线性系统
什么是线性系统线性系统的简介

什么是线性系统线性系统的简介线性系统是一数学模型,是指用线性运算子组成的系统。
那么你对线性系统了解多少呢?以下是由店铺整理关于什么是线性系统的内容,希望大家喜欢!线性系统的简介状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统。
叠加原理是指:如果系统相应于任意两种输入和初始状态(u1(t),x01)和(u2(t),x02)时的状态和输出分别为(x1(t),y1(t))和(x2(t),y2(t)), 则当输入和初始状态为(C1u1(t)+C2u2(t),C1x01+C2x02)时,系统的状态和输出必为(C1x1(t)+C2x2(t),C1y1(t)+C2y2(t)),其中x表示状态,y表示输出,u表示输入,C1和C2为任意实数。
一个由线性元部件所组成的系统必是线性系统。
但是,相反的命题在某些情况下可能不成立。
线性系统的状态变量(或输入变量)与输出变量间的因果关系可用一组线性微分方程或差分方程来描述,这种方程称为系统的数学模型。
作为叠加性质的直接结果,线性系统的一个重要性质是系统的响应可以分解为两个部分:零输入响应和零状态响应。
前者指由非零初始状态所引起的响应;后者则指由输入引起的响应。
两者可分别计算。
这一性质为线性系统的分析和研究带来很大方便。
严格地说,实际的物理系统都不可能是线性系统。
但是,通过近似处理和合理简化,大量的物理系统都可在足够准确的意义下和一定的范围内视为线性系统进行分析。
例如一个电子放大器,在小信号下就可以看作是一个线性放大器,只是在大范围时才需要考虑其饱和特性即非线性特性。
线性系统的理论比较完整,也便于应用,所以有时对非线性系统也近似地用线性系统来处理。
例如在处理输出轴上的摩擦力矩时,常将静摩擦当作与速度成比例的粘性摩擦来处理,以便于得出一些可用来指导设计的结论。
从这个意义上来说,线性系统是一类得到广泛应用的系统。
线性的概念线性linear,指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。
线性系统理论和设计

线性系统理论和设计是控制工程中的重要内容,涉及到对线性系统的建模、分析和控制设计。
以下是关于线性系统理论和设计的基本内容:
1. 线性系统模型
-线性系统描述:线性系统是指具有线性性质的动态系统,其输出与输入之间满足线性关系。
-线性系统模型:通常用微分方程、差分方程或状态空间方程描述线性系统的动态特性。
2. 线性系统分析
-系统稳定性分析:通过研究系统的零点、极点等性质来判断系统的稳定性。
-频域分析:通过频率响应、波特图等方法分析系统在频域下的性能。
-时域分析:通过阶跃响应、脉冲响应等方法研究系统在时域下的响应特性。
3. 线性系统设计
-控制器设计:设计合适的控制器来实现系统的性能要求,常见的控制器包括比例积分微分(PID)控制器、根轨迹设计等。
-系统鲁棒性设计:设计具有鲁棒性的控制器,能够抵抗参数变化和外部干扰的影响。
-最优控制设计:利用最优控制理论设计最优的控制器,使系统性能
达到最佳。
4. 线性系统应用
-自动控制系统:将线性系统理论和设计方法应用于自动控制系统,实现对各种工程系统的自动控制和调节。
-信号处理系统:利用线性系统理论设计数字滤波器、信号处理算法等,对信号进行处理和提取。
-机电系统:应用线性系统理论设计机电系统的控制器,实现机电系统的精密控制和运动规划。
线性系统理论和设计在控制工程领域具有广泛的应用,能够帮助工程师分析和设计各种复杂系统的控制策略,提高系统的性能和稳定性。
线性系统理论全PPT课件

bn1 s n1 b1 s b0 y( s) g ( s) n u( s) s an1 s n1 a1 s a0
(2)系统的内部描述 状态空间描述是系统内部描述的基本形式,需要由两个数学方程表征,—— 状态方 程和输出方程 (3)外部描述和内部描述的比较 一般的说外部描述只是对系统的一种不完全描述,不能反映黑箱内部结构的不 能控或不能观测的部分. 内部描述则是系统的一种完全的描述,能够完全反映系统的所有动力学特性.
离散时间线性系统的方块图
D(k )
H (k )
x(k 1)
x(k )
单位延迟
C (k )
u (k )
y (k )
G (k )
7/7,11/50
2.3.连续变量动态系统按状态空间描述的分类
线性系统和非线性系统
f ( x, u, t ) 设系统的状态空间描述为 x y g ( x, u, t )
5
• 建立数学模型 • 数学模型的基本要素是变量、参量、常数 和它们之间的关系 • 变量:状态变量、输入变量、输出变量、
扰动变量
• 参量:系统的参数或表征系统性能的参数
• 常数:不随时间改变的参数
6
• 时间域模型:微分方程组或差分方程组 可用于常系数系统 和变系数系统 • 频率域模型:用传递函数、频率响应
向量函数
g1 ( x, u, t ) f1 ( x, u, t ) g ( x, u , t ) f ( x, u , t ) ,g ( x, u, t ) 2 f ( x, u , t ) 2 g ( x , u , t ) f ( x , u , t ) n q
线性系统的性质

三、因果系统与非因果系统
因果系统:在激励信号作用之前系统不产生响应。 否则为非因果系统。 见图2。
图2
➢ 阅读与思考
2-5
第2讲 线性系统的性质
一、线性系统与非线性系统
若f1( t ) y1( t ),f2( t ) y2( t ) 则对于任意常数a1和a2,有 a1 f1( t ) + a2 f2( t ) a1 y1( t ) + a2 y2( t ) 则为线性系统。
非线性系统不满足上述齐次性和可加性。
二、时不变系统与时变系统
时不变系统:系统的元件参数不随时间变化; 或系统的方程为常系数的。 否则为时变系统。
时不变性:
若f(t)y(t) 则 f ( t t0 ) y ( t t0 )
见图1。
2-3
图1 时不变特性示意图
线性时不变系统(LTI): 系统既是线性的,又是时不变的; 或系统的方程为线性常系数微分方程。
2-1
线性系统的特性:
• 微分特性:若f ( t ) y( t ),则 f (t) y(t)
•
积分特性:若f (
t
)
y( t ),则
t
0
f ( )d
t
0 y( )d
• 频率保持性:信号通过线性系统后不会产生新的
频率分量。 尽管各频率分量的
实验二线性系统分析

实验二线性系统分析一、实验目的通过实验,掌握线性系统的特性和分析方法,了解系统的幅频特性和相频特性。
二、实验原理1.线性系统线性系统是指遵循叠加原理和比例原理的系统,可以表示为y(t)=h(t)⊗x(t),其中h(t)为系统的冲激响应,x(t)为输入信号,y(t)为输出信号,⊗为线性卷积操作。
2.系统的频域特性系统的频域特性可以通过离散傅里叶变换(Discrete Fourier Transform,简称DFT)来进行分析,DFT是将离散时间域信号变换到离散频域的方法。
3.系统的幅频特性系统的幅频特性描述了输出信号的幅度随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。
4.系统的相频特性系统的相频特性描述了输出信号的相位随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。
三、实验步骤1.准备工作:a.将信号发生器的频率设置为100Hz,幅度设置为5V。
b.将示波器的触发模式设置为自动,并调节水平位置使信号波形居中显示。
2.测量系统的幅频特性:a.将信号发生器的输出信号连接到线性系统的输入端口,将示波器的通道1连接到线性系统的输入端口,将示波器的通道2连接到线性系统的输出端口。
b.调节示波器的时间基准使波形显示在适当的范围内。
c.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的波形。
d.在示波器中进行幅度测量,并记录下输入信号和输出信号的幅值。
e.使用DFT算法对输入信号和输出信号进行频谱分析,得到幅频特性曲线。
f.绘制输入信号和输出信号的幅频特性曲线,并进行比较和分析。
3.测量系统的相频特性:a.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的相位差。
b.在示波器中进行相位测量,并记录下输入信号和输出信号的相位。
c.使用DFT算法对输入信号和输出信号进行频谱分析,得到相频特性曲线。
d.绘制输入信号和输出信号的相频特性曲线,并进行比较和分析。
《线性系统》课件

线性系统的控制目标
01
02
03
04
稳定性
确保系统在受到扰动后能够恢 复稳定状态。
跟踪性能
使系统输出能够跟踪给定的参 考信号。
抗干扰性
减小外部干扰对系统输出的影 响。
优化性能指标
最小化系统性能指标,如误差 、超调量等。
线性系统的控制设计方法
状态反馈控制
基于系统状态变量进行 反馈控制,实现最优控
稳定性分析
利用劳斯-赫尔维茨稳定判据等 工具,分析系统的稳定性。
最优性能分析
通过求解最优控制问题,了解 系统在最优控制下的性能表现
。
2023
PART 06
线性系统的应用实例
REPORTING
线性系统在机械工程中的应用
总结词
广泛应用、控制精度高
详细描述
线性系统在机械工程中有着广泛的应用,如数控机床、机器人、自动化生产线等。这些系统通过线性 控制理论进行设计,可以实现高精度的位置控制、速度控制和加速度控制,提高生产效率和产品质量 。
时域分析法
通过求解线性常微分方程或差分 方程,可以得到系统的动态响应
,包括瞬态响应和稳态响应。
频域分析法
通过分析系统的频率响应函数,可 以得到系统在不同频率下的动态响 应特性。
状态空间分析法
通过建立系统的状态方程和输出方 程,利用计算机仿真技术对系统的 动态响应进行模拟和分析。
2023
PART 05
2023
PART 02
线性系统的数学模型
REPORTING
线性系统的微分方程
总结词
描述线性系统动态行为的数学方程
详细描述
线性系统的微分方程是描述系统状态随时间变化的数学模型,通常采用常微分 方程或差分方程的形式。这些方程反映了系统内部变量之间的关系及其对时间 的变化规律。
线性和非线性系统的稳定性和控制

线性和非线性系统的稳定性和控制在控制系统中,线性和非线性系统是常见的两种形式。
线性系统具有可加性和比例性质,非线性系统则不满足这些性质。
在这篇文章中,我们将探讨线性和非线性系统的稳定性和控制,以及它们之间的差异。
1. 线性系统的稳定性和控制在线性系统中,当系统的输入和输出之间的关系满足线性方程时,我们可以使用线性的控制方法来调节其行为。
例如,当我们使用一个比例控制器来调节温度时,我们假设系统的响应是线性的。
这意味着,如果我们两倍地增加控制器的输出,系统的响应也会两倍增加。
线性系统的稳定性可以用传输函数的极点和零点来分析。
当传输函数的所有极点实部都小于零时,系统是稳定的。
如果有任何一个极点的实部大于零,系统就是不稳定的。
我们可以使用各种线性控制器来稳定系统,例如比例控制器、积分控制器和微分控制器。
2. 非线性系统的稳定性和控制对于非线性系统,它们的行为是更加复杂的。
它们不具有可加性和比例性质,这意味着我们无法使用线性控制方法来调节系统行为。
例如,在一个非线性电路中,如果我们将输入信号的幅度加倍,输出信号的幅度可能会非常不同。
非线性系统的稳定性也比线性系统更加复杂。
我们不能简单地使用传输函数的极点和零点来分析系统的稳定性。
相反,我们需要使用更高级的数学工具,例如李雅普诺夫稳定性理论。
该理论使用能量函数来分析系统的行为,从而判断系统是否稳定。
我们可以使用各种非线性控制器来调节非线性系统,例如反馈线性化控制和滑动模态控制。
3. 线性系统和非线性系统的不同在稳定性和控制方面,线性系统和非线性系统之间存在显著的差异。
线性系统具有可加性和比例性质,可以方便地使用传输函数来分析稳定性和设计控制器。
然而,非线性系统不具备这些特性,需要使用更高级的数学工具来分析稳定性和设计控制器。
此外,非线性系统可能会表现出一些奇异的行为,例如混沌和周期性振荡。
这些行为是线性系统所不具有的,因为线性系统的行为是可预测的和稳定的。
对于非线性系统,我们需要更加小心地分析其行为,以确保系统的稳定性和符合我们的预期。
线性系统理论全

稳定性判据与判定方法
稳定性判据
在控制工程中,常用的稳定性判据有Routh判据、Nyquist判据、 Bode判据等。这些判据通过分析系统的特征方程或频率响应来判 断系统的稳定性。
判定方法
除了使用稳定性判据外,还可以通过时域仿真、频域分析、根轨 迹法等方法来判定系统的稳定性。这些方法各有优缺点,适用于 不同类型的线性系统和不同的问题背景。
100%
线性偏差分方程
处理离散空间和时间的问题,如 数字滤波器和图像处理等。
80%
初始条件与边界条件
在差分方程中,初始条件确定系 统的起始状态。
状态空间模型
状态变量与状态方程
表示系统内部状态的变化规律 ,揭示系统动态特性。
输出方程
描述系统输出与状态变量和输 入的关系,反映系统对外部激 励的响应。
状态空间表达式的建立
复频域分析法
拉普拉斯变换
将时域信号转换为复频域信号,便于分析系统的稳定性和动态性 能。
系统函数
描述Байду номын сангаас统传递函数的复频域表示,反映系统的固有特性和对输入信 号的响应能力。
极点、零点与稳定性
通过分析系统函数的极点和零点分布,可以判断系统的稳定性以及 动态性能。
04
线性系统稳定性分析
BIBO稳定性
01
线性系统理论全
目
CONTENCT
录
• 线性系统基本概念 • 线性系统数学模型 • 线性系统分析方法 • 线性系统稳定性分析 • 线性系统能控性与能观性分析 • 线性系统优化与综合设计
01
线性系统基本概念
线性系统定义与性质
线性系统定义
满足叠加性与均匀性的系统。
线性系统性质
线性系统理论

线性系统理论线性系统理论是一个广泛应用的数学分支,该分支研究线性系统的性质、行为和解决方案。
线性系统可以描述很多现实世界中的问题,包括电子、机械、化学和经济系统等。
在这篇文章中,我们将探讨线性系统理论的基础、应用、稳定性和控制等不同方面。
一、线性系统基础线性系统是一种对于输入响应线性的系统。
当输入为零时,系统的响应为零,称之为零输入响应。
当没有外界干扰时,系统内部存在固有的动态响应,称之为自然响应。
当有外界输入时,系统将对输入做出响应,称之为强制响应。
线性系统具有很多性质,可以让我们更好地理解系统的行为。
其中一个重要的性质是线性可加性,就是说当输入是线性可加的时候,输出也是线性可加的。
换句话说,如果我们有两个输入信号,将它们分别输入到系统中,我们可以在系统的输出中将它们加起来,并得到对应的输出信号。
另外一个重要的性质是时不变性,就是说当输入信号的时间变化时,输出信号的时间变化也会随之发生。
这个性质告诉我们,系统的行为不随着时间的改变而改变。
除此之外,线性系统还有其他很多性质,比如可逆性、稳定性、因果性等等。
二、线性系统的应用线性系统有着广泛的应用,它们可以用来描述很多各种各样的问题,包括但不限于电子电路、航天控制、化学反应、经济系统等等。
下面我们来看看这些应用领域中的具体案例。
1. 电子电路线性系统在电子电路中有着广泛应用。
例如,如果我们想要设计一个低通滤波器,以使高频信号被抑制,我们可以使用线性系统来描述它的行为。
我们可以将电子电路看作一个输入信号到输出信号的转换器。
这个转换器的输出信号可以通过控制电子器件的电流、电压等参数来实现。
这种线性系统可以用来滤掉任何频率的信号,因此在广播和通信中也有广泛的应用。
2. 航天控制航天控制是线性系统理论的一个应用重点。
它包括控制飞行器姿态、轨道以及动力学行为。
在这些问题中,线性可变系统被广泛应用。
这种系统的输出信号是受到飞行器的控制和环境因素的影响。
控制器的任务是计算信号,以引导飞行员和总体系统实现期望的性能和特征。
线性系统

线性系统理论论文论文题目:线性系统理论综述—连续系统线性二次最优控制学院:年级:专业:姓名:学号:指导教师:目录摘要 (3)前言 (3)第一章线性系统理论概述 (3)1.1线性系统理论的研究对象 (4)1.2 线性系统理论的主要任务 (4)1.3 线性系统的主要学派 (5)1.4 现代线性系统的主要特点 (5)1.5 线性系统的发展 (6)第二章连续系统线性二次最优控制 (6)2.1最优控制问题 (6)2.2最优控制的性能指标 (7)2.3 最优控制问题的求解方法 (8)2.4 线性二次型最优控制 (9)2.5 连续系统线性二次型最优控制实例 (10)2.6 小结 (13)总结 (13)参考文献 (13)摘要线性系统理论是现代控制理论中最基本、最重要也是最成熟的一个分支,是生产过程控制、信息处理、通信系统、网络系统等多方面的基础理论。
本文对线性系统的历史背景、研究现状和发展趋势作了简单的综述。
线性二次最优控制理论内容丰富、应用广泛,引起广泛地关注并取得了丰硕成果。
最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。
本文基于连续系统线性二次最优控制,提出新的控制算法并结合实例进行了仿真验证。
关键字:线性系统;线性二次最优控制;控制系统;连续系统前言线性系统理主要阐述线性系统时域理论,给出了线性系统状态空间的概念、组成方法和基本性质,进而导出系统的状态空间描述。
以状态空间法为主要工具研究多变量线性系统的理论[1]。
随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。
与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。
随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。
线性系统的理论研究

线性系统的理论研究线性系统是信息处理与系统控制领域中的重要研究课题,它是模拟与数字信号处理、通信、控制系统等众多领域基础理论之一。
线性系统的理论研究是一项贯穿于数学、物理、工程等多个学科的复杂而严谨的研究工作,关注的是线性系统的特性及其行为。
线性系统理论的发展不仅在理论上有呈现出的巨大成就,在工程技术应用上也有重要的推动作用。
一、线性系统的基本概念和定义线性系统是指系统的输入和输出之间遵循线性关系的系统,其数学模型是线性微分方程或差分方程。
它的特征是具有线性可加性和齐次性。
其中线性可加性体现在输入的叠加导致输出的叠加,齐次性体现在零输入产生零输出的属性上。
基于这些特征,我们可以通过运用矩阵论、向量分析、泛函分析等数学工具,建立线性系统的数学模型,分析其稳定性、判据等特性,以此为基础进一步进行集成电路、控制系统、通信信号处理等领域的应用研究。
二、线性系统的理论研究方法在线性系统理论研究中,主要涉及到模型建立、稳定性分析、响应分析、控制与设计等方面。
模型建立通常是从实际问题出发,用数学语言精确地表述出输入与输出之间的关系。
稳定性分析是判断系统输出的频率,幅值和相位是否在输入范围内,判断系统是否具有稳定性的一种方法。
响应分析要求了解线性系统对不同信号输入的反应情况,包括系统的时域、频域、拉普拉斯域等情况。
控制与设计重点考虑的是如何使线性系统能够满足预定要求,如滤波、降噪、提高输出精度等方面。
三、线性系统的应用线性系统理论的研究对于工程技术应用有着明显的促进作用。
其中较为常见的是下列应用领域:1. 通信领域通信系统中要对信号进行调整、过滤和调制。
线性系统理论不仅能够对这些信号进行分析,还能够对传输带宽进行评估。
通信设备和技术的不断发展,要求对信号进行处理和调整的线性系统性能不断提升。
2. 电子学领域在电子学系统中,线性系统的过滤、功率放大、放大器、放大器及预处理、振荡器等部分起着极为重要的作用。
对于线性系统的研究,在提高这些部分性能、优化系统中能够取得更高的水平。
线性系统与非线性系统

线性系统与非线性系统线性系统和非线性系统是控制理论中重要的概念,它们对于描述和分析物理系统的行为具有重要意义。
本文将探讨线性系统和非线性系统的定义、特点以及在实际应用中的区别和应用。
一、线性系统线性系统是指具有线性特性的系统,其中输入和输出之间存在线性关系。
线性系统的特点是具有叠加原理和尺度不变性。
叠加原理指的是当输入信号为x1(t)和x2(t)时,对应的输出分别为y1(t)和y2(t),则输入为x1(t)+x2(t)时,对应的输出为y1(t)+y2(t)。
即系统对输入信号的响应是可加性的。
尺度不变性指的是当输入信号为kx(t)时,对应的输出为ky(t),其中k为常数。
即系统对于输入信号的放大或缩小,输出信号也相应地放大或缩小,但形状保持不变。
线性系统的数学模型可以用线性常微分方程表示,常见的线性系统包括线性电路、线性网络等。
线性系统的分析和控制较为简单,可以使用线性代数和转移函数的方法进行建模和求解。
二、非线性系统非线性系统是指输入和输出之间不存在线性关系的系统,其特点是叠加原理和尺度不变性不成立。
非线性系统具有复杂的动态特性,可能存在混沌现象、周期解、稳定解等。
非线性系统的行为难以预测和描述,经常需要借助数值方法和仿真模拟进行研究。
非线性系统广泛应用于生物、经济、环境等领域,例如生物系统的行为建模、经济市场的预测分析、气候模拟等。
非线性系统的研究和控制涉及到多个交叉学科,是当前的热点和挑战之一。
三、线性系统与非线性系统的区别1. 输入输出关系:线性系统的输入和输出之间存在线性关系,而非线性系统的输入和输出之间不存在线性关系。
2. 叠加原理:线性系统满足叠加原理,输入信号的响应是可加性的;而非线性系统不满足叠加原理,输入信号的响应不可加性。
3. 尺度不变性:线性系统满足尺度不变性,输入信号的放大或缩小会相应地改变输出信号的幅度,但形状保持不变;而非线性系统不满足尺度不变性,输入信号的放大或缩小可能改变输出信号的形状。
线性系统理论全PPT课件

稳定性是线性系统的一个重要性质,它决定了系统在受到外部干扰后能否恢复到原始状态。如果一个系统是稳定 的,那么当外部干扰消失后,系统将逐渐恢复到原始状态。而不稳定的系统则会持续偏离原始状态。
03
线性系统的数学描述
状态空间模型
01
定义
状态空间模型是一种描述线性动态系统的方法,它通过状态变量和输入
航空航天控制系统的线性化分析
线性化分析
在航空航天控制系统中,由于非线性特性较强,通常需要进行线性化分析以简化系统模 型。通过线性化分析,可以近似描述系统的动态行为,为控制系统设计提供基础。
线性化方法
常用的线性化方法包括泰勒级数展开、状态空间平均法和庞德里亚金方法等。这些方法 可以将非线性系统转化为线性系统,以便于应用线性系统理论进行控制设计。
线性系统理论全ppt课件
• 线性系统理论概述 • 线性系统的基本性质 • 线性系统的数学描述 • 线性系统的分析方法 • 线性系统的设计方法 • 线性系统的应用实例
01
线性系统理论概述
定义与特点
定义
线性系统理论是研究线性系统的 数学分支,主要研究线性系统的 动态行为和性能。
特点
线性系统具有叠加性、时不变性 和因果性等特性,这些特性使得 线性系统理论在控制工程、信号 处理等领域具有广泛的应用。
线性系统的动态性能分析
动态性能指标
描述线性系统动态特性的性能指 标,如超调量、调节时间、振荡
频率等。
状态空间分析法
通过建立和解决线性系统的状态方 程来分析系统的动态性能,可以得 到系统的状态轨迹和响应曲线。
频率域分析法
通过分析线性系统的频率特性来描 述系统的动态性能,可以得到系统 的频率响应曲线和稳定性边界。
线性系统理论ppt课件

第一节 线性关系
数学模型是由描述系统的变量和常量 构成的数学表达式,建立数学模型后,首 先要区分系统是线性还是非线性的。
以前的科学研究主要对象是线性系统, 而今正转向非线性系统,并且未来科学的 本质上是非线性科学
线性与非线性原本就是一对数学关系,用以区 分不同变量之间的两种基本的相互关系。
a11x1+a12x2+a13x3≤b1 a21x1+a22x2+a23x3≤b2
…… 它表示变量x1,x2,x3只能在给定的若干个代数 关系内变化,并且每个变量的变化都影响另 外两个变量的变化。
以上所讲的变量之间的关系都是静态相互 关系,都是用函数和代数方程进行描述。
实际上的动态过程中的诸变量的相互依存关 系要丰富的多。其数学表达式中将出现微分、 差分、积分等描述动态特性的项,反映这些 动态量对各个变量的依存关系。
xn
对于变系统系统,系统的系数为t的函数aij(t),系数矩阵为 A(t)
因此,对于最简单的一维系统就有:
x=ax
对于二维系统,有:
x=a11 x+a12 y y=a21 x+a22 y
以此类推至多维线性系统。
矩阵式描述对象整体特性的数学工具之一,方程给定后,借助代数 方法,通过分析系数矩阵,可以全面的了解系统的动态行为。
∇= a11a22 − a12a21
"鞍点"在三维空间中定义(图中的坐标原点),经过"鞍 点"平行于z轴的平面束代表无穷多个发展方向,每个平 面与曲面相交得到对应的曲线,代表该方向的发展轨迹。 不同的方向有的上升,有的下降。影射汽车市场,诸如 二手车置换的兴旺、汽车金融的产生、弱者被淘汰出局、 汽车出口呈上升态势、自主品牌的崛起、技术创新成企 业竞争王牌……不同的方面将有不同的发展。
线性系统原理及应用

线性系统原理及应用线性系统原理及应用线性系统是一类重要的数学模型,其原理基于线性方程组的理论,在工程、物理、经济等领域有广泛的应用。
本文将介绍线性系统的基本原理,并讨论其在不同领域中的应用。
一、线性系统的原理线性系统是指满足线性性质的系统,其特点是符合叠加原理和比例原理。
1. 叠加原理:对于任意输入信号,线性系统的输出等于各个输入信号分别作用于系统时的输出之和。
即系统对于输入信号的响应是可相加的。
数学表示为:y(t) = k1*x1(t) + k2*x2(t) + ... + kn*xn(t),其中y(t)为系统的输出,x1(t)、x2(t)、...、xn(t)为不同的输入信号,k1、k2、...、kn为对应的系数。
2. 比例原理:线性系统对于输入信号的放大或缩小会使得输出信号也按相同的比例放大或缩小。
即系统对于输入信号的响应是可比例的。
数学表示为:y(t) = a*x(t),其中y(t)为系统的输出,x(t)为输入信号,a为比例系数。
线性系统满足叠加原理和比例原理的特性,可使其在分析和处理复杂问题时更加灵活和方便。
二、线性系统的应用线性系统在各个领域中都有广泛的应用,以下将分别介绍其在工程、物理和经济领域的应用。
1. 工程领域的应用线性系统在工程领域中广泛应用于控制系统、通信系统、信号处理等方面。
在控制系统中,线性系统被用于描述系统的动态特性和稳定性,通过对系统输入信号和输出信号的分析和处理,实现对系统的控制和稳定。
在通信系统中,线性系统被用于信号传输和调制解调过程的分析和设计,通过对信号的处理和传输,实现高质量的通信。
在信号处理中,线性系统被用于对信号进行滤波、降噪、增强等处理,提高信号的质量和可靠性。
2. 物理领域的应用在物理领域中,线性系统被广泛应用于描述和分析力学、电磁学、声学等问题。
在力学中,线性系统被用于描述刚体和弹性体的振动特性、动力学过程和结构响应等问题。
在电磁学中,线性系统被用于描述电路元件、天线、传感器等的电特性、电磁场分布和辐射特性等问题。
如何判断系统是否线性

如何判断系统是否线性
线性系统是什幺
线性系统是指同时满足叠加性与均匀性(又称为其次性)的系统。
所谓叠加性是指当几个输入信号共同作用于系统时,总的输出等于每个输入单独作用时产生的输出之和;均匀性是指当输入信号增大若干倍时,输出也相应增大同样的倍数。
对于线性连续控制系统,可以用线性的微分方程来表示。
不满足叠加性和均匀性的系统即为非线性系统。
由于线性系统较容易处理,许多时候会将系统理想化或简化为线性系统。
线性系统常应用在自动控制理论、信号处理及电信上。
像无线通讯讯号在介质中的传播就可以用线性系统来模拟。
线性系统的函数表达为
如图:。
线性系统线性

一.线性系统与非线性系统
第 页
1.定义
线性系统:指具有线性特性的系统。
线性:指均匀性,叠加性。
均匀性(齐次性):
et rt ket krt
叠加性:
e1 e2
(t (t
) )
r1 r2
((tt))
e1
(t
)
e2
(t
)
r1
(t
)
r2
(t
)
X
2
第
线性特性
页
t 0 r0 e0 e 2
未来的激励 所以该系统为非因果系统。
X
系统分析方法
15
第
一.建立系统模型的两种方法
页
输入输出描述法: •着眼于激励与响应的关系,而不考虑系统内部
变量情况;
•单输入/单输出系统;
•列写一元 n 阶微分方程。
状态变量分析法:
•不仅可以给出系统的响应,还可以描述内部变量,
t
r2
t
10r1
t
r2
t
10
e1t来自e2t
t 0
(6)
(5)、(6)式矛盾,该系统为不具有叠加性
X
6
二.时变系统与时不变系统
第 页
1.定义
一个系统,在零初始条件下,其输出响应与输入信号 施加于系统的时间起点无关,称为非时变系统,否则 称为时变系统。
认识:
•电路分析上看:元件的参数值是否随时间而变 • 从方程看:系数是否随时间而变 •从输入输出关系看:
原方程两端乘A:
t 0 (1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明:主要用于理论分析。
4.2.4 约当规范形判据 对于连续时间线性时不变系统 : 情况一:A的特征值两两互异 线性变换导出的约当规范形
A(t)x B(t)u x
则系统完全能控的充分必要条件为对状态方程通过非奇异
λ1 x 0 0 x Bu λn
x1 y 0 6 x2
1 4 x1 u x 2 5 x2 2u x y 6 x2
将其表示为标量方程组形式:
显然,状态变量受输入 u 的影响,系统状态完全能控;只 有状态变量 x2 可从输出 y 反映,系统状态不完全能观测。
4.1.2 能控性的定义 a. 一个状态的能控性和能达性 对连续时间线性时变系统的状态描述为: : 一个状态的能控性定义:
1 2 1 1 0 1 2 解: 0 1 0 1 AB 0 1 0 1 0 3 0 0 1 0 1 0 1 2 2 4 QC 0 1 0 1 0 1 0 0 1 0 4 2
4 5 有
rank[sI A, B] 4
结果:系统完全能控。
PBH特征向量判据 连续时间线性时不变系统完全能控的充分必要条件为矩阵A不
存在与B所有列正交的非零左特征向量,即A的所有特征值 i
同时满足 T A i aT
T T B 0 的左特征向量 0 。
f. 能控规范形和能观测规范形:多入多出情形 g. 连续时间线性时不变系统的结构分解
4.1 能控性和能观测性的定义
4.1.1 对能控性、能观测性的直观讨论 例4-1-1 电路如图所示。
如果选取电容两端的电压 uC 为状态变量,即:x uC 。 电桥平衡时,不论输入电压
u(t ) 如何改变, x(t ) uC 不随
T AB 0
T An1B 0
k t T Ak B 0 k!
因此:
T [ I At
1 1 ( At) 2 ( At) k ]B 0 2! k!
T At 即: e B 0
T 说明 0 为零向量 ,与假设矛盾。
(本判据本身很简单,因此是最为常用的方法。)
一个状态的能达性定义: 对连续时间线性时变系统和给定的一个初始时刻 t0 J ,如果存 在一个时刻 t1 J , t1 t0 以及一个无约束容许控制 u(t ),t [t0 , t1 ] , 使系统状态由 x(t0 ) 0 转移到 x(t1 ) x f ,则称一个非零状态 x f 在 t 0 时刻是能达的。
能达,即系统的能控/能达与时刻无关,则称系统为一致能控/能达。
4.1.3 能观测性的定义
对连续时间线性时变系统的状态描述为:
: A(t)x B(t)u x
y C (t ) x D(t )u
a. 一个状态的不能观测
一个状态的不能观测性定义:
对连续时间线性时变系统和给定的一个初始时刻 t0 J ,如果存 在一个时刻 t1 J , t1 t0 ,使系统以 x(t0 ) x0 为初始状态的输出 y (t ) 恒为零,即对所有 t [t0 , t1 ]成立 y(t ) 0 ,则称一个非零状态 x0 在 t 0 时刻为不能观测。
例4-2-3 考察系统
的状态可控性。
解:
s 1 0 0 0 0 s 1 0 1 [ sI A, B] 0 0 s 1 0 0 0 5 s 2
矩阵A的特征值为: 对 1 2 0 有
1 2 0
3 5
4 5
1 0 1 0
0 2 1 0 0 2 1 1 0 0 2 1 x 0 2 x 0 0 3 1 0 0 0 3 1 1 0 0 0 0 3 0 0 0 0 0 4 0 0 7 u 0 0 1 0 4 1
A(t)x B(t)u x
对连续时间线性时变系统和给定的一个初始时刻 t0 J ,如果存 在一个时刻 t1 J , t1 t0 以及一个无约束容许控制 u(t ),t [t0 , t1 ] ,
使系统状态由 x(t0 ) x0 转移到 x (t1 ) 0 ,则称一个非零状态 x0 在 t 0 时刻是能控的。
着 u(t ) 的变化而改变,或者说
状态变量不受 u(t ) 的控制。
即:该电路的状态是不能控的。 显然,当电桥不平衡时, 该电路的状态是能控的。
例4-1-2 连续时间线性时不变系统的状态描述为:
1 4 0 x1 1 x x 0 5 x 2 u 2 2
即: x T [B
AB A2 B An1B] 0
)
T 因 x 0 所以 rankQC n 必要性 (即由系统完全能控推知 rankQC n
反证法,设 rankQC n 则存在非零向量 ,使
T [B
T 即: B 0
AB
A2 B An1B] 0
T 整理得: B 0 T AB 0
第4章 线性系统的能控性和能观测性
在多变量控制系统中,能控性和能观测性是两个反映控制系统 构造的基本特性,是线性系统理论中最重要的基本概念。 本章的内容为: a. 能控性和能观测性的定义
b. 连续时间线性时不变系统的能控性判据
c. 连续时间线性时不变系统的能观测性判据 d. 对偶性
e. 能控规范形和能观测规范形:单入单出情形
直接观察:矩阵 B 除重根第一行外的其他行不包含零行向量,则
系统完全能控。
4.2.5 能控性指标 A(t)x B(t)u, 对连续时间线性时不变系统, x 设 k 为正整数,则如下 n kp 矩阵:
x(0) x0 ,
t 0
其中x为n维状态,u为p维输入, A、B 为 n n 和 n p 常值矩阵
b. 系统的能控性和能达性 系统完全能控/能达:
对连续时间线性时变系统和给定的一个初始时刻 t0 J ,如果状 态空间中所有非零状态在时刻 t0 J 是能控/能达,则称系统 在
时刻 t 0 为完全能控/能达。 c. 系统的一致能控性和一致能达性
如果连续时间线性时变系统对任意初始时刻 t0 J 均为完全能控/
QC [ B AB
A2 B An1 B]
则系统完全能控的充分必要条件是: rankQC n 证明:充分性 ( 即由 rankQC n 推知系统完全能控)
x , x x x 0
T
反证法,设系统有一个状态 x 不可控,其余 x 为可控状态。则: 能控状态的表达式: 0 x(ta ) e x e A(t τ) Bu( )dτ
表明系统为状态完全可控
例4-2-2 考察系统 的状态可控性。
1 2 1 1 0 0 1 0 x 0 1 u x 1 0 3 0 0 1 2 1 1 2 2 4 0 1 0 1 A2 B 0 1 0 1 0 3 1 0 4 2 26 6 17 6 3 2 17 2 21
λ2
矩阵 B 不包含零行向量,即 B 的各行向量满足:
bi 0 i 1,2,, n
情况二:A的特征值存在重复,设 1 重复r次 则系统完全能控的充分必要条件为对状态方程通过非奇异 线性变换导出的约当规范形
0 0 λ1 1 0 0 1 0 0 λ1 0 x x Bu λr 1 0 0 0 0 λn 0 0 0
0 1 0 0 0 0 0 1 0 1 rank[ sI A, B] rank 0 0 0 1 0 0 0 5 0 2 1 0 0 0 0 1 0 1 4 rank 0 0 1 0 0 5 0 2
同理,对 3 5
4.2
连续时间线性时不变系统能控性判据
4.2.1 格拉姆矩阵判据 连续时间线性时不变系统的状态方程为:
Ax Bu, x x(0) x0 , t 0
其中:为 x n维状态,u 为p维输入,A和B为n n 和 n p 常值矩阵 连续时间线性时不变系统为状态能控的充分必要条件:
Qk [ B AB A2 B Ak 1 B]
当 k n 时,即为能控性判别矩阵。 定义:对完全能控连续时间线性时不变系统的能控性指标 为 使 rankQk n 成立的 k 最小正整数。
直观上,对 Q k 矩阵, k 由1依次增加,直到
则 k 即为 。
rankQk n
能控性指标估算: 对完全能控连续时间线性时不变系统,设状态维数为n,输入 维数为p,
存在时刻 t1 0 使如下定义的n×n格拉姆(Gram)矩阵满秩
WC (0, t1 ) t10e来自 AτBB e
T
AT τ
dτ
(这个定理为能控性的一般判据。但是,由于要计算状态转移矩阵, 比较繁琐。实际上,常用下面介绍的判据。)
4.2.2 秩判据 连续时间线性时不变系统构造能控性矩阵:
例4-2-1 考察系统
1 2 2 2 0 1 1 x 0 u x 的状态可控性。 0 1 1 1
解:
Qc B
AB
因为: det Qc 10 所以: rankQ c 3
2 4 0 A2 B 0 1 0 1 1 5
At t0 ta
x e Aτ Bu( )dτ
t0
ta
x x x e Aτ Bu( )dτ 0
T T t0
ta
x e Aτ B 0
T
将上式对 求导,并在原式及结果中令 0 (e Aτ 0) ,得: