方向相同,某时刻A 、他们再一次相距最近?裊樣祕廬廂颤谚鍘羋蔺。

03
2
)
2ωπ
-h
b
e
i
n
g
由于星体做圆周运动所需要的向心力靠其它两个星体的万有引力的合力提供
l l t h i n g s i n t
g M =2
t
h
e
i
r
b
e
图4-2
i
可等效为位于O点处质量为
、m2,试求m′(用m1、
的速率v、运行周期
恒星演化到末期,如果其质量大于太阳质量m s的2倍,它将有可能成为黑洞
T=4.7π×104 s,质量
灭嗳骇諗鋅猎輛觏馊藹。

高考物理专题复习:万有引力定律

高考物理专题复习:万有引力定律

高考物理专题复习:万有引力定律一、单选题1.已知某空间站在距地面高度为h 的圆轨道上运行,经过时间t ,通过的弧长为s 。

已知引力常量为G ,地球半径为R 。

下列说法正确的是( ) A .空间站运行的速度大于第一宇宙速度 B .空间站的角速度为stC .空间站的周期为2)R h tsπ+( D .地球平均密度为. 22234()s G t R h π+2.假设某星球可视为质量均匀分布的球体,已知该星球表面的重力加速度在两极的大小为g 1,在赤道的大小为g 2,星球自转的周期为T ,引力常量为G ,则该星球的密度为( ) A .23GT πB .1223g GT g π⋅ C .12123g GT g g π⋅- D .12213g g GT g π-⋅ 3.某探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知引力常量为G ,关于土星质量M 和平均密度ρ的表达式正确的是( ) A .2324()R h M Gt π+=,3233()R h G Rπρ+= B .2224()R h M Gtπ+=,2233()R h Gt R πρ+= C .2324()R h M Gt π+=,3233()R h Gn R πρ+=D .22324()n R h M Gt π+=,23233()n R h Gt R πρ+=4.某探测器在距火星表面高度为h 的轨道上绕火星做周期为T 的匀速圆周运动,再经多次变轨后成功着陆,着陆后测得火星表面的重力加速度为g ,已知火星的半径为R ,万有引力常量为G ,忽略火星自转及其他星球对探测器的影响,以下说法正确的是( ) A .火星的质量为2324πR GTB .火星的质量为()3224πR h gT +C .火星的密度为23πGT D .火星的密度为34πgG R5.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于宇宙四星系统,下列说法错误的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为2aC .四颗星表面的重力加速度均为2GmR D.四颗星的周期均为2π6.质量为m 的着陆器在着陆火星前,会在火星表面附近经历一个时长为0t 、速度由0v 减速到零的过程。

高中物理高考题解析-认识万有引力定律-考题及答案

高中物理高考题解析-认识万有引力定律-考题及答案

课时分层作业(九) 认识万有引力定律题组一 太阳与行星间引力1.若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( )A .地球吸引月球的力约为地球吸引苹果的力的1602 B .月球公转的加速度约为苹果落向地面加速度的1602C .自由落体在月球表面的加速度约为地球表面的16D .苹果在月球表面受到的引力约为在地球表面的160B [若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mmr 2=ma ,即加速度a 与距离r 的平方成反比,由题中数据知,选项B 正确。

]题组二 万有引力定律2.设地球是半径为R 的均匀球体,质量为M ,若把质量为m 的物体放在地球的中心,则物体受到的地球的万有引力大小为( )A .零B .无穷大C .GMmR 2D .无法确定A [有的同学认为:由万有引力公式F =Gm 1m 2r 2,由于r →0,故F 为无穷大,从而错选B 。

设想把物体放到地球的中心,此时F =G m 1m 2r 2已不适用,地球的各部分对物体的吸引力是对称的,故物体受到的地球的万有引力是零,故A 正确。

]3.在某次测定引力常量的实验中,两金属球的质量分别为m 1和m 2,球心间的距离为r ,若测得两金属球间的万有引力大小为F ,则此次实验得到的引力常量为( )A .Fr m 1m 2B .Fr 2m 1m 2C .m 1m 2FrD .m 1m 2Fr 2B [由万有引力定律F =G m 1m 2r 2得G =Fr 2m 1m 2,所以B 项正确。

]4.2019年1月,我国“嫦娥四号”探测器成功在月球背面软着陆。

在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图像是( )A B C DD [在“嫦娥四号”探测器“奔向”月球的过程中,根据万有引力定律,可知随着h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述F 随h 变化关系的图像是D ,D 正确。

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t【解析】(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t(2)小球做平抛运动时在竖直方向上有:h=12gt 2, 解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2MmGR 所以该星球的质量为:M=2gR G= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,由牛顿第二定律得: 22Mm v G m R R=重力等于万有引力,即mg=2MmGR,解得该星球的第一宇宙速度为:v ==2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远?【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π= 解得2a RT gπ= b 卫星2224·4(4)bGMm m R R T π= 解得16b RT gπ= (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a GMv R=b 卫星b 卫星22(4)4Mm v G m R R= 解得v 4b GM R=所以 2abV V = (3)最远的条件22a bT T πππ-= 解得87R t gπ=3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.双星系统由两颗彼此相距很近的两个恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的共同质量中心做周期相同的匀速圆周运动。

高考物理万有引力定律的应用真题汇编(含答案)及解析

高考物理万有引力定律的应用真题汇编(含答案)及解析

高考物理万有引力定律的应用真题汇编(含答案)及解析一、高中物理精讲专题测试万有引力定律的应用1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .【答案】(1)22h g t =月 (2)222hR M Gt=;2hRv t= 【解析】 【分析】(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】(1)月球表面附近的物体做自由落体运动 h =12g 月t 2 月球表面的自由落体加速度大小 g 月=22h t (2)若不考虑月球自转的影响 G 2MmR =mg 月 月球的质量 222hR M Gt= 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2v R月球的“第一宇宙速度”大小 2hRv g R t月== 【点睛】结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .2.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性.(1)用弹簧测力计称量一个相对于地球静止的物体的重力,随称量位置的变化可能会有不同结果.已知地球质量为M ,自转周期为T ,引力常量为G .将地球视为半径为R 、质量分布均匀的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0. ①若在北极上空高出地面h 处称量,弹簧测力计读数为F 1,求比值的表达式,并就h=1.0%R的情形算出具体数值(计算结果保留两位有效数字);②若在赤道表面称量,弹簧测力计读数为F2,求比值的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r、太阳半径为R s和地球的半径R三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳与地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?【答案】(1)①0.98,②23 22 041F R F GMTπ=-(2)“设想地球”的1年与现实地球的1年时间相同【解析】试题分析:(1)根据万有引力等于重力得出比值的表达式,并求出具体的数值.在赤道,由于万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力,根据该规律求出比值的表达式(2)根据万有引力提供向心力得出周期与轨道半径以及太阳半径的关系,从而进行判断.解:(1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式①②可以得出:=0.98.③由①和③可得:(2)根据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为现在的1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍然为1年.【点评】解决本题的关键知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力提供随地球自转所需的向心力.3.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数33μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR=mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度. 【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.4.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期.(2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?【答案】(1)6T =2)t V 【解析】 【分析】 【详解】(1)对卫星运用万有引力定律和牛顿运动定律可得()222433MmG m R T R π⋅= 地球表面的物体受到重力等于万有引力2Mmmg G R =联立解得6T =; (2)以地面为参照物,卫星再次出现在建筑物上方时,建筑物随地球转过的弧度比卫星转过弧度少2π. ω1△t -ω0△t =2π,所以100222t T V ===πππωωω--;5.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度;(2)从这个星球上发射卫星的第一宇宙速度.【答案】(1)202v h(2) v 【解析】本题考查竖直上抛运动和星球第一宇宙速度的计算.(1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则202v g h ='解得,该星球表面的重力加速度22v gh '=(2) 卫星贴近星球表面运行,则2vmg mR'=解得:星球上发射卫星的第一宇宙速度02Rv g R vh=='6.“嫦娥一号”在西昌卫星发射中心发射升空,准确进入预定轨道.随后,“嫦娥一号”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道Ⅰ上作匀速圆周运动,在圆轨道Ⅰ上飞行n圈所用时间为t,到达A点时经过暂短的点火变速,进入椭圆轨道Ⅱ,在到达轨道Ⅱ近月点B点时再次点火变速,进入近月圆形轨道Ⅲ,而后飞船在轨道Ⅲ上绕月球作匀速圆周运动,在圆轨道Ⅲ上飞行n圈所用时间为.不考虑其它星体对飞船的影响,求:(1)月球的平均密度是多少?(2)如果在Ⅰ、Ⅲ轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?【答案】(1)22192nGtπ;(2)1237mtt mn(,,)==⋯【解析】试题分析:(1)在圆轨道Ⅲ上的周期:38tTn=,由万有引力提供向心力有:222MmG m RR Tπ⎛⎫= ⎪⎝⎭又:343M Rρπ=,联立得:22233192nGT Gtππρ==.(2)设飞船在轨道I上的角速度为1ω、在轨道III上的角速度为3ω,有:112Tπω=所以332Tπω=设飞飞船再经过t时间相距最近,有:312t t mωωπ''=﹣所以有:1237mtt mn(,,)==⋯.考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.7.宇航员站在一星球表面上的某高处,沿水平方向抛出一小球.经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L .若抛出时的初速度增大到2倍,则抛出点.已知两落地点在同一水平面上,该星球的半径为R ,万有引力常量为G ,求该星球的质量M .【答案】M = 【解析】 【详解】两次平抛运动,竖直方向212h gt =,水平方向0x v t =,根据勾股定理可得:2220()L h v t -=,抛出速度变为2倍:2220)(2)h v t -=,联立解得:h =,g =,在星球表面:2Mm G mg R =,解得:2M =8.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GT π=;22GM R c '=【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GTπ= b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=9.“嫦娥一号”探月卫星在空中的运动可简化为如图5所示的过程,卫星由地面发射后,经过发射轨道进入停泊轨道,在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道.已知卫星在停泊轨道和工作轨道运行的半径分别为R 和R 1,地球半径为r ,月球半径为r 1,地球表面重力加速度为g ,月球表面重力加速度为.求: (1)卫星在停泊轨道上运行的线速度大小; (2)卫星在工作轨道上运行的周期.【答案】(1) (2)【解析】(1)卫星停泊轨道是绕地球运行时,根据万有引力提供向心力:解得:卫星在停泊轨道上运行的线速度;物体在地球表面上,有,得到黄金代换,代入解得;(2)卫星在工作轨道是绕月球运行,根据万有引力提供向心力有,在月球表面上,有,得,联立解得:卫星在工作轨道上运行的周期.10.已知某行星半径为,以其第一宇宙速度运行的卫星的绕行周期为,该行星上发射的同步卫星的运行速度为.求(1)同步卫星距行星表面的高度为多少?(2)该行星的自转周期为多少?【答案】(1)(2).【解析】【分析】【详解】(1)设同步卫星距地面高度为,则:,以第一宇宙速度运行的卫星其轨道半径就是R,则联立解得:.(2)行星自转周期等于同步卫星的运转周期.。

高考物理万有引力定律的应用真题汇编(含答案)含解析.docx

高考物理万有引力定律的应用真题汇编(含答案)含解析.docx

高考物理万有引力定律的应用真题汇编( 含答案 ) 含解析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间为 R,己知万有引力常量为G,求:t,又已知该星球的半径(1)小球抛出的初速度 v o(2)该星球表面的重力加速度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果必须用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【解析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加速度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2所以该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“天宫一号”是我国自主研发的目标飞行器,是中国空间实验室的雏形.2013 年 6 月,“神舟十号”与“天宫一号”成功对接, 6 月 20 日 3 位航天员为全国中学生上了一节生动的物理课.已知“天宫一号”飞行器运行周期T,地球半径为R,地球表面的重力加速度为g,“天宫一号”环绕地球做匀速圆周运动,万有引力常量为G.求:(1)地球的密度;(2)地球的第一宇宙速度v;(3)天“宫一号”距离地球表面的高度.【答案】 (1)3g (2) vgR (3) h3gT 2 R 2 R4 GR42【解析】(1)在地球表面重力与万有引力相等:GMmmg ,R 2M M 地球密度:V4 R 33解得:3g4 GR(2)第一宇宙速度是近地卫星运行的速度,mgmvgRv 2R(3)天宫一号的轨道半径 r Rh ,Mmm R h42据万有引力提供圆周运动向心力有:G 22,R hT解得: h3gT 2 R 2 R243.如图所示 ,P 、 Q 为某地区水平地面上的两点 ,在 P 点正下方一球形区域内储藏有石油 .假定区域周围岩石均匀分布 ,密度为 ρ;石油密度远小于 ρ,可将上述球形区域视为空腔 .如果没有这一空腔 ,则该地区重力加速度 (正常值 )沿竖直方向 ;当存在空腔时 ,该地区重力加速度的大小和方向会与正常情况有微小偏离 .重力加速度在原竖直方向 (即 PO 方向 )上的投影相对于正常值的偏离叫做 “重力加速度反常 ”为.了探寻石油区域的位置和石油储量,常利用 P 点附近重力加速度反常现象 .已知引力常数为 G.(1)设球形空腔体积为 V,球心深度为 d(远小于地球半径 ), PQ x, 求空腔所引起的 Q 点处的重力加速度反常 ;(2)若在水平地面上半径为 L 的范围内发现 :重力加速度反常值在δ与 k δ (k>1)之间变化 ,且重力加速度反常的最大值出现在半径为 L 的范围的中心 .如果这种反常是由于地下存在某一球形空腔造成的 ,试求此球形空腔球心的深度和空腔的体积.G Vd(2) VL 2 k .【答案】(1)x 2 )3/2 G( k 2/31)( d 2【解析】【详解】(1)如果将近地表的球形空腔填满密度为 ρ的岩石 ,则该地区重力加速度便回到正常值.因此 ,重力加速度反常可通过填充后的球形区域产生的附加引力来计算,Mm Gr2m g ①式中 m 是 Q 点处某质点的质量 ,M 是填充后球形区域的质量 .M=ρV ②而 r 是球形空腔中心O 至 Q 点的距离 r= d 2 x2③Δg 在数值上等于由于存在球形空腔所引起的Q 点处重力加速度改变的大小 ?Q 点处重力加 速度改变的方向沿 OQ ,g ′ 方向 重力加速度反常是这一改变在竖直方向上的投影dg ′= g ④rG Vd联立 ①②③④ 式得g ′=22 )3/2 ⑤(dx(2) 由 ⑤ 式得 ,重力加速度反常g 的′最大值和最小值分别为(G Vg max ′)=d2⑥(minG Vd 3/2⑦g ′)=22( d L )由题设有 ( g max ′)=k δ ,(min g=′)δ⑧联立 ⑥⑦⑧式得 ,地下球形空腔球心的深度和空腔的体积分别为LV L 2 k .dG ( k 2/3k 2/311)4. 一宇航员登上某星球表面,在高为 2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为 5m ,且物体只受该星球引力作用求:( 1 )该星球表面重力加速度( 2 )已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】( 1 ) 4m/s 2;( 2) 1;10【解析】(1)根据平抛运动的规律:x =v 0t得t = x = 5s =1s v 0 5由 h = 1gt 22得: g = 22h = 2 2 2m / s 2=4m / s 2t1G M 星 m(2)根据星球表面物体重力等于万有引力:mg =R 星2G M 地 m地球表面物体重力等于万有引力:mg =R 地22=4( 1 )2则 M 星 = gR 星21 M 地 g R 地 10210点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.5. 如图所示,质量分别为m 和M的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在 O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)两星球做圆周运动的周期.M L,m L,( 2) 2πL 3【答案】 (1) R=r=m Mm MG M m【解析】(1)令 A 星的轨道半径为R , B 星的轨道半径为 r ,则由题意有 L r R两星做圆周运动时的向心力由万有引力提供,则有:G mMmR 4 2 Mr 4 2L 2T 2T 2可得R=M,又因为 LRrrm所以可以解得: M L , r m L ;RmMmM(2)根据( 1)可以得到 : GmM4 24 2 M 2m2Rm2LLTTMm4 2L32L 3则: Tm GG m MM点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径 .6. 如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为 g ,月球的半径为月球中心的距离为 r ,引力常量为 G ,不考虑月球的自转.求:R ,轨道舱到( 1)月球的质量 M ;( 2)轨道舱绕月飞行的周期 T .gR 22 r r【答案】 (1) M( 2) TgGR【解析】【分析】月球表面上质量为m 1 的物体 ,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期 ;【详解】解: (1)设月球表面上质量为m 1 的物体 ,其在月球表面有 : GMm 1 m 1g GMm 1 m 1gR2R2gR 2 月球质量 : MG(2)轨道舱绕月球做圆周运动,设轨道舱的质量为mMm2π 2Mm 2 2由牛顿运动定律得:rG r 2m TrG2m() rT2 r r解得: TgR7.“嫦娥一号 ”在西昌卫星发射中心发射升空,准确进入预定轨道.随后, “嫦娥一号 ”经过变轨和制动成功进入环月轨道.如图所示,阴影部分表示月球,设想飞船在圆形轨道 Ⅰ 上作匀速圆周运动,在圆轨道Ⅰ 上飞行 n 圈所用时间为 t ,到达 A 点时经过暂短的点火变速,进入椭圆轨道 Ⅱ,在到达轨道 Ⅱ 近月点 B 点时再次点火变速,进入近月圆形轨道 Ⅲ,而后飞船在轨道 Ⅲ 上绕月球作匀速圆周运动,在圆轨道 Ⅲ 上飞行 n 圈所用时间为 .不考虑其它星体对飞船的影响,求:( 1)月球的平均密度是多少?( 2)如果在 Ⅰ 、 Ⅲ 轨道上有两只飞船,它们绕月球飞行方向相同,某时刻两飞船相距最近(两飞船在月球球心的同侧,且两飞船与月球球心在同一直线上),则经过多长时间,他们又会相距最近?2mt【答案】( 1) 192n;( 2) t1,2,3 )( mGt 27n【解析】试题分析:( 1)在圆轨道 Ⅲ 上的周期: T 3t,由万有引力提供向心力有:8nG Mmm22RR 2T又: M4 33 192 n 2 .R ,联立得:GT 32Gt 23(2)设飞船在轨道I 上的角速度为1 、在轨道 III 上的角速度为23 ,有:1T 1所以32设飞飞船再经过t 时间相距最近,有:3t ﹣ 1t2m 所以有:T 3tmtm ,, ).(7n 1 2 3考点:人造卫星的加速度、周期和轨道的关系【名师点睛】本题主要考查万有引力定律的应用,开普勒定律的应用.同时根据万有引力提供向心力列式计算.8. 我国科学家正在研究设计返回式月球软着陆器,计划在 2030 年前后实现航天员登月,对月球进行科学探测。

高三物理万有引力定律及应用专题复习(含答案)

高三物理万有引力定律及应用专题复习(含答案)

高三物理万有引力定律及应用专题复习一、单选题(共10小题,每小题5.0分,共50分)1.火星表面特征非常接近地球,可能适合人类居住。

2010年,我国志愿者王跃参与了在俄罗斯进行的“模拟登火星”实验活动。

已知火星半径是地球半径的,质量是地球质量的,自转周期也基本相同。

地球表面重力加速度是g,若王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下述分析正确的是( )A.王跃在火星表面所受火星引力是他在地球表面所受地球引力的倍B.火星表面的重力加速度是C.火星的第一宇宙速度是地球第一宇宙速度的倍D.王跃在火星上向上跳起的最大高度是2.“嫦娥三号”的环月轨道可近似看成是圆轨道。

观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t通过的弧长为l,该弧长对应的圆心角为θ弧度,如图所示。

已知万有引力常量为G,由此可计算出月球的质量为( )A.B.C.D.3.若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍B.倍C.倍D.倍4.我国2013年6月发射的“神州十号”飞船绕地球飞行的周期约为90分钟,取地球半径为6400km,地表重力加速度为g。

设飞船绕地球做匀速圆周运动,则由以上数据无法估测()A.飞船线速度的大小B.飞船的质量C.飞船轨道离地面的高度D.飞船的向心加速度大小5.已成为我国首个人造太阳系小行星的嫦娥二号卫星,2014年2月再次刷新我国深空探测最远距离纪录,超过7000万公里。

嫦娥二号是我国探月工程二期的先导星,它先在距月球表面高度为h的轨道上做匀速圆周运动,运行周期为T;然后从月球轨道出发飞赴日地拉格朗日L2点进行科学探测。

若以R表示月球的半径,引力常量为G,则( )A.嫦娥二号卫星绕月运行时的线速度为B.月球的质量为C.物体在月球表面自由下落的加速度为D.嫦娥二号卫星在月球轨道经过减速才能飞赴拉格朗日L2点6.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m,半径均为R,四颗星稳定分布在边长为的正方形的四个顶点上.已知引力常量为G.关于四星系统,下列说法错误的是 ( )A.四颗星围绕正方形对角线的交点做匀速圆周运动B.四颗星的轨道半径均为C.四颗星表面的重力加速度均为D.四颗星的周期均为7.“嫦娥二号”环月飞行的高度为100km,所探测到的有关月球的数据将比环月飞行高度为200km的“嫦娥一号”更加详实。

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析

高考物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少?(3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2,16(2)速度之比为2【解析】【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解;解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2MmGmg R = a 卫星2224aGMm m R R T π=解得2a T =b 卫星2224·4(4)bGMm m R R T π=解得16b T = (2)卫星做匀速圆周运动,F F =引向,a 卫星22a mv GMm R R=解得a v =b 卫星b 卫星22(4)4Mm v G m R R=解得v b =所以 2abV V =(3)最远的条件22a bT T πππ-= 解得87R t gπ=2.牛顿说:“我们必须普遍地承认,一切物体,不论是什么,都被赋予了相互引力的原理”.任何两个物体间存在的相互作用的引力,都可以用万有引力定律122=m m F Gr 万计算,而且任何两个物体之间都存在引力势能,若规定物体处于无穷远处时的势能为零,则二者之间引力势能的大小为12=-p m m E Gr,其中m 1、m 2为两个物体的质量, r 为两个质点间的距离(对于质量分布均匀的球体,指的是两个球心之间的距离),G 为引力常量.设有一个质量分布均匀的星球,质量为M ,半径为R . (1)该星球的第一宇宙速度是多少?(2)为了描述电场的强弱,引入了电场强度的概念,请写出电场强度的定义式.类比电场强度的定义,请在引力场中建立“引力场强度”的概念,并计算该星球表面处的引力场强度是多大?(3)该星球的第二宇宙速度是多少?(4)如图所示是一个均匀带电实心球的剖面图,其总电荷量为+Q (该带电实心球可看作电荷集中在球心处的点电荷),半径为R ,P 为球外一点,与球心间的距离为r ,静电力常量为k .现将一个点电荷-q (该点电荷对实心球周围电场的影响可以忽略)从球面附近移动到p 点,请参考引力势能的概念,求电场力所做的功.【答案】(1)1GMv R=2)2=M E G R '引;(3)22GMv R=4)11()W kQq r R=-【解析】 【分析】 【详解】(1)设靠近该星球表面做匀速圆周运动的卫星的速度大小为1v ,万有引力提供卫星做圆周运动的向心力212v mMG m R R= 解得:1GMv R=;(2)电场强度的定义式F E q=设质量为m 的质点距离星球中心的距离为r ,质点受到该星球的万有引力2=MmF Gr引 质点所在处的引力场强度=F E m引引 得2=M E Gr 引 该星球表面处的引力场强度'2=M E GR 引 (3)设该星球表面一物体以初速度2v 向外抛出,恰好能飞到无穷远,根据能量守恒定律22102mM mv G R-=解得:2v =; (4)点电荷-q 在带电实心球表面处的电势能1P qQE k R=- 点电荷-q 在P 点的电势能2P qQE kr=- 点电荷-q 从球面附近移动到P 点,电场力所做的功21()P P W E E =-- 解得:11()W kQq r R=-.3.从在某星球表面一倾角为θ的山坡上以初速度v 0平抛一物体,经时间t 该物体落到山坡上.已知该星球的半径为R ,一切阻力不计,引力常量为G ,求: (1)该星球表面的重力加速度的大小g (2)该星球的质量M .【答案】(1) 02tan v t θ (2) 202tan v R Gtθ【解析】 【分析】(1)物体做平抛运动,应用平抛运动规律可以求出重力加速度.(2)物体在小球的表面受到的万有引力等于物体的重力,由此即可求出. 【详解】(1)物体做平抛运动,水平方向:0x v t =,竖直方向:212y gt =由几何关系可知:02y gt tan x v θ== 解得:02v g tan tθ=(2)星球表面的物体受到的重力等于万有引力,即:2MmGmg R = 可得:2202v R tan gR M G Gtθ==【点睛】本题是一道万有引力定律应用与运动学相结合的综合题,考查了求重力加速度、星球自转的周期,应用平抛运动规律与万有引力公式、牛顿第二定律可以解题;解题时要注意“黄金代换”的应用.4.已知地球同步卫星到地面的距离为地球半径的6倍,地球半径为R ,地球视为均匀球体,两极的重力加速度为g ,引力常量为G ,求: (1)地球的质量;(2)地球同步卫星的线速度大小.【答案】(1) GgR M 2= (2)v = 【解析】 【详解】(1)两极的物体受到的重力等于万有引力,则2GMmmg R= 解得GgR M 2=; (2)地球同步卫星到地心的距离等于地球半径的7倍,即为7R ,则()2277GMmv m RR =而2GM gR =,解得v =.5.如图所示,A 是地球的同步卫星.另一卫星 B 的圆形轨道位于赤道平面内.已知地球自转角速度为0ω ,地球质量为M ,B 离地心距离为r ,万有引力常量为G ,O 为地球中心,不考虑A 和B 之间的相互作用.(图中R 、h 不是已知条件)(1)求卫星A 的运行周期A T (2)求B 做圆周运动的周期B T(3)如卫星B 绕行方向与地球自转方向相同,某时刻 A 、B 两卫星相距最近(O 、B 、A 在同一直线上),则至少经过多长时间,它们再一次相距最近? 【答案】(1)02A T πω=(2)32B r T GM=3)03t GM r ω∆=-【解析】 【分析】 【详解】(1)A 的周期与地球自转周期相同 02A T πω=(2)设B 的质量为m , 对B 由牛顿定律:222()BGMm m r r T π= 解得: 32B r T GM= (3)A 、B 再次相距最近时B 比A 多转了一圈,则有:0()2B t ωωπ-∆= 解得:03t GM r ω∆=- 点睛:本题考查万有引力定律和圆周运动知识的综合应用能力,向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用;第3问是圆周运动的的追击问题,距离最近时两星转过的角度之差为2π的整数倍.6.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12p m m E Gr=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径R 最大不能超过多少?【答案】(1)3M 0c 2(2)23024r M GTπ=;22GM R c '= 【解析】 【分析】 【详解】(1)合并后的质量亏损000(2639)623m M M M ∆=+-=根据爱因斯坦质能方程2E mc ∆=∆得合并所释放的能量203E M c ∆=(2)a .小恒星绕黑洞做匀速圆周运动,设小恒星质量为m 根据万有引力定律和牛顿第二定律20202Mm G m r r T π⎛⎫= ⎪⎝⎭解得23024r M GTπ= b .设质量为m 的物体,从黑洞表面至无穷远处;根据能量守恒定律2102Mm mv G R ⎛⎫+-= ⎪⎝⎭解得22GM R v '=因为连光都不能逃离,有v =c 所以黑洞的半径最大不能超过22GM R c '=7.2019年4月20日22时41分,我国在西昌卫星发射中心用“长征三号”乙运载火箭,成功发射第四十四颗北斗导航卫星,卫星入轨后绕地球做半径为r 的匀速圆周运动。

高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版

高考物理万有引力定律的应用真题汇编(含答案)精选全文完整版

可编辑修改精选全文完整版高考物理万有引力定律的应用真题汇编(含答案)一、高中物理精讲专题测试万有引力定律的应用1.假设在半径为R 的某天体上发射一颗该天体的卫星,若这颗卫星在距该天体表面高度为h 的轨道做匀速圆周运动,周期为T ,已知万有引力常量为G ,求: (1)该天体的质量是多少? (2)该天体的密度是多少?(3)该天体表面的重力加速度是多少? (4)该天体的第一宇宙速度是多少?【答案】(1)2324()R h GT π+; (2)3233()R h GT R π+;(3)23224()R h R T π+;【解析】 【分析】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律列式求解; (2)根据密度的定义求解天体密度;(3)在天体表面,重力等于万有引力,列式求解; (4)该天体的第一宇宙速度是近地卫星的环绕速度. 【详解】(1)卫星做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有:G 2()Mm R h +=m 22T π⎛⎫ ⎪⎝⎭(R+h) 解得:M=2324()R h GTπ+ ① (2)天体的密度:ρ=M V =23234()43R h GT R ππ+=3233()R h GT R π+. (3)在天体表面,重力等于万有引力,故: mg=G2MmR ② 联立①②解得:g=23224()R h R Tπ+ ③ (4)该天体的第一宇宙速度是近地卫星的环绕速度,根据牛顿第二定律,有:mg=m 2v R④联立③④解得:【点睛】本题关键是明确卫星做圆周运动时,万有引力提供向心力,而地面附近重力又等于万有引力,基础问题.2.某航天飞机在地球赤道上空飞行,轨道半径为r ,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R ,地球表面重力加速度为g ,在某时刻航天飞机通过赤道上某建筑物的上方,求它下次通过该建筑物上方所需的时间.【答案】t =或者t =【解析】 【分析】 【详解】试题分析:根据人造卫星的万有引力等于向心力,列式求出角速度的表达式,卫星再次经过某建筑物的上空,比地球多转动一圈.解:用ω表示航天飞机的角速度,用m 、M 分别表示航天飞机及地球的质量,则有22MmGmr rω= 航天飞机在地面上,有2mMG Rmg =联立解得ω=若ω>ω0,即飞机高度低于同步卫星高度,用t 表示所需时间,则ωt -ω0t =2π所以t =若ω<ω0,即飞机高度高于同步卫星高度,用t 表示所需时间,则ω0t -ωt =2π所以t =. 点晴:本题关键:(1)根据万有引力提供向心力求解出角速度;(2)根据地球表面重力等于万有引力得到重力加速度表达式;(3)根据多转动一圈后再次到达某建筑物上空列式.3.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m 的物体P 置于弹簧上端,用力压到弹簧形变量为3x 0处后由静止释放,从释放点上升的最大高度为4.5x 0,上升过程中物体P 的加速度a 与弹簧的压缩量x 间的关系如图中实线所示。

高考物理真题分类汇编万有引力

高考物理真题分类汇编万有引力

高考物理真题分类汇编-万有引力、航天一、选择题1. (2013·福建高考)设太阳质量为M,某行星绕太阳公转周期为T,轨道可视作半径为r 的圆。

已知万有引力常量为G,则描述该行星运动的上述物理量满足 ( )A.GM=2324r T πB.GM=2224r T π C.GM=2234r T π D.GM=324r T π【解题指南】解答本题时应理解以下两点: (1)建立行星绕太阳做匀速圆周运动模型。

(2)太阳对行星的万有引力提供行星绕太阳做匀速圆周运动的向心力。

【解析】选A 。

设行星质量为m,据2224Mm G m r r T π=得GM=2324r T π,故选A 。

2. (2013·广东高考)如图,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,下列说法正确的是 ( ) A.甲的向心加速度比乙的小 B.甲的运行周期比乙的小 C.甲的角速度比乙的大 D.甲的线速度比乙的大【解题指南】甲、乙两卫星分别绕两个不同的中心天体做匀速圆周运动,万有引力提供向心力,根据F 万=F向,得出卫星的向心加速度、周期、角速度、线速度与中心天体质量的关系,从而得出甲、乙两卫星各个物理量的大小关系。

【解析】选A 。

甲、乙两卫星分别绕质量为M 和2M 的行星做匀速圆周运动,万有引力提供各自做匀速圆周运动的向心力。

由牛顿第二定律G 2mM r =ma=m 224T πr=m ω2r=m 2v r ,可得a=2GM r ,T=2π3r GM,ω=3GM r ,v=GMr。

由已知条件可得a 甲<a 乙,T 甲>T 乙,ω甲<ω乙,v 甲<v 乙,故正确选项为A 。

3. (2013·山东高考)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。

研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。

高考物理:专题5-万有引力定律(有答案)

高考物理:专题5-万有引力定律(有答案)

专题5 万有引力定律1.(15江苏卷)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕.“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径为120,该中心恒星与太阳的质量比约为 A .110B .1C .5D .10 答案:B解析:根据2224T r m r GMm π⋅=,得2324GT r M π=, 所以14365201)()(23251351=⨯=⋅=)()(地地日恒T T r r M M .2.(15北京卷)假设地球和火星都绕太阳做匀速圆周运动,已知地球到太阳的距离小于火星到太阳的距离,那么A.地球公转周期大于火星的公转周期 B .地球公转的线速度小于火星公转的线速度C .地球公转的加速度小于火星公转的加速度D .地球公转的角速度大于火星公转的角速度 答案:D解析:根据万有引力公式与圆周运动公式结合解题.再由地球环绕太阳的公转半径小于火星环绕太阳的公转半径,利用口诀“高轨、低速、大周期”能够非常快的判断出,地球的轨道“低”,因此线速度大、周期小、角速度大.最后利用万有引力公式a=2R G M ,得出地球的加速度大. 因此为D 选项.3.(15福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r 1、r 2, 线速度大小分别为v 1 、 v 2.则 ( )答案:A解析:由题意知,两颗人造卫星绕地球做匀速圆周运动,万有引力提供向心力,根据,得:,所以,故A 正确;B 、C 、D 错误.4.(15海南卷)若在某行星和地球上相对于各自水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为.已知该行星质量约为地球的7倍,地球的半径为R ,由此可知,该行星的半径为() A.B.C. 2RD.答案:C解析:平抛运动在水平方向上做匀速直线运动,即0x v t =,在竖直方向上做自由落体运动,即212h gt =,所以x v =74g g =行地,根据公式2Mm G mg R =可得2GMg R =,故2274M g R M g R ==行行行地地地,解得2R R =行,故C 正确.5.(15四川卷)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比解析:火星与地球都是绕太阳,由太阳对它们的万有引力提供其做圆周运动的向心力,设太阳的质量为M ,即有:2r MmG=ma n =224T πmr ,解得:a n =2r M G ∝21r,T =GMr π32∝3r ,由表格数据可知,火星轨道半径较大,因此向心加速度a n 较小,故选项B 正确;公转周期T 较大,故选项A 错误;在表面处时,根据m ′g =2R m m G',可得:g ∝2R m ,即:地火g g =2)(火地地火R R m m ⋅=1221222423104.3104.6100.6104.6⨯⨯⨯⨯⨯<1,所以火星表面的重力加速度较小,故选项C 错误;由第一宇宙速度公式v 1=RGm可知,地火11v v =662423104.3104.6100.6104.6⨯⨯⨯⨯⨯<1,所以火星的第一宇宙速度较小,故选项D 错误. 6.(15安徽卷)由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况....).若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .6.4×1066.03.4×1066.4解析:(1)A 星体受B 、C 两星体的引力大小相等,222BA CA m F F G a==,合力A BA F ==①; (2)B 星体受A 星体的引力222AB BA m F F G a ==,B 星体受C 星体的引力22CB m F G a=,三角形定则结合余弦定理得,22cos120B CB F F a == ②;(3)由对称性知,OA 在BC 的中垂线上,C B R R =.对A星体:2222A m R aω= ③,对B星体:222B m R a ω= ④,联立解得A C R =,222)()22A C a R R -+=,解得4C R a =,即B R =⑤; (4)把⑤式代入④式,得ω=2T πω== 7.(15重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为,距地面高度为,地球质量为,半径为,引力常量为,则飞船所在处的重力加速度大小为 A.0 B. C. D.答案:B解析:对飞船受力分析知,所受到的万有引力提供匀速圆周运动的向心力,等于飞船所在位置的重力,即,可得飞船的重力加速度为,故选B. 9.(15广东卷)(多选题)在星球表面发射探测器,当发射速度为v 时,探测器可绕星球表面做匀速圆周运动;当发射速度达到2v 时,可摆脱星球引力束缚脱离该星球,已知地球、火星两星球的质量比约为10∶1,半径比约为2∶1,下列说法正确的有A .探测器的质量越大,脱离星球所需的发射速度越大B .探测器在地球表面受到的引力比在火星表面的大C .探测器分别脱离两星球所需要的发射速度相等D .探测器脱离星球的过程中势能逐渐变大 答案:BD解析:探测器绕星球表面做匀速圆周运动的向心力由星球对它的万有引力提供,设星球质量为M ,探测器质量为m ,运行轨道半径为r ,星球半径为R ,根据万有引力定律有:F =2r MmG,在星球表面时r =R ,所以探m h M R G 2()GM R h +2()GMmR h +2GM h 2()Mm Gmg R h =+2=()GM g R h +测器在地球表面和在火星表面受到的引力之比为:火地F F =22地火火地R R M M ⋅=25,故选项B 正确;根据向心力公式有:2r MmG=r v m 2,解得:v =rGM ,与探测器的质量m 无关,探测器绕地球表面和绕火星表面做匀速圆周运动的速度大小之比为:火地v v =地火火地R R M M ⋅=5,又因为发射速度达到2v 时,探测器可摆脱星球引力束缚脱离该星球,故选项A 、C 错误;探测器脱离星球的过程中,高度逐渐增大,其势能逐渐变大,故选项D 正确.。

高考物理专题复习《万有引力定律 》真题汇编含答案

高考物理专题复习《万有引力定律 》真题汇编含答案

高考物理专题复习《万有引力定律 》真题汇编考点一:开普勒行星运动定律一、单选题1.(22·23·河北·学业考试)西汉时期,《史记·天官书》作者司马迁在实际观测中发现岁星呈青色,与“五行”学说联系在一起,正式把它命名为木星。

如图甲所示,两卫星Ⅰ、Ⅰ环绕木星在同一平面内做圆周运动,绕行方向相反,卫星Ⅰ绕木星做椭圆运动,某时刻开始计时,卫星Ⅰ、Ⅰ间距离随时间变化的关系图象如图乙所示,其中R 、T 为已知量,下列说法正确的是( )A .卫星Ⅰ在M 点的速度小于卫星Ⅰ的速度B .卫星Ⅰ、Ⅰ的轨道半径之比为1:2C .卫星Ⅰ的运动周期为TD .绕行方向相同时,卫星Ⅰ、Ⅰ连续两次相距最近的时间间隔为78T【答案】C【解析】A .过M 点构建一绕木星的圆轨道,该轨道上的卫星在M 点时需加速才能进入椭圆轨道,根据万有引力定律有22GMm v m r r= 可得GMv r=则在构建的圆轨道上运行的卫星的线速度大于卫星Ⅰ的线速度,根据以上分析可知,卫星Ⅰ在M 点的速度一定大于卫星Ⅰ的速度,A 错误;BC .根据题图乙可知,卫星Ⅰ、Ⅰ间的距离呈周期性变化,最近为3R ,最远为5R ,则有213R R R -=,215R R R +=可得1R R =,24R R =又根据两卫星从相距最远到相距最近有111222t t T T πππ+= 其中149t T =,根据开普勒第三定律有21122233T R R T = 联立解得1T T =,28T T =B 错误,C 正确;D . 运动方向相同时卫星Ⅰ、Ⅰ连续两次相距最近,有2212222t t T T πππ-= 解得287t T =D 错误。

故选C 。

2.(19·20·北京·学业考试)2012年12月,经国际小行星命名委员会批准,紫金山天文台发现的一颗绕太阳运行的小行星被命名为“南大仙林星”。

如图所示,“南大仙林星”绕太阳依次从a→b→c→d→a 运动。

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

五年2024_2025高考物理真题专题点拨__专题05万有引力定律与航天含解析

专题05 万有引力定律与航天【2024年】1.(2024·新课标Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A. 0.2B. 0.4C. 2.0D. 2.5【答案】B【解析】设物体质量为m ,则在火星表面有1121M mF GR 在地球表面有2222M mF GR 由题意知有12110M M 1212R R = 故联立以上公式可得21122221140.4101F M R F M R ==⨯=,故选B 。

2.(2024·新课标Ⅱ)若一匀称球形星体的密度为ρ,引力常量为G ,则在该星体表面旁边沿圆轨道绕其运动的卫星的周期是()D.【答案】A【解析】卫星在星体表面旁边绕其做圆周运动,则2224GMm m R R T, 343V R π= ,M Vρ=知卫星该星体表面旁边沿圆轨道绕其运动的卫星的周期T =3.(2024·新课标Ⅲ)“嫦娥四号”探测器于2024年1月在月球背面胜利着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的K 倍。

已知地球半径R 是月球半径的P 倍,地球质量是月球质量的Q 倍,地球表面重力加速度大小为g 。

则“嫦娥四号”绕月球做圆周运动的速率为( )A.RKgQPB.RPKgQC.RQgKPD.RPgQK【答案】D【解析】假设在地球表面和月球表面上分别放置质量为m 和m 0的两个物体,则在地球和月球表面处,分别有2Mm Gmg R =,002M m QG m g R P '=⎛⎫⎪⎝⎭解得2P g g Q'= 设嫦娥四号卫星的质量为m 1,依据万有引力供应向心力得1212Mm v QG m R R KK P P =⎛⎫ ⎪⎝⎭解得RPgv QK=,故选D 。

4.(2024·浙江卷)火星探测任务“天问一号”的标识如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万有引力定律高考题汇编一、单选题1、(08全国1卷)已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天.利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为 A . B .2 C .20 D .2002、(08北京卷)据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运用周期127分钟。

若还知道引力常量和月球平均半径,仅利用以上条件不能..求出的是 A .月球表面的重力加速度B .月球对卫星的吸引力C .卫星绕月球运行的速度D .卫星绕月运行的加速度 3、(08四川卷)1990年4月25日,科学家将哈勃天文望远镜送上距地球表面约600 km 的高空,使得人类对宇宙中星体的观测与研究有了极大的进展。

假设哈勃望远镜沿圆轨道绕地球运行。

已知地球半径为×106m ,利用地球同步卫星与地球表面的距离为×107m 这一事实可得到哈勃望远镜绕地球运行的周期。

以下数据中最接近其运行周期的是A .小时B .小时C .小时D .24小时$4、(08江苏卷)火星的质量和半径分别约为地球的101和21,地球表面的重力加速度为g ,则火星表面的重力加速度约为 A .0.2g B .0.4g C .2.5g D .5g5、(08广东理科基础)由于地球的自转,使得静止在地面的物体绕地轴做匀速圆周运动。

对于这些做匀速圆周运动的物体,以下说法正确的是A .向心力指向地心B .速度等于第一宇宙速度C .加速度等于重力加速度D .周期与地球自转的周期相等 6、(广东卷12)图是“嫦娥一号奔月”示意图,卫星发射后通过自带的小型火箭多次变轨,进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测,下列说法正确的是 A .发射“嫦娥一号”的速度必须达到第三宇宙速度 B .在绕月圆轨道上,卫星周期与卫星质量有关 C .卫星受月球的引力与它到月球中心距离的平方成反比|D .在绕月轨道上,卫星受地球的引力大于受月球的引力7、(07全国1卷)据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的倍,一个在地球表面重量为600N 的人在这个行星表面的重量将变为960N 。

由此可推知,该行星的半径与地球半径之比约为A .B .2C .D .48、(07北京卷)不久前欧洲天文学就发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”。

该行星的质量是地球的5倍,直径是地球的倍。

设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为k1E ,在地球表面附近绕地球沿圆轨道运行的形同质量的人造卫星的动能为k2E ,则k1k2E E 为A .B .0.3C .D .9、(07宁夏卷)天文学家发现了某恒星有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和运行周期。

由此可推算出A .行星的质量B .行星的半径C .恒星的质量D .恒星的半径10、(07四川卷)我国探月的“嫦娥工程”已启动,在不久的将来,我国宇航员将登上月球。

假如宇航员在月球上测得摆长为l 的单摆做小振幅振动的周期为 T ,将月球视为密度均匀、半径为r 的球体,则月球的密度为$11、(07天津卷)我国绕月探测工程的预先研究和工程实施已取得重要进展。

设地球、月球的质量分别为m 1、m 2,半径分别为R 1、R 2,人造地球卫星的第一宇宙速度为v ,对应的环绕周期为T ,则环绕月球表面附近圆轨道飞行的探测器的速度和周期分别为A .v R m R m 2112,T R m R m 312321B .v R m R m 1221,T R m R m 321312C .v R m R m 2112,T R m R m 321312D .v R m R m 1221,T R m R m 31232112、(06全国1卷)我国将要发射一颗绕月运行的探月卫星“嫦娥1号”。

设该卫星的轨道是圆形的,且贴近月球表面。

已知月球的质量约为地球质量的181 ,月球的半径约为地球半径的14 ,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为A. 0.4km/sB. 1.8km/sC. 11km/sD. 36km/s13、(06北京卷)一飞船在某行星表面附近沿圆轨道绕该行星飞行。

认为行星是密度均匀的球体,要确定该行星的密度,只需要测量A .飞船的轨道半径B .飞船的运行速度C .飞船的运行周期D .行星的质量14、(06江苏卷)举世瞩目的“神舟”六号航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就.已知地球的质量为M ,引力常量为G ,设飞船绕地球做匀速圆周运动的轨道半径为r ,则飞船在圆轨道上运行的速率为A .rGMB .GMr C .MrG D .GrM|15、(06重庆卷)宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球表面(设月球半径为R )。

据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为A .tRh2 B .tRh 2 C .tRh D .tRh 216、(08灾区卷)如图,地球赤道上的山丘e ,近地资源卫星p 和同步通信卫星q 均在赤道平面上绕地心做匀速圆周运动。

设e 、p 、q 的圆周运动速率分别为v 1、v 2、v 3,向心加速度分别为a 1、a 2、a 3,则A .v 1>v 2>v 3B .v 1<v 2<v 3C .a 1>a 2>a 3D .a 1<a 3<a 217.同重力场作用下的物体具有重力势能一样,万有引力场作用下的物体同样具有引力势能。

若取无穷远处引力势能为零,物体距星球球心距离为r 时的引力势能为E p =-G m 0mr (G 为万有引力常量),设宇宙中有一个半径为R 的星球,宇航员在该星球上以初速度v 0竖直向上抛出一个质量为m 的物体,不计空气阻力,经t 秒后物体落回手中,则下列判断错误的是( )A .在该星球表面上以 2v 0Rt 的初速度水平抛出一个物体,物体将不再落回星球表面B .在该星球表面上以2 v 0Rt 的初速度水平抛出一个物体,物体将不再落回星球表面 C .在该星球表面上以2v 0Rt 的初速度竖直抛出一个物体,物体将不再落回星球表面}D .在该星球表面上以2v 0Rt 的初速度竖直抛出一个物体,物体将不再落回星球表面18. (2013高考安徽理综第17题)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E P =-GMmr,其中G 为引力常量,M 为地球质量。

该卫星原来的在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( ) A. GMm (21R -11R ) B. GMm (11R -21R ) C.12GMm (21R -11R ) D. 12GMm (11R -21R )19.(2016全国理综)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯,目前,地球同步卫星的轨道半径为地球半径的6.6倍,假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( ) A .1h B .4h C .8h D .16h 二、多选题1、(08山东卷)据报道.我国数据中继卫星“天链一号01 星”于2008 年4 月25 日在西昌卫星发射中心发射升空,经过4 次变轨控制后,于5 月l 日成功定点在东经77°赤道上空的同步轨道。

关于成功定点后的“天链一号01 星”,下列说法正确的是A . 运行速度大于7.9km/sB .离地面高度一定,相对地面静止~C .绕地球运行的角速度比月球绕地球运行的角速度大D .向心加速度与静止在赤道上物体的向心加速度大小相等2、(07江苏卷)假设太阳系中天体的密度不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是A .地球的向心力变为缩小前的一半B .地球的向心力变为缩小前的161C .地球绕太阳公转周期与缩小前的相同D .地球绕太阳公转周期变为缩小前的一半3、(07山东卷)2007年4月24日,欧洲科学家宣布在太阳系之外发现了一颗可能适合人类居住的类地行星Gliest581c.这颗星绕红Gliese 581运行的星球有类似的星球的温度,表面可能有液态水存在,距离地球约为20光年,直径约为地球的倍,质量约为地球的5倍,绕红矮星Gliese 581运行的周期约为13天。

假设有一艘宇宙飞船飞船飞临该星球表面附近轨道,下列说法正确的是 A .飞船在Gliest 581c 表面附近运行的周期约为13天B .飞船在Gliest 581c 表面附近运行时的速度大于7.9km/s~C .人在liese 581c 上所受重力比在地球上所受重力大D .Gliest 581c 的平均密度比地球平均密度小 4、(07重庆卷)土卫十和土卫十一是土星的两颗卫星,都沿近似为圆周的轨道线土星运动.其参数如表: 两卫星相比土卫十A .受土星的万有引力较大B .绕土星的圆周运动的周期较大#C .绕土星做圆周运动的向心加速度较大D .动能较大5. 宇宙飞船以周期为T 绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示。

卫星半径(m) 卫星质量(kg) 轨道半径(m) 土卫十×104,×1018×108 土卫十一 ×104×1017×108已知地球的半径为R ,地球质量为M ,引力常量为G ,地球自转周期为0T 。

太阳光可看作平行光,宇航员在A 点测出的张角为α,则( ) A. 飞船绕地球运动的线速度为)2/sin(2απT RB. 一天内飞船经历“日全食”的次数为T /T 0C. 飞船每次“日全食”过程的时间为)2/(0παT D. 飞船周期为)2/sin()2/sin(2ααπGM RR T =}三、填空题1、某行星绕太阳运动可近似看作匀速圆周运动,已知行星运动的轨道半径为R ,周期为T ,万有引力恒量为G ,则该行星的线速度大小为_____;太阳的质量可表示为_____。

四、计算题1、(07上海卷)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处。

(取地球表面重力加速度g =10m/s 2,空气阻力不计)(1)求该星球表面附近的重力加速度g ’; (2)已知该星球的半径与地球半径之比为R 星:R 地=1:4,求该星球的质量与地球质量之比M 星:M 地。

相关文档
最新文档