初中数学八年级上数学竞赛试题含答案

合集下载

人教版 八年级数学上册 竞赛专题:直角三角形(含答案)

人教版 八年级数学上册 竞赛专题:直角三角形(含答案)

人教版 八年级数学上册 竞赛专题:直角三角形(含答案)【例l 】(1)直角△ABC 三边的长分别是x ,1x 和5,则△ABC 的周长=_____________.△ABC 的面积=_____________.(2)如图,已知Rt △ABC 的两直角边AC =5,BC =12,D 是BC 上一点,当AD 是∠A 的平分线时,则CD =_____________.(太原市竞赛试题)解题思路:对于(1),应分类讨论;对于(2),能在Rt △ACD 中求出CD 吗?从角平分线性质入手.【例2】如图所示的方格纸中,点A ,B ,C ,都在方格线的交点,则∠ACB =( ) A.120° B.135° C.150° D.165°(“希望杯”邀请赛试题)解题思路:方格纸有许多隐含条件,这是解本例的基础.【例3】如图,P 为△ABC 边BC 上的一点,且PC =2PB ,已知∠ABC =45°,∠APC =60°,求∠ACB 的度数.(“祖冲之杯”邀请赛试题)解题思路:不能简单地由角的关系推出∠ACB 的度数,综合运用条件PC =2PB 及∠APC =60°,构造出含30°的直角三角形是解本例的关键.【例4】如图,在△ABC 中,∠C =90°,∠A =30°,分别以AB ,AC 为边在△ABC 的外侧DCBC作等边△ABE 和等边△ACD ,DE 与AB 交于F ,求证:EF =FD.(上海市竞赛试题)解题思路:已知FD 为Rt △FAD 的斜边,因此需作辅助线,构造以EF 为斜边的直角三角形,通过全等三角形证明.【例5】如图,在四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =CD ,求证:222BD AB BC +=(北京市竞赛试题)解题思路:由待证结论易联想到勾股定理,因此,三条线段可构成直角三角形,应设法将这三条线段集中在同一三角形中.【例6】斯特瓦尔特定理:如图,设D 为△ABC 的边BC 上任意一点,a ,b ,c 为△ABC 三边长,则222b BDc DC AD BD DC a+=-⋅.请证明结论成立.解题思路:本题充分体现了勾股定理运用中的数形结合思想.能力训练A 级1.如图,D 为△ABC 的边BC 上一点,已知AB =13,AD =12,AC =15,BD =5,则BC =_____________.BACCBB2.如图,在Rt △ABC 中∠C =90°,BE 平分∠ABC 交AC 于E ,DE 是斜边AB 的垂直平分线,且DE =1cm ,则AC =_____________cm.3.如图,四边形ABCD 中,已知AB ∶BC ∶CD ∶DA =2∶2∶3∶1,且∠B =90°,则∠DAB =_____________.(上海市竞赛试题)4.如图,在△ABC 中,AB =5,AC =13,边BC 上的中线AD =6,则BC 的长为_____________.(湖北省预赛试题)5.如果一个三角形的一条边是另一条边的2倍,并且有一个角是30 º,那么这个三角形的形状是( )A.直角三角形B. 钝角三角形C. 锐角三角形D.不能确定(山东省竞赛试题)6.如图,小正方形边长为1,连结小正方形的三个顶点可得△ABC ,则AC 边上的高为( )第1题D 第2题第3题ABC第4题DBB.C.D.(福州市中考试题)7.如图,一个长为25分米的梯子,斜立在一竖直的墙上,这时梯足距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯足将滑( ) A. 15分米 B. 9分米 C. 8分米 D. 5分米8.如图,在四边形ABCD 中,∠B =∠D =90°,∠A =60°,AB =4,AD =5,那么BC CD等于( ) A.1 B. 2C.D.549. 如图,△ABC 中,AB =BC =CA ,AE =CD ,AD ,BE 相交于P ,BQ ⊥AD 于Q ,求证:BP =2PQ.(北京市竞赛试题)第6题C第7题第8题AC10. 如图,△ABC 中,AB =AC.(1)若P 是BC 边上中点,连结AP ,求证:22BP CP AB AP ⋅=-(2)P 是BC 边上任意一点,上面的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)若P 是BC 边延长线上一点,线段AB ,AP ,BP ,CP 之间有什么样的关系?请证明你的结论.11.如图,直线OB 是一次函数2y x =图象,点A 的坐标为(0,2),在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标.12.已知:如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在C '处,BC '交AD 于E ,AD =8,AB =4,求△BED 的面积.(山西省中考试题)B 级1.若△ABC 的三边a,b,c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为_____________.2.如图,在等腰Rt △ABC 中,∠A =90°,P 是△ABC 内的一点,PA =1,PB =3,PC,则∠CPA =_____________.BD3. 在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为_____________.4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G ,则CF 与GB 的大小关系是( ) A. CF >GB B. CF =GB C. CF <GB D. 无法确定5. 在△ABC 中,∠B 是钝角,AB =6,CB =8,则AD 的范围是( ) A. 8<AC <10 B. 8<AC <14 C. 2<AC <14 D. 10<AC <14(江苏省竞赛试题)6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )A. 1个B. 2个C. 3个D.4个(浙江省竞赛试题)7.如图,△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,E ,F 分别是AB ,AC边上的点,且DE ⊥DF ,若BE =12,CF =5,求△DEF 的面积.(四川省联赛试题)8.如图,在Rt △ABC 中,∠A =90°,D 为斜边BC 中点,DE ⊥DF ,求证:222EF BE CF =+第2题A第4题D ABDBCDB(江苏省竞赛试题)9.周长为6,面积为整数的直角三角形是否存在?若不存在,请给出证明;若存在,请证明有几个.(全国联赛试题)10.如图,在△ABC 中,∠B AC =45°,AD ⊥BC 于D ,BD =3,CD =2,求△ABC 面积.(天津市竞赛试题)11.如图,在△ABC 中,∠B AC =90°,AB =AC ,E ,F 分别是BC 上两点,若∠EAF =45°,试推断BE ,CF ,EF 之间数量关系,并说明理由.12.已知在Rt △ABC 中,∠ACB =90°,AC =BC ,∠MCN =45°. (1)如图1,当M ,N 在AB 上时,求证:222MN AM BN =+(2)如图2,将∠MCN 绕点C 旋转,当M 在BA 的延长线上时,上述结论是否成立?若成立,请证明;若不成立,请说明理由.(天津市中考试题)BCA C图1NAB M图2N BM参考答案例1 (1)12或30;6或30; 提示:()22125x x ++=,得3x =;由()22251x x +=+,得12x =,(2)103提示:作DE ⊥AB 于E ,设CD =x ,则BE =13-5=8,DE =x ,BD =12-x ,由()222812x x +=-,得103x =. 例2 B 提示:过B 作BD ⊥AC 延长线于D 点,设CD =x ,BD =y ,可求得:x =y ,则∠BCD =45°,故∠BCA =135°.例3 ∠ACB =75° 提示:过C 作CQ ⊥AP 于Q ,连接BQ ,则AQ =BQ =CQ .例4 提示:过E 作EG ⊥AB 于G ,先证明Rt △EAG ≌Rt △ABC ,再证明△EFG ≌△DF A .例5 连接AC∵AD =DC ,∠ADC =60°,∴△ADC 是等边三角形,DC =CA =AD ,以BC 为边向四边形外作等边三角形BCE ,即BC =BE =CE , 则∠BCE =∠EBC =∠CEB =60°,∴∠ABE =∠ABC +∠EBC =90°,连接AE ,则22222AE AB BE AB BC =+=+,易证△BDC ≌△EAC ,得BD =AE ,故222BD AB BC =+. 例6 过A 作AE ⊥BC 于E ,设DE =x ,BD =u ,DC =v ,AD =t ,则()()2222222AE b v x c u x t x =--=-+=-,故2222t b v ux =-+,2222t c u ux =--,消去x 得222b u c v t uv u v +=-+,即222b BD c CDAD BD DC a+=-⋅. A 级1.14 2.3 3.135°4. 提示:延长AD 至E ,使DE =AD ,连接BE ,则△ACD ≌△EBD ,∴BE =AC =13,AE =12,又AB =5,则∠BAD =90°,5.D 6.C 7.C 8.B 9.提示:△ADC ≌△BEA ,∠BPQ =60°. 10.(1)(2)略 (3)提示:AB ,AP ,BP ,CP ,之间的关系是22AP AB BP CP -=⋅ 11.提示:满足提议的点有4个,作别分别为:8161,,,,,1552⎛⎛⎫⎛⎫⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭; 12.10.B 级1.60132.135° 提示:将△P AC 绕A 点顺时针旋转90°, 3.32或42 提示:分类讨论。

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

八年级(上)数学竞赛试题及答案(新人教版)

八年级(上)数学竞赛试题及答案(新人教版)

八年级(上)数学竞赛试卷考试时间:100分钟 总分:100分一、精心填一填(本题共10题,每题3分,共30分)1.函数a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 .6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。

9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有y x y x y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图 5图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-416.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题分式方程(含答案)

人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

八年级(上)数学竞赛试题及答案(新人教版)

八年级(上)数学竞赛试题及答案(新人教版)

一、精心填一填(本题共 10题,每题3分,共30分) 1. 函数y= JT 万中,字母a 的取值范围是 ______________ 2. 如图1, 3. 计算:4、写出一个图象经过点(-1,-1),且不经过第一象限的函数表达式5. 已知点P 1 (a-1 , 5)和P 2 (2, b-1 )关于x 轴对称,则(a+b ) 2005的值为6. 如图2,A ABC 中边AB 的垂直平分线分别交 BC AB 于点D 、E , AE=3cm △ ADC?勺周长为9cm 则厶ABC 的周长是 ________________7. 如图 3, AE = AF , AB = AC, / A = 60°,/ B = 24°,则/ BOC= ___________ . 8.如图4,在厶ABC 中,AB=AC / A=36°, BD CE 分别为/ ABC 与/ ACB 的角平分线,且相交于点 F ,贝U 图中的等腰三角形有 个。

9 •如果用四则运算的加、减、除法定义一种新的运算,对于任意实数11 12 19*31 =10•如图5所示,圆的周长为 4个单位长度,在圆的4等分点处标上0, 1, 2, 应的数与数轴上的数一1所对应的点重合, 将与圆周上的数字 __________ 重合./戴尊7 *J)八年级(上)数学竞赛试卷考试时间:100分钟总分:100分/仁/ 2,由AAS 判定△ ABD^A ACD 则需添加的条件 20072-2006 X 2008=3 •先让圆周上数字0所对 那么数轴上的数一2007 再让数轴按逆时针方向绕在该圆上, 、相信你一定能选对! 下列各式成立的是( a-b+c=a- a-b-c=a- 已知一次函数 (A ) x > 0 11.A C 12. (b+c ) (b+c ) (本题共 ) B 6题,每题 图 53分,共18分).a+b-c=a- (b-c ) .a-b+c-d= (a+c ) - (b-d ) y=kx+b 的图象(如图6),当y v 0时,x 的取值范围是()(B ) x v 0(C ) x v 1( D ) x > 1图3图6图713.在厶ABC 中,/ B =Z 。

八年级(上)数学竞赛试卷(解析版)

八年级(上)数学竞赛试卷(解析版)

八年级(上)数学竞赛试卷一、选择题(每小题3分,共36分)1.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.解答:解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列语句是命题的是()A.作直线AB的平行线B.在线段AB上取一点CC.同角的余角相等D.垂线段最短是吗?考点:命题与定理.分析:根据命题的定义分别进行判断.解答:解:作直线AB的平行线;在线段AB上取一点C,它们为描叙性语言,不是命题;垂线段最短吗?它是疑问句,不是命题;同角的余角相等是命题.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.3.(3分)满足不等式3x﹣5>﹣1的最小整数是()A.﹣1 B. 1 C. 2 D.3考点:一元一次不等式的整数解.分析:首先解不等式3x﹣5>﹣1,求得解集,即可确定不等式的最小整数解.解答:解:解不等式3x﹣5>﹣1,移项得:3x>﹣1+5,则3x>4,∴x>,则最小的整数是2,故选C.点评:本题主要考查了不等式的解法,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.4.(3分)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.3 B.4 C. 5 D.6考点:勾股定理的证明.分析:先根据勾股定理求出AD的长度,再根据角平分线上的点到角的两边的距离相等的性质解答.解答:解:过D点作DE⊥BC于E.∵∠A=90°,AB=4,BD=5,∴AD===3,∵BD平分∠ABC,∠A=90°,∴点D到BC的距离=AD=3.故选:A.点评:本题利用勾股定理和角平分线的性质.5.(3分)下列判断正确的是()A.顶角相等的两个等腰三角形全等B.有一边及一锐角相等的两个直角三角形全等C.腰相等的两个等腰三角形全等D.顶角和底边分别相等的两个等腰三角形全等考点:全等三角形的判定;三角形内角和定理;等腰三角形的性质.专题:推理填空题.分析:举出反例图形,根据图形即可判断A、C;如果是直角边和斜边相等,即可判断B;根据等腰三角形性质和三角形内角和定理求出∠B=∠E,根据全等三角形的判断AAS即可判断D.解答:解:A、如图:等腰△ABC和△DEF,∠A=∠D,但两三角形不全等,故本选项错误;B、△ABC和△DEF,∠C=∠F=90°,BC=ED,∠A=∠D,但△ABC和△DEF不全等,故本选项错误;C、如图:△ABC和△DEF,AB=AC,DE=DF,AB=DE,但△ABC和△DEF不全等,故本选项错误;D、∵△ABC和△DEF,AB=AC,DE=DF,BC=EF,∠A=∠D,∴∠B=∠C=(180°﹣∠A),∠E=∠F=(180°﹣∠D),∴∠E=∠B,在△ABC和△DEF中,∴△ABC≌△DEF,故本选项正确;故选D.点评:本题考查了三角形的内角和定理,等腰三角形的性质和全等三角形的性质和判定等知识点的运用,解此题的关键是熟练地运用定理进行推理,难度不大,题型较好.6.(3分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100°B.120°C.20°或120°D.36°考点:等腰三角形的性质;三角形内角和定理.专题:分类讨论.分析:本题难度中等,考查等腰三角形的性质.因为所成比例的内角,可能是顶角,也可能是底角,因此要分类求解.解答:解:设两内角的度数为x、4x;当等腰三角形的顶角为x时,x+4x+4x=180°,x=20°;当等腰三角形的顶角为4x时,4x+x+x=180°,x=30,4x=120;因此等腰三角形的顶角度数为20°或120°.故选C.点评:此题是一个两解问题,考生往往只选A或B,而忽视了20°或120°都有做顶角的可能.7.(3分)根据下列条件判断,以a,b,c为边的三角形不是直角三角形的是()A.a=3,b=4,c=5B.a=30,b=60,c=90C.a=1,b=,c=D.a:b:c=5:12:13考点:勾股定理的逆定理.分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、(3)2+(4)2=(5)2,故是直角三角形,故本选项不符合题意;B、302+602=4500≠902,故不是直角三角形,故本选项符合题意;C、12+()2=()2,故是直角三角形,故本选项不符合题意;D、52+122=132,故是直角三角形,故本选项不符合题意.故选B.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.(3分)已知点P1(a﹣1,4)和P2(2,b)关于x轴对称,则(a+b)2013的值为()A.72013B.﹣1 C.1D.(﹣3)2013考点:关于x轴、y轴对称的点的坐标.分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:∵点P1(a﹣1,4)和P2(2,b)关于x轴对称,∴a﹣1=2,b=﹣4,解得a=3,b=﹣4,∴(a+b)2013=(3﹣4)2013=﹣1.故选B.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.9.(3分)下列判断正确的是()A.若|﹣a|<|﹣b|,则a>b B.若a<0,则2a<aC.若a≠b,则a2一定不等于b2D.若a>0,且(1﹣b)a<0,则b<1考点:不等式的性质.分析:根据不等式的性质分别判断得出即可.解答:解:A、若|﹣a|<|﹣b|,则当a,b为负数时,a<b,故此选项错误;B、若a<0,则2a<a,根据负数的性质得出,此选项正确;C、若a≠b,则a2不一定不等于b2,故此选项错误;D、若a>0,且(1﹣b)a<0,则1﹣b<0,则b>1,故此选项错误.故选:B.点评:此题主要考查了不等式的性质,熟练根据不等式的性质举出反例是解题关键.10.(3分)已知点E,F,A,B在直线l上,正方形EFGH从如图所示的位置出发,沿直线l向右匀速运动,直到EH与BC重合.运动过程中正方形EFGH与正方形ABCD重合部分的面积S随时间t变化的图象大致是()A B C D考点:动点问题的函数图象.专题:应用题;分类讨论.分析:本题是小正方形向大正方形中平移,分四段进行讨论,①GF在AD左边,②EF 在AD右边,且HE在AD左边,③正方形EFGH在正方形ABCD的内部,④EF在BC右边,且HE在BC左边;分别讨论其面积关系,易得答案.解答:解:根据题意可知,分四种情况讨论,①GF在AD左边,重合部分的面积S为0;②EF在AD右边,且HE在AD左边,重合部分的面积S逐渐增大;③正方形EFGH在正方形ABCD的内部,重合部分的面积S不变;④EF在BC右边,且HE在BC左边;重合部分的面积S逐渐减小,且与第②变化对称;故答案为C.点评:解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,在本题中只要根据题意得到重合面积大小变化的规律即可.11.(3分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3考点:两条直线相交或平行问题.分析:根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.解答:解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.点评:本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.12.(3分)如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的个数是()①DC′平分∠BDE;②BC长为(+2)a;③△BCD是等腰三角形;④△CED的周长等于BC的长.A.①②③B.②④C.②③④D.③④考点:翻折变换(折叠问题).分析:根据折叠前后得到对应线段相等,对应角相等判断各式正误即可.解答:解:∵∠BDC′=22.5°,∠C′DE=45°,∴①错误;根据折叠的性质知,△C′ED≌△CED,且都是等腰直角三角形,∴∠DC′E=∠DCE=45°,C′E=CE=DE=AD=a,CD=DC′=a,∴AC=a+a,BC=AC=(+2a)a,∴②正确;∵∠ABC=2∠DBC,∴∠DBC=22.5°,∵∠DCB=45°,∴∠BDC=112.5°,∴△BCD不是等腰三角形,故③错误;∴△CED的周长=CE+DE+CD=CE+C′E+BC′=BC,故④正确.故选B.点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.二、填空题(本题共8小题,每小题3分,共24分)13.(3分)用不等式表示a与3的和的5倍不小于6:5(a+3)≥6.考点:由实际问题抽象出一元一次不等式.分析:a与3的和为a+3,不小于即大于等于,据此列出不等式.解答:解:由题意得,5(a+3)≥6.故答案为:5(a+3)≥6.点评:本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.(3分)一个长方形的周长为20,一边长为x,则它的另一边长y为关于x的函数解析式为y=10﹣x(0<x<10).考点:根据实际问题列一次函数关系式.分析:先设出长方形的另一条边长,再根据长方形的周长公式即可求出x关于y的函数解析式;再根据长方形的边长一定为正数即可求出x的取值范围.解答:解:设长方形的另一条边长为y,则y=,即y=10﹣x,∵y>0,∴10﹣x>0,x<10,∵x>0,∴0<x<10.∴y关于x的函数解析式是y=10﹣x;x的取值范围是0<x<10.故答案为:y=10﹣x(0<x<10).点评:本题考查的是长方形的周长公式,即周长=长+宽,需要注意的是长方形的边长均为正数.15.(3分)若关于x的不等式组有解,则写出符合条件的一个a的值0.考点:解一元一次不等式组.专题:开放型.分析:先分别解的两个不等式得到x≥﹣a和x<1,由于原不等式组有解,则﹣a<1,解得a>﹣1,然后在此范围内取一值即可.解答:解:,解①得x≥﹣a,解②得x<1,∵不等式组有解,∴﹣a<1,∴a>﹣1,∴a可以取0.故答案为0.点评:本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.16.(3分)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为﹣.考点:一次函数图象上点的坐标特征.分析:将点(3,5)代入直线解析式,可得出b﹣5的值,继而代入可得出答案.解答:解:∵点(3,5)在直线y=ax+b上,∴5=3a+b,∴b﹣5=﹣3a,则==.故答案为:﹣.点评:本题考查了一次函数图象上点的坐标特征,注意直线上点的坐标满足直线解析式.17.(3分)把点M(﹣10,1)沿y轴正方向平移4个单位,则所得的像点M1的坐标是(﹣10,5).考点:坐标与图形变化-平移.分析:根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减进行计算即可.解答:解:点M(﹣10,1)沿y轴正方向平移4个单位,则所得的像点M1的坐标是(﹣10,1+4),即(﹣10,5),故答案为:(﹣10,5).点评:此题主要考查了坐标与图形的变化,关键是掌握点的平移中,坐标的变化规律.18.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=30°.考点:线段垂直平分线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠ABC的度数,再根据线段垂直平分线上的点到线段两端点的距离相可得AD=BD,根据等边对等角的性质可得∠ABD=∠A,然后求解即可.解答:解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣∠A)=(180°﹣40°)=70°,∵MN垂直平分线AB,∴AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30.点评:本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,等边对等角的性质,是基础题,熟记性质是解题的关键.19.(3分)下图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是76.考点:勾股定理.分析:通过勾股定理可将“数学风车”的斜边求出,然后可求出风车外围的周长.解答:解:设将AC延长到点D,连接BD,根据题意,得CD=6×2=12,BC=5.∵∠BCD=90°∴BC2+CD2=BD2,即52+122=BD2∴BD=13∴AD+BD=6+13=19∴这个风车的外围周长是19×4=76.故答案为:76.点评:本题考查勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.20.(3分)如图,等边三角形ABC的边长为2cm,D、E分别是AB、AC上的点,将△ADE 沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为6cm.考点:翻折变换(折叠问题).分析:由将△ADE沿直线DE折叠,点A落在点A′处,根据折叠的性质,即可得AD=A′D,AE=A′E,又由等边三角形ABC的边长为2cm,易得阴影部分图形的周长为:BD+A′D+BC+A′E+EC=BD+AD+BC+AE+EC=AB+BC+AC,则可求得答案.解答:解:∵等边三角形ABC的边长为2cm,∴AB=BC=AC=2cm,∵△ADE沿直线DE折叠,点A落在点A′处,∴AD=A′D,AE=A′E,∴阴影部分图形的周长为:BD+A′D+BC+A′E+EC=BD+AD+BC+AE+EC=AB+BC+AC=2+2+2=6(cm).故答案为:6.点评:此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用,注意掌握折叠前后图形的对应关系.三、解答题(共60分)21.(8分)解不等式(组)(1)≥(2).考点:解一元一次不等式组;解一元一次不等式.分析:(1)去分母、去括号,然后移项,合并同类项,系数化为1即可求解;(2)首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.解答:解:(1)去分母,得:3(2+x)≥4(2x﹣1),去括号,得:6+3x≥8x﹣4,移项,得:3x﹣8x≥﹣4﹣6,合并同类项得:﹣5x≥﹣10,系数化为1得:x≤2;(2)解①得x<1,解②得x≤﹣4则不等式组的解集是:x≤﹣4.点评:本题主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(8分)已知一次函数的图象过M(1,3),N(﹣2,12)两点.(1)求函数的解析式;(2)试判断点P(2a,﹣6a+8)是否在函数的图象上,并说明理由.考点:待定系数法求一次函数解析式;一次函数图象上点的坐标特征.分析:(1)利用待定系数法把点(1,3)和点(﹣2,12)代入y=kx+b可得关于k、b的方程组,再解方程组即可得到k、b的值,进而得到解析式;(2)要判断点(2a,﹣6a+8)是否的函数图象上,只要把这个点的坐标代入函数解析式,观察等式是否成立即可.解答:解:(1)设一次函数的解析式为y=kx+b,由题意,得,解得.∴y=﹣3x+6.(2)∵当x=2a时,﹣3×2a+6=﹣6a+6≠﹣6a+8,∴P(2a,﹣6a+8)不在函数图象上.点评:此题主要考查了待定系数法求一次函数解析式,以及画函数图象,关键是掌握待定系数法求一次函数解析式一般步骤:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.23.(10分)如图,Rt△ADE≌Rt△BEC,∠A=∠B=90°,使A、E、B在同一直线上,连结C D.(1)求证:∠1=∠2=45°(2)若AD=3,AB=7,请求出△ECD的面积.(3)若P为CD的中点,连结P A、P B.试判断△APB的形状,并证明之.考点:全等三角形的判定与性质;等腰直角三角形.分析:(1)由全等三角形的性质就可以得出DE=EC,∠DEC=90°,就可以得出结论;(2)由全等三角形的性质就可以得出AD=BE,AE=BC,由勾股定理就可以求出ED的值而得出结论;(3)连结PE,由等腰直角三角形的性质就可以得出PD=PC=PE,就可以得出△ADP≌△BEP,进而结论.解答:解:(1)∵Rt△ADE≌Rt△BEC,∴∠3=∠4,DE=EC,AD=BE,AE=BC,∠AED=∠BCE.∴∠1=∠2.∵∠DAE=∠ABC=90°,∴∠3+∠AED=90°,∴∠4+∠AED=90°,∴∠DEC=90°,∴∠1=∠2=45°;(2)∵AD=3,AB=7,∴AE=4.在Rt△AED中,由勾股定理,得DE=5,∴EC=5,∴S△CED==12.5;(3)△APB为等腰直角三角形,连结PE,∵P是CD的中点,∴PD=PC=C D.∵ED=EC,∠DEC=90°,∴∠5=∠DEC,∠EPD=90°,PE=C D.∴∠5=45°.PE=P D.∴∠5=∠1.∴∠5+∠4=∠1+∠3,∴∠PEB=∠PD A.在△BEP和△ADP中,,∴△BEP≌△ADP(SAS),∴P A=PB,∠APD=∠BPE.∵∠APD+∠APE=90°,∴∠BPE+∠APE=90°,∴∠APB=90°.∵P A=PB,∴△APB为等腰直角三角形.点评:本题考查了全等三角形的判定及性质的运用,勾股定理的运用,三角形的面积公式的运用,等腰直角三角形的判定的运用,解答时证明三角形全等是关键.24.(10分)义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A 型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?考点:一元一次不等式组的应用;一元一次方程的应用.分析:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.解答:解:(1)设购买一块A型小黑板需要x元,一块B型为(x﹣20)元,5x+4(x﹣20)=820,x=100,x﹣20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60﹣m=39;当m=22时,60﹣m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A22块,B38块.点评:本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.25.(10分)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若P A=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB 的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究P A的长.考点:线段垂直平分线的性质;等腰三角形的性质;等边三角形的性质;勾股定理.专题:新定义.分析:应用:连接P A、PB,根据准外心的定义,分①PB=PC,②P A=PC,③P A=PB三种情况利用等边三角形的性质求出PD与AB的关系,然后判断出只有情况③是合适的,再根据等腰直角三角形的性质求出∠APB=45°,然后即可求出∠APB的度数;探究:先根据勾股定理求出AC的长度,根据准外心的定义,分①PB=PC,②P A=PC,③P A=PB三种情况,根据三角形的性质计算即可得解.解答:应用:解:①若PB=PC,连接PB,则∠PCB=∠PBC,∵CD为等边三角形的高,∴AD=BD,∠PCB=30°,∴∠PBD=∠PBC=30°,∴PD=DB=AB,与已知PD=AB矛盾,∴PB≠PC,②若P A=PC,连接P A,同理可得P A≠PC,③若P A=PB,由PD=AB,得PD=BD,∴∠APD=45°,故∠APB=90°;探究:解:∵BC=5,AB=3,∴AC===4,①若PB=PC,设P A=x,则x2+32=(4﹣x)2,∴x=,即P A=,②若P A=PC,则P A=2,③若P A=PB,由图知,在Rt△P AB中,不可能.故P A=2或.点评:本题考查了线段垂直平分线的性质,等腰三角形的性质,勾股定理,读懂题意,弄清楚准外心的定义是解题的关键,根据准外心的定义,要注意分三种情况进行讨论.26.(14分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.解答下面的问题:(1)已知一次函数y=﹣2x的图象为直线l1,求过点P(1,4)且与已知直线l1平行的直线l2的函数表达式,并在坐标系中画出直线l1和l2的图象;(2)设直线l2分别与y轴、x轴交于点A、B,过坐标原点O作OC⊥AB,垂足为C,求l1和l2两平行线之间的距离OC的长;(3)若Q为OA上一动点,求QP+QB的最小值,并求取得最小值时Q点的坐标.(4)在x轴上找一点M,使△BMP为等腰三角形,求M的坐标.(直接写出答案)考点:一次函数综合题.分析:(1)设直线l2的解析式为y=﹣2x+b,把点P(1,4)代入即可求得b的值,进而求得函数的解析式;(2)首先求出A和B的坐标,然后根据三角形的面积公式求得;(3)B关于y轴的对称点B'(﹣3,0),连结B'P交y轴于Q,求得PB'的解析式,则Q的坐标即可求得;(4)分B、M和P分别是等腰三角形的顶角的顶点三种情况进行讨论,依据等腰三角形的性质即可求解.解答:解:(1)∵l1∥l2,∴设直线l2的解析式为y=﹣2x+b,把点P(1,4)代入得,4=﹣2+b,b=6∴y=﹣2x+6(1分),画图如右图所示(2)直线l2与y轴、x轴的交点A、B的坐标,分别为(0,6),(3,0);∵OA=6,OB=3,则AB=,又S△AOB=2OA×OB=AB×OC,∴(或)(3)∵B关于y轴的对称点B'(﹣3,0),连结B'P交y轴于Q,∴QP+QB的最小值为,∵直线B'P的解析式为y=x+3,∴Q(0,3),(4)过P作PD⊥x轴于点D,则D的坐标是(1,0),当P是等腰△PBM的顶角顶点时,M的坐标是(﹣1,0);在直角△PBD中,PB===2,则当B是等腰△PBM的顶角的顶点时,M的坐标是(3+2,0)或M(3﹣2,0);PB的中点是(2,2),设过(2,2)且与AB垂直的直线的解析式是:y=x+c,则1+c=2,解得:c=1,则函数的解析式是y=x+1.当y=0时,x+1=0,解得:x=﹣2.则M的坐标是(﹣2,0).总之,M(﹣1,0)或M(﹣2,0)或M(3+2,0)或M(3﹣2,0).点评:本题考查了待定系数法求函数的解析式,以及等腰三角形的性质,正确进行讨论是本题的关键.第21页(共21页)。

八年级上册数学竞赛试题及答案

八年级上册数学竞赛试题及答案

八年级上册数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个表达式的结果是正数?A. \((-3) \times (-2)\)B. \((-3) \times (-3)\)C. \(3 \times (-2)\)D. \((-3) \times 3\)答案:A3. 一个数的平方是16,这个数是:A. 4B. -4C. 4或-4D. 以上都不是答案:C4. 一个三角形的三个内角分别是30°、60°和90°,这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形答案:A5. 一个数的绝对值是5,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 计算下列哪个表达式的结果是0?A. \((-2) + 2\)B. \((-2) \times 2\)C. \((-2) - 2\)D. \((-2) \div 2\)答案:A7. 一个数的立方是-8,这个数是:A. 2B. -2C. 2或-2D. 以上都不是答案:B8. 一个数除以-1的结果是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A9. 一个数的倒数是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:B10. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 任何数答案:A二、填空题(每题4分,共20分)1. 一个数的平方是25,这个数是______。

答案:±52. 一个数的立方是27,这个数是______。

答案:33. 如果一个三角形的两个内角分别是40°和70°,那么第三个内角是______。

答案:70°4. 一个数的绝对值是7,这个数是______。

答案:±75. 一个数除以-2的结果是-3,这个数是______。

八年级(上)数学竞赛试题(含答案)

八年级(上)数学竞赛试题(含答案)

B 'A 'CBA八年级(上)数学竞赛试题(2018-12-12)一、选择题:(24分) 1、下列计算正确的是( )。

A.(a 3)n+1=a 3n+1B.(-a 2)3·a 6=a 12C.a 8m ·a 8=2a 16mD.(-m)(-m)4=-m52、把(3x+2y)2-(x-y)2分解因式,结果是( )。

A .(4x+y)(2x+y)B .(4x+y)(2x+3y)C .(2x+3y)2D .(4x+y)2 3、下列说法正确的是( )。

A.全等三角形的中线相等;B.有两边对应相等的两个等腰三角形全等;C.有两边和一角对应相等的两个三角形全等;D.周长相等的两个等边三角形全等 4、数a 的平方的算术平方根等于( ).A .aB .aC .a 的绝对值D .以上答案都不对 5、下列各组数据中的三个数,可作为三边长构成直角三角形的是_____. A.1、2、3 B.2223,4,56、如图所示,图中的两个正方形可以通过平移的方法互相得到。

如果将其中一个正方形绕某个点旋转一个角度后能与另一个重合,则这样的点共有( )个? A .1 B.2 C.3 D.47、下列英文单词或标记中, 是中心对称的是( )。

A. SOS B. CEO C. MBA D. SARS8、如图,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是( )。

A .550 B.650 C.750 D.850二、填空题:(24分)9、多项式42++mx x 因式分解后有一个因式是1-x ,则=m 。

10、644×83=2x ,则x =_________. 11、18x2+19x-m=(9x+5)(2x+n),则m-n= .12、16的平方根是 ,364-的立方根是 。

13、如果一个数的平方根与它的算术平方根相同,那么这个数是 。

初二数学竞赛试题及答案

初二数学竞赛试题及答案

初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。

12. 一个数的立方根是2,那么这个数是______。

答案:813. 如果一个角的补角是120°,那么这个角的度数是______。

答案:60°14. 一个数的倒数是1/2,那么这个数是______。

答案:215. 一个数的绝对值是5,那么这个数可能是______或______。

答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。

答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。

【初中数学试题】八年级(上)竞赛数学试卷(解析版).doc

【初中数学试题】八年级(上)竞赛数学试卷(解析版).doc

一、选择题(本大题共10小题,每小题4分,满分40分)1-下列坐标平面内的各点中,在x 轴上的是( )3.下面四个图形中,线段BE 是AABC 的高的图是( )4.若AABC 三个内角的度数分别为m 、n 、p,且|m-n|+ (n - p ) 2=0,则这个三角形为( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形5.弹簧的长度与所挂物体的质量关系为一次函数,由图可知,不挂物体时,弹簧的长度为()6.某同学把一块三角形的玻璃打碎成了 3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省 事方法是( )'B A. ( -2, -3) B. ( -3, 0) C. (-1, 2) D. (0, 3)A.带①去B.带②去C.带③去D.①②③都带去7.如图,函数y 二kx (k=#0)和y 二ax+4 (a=#0)的图象相交于点A (2, 3),则不等式kx>ax+4的 8.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟, 为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画 出自行车行进路程y 千米与行进时间t 的函数图象的示意图,同学们画出的示意图如下,你认为正-■填空题(本大题共6小题,每小题5分,满分30分〉门•点P (-2, 1)向上平移2个单位后的点的坐标为_・12. 已知函数y= (m - 1) x 11 +1是—次函数,则m 二 ____ ・13. —个三角形的三边长分别是3, 1 -2m, 8,则m 的取值范围是 __________ ・14. 如图,有两个长度相同的滑梯(即BC 二EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DFA. - 1B. 1C. -5D. 510.如图是4X4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格 中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()解集为( )A. x>3B. x<3C. x>2 D ・ x<2确的是( )y 卅 3〔卅 $•卅 y 卅9.如果点P (-2, b)和点Q (a,-3)关于x 轴对称,贝l]a+b 的值是(15. 如图,在Z\ABC 中,AD 丄BC 于D 点,BD=CD,若BC 二6, AD 二5,则图中阴影部分的面积为 ____ ・A 16. 已知:如图,在AABC, AADE 中,ZBAC 二ZDAE 二90° , AB 二AC, AD 二AE,点 C, D, E 三点在同一 条直线上,连接BD, BE.则下列结论中正确的是: _____ .①BD 二CE ;②BD 丄CE ;③ZACE+ZDBC 二45° ;④ZBAE+ZDAC=80°・(把所有正确结论的序号都填在横线上)三.解答题(共5小题,满分50分)17.如图1,将一块等腰直角三角板ABC 的直角顶点C 置于直线I 上,图2是由图1抽象出的几何 图形,过A 、B 两点分别作直线I 的垂线,垂足分别为D 、E.(1) AACD 与ACBE 全等吗?说明你的理由.(2) 猜想线段AD 、BE 、DE 之间的关系.(直接写出答案)相等,则ZABC+ZDFE 二 ___ 度. AAA/VX图1 0218.如图,在平面直角坐标系中,A (-1, 5) , B (-1, 0) , C (-4, 3)・(1) 求出AABC 的面积;(2) 在图中作出AABC 关于y 轴的对称图形△ABG ;(3) 写出点人,B 1? G 的坐标.(1) 求直线AB 的解析式;(2) 若直线y 二2x- 4与直线AB 相交于点C,求点C 的坐标;(1)如图1所示,一扇窗户打开后,用窗钩AB 要将其固定,这里所运用的几何原理是: (2)小河的旁边有一个甲村庄(如图2所示),现计划在河岸AB 上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:B19.已知直线y 二kx+b 经过点A (5, 0) , B (1, 4)・O 图1 20.生活中的数学:(3)如图3所示,在新修的小区中,有一条U Z ,5字形绿色长廊ABCD,其中AB 〃CD,在AB, BC, CD 三段绿色长廊上各修一小凉亭E, M, F,且BE 二CF,点M 是BC 的中点,在凉亭M 与F 之间有一池 塘,不能直接到达,要想知道M 与F 之间的距离,只需要测出线段ME 的长度(用两个字母表示线段).这 样做合适吗?请说出理由.21.认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究仁如图1,在AABC 中,0是ZABC 与ZACB 的平分线B0和CO 的交点,通过分析发现ZB0C=90°兮 ZA,理由如下:VB0和CO 分别是ZABC 和ZACB 的角平分线,A Z1=-i-ZABC, Z2二+ZACB,•••Z1 + Z2二吉(ZABC+ZACB)丄(ZABC+ZACB)二占(180° - ZA)二90° -占ZA, 2 2 2 2・・・ZB0C 二 180° - (Z1 + Z2) =180° - (90° -£zA)二90° +±ZA. 2 2(1) 探究2:如图2中,0是ZABC 与外角ZACD 的平分线B0和C0的交点,试分析ZB0C 与ZA 有怎样的关系?请说明理由.(2) 探究3:如图3中,0是外角ZDBC 与外角ZECB 的平分线B0和C0的交点,则ZB0C 与ZA有怎样的关系?(直接写出结论)(3) 拓展:如图4,在四边形ABCD 中,0是ZABC 与ZDCB 的平分线B0和C0的交点,则ZB0C 与 ZA+ZD 有怎样的关系?(直接写出结论)圉4S1参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.下列坐标平面内的各点中,在x轴上的是()A. ( -2, -3)B. (一3, 0)C. (一1, 2)D. (0, 3)【考点】点的坐标.【分析】根据x轴上的点的纵坐标为0解答.【解答】解:(-2, -3)(-3, 0)(-1, 2)(0, 3)四个点中,只有(-3, 0)纵坐标为0, 所以,在x轴上的是(-3, 0).故选B.【点评】本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键.【考点】待定系数法求正比例函数解析式.【专题】数形结合;待定系数法.【分析】首先根据图象知道图象经过(1, -D ,然后利用待定系数法即可确定函数的解析式.【解答】解:设这个函数的解析式为y=kx,•・•函数图象经过(1, -1),- 1=k,・•・这个函数的解析式为y二-x.故选B.【点评】本题考查了用待定系数法求正比例函数的解析式以及通过图象得信息的能力,是基础知识要熟练掌握.3.下面四个图形中,线段BE是AABC的高的图是()【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是AABC的高.【解答】解:线段BE是AABC的高的图是D.故选D.【点评】三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.若AABC三个内角的度数分别为m、n、p,且|m-n|+ (n-p)2=0,则这个三角形为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【考点】三角形;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0. ”得出叭n、p的关系,再判断三角形的类型.【解答】解:■・Tm-n|+ (n - p)2=0,/.m- n—0, n - p-0,• - m二n, n 二p,■ •m_n_p、・•・三角形ABC为等边三角形.故选B.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角形的性质,熟练掌握绝对值、非负数等考点的运算.5.弹簧的长度与所挂物体的质量关系为一次函数,由图可知,不挂物体时,弹簧的长度为()【考点】一次函数的应用.【分析】由两点坐标易求直线解析式,当X二0时y的值就是不挂物体时弹簧的长度.【解答】解:设直线解析式为y二kx+b,由图象可知,直线过(5, 12.5) , (20, 20)两点,代入得【驚:宁驚解之得:d'即尸0.5X+10,当x=0时,y=10,(20k+b=20 (b二10即不挂物体时,弹簧的长度为10cm.故选D.【点评】此题是一次函数的简单应用,重点检查用两点式求直线解析式.6.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )CA.带①去B.带②去C.带③去D.①②③都带去【考点】全等三角形的应用.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.7.如图,函数y 二kx (k=#0)和y 二ax+4 (a=#0)的图象相交于点A (2, 3),则不等式kx>ax+4的解集为()v【考点】一次函数与一元一次不等式.【分析】写出直线y 二kx (kfO)在直线y 二ax+4 (a$0)上方部分的x 的取值范围即可;【解答】解:由图可知,不等式kx>ax+4的解集为x>2;故选C.【点评】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关 键.8.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟, 为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画 出自行车行进路程y 千米与行进时间t 的函数图象的示意图,同学们画出的示意图如下,你认为正 确的是( )【考点】函数的图象.【专题】压轴题.【分析】本题可用排除法.依题意,自行车以匀速前进后又停车修车,故可排除A 项.然后自行车 又加快速度保持匀速前进,故可排除B, D.【解答】解:最初以某一速度匀速行进,这一段路程是时间的正比例函数;中途由于自行车故障, 停下修车耽误了几分钟,这一段时间变大,路程不变,因而选项A —定错误.第三阶段李老师加快 了速度,仍保持匀速行进,结果准时到校,这一段,路程随时间的增大而增大,因而选项B, 一定 错误,这一段时间中,速度要大于开始时的速度,即单位时间内路程变化大,直线的倾斜角要大. A. x>3 B ・ x<3 C. x>2 D ・ x<2故本题选C.【点评】本题考查动点问题的函数图象问题.注意分析y随X的变化而变化的趋势,而不一定要通过求解析式来解决.9. 如果点P (-2, b)和点Q (a, -3)关于x轴对称,贝lj a+b的值是( )A. - 1B. 1C. -5 D・ 5【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值. 【解答】解:•・•点P (-2, b)和点Q (a, -3)关于x轴对称,又•・•关于x轴对称的点,横坐标相同,纵坐标互为相反数,a— - 2, b二3.•••a+bh,故选 B.【点评】解决本题的关键是掌握好对称点的坐标规律:(1) 关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2) 关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点,横坐标与纵坐标都互为相反数.10. 如图是4X4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有( )【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念求解.【解答】解:如图所示,有4个位置使之成为轴对称图形.3斗故选c.【点评】此题考查的是利用轴对称设计图案,解答此题关键是找对称轴,按对称轴的不同位萱,可以有4种画法.填空题(本大题共6小题,每小题5分,满分30分)11 •点P (-2, 1)向上平移2个单位后的点的坐标为(-2, 3)・【考点】坐标与图形变化-平移.【分析】让点的横坐标不变,纵坐标加2即可.【解答】解:平移后点P的横坐标为-2;纵坐标为1 +2=3;•••点P (-2, 1)向上平移2个单位后的点的坐标为(-2, 3)・故答案为:(-2, 3)・【点评】本题考查图形的平移变换,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.12.已知函数y二(m - 1)x m2+1是一次函数,则m二_ 1・【考点】一次函数的定义.【专题】计算题.【分析】根据一次函数的定义,令m2=1, m-1^0即可解答.【解答】若两个变量x和y间的关系式可以表示成y二kx+b (k, b为常数,k^O)的形式,则称y是x的一次函数(x为自变量,y为因变量)・因而有m-1,解得:m=±1,又m - 1 #=0,m=一 1 •【点评】本题主要考查了一次函数的定义,一次函数y二kx+b的定义条件是:k、b为常数,k#=0, 自变量次数为1.13. —个三角形的三边长分别是3, 1-2m, 8,则m的取值范围是-5VmV-2・【考点】三角形三边关系;解一元一次不等式组.【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【解答】解:8-3<1 -2m<3+8,即5<1 -2m<11,解得:- 5VmV - 2.故答案为:-5VmV-2・【点评】此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.14.如图,有两个长度相同的滑梯(即BC二EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF 相等,则ZABC+ZDFE二90 度.【考点】全等三角形的应用.【分析】由图可得,AABC与ADEF均是直角三角形,由已知可根据HL判定两三角形全等,再根据全等三角形的对应角相等,不难求解.【解答】解:••'△ABC与Z\DEF均是直角三角形,BC二EF, AC二DF/.RtAABC^RtADEF (HL)・•・ Z ABC二Z DEF•・• ZDEF+ZDFE 二90°・•・ ZABC+ZDFE二90° .故填90【点评】此题主要考查学生对全等三角形的判定及性质的综合运用能力.15.如图,在Z\ABC中,AD丄BC于D点,BD=CD,若BC二6, AD二5,则图中阴影部分的面积为」【考点】轴对称的性质.【分析】根据题意,观察可得:AABC关于AD轴对称,且图中阴影部分的面积为AABC面积的一半,先求出AABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,【点评】根据轴对称得到阴影部分面积是解题的关键.16.已知:如图,在ZXABC, AADE 中,ZBAC二ZDAE二90° , AB二AC, AD二AE,点C, D, E 三点在同一条直线上,连接BD, BE.则下列结论中正确的是:①②③④・①BD=CE;②BD±CE;③ZACE+ ZDBC二45°;④ZBAE+ZDAC=80°・(把所有正确结论的序号都填在横线上)【考点】全等三角形的判定与性质;等腰直角三角形.【分析】根据全等三角形的判定和性质以及等腰三角形的性质解答即可.【解答】解:V ZBAC=ZDAE=90° ,・•・ Z BAC+ Z DAC二Z DAE+ Z DAC,即:ZBAD=ZCAE,•••△ABC和AADE都是等腰直角三角形,・・・AB二AC, AE二AD,/.ABAD^ACAE (SAS),/.CE=BD,•••故①正确;•/ABAD^ACAE,・•・ ZABD二ZACE, •・• ZABD+ZDBC二45° ,・•・ ZACE+ZDBC二45° ,・•・ Z DBC+ Z DCB= Z DBC+ Z ACE+ Z ACB二90 ° ,则BD丄CE,故②正确;•••△ABC为等腰直角三角形,・・・ZABC=ZACB=45° ,・・・ZABD+ZDBC=45° ,Z ABD 二Z ACE・•・ZACE+ZDBC二45°,故③正确;故可得ZBAE+ZDAC=180°,④正确;故答案为:①②③④.【点评】此题主要考查了全等三角形的判定及性质,以及相似三角形的判定,注意细心分析,熟练应用全等三角形的判定以及相似三角形的判定是解决问题的关键.三.解答题(共5小题,满分50分〉17.如图1,将一块等腰直角三角板ABC的直角顶点C置于直线I上,图2是由图1抽象出的几何图形,过A、B两点分别作直线丨的垂线,垂足分别为D、E.(1)AACD与ACBE全等吗?说明你的理由.(2)猜想线段AD、BE、DE之间的关系.(直接写出答案)S 1 囹2【考点】全等三角形的判定与性质.【分析】(1)观察图形,结合已知条件,可知全等三角形为:AACD与ACBE.根据AAS即可证明; (2)由(1)知厶ACD^ACBE,根据全等三角形的对应边相等,得出CD二BE, AD二CE,从而求出线段AD、BE、DE之间的关系.【解答】证明:(1) TAD丄CE, BE丄CE,・・・ZADC=ZCEB=90° ,又TZACB二90° ,/. ZACD=ZCBE=90° - ZECB.(ZADC 二ZCEB在AACD 与ACBE 中,]ZACD二ZCBE,〔AC二BC/. AACD^ACBE (AAS);(2) AD 二BE-DE,理由如下:•/AACD^ACBE,・・・CD二BE, AD二CE,又VCE=CD-DE,AAD=BE-DE.【点评】本题考查全等三角形的判定与性质,余角的性质,关键是根据AAS证明三角形全等.18. 如图,在平面直角坐标系中,A ( - 1, 5) , B ( - 1, 0) , C ( - 4, 3)・(1) 求岀AABC的面积;(2) 在图中作出AABC关于y轴的对称图形△ A£G;(3) 写出点人,B,, G的坐标.【考点】作图-轴对称变换.【分析】(1)利用长方形的面积剪去周围多余三角形的面积即可;(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可;(3)根据坐标系写出各点坐标即可.【解答】解:(1)如图所示:AABC的面积:3X5-^-X2X 2--^X3X 3-v x l x 5=6;(2)如图所示:(3) A, (2, 5) , B, (1, 0) , G (4, 3)・【点评】此题主要考查了作图--轴对称变换,关键是找出对称点的位置,再顺次连接即可.19. 已知直线y二kx+b经过点A (5, 0) , B (1, 4)・(1)求直线AB的解析式;(2)若直线y=2x- 4与直线AB相交于点C,求点C的坐标;-4>kx+b的解集.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式;两条直线相交或平行问题. 【分析】(1)利用待定系数法把点A (5, 0) , B (1, 4)代入y二kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1) V直线y二kx+b经过点A (5, 0) , B (1, 4),.(5k+b 二0"\k+b=4 '依二-1 解得{吐,・••直线AB的解析式为:y= - x+5 ;(2) •・•若直线y二2x- 4与直线AB相交于点C,・••点 C (3, 2);(3)根据图象可得x>3.【点评】此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.20.生活中的数学:(1) 如图1所示,一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是:三角形的稳定性・(2) 小河的旁边有一个甲村庄(如图2所示),现计划在河岸AB上建一个泵站,向甲村供水,使得所铺设的供水管道最短,请在上图中画出铺设的管道,这里所运用的几何原理是:」(3) 如图3所示,在新修的小区中,有一条字形绿色长廊ABCD,其中AB/7CD,在AB, BC, CD三段绿色长廊上各修一小凉亭E, M, F,且BE二CF,点M是BC的中点,在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,只需要测出线段ME的长度(用两个字母表示线段)•这样做合适吗?请说出理由. 【考点】全等三角形的应用;垂线段最短;三角形的稳定性;作图一应用与设计作图.【分析】(1)根据三角形的稳定性解答;(2) 根据垂线段最短解答;(3) 首先证明厶MEB^AMFC,根据全等三角形的性质可得ME二MF.【解答】解:(1) 一扇窗户打开后,用窗钩AB要将其固定,这里所运用的几何原理是三角形的稳定性;(2) 过甲向AB做垂线,运用的原理是:垂线段最短;(3) VAB/7CD,・•・ ZB二ZC,•・•点M是BC的中点,・・.MB=MC,(BE二CF在Z\MCF 和Z\MBE 中<ZB=ZC,二CM/.AMEB^AMFC (SAS),••.ME 二MF,・••想知道M与F之间的距离,只需要测出线段ME的长度.【点评】此题主要考查了垂线段的性质,三角形的稳定性,以及全等三角形的应用,关键是掌握全等三角形,对应边相等.21・认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究1 :如图1,在AABC中,0是ZABC与ZACB的平分线B0和CO的交点,通过分析发现ZB0C二90°兮ZA,理由如下:VB0和C0分别是ZABC和ZACB的角平分线,・•・ Z1 二*ZABC, Z2二*ZACB,/. Z1 + Z2=i (ZABC+ZACB)弓(ZABC+ZACB)二寺(180° - ZA) =90° -yZA,乙乙乙乙(1) 探究2:如图2中,0是ZABC与外角ZACD的平分线B0和CO的交点,试分析ZBOC与ZA 有怎样的关系?请说明理由.(2) 探究3:如图3中,0是外角ZDBC与外角ZECB的平分线B0和CO的交点,则ZB0C与ZA有怎样的关系?(直接写出结论)(3) 拓展:如图4,在四边形ABCD中,0是ZABC与ZDCB的平分线B0和CO的交点,则ZB0C与ZA+ZD有怎样的关系?(直接写出结论)【考点】多边形内角与外角;三角形内角和定理;三角形的外角性质.【分析】(1)根据角的平分线的定义以及三角形的外角的性质即可求解;(2) 根据三角形的一个外角等于与它不相邻的两个内角的和表示出ZDBC和ZBCE,再根据角平分线的定义求出Z0BC+Z0CB,然后根据三角形内角和定理列式整理即可得解;(3) 根据四边形内角和等于360°求出ZABC+ZBCD,再根据角平分线的定义求出Z0BC+Z0CB,然后利用三角形内角和定理列式整理即可得解.【解答】解:(D探究2结论:ZB0C二寺ZA.理由如下:VB0和C0分别是ZABC和ZACD的角平分线,/. Z OBC# ZABC, Z OCD=y Z ACD,又•・• ZACD是AABC的一个外角,・•・ ZACD=ZA+ZABC,•••ZOCD# (ZA+ZABC)今ZA+*ZABC=^ZA+Z0BC,又•・• ZOCD是ABOC的一个外角,・•・ ZBOC二ZOCD- ZOBC=4-ZA+ZOBC- Z0BC=±ZA;2 2(2)探究3:结论ZBOC二90。

初二数竞赛试题及答案

初二数竞赛试题及答案

初二数竞赛试题及答案初二数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是有理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 如果一个数的平方等于81,那么这个数是:A. 9B. -9C. 9 或 -9D. 813. 一个直角三角形的两条直角边分别为3和4,那么它的斜边长是:A. 5B. 6C. 7D. 84. 一个数列的前三项为2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断5. 以下哪个是二次方程的解:A. x = 1/2B. x = 2C. x = -3D. x = 0二、填空题(每题2分,共10分)6. 一个数的立方等于-27,这个数是_________。

7. 如果一个数的绝对值是5,那么这个数可以是_________。

8. 一个数的倒数是1/4,那么这个数是_________。

9. 一个数的平方根是4,那么这个数是_________。

10. 一个数的平方根是-4,那么这个数是_________。

三、解答题(每题5分,共20分)11. 解方程:2x + 3 = 11。

12. 证明:如果一个三角形的两边分别为a和b,且a < b,那么这个三角形的周长不可能是偶数。

13. 计算:(2x + 3)(x - 4)。

14. 一个圆的半径是5厘米,求它的面积。

四、证明题(每题5分,共10分)15. 证明:直角三角形的斜边的平方等于两直角边的平方和。

16. 证明:如果一个数的平方是正数,那么这个数本身是正数或负数。

五、综合题(每题10分,共10分)17. 一个班级有40名学生,其中20名男生和20名女生。

如果随机抽取一名学生,求以下概率:A. 抽到男生的概率。

B. 抽到女生的概率。

C. 如果已经知道抽到的是男生,那么这名男生是班长的概率。

答案:一、选择题1. A2. C3. A4. A5. D二、填空题6. -37. ±58. 49. 1610. 无实数解三、解答题11. 解:2x + 3 = 11,2x = 8,x = 4。

初二竞赛数学试题及答案

初二竞赛数学试题及答案

初二竞赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于81,那么这个数是:A. 8B. -8C. 9D. 8 或 -8答案:D3. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 以下哪个表达式是正确的?A. \(2^3 = 6\)B. \(3^2 = 9\)C. \(4^2 = 16\)D. \(5^2 = 24\)答案:B5. 一个数的立方等于-27,这个数是:A. 3B. -3C. 27D. -27答案:B6. 以下哪个分数是最接近1的?A. \(\frac{1}{2}\)B. \(\frac{3}{4}\)C. \(\frac{4}{3}\)D. \(\frac{3}{2}\)答案:B7. 一个圆的半径是5,那么它的面积是:A. 25B. 50C. 100D. 200答案:C8. 以下哪个是偶数?A. 2B. 3C. 5D. 7答案:A9. 如果一个数的倒数是\(\frac{1}{2}\),那么这个数是:A. 2B. 1C. 0.5D. 0答案:A10. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5 或 -5D. 0答案:C二、填空题(每题2分,共20分)11. 一个数的平方根是4,这个数是______。

答案:1612. 一个数的立方根是3,这个数是______。

答案:2713. 一个数的相反数是-5,这个数是______。

答案:514. 如果一个数的绝对值是7,这个数可能是______或______。

答案:7 或 -715. 一个数的倒数是\(\frac{2}{3}\),这个数是______。

答案:\(\frac{3}{2}\)16. 一个数的平方是36,这个数可能是______或______。

答案:6 或 -617. 一个数的平方根是\(\sqrt{2}\),这个数是______。

八年级(上)竞赛数学试题(含答案)

八年级(上)竞赛数学试题(含答案)

八年级竞赛数学试题及答案一、选择题:(每小题3分,本题满分共36分,)下列每小题中有四个备选答案,其中只有一个....是符合题意的,把正确答案前字母序号填在下面表格相应的题号下。

题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.分式有意义,则x的取值范围是()A.x>1 B.x≠1 C.x<1 D.一切实数2.下列运算正确的是()A.3a+2a=5a2B.x2﹣4=(x+2)(x﹣2)C.(x+1)2=x2+1 D.(2a)3=6a33.把x3﹣2x2y+xy2分解因式,结果正确的是( )A.x(x+y)(x﹣y)B.x(x2﹣2xy+y2)C.x(x+y)2D.x(x﹣y)2 4.如图,将等腰直角三角形沿虚线裁去顶角后,∠ 1+∠ 2=()A.225°B.235°C.270°D.300°5.如图,△ABC和△DEF中,AC=DE,∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF( )A.AC∥DF B.∠A=∠D C.AB=DE D.∠ACB=∠F 6.如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )A.85°B.80°C.75°D.70°7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=D C.将仪器上的点A与∠PRQ 的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠P AE.则说明这两个三角形全等的依据是( ) A.SAS B.ASA C.AAS D.SSS8.若3x=4,9y=7,则3x﹣2y的值为( )A.B.C.﹣3 D.9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个10.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为7,AB=4,DE=2,则AC的长是()A.4 B.3 C.6 D.511.如图,平面直角坐标系中,已知定点A(1,0)和B(0,1),若动点C在x轴上运动,则使△ABC为等腰三角形的点C有( )个A. 5B. 4C. 3D. 212、.当x=1时,ax+b+1的值为﹣2,则(a+b﹣1)(1﹣a﹣b)的值为()A.﹣16 B.﹣8 C.8D.16二、填空(每题4分,共32分)13. 如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为 .14.如图,△ABC 中,∠C =90°,∠BAC =60°,AD 是角平分线,若BD =8,则CD 等于 .15.分解因式:﹣x 2+4xy ﹣4y 2= .16.若9x 2﹣kxy +4y 2是一个完全平方式,则k 的值是 . 17.一个多边形的内角和是它的外角和的4倍,这个多边形是 边形. 18.已知x 为正整数,当时x = 时,分式的值为负整数.19. 已知1024x y xy +==,,则()2x y -的值是 .20.比较255,344,433,522的大小,用“<”号连接为: 三、解答下列各题(满分52分)21.(每小题4分,本题满分8分)分解因式: (1)3x 2﹣12x +12 (2)ax 2﹣4a .22. (每小题5分,本题满分15分)计算与化简 (1)(3-x )(3+x )+(1+x )2,(2)(﹣)÷.(3)÷23. (本题满分8分)如图,△ACB和△ECD都是等边三角形,点A、D、E在同一直线上,连接BE.(1)求证:△ACD≌△BCE;(2)若CE=16,BE=21,求AE的长.24.(本题满分10分)如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD 于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.25. (本题满分5分)阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:已知x2﹣2xy+2y2+6y+9=0,求xy的值;26. (本题满分6分).我们在学习完全平方公式(a+b)2=a2+2ab+b2时,了解了一下它的几何背景,即通过图来说明上式成立.在习题中我们又遇到了题目“计算:(a+b+c)2”,你能将知识进行迁移,从几何背景说明(大致画出图形即可)并计算(a+b+c)2吗?八年级数学试题参考答案及评分标准(这里只提供了一种解法或证法,其他证法,只要合理,照常得分)一、1-12,BBDCC A DACB BA二、13.115°14.4 15. ﹣(x﹣2y)2.16、±12.17、十.18、3,4,5,8;19、4;20、522<255<433<344三、解答题.21、(1)解:原式=3(x2﹣4x+4)--------------------2分=3(x﹣2)2,-------------4分(2)解:ax2﹣4a=a(x2﹣4)--------------------------2分=a(x﹣2)(x+2).-----------------------4分22、(1)解:原式=9-x2+1+2x+x2 -------------------3分=2x+10 ---------------------------5分(2)解:原式=•--------------------3分=•---------------------------4分=,------------------------------5分(3)解:÷=--------------------3分=----------------------------5分23、(1)证明:∵△ACB和△ECD都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,----------------1分∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,--------------------2分在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);----------------------5分(2)∵△ACD≌△BCE,∴AD=BE=21,----------------6分∵△ECD是等边三角形,∴DE=CE=16,----------------------------7分∴AE=AD+DE=21+16=37.--------------------------8分24、(1)证明:∵ A D为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠AED=∠AFD=90°,---------1分∴∠DEF=∠DFE,∴∠AEF=∠AFE,∴AE=AF------------------------------------3分∴点A、D都在EF的垂直平分线上,∴AD垂直平分EF.--------------------------------5分(2)答:AG=3DG.-----------------------6分理由:∵∠BAC=60°,AD平分∠BAC,∴∠EAD=30°,∴AD=2DE,∠EDA=60°,-------------7分∵AD⊥EF,∴∠EGD=90°,∴∠DEG=30°--------------8分∴DE=2DG,∴AD=4DG,∴AG=3DG.---------------------------------10分25解:∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,---------------------2分∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,---------------------------------4分∴xy=(﹣3)×(﹣3)=9,即xy的值是9.--------------------------------5分26.解:(a+b+c)2的几何背景如图,-----------------------3分整体的面积为:(a+b+c)2,用各部分的面积之和表示为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,所以(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.-----------------------6分。

初中数学八年级(上)数学竞赛试题(含答案)

初中数学八年级(上)数学竞赛试题(含答案)

1 2-1A 八年级〔上〕数学竞赛试题一、填空题:〔40分〕1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是;2、计算:=⋅27 311 ;3 313÷⨯=;2 3 2 +-=;3、某位老师在讲实数时,画了一个图〔如图1〕,即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明;〔1〕4、在电子游戏中有一种方格拼图游戏,若在游戏过程中,已拼好的图案如图2,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按后才能拼一个完整图案,从而使图案自动消失〔游戏机有此功能〕。

5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为;<4> <5> <6>7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条〔阴影部分〕,宽都是cm 2,则白色部分面积是2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,则瓷砖的总数是; 二、选择题:〔30分〕9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为〔 〕A 、51B 、52 C 、53 D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为〔 〕A 、3.74B 、3.75 C 、3.76 D 、3.77DFD)(A '11、如果a a -=-1 1 ,则a 的取值范围是〔 〕A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为〔 〕A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为〔 〕A 、cm 20B 、cm 220C 、cm 10πD 、cm 25π14、如上右图所示,设M 是边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有〔 〕A 、21S S S +=B 、21S S S +>C 、21S S S +<D 、不能确定 三、画图题:〔12分〕15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动?〔在图形上画出来即可〕16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗?若能,请画出图形。

八上数学竞赛(含答案)

八上数学竞赛(含答案)

八年级上数学竞赛试题 (时间90分钟,满分100分)一、填空题(每小题5分,共40分) 1、若01223344555)12(a x a x a x a x a x a x +++++=-,则024a a a ++的值是_2、已知b a 82=(b a ,是正整数)且,52=+b a 那么b a 82+的值是3、如图,在Rt △ABC 中,∠C=90°,∠A=35°,以直角顶点C 为旋转中心,将△ABC 旋转到△A ’B ’C 的位置,其中A ’、B ’分别是A 、B 的对应点,且点B 在斜边A ’B ’上,直角边CA ’交AB 于点D ,则∠DCA 的度数_____。

4、小王与同学约好下午4:30在学校门口见,不见不散,为此,他们在早上8:00钟两人均把自己的表对准,小王于4:30正点走到学校门口,可是同学没来,原来同学的手表比正确时间每小时慢4分钟,如果同学按他自己的手表4:30到达,则小王还要等 分钟(正确时间)5、甲、乙两位探险者到沙漠进行探险。

某日早晨7∶00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进。

上午10∶00,甲、乙二人的距离的平方是_____。

6、一个等腰三角形的周长为16,底边上的高是4,则 这个三角形的三边长分别是______,_____,_______。

7、已知:如图2,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若∠EAF=500,则∠CME +∠CNF =________。

8、如图3,将面积为2a 的正方形与面积为2b 的正方形(b>a)放在一起,则△ABC 的面积是__________。

二、选择题(每小题5分,共40分)1、如图5,正方形ABCD 的边长为1cm ,以对角线AC 为边长再作一个正方形,则正方形ACEF 的面积是( )A 、3cm 2B 、4cm 2AE D BFC图3 A BCDFE 图5ABC D FENM图2BA ∙甲组AE CD F 图612C 、5cm 2D 、2cm 22、以线段16,13,10,6ab c d ====为边,且使a ∥c 作四边形,这样的四边形( )A 、能作一个 B 、能作两个 C 、能作三个 D 、能作无数个 E 、不能作3、如图6,正方形的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt △CEF 的面积为200,则BE 的值为( )A 、10 B 、11 C 、12 D 、154、实数a 、b 满足ab=1,若11,1111a b M N a b a b=+=+++++, 则M 、N 的关系为( )A 、M>N B 、M=N C 、M<N D 、不确定 5、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如左图),那么B 点从开始至结束走过的路径长度为( )A 、23πB 、34π C 、 4 D 、2+23π6、在甲组图形的4个图中,每个图示由4种简单图形A 、B 、C 、D (不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为B A ∙,在乙组图形的(a )、(b)、 (c)、(d )4个图中,表示“D A ∙”和“C A ∙”的是( )A 、 (a),(b)B 、 (b),(c)C 、 (c),(d)D 、 (b),(d) 7、如图所示的4个的半径均为1,那么图中的阴影部分的面积为( ) A 、1+πB 、π2 C 、 4 D 、68、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )A 、A.C.E.G B 、 A.C.F C 、 B.D.F D 、C.E.G乙组B A ∙C B ∙D C ∙ D B ∙ 甲组三、解答题(20分)1、已知四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,请说明:BC+DC=AC2、如图,四边形ABCD中,AB∥CD,且AB+BC=CD+AD。

八年级(上)竞赛数学试卷(含答案)

八年级(上)竞赛数学试卷(含答案)

八年级(上)竞赛数学试卷(含答案)一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=度.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有个数据.9.若(x+2)2=64,则x=.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是三角形.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.8114.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.2218.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.119.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表:组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?参考答案与试题解析一、填空题(共12小题,每小题5分,满分60分)1.等腰三角形的底角是15°,腰长为10,则其腰上的高为5.【考点】等腰三角形的性质;含30度角的直角三角形.【分析】根据题意作出图形,利用等腰三角形的两底角相等求出三角形的顶角等于150°,所以顶角的邻补角等于30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半即可求出.【解答】解:如图,△ABC中,∠B=∠ACB=15°,∴∠BAC=180°﹣15°×2=150°,∴∠CAD=180°﹣150°=30°,∵CD是腰AB边上的高,∴CD=AC=×10=5cm.故答案为:5.2.已知点A(a,2)、B(﹣3,b)关于x轴对称,求a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】先根据“于x轴对称的点,横坐标相同,纵坐标互为相反数”求得a,b的值再求代数式的值.【解答】解:∵点A(a,2)、B(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5.3.如图,D为等边三角形ABC内一点,AD=BD,BP=AB,∠DBP=∠DBC,则∠BPD=30度.【考点】等边三角形的性质.【分析】作AB的垂直平分线,再根据等边三角形的性质及全等三角形的性质解答即可.【解答】解:作AB的垂直平分线,∵△ABC为等边三角形,△ABD为等腰三角形;∴AB的垂直平分线必过C、D两点,∠BCE=30°;∵AB=BP=BC,∠DBP=∠DBC,BD=BD;∴△BDC≌△BDP,所以∠BPD=30°.故应填30°.4.等腰三角形一腰上的高等于腰长的一半,则它的顶角的度数为30°或150°.【考点】含30度角的直角三角形;等腰三角形的性质.【分析】本题要分两种情况解答:当BD在三角形内部以及当BD在三角形外部.再根据等腰三角形的性质进行解答.【解答】解:本题分两种情况讨论:(1)如图1,当BD在三角形内部时,∵BD=AB,∠ADB=90°,∴∠A=30°;(2)当如图2,BD在三角形外部时,∵BD=AB,∠ADB=90°,∴∠DAB=30°,∠ABC=180°﹣∠DAB=30°=150°.故答案是:30°或150°.5.已知一次函数y=kx+2过点(﹣2,﹣1),则k为【考点】待定系数法求一次函数解析式.【分析】将点(﹣2,﹣1)代入函数解析式即可求出k的值.【解答】解:将点(﹣2,﹣1)代入得:﹣1=﹣2k+2,解得:k=.故填.6.合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,则这批产品的合格率是98%.【考点】有理数的除法.【分析】合泰童装厂在其生产的一批产品中抽取300件进行质量检测,发现有6件产品质量不合格,即有294件合格,根据合格率=合格产品÷总产品,得出结果.【解答】解:这批产品的合格率=÷300=294÷300=0.98.答:这批产品的合格率是98%.7.新运算规定:a◇b=,且1◇2=1,则2◇3=.【考点】代数式求值.【分析】令a=1,b=2,代入a◇b=,可求得k的值,进而根据运算法则可得出2◇3的值.【解答】解:令a=1,b=2,∴=1,k=7,∴2◇3==.故填:.8.在列频率分布表时,得到一组数据中某一个数据的频数是12,频率是0.2,那么这个数据组中共有60个数据.【考点】频数(率)分布表.【分析】根据频率、频数的关系:频率=频数÷数据总和,可得数据总和=频数÷频率.【解答】解:∵一组数据中某一个数据的频数是12,频率是0.2,∴这个数据组中共有数据的个数=12÷0.2=60.9.若(x+2)2=64,则x=6或﹣10.【考点】平方根.【分析】依据平方根的定义可求得x+2的值,然后解关于x的一元一次方程即可.【解答】解:∵(x+2)2=64,∴x+2=±8.解得:x=6或x=﹣10.故答案为:6或﹣10.10.若△ABC≌△A′B′C′且∠A=35°25′,∠B′=49°45′,则∠C=94°10′.【考点】全等三角形的性质.【分析】全等三角形的对应角相等,三角形内角和等于180°.所以∠C=180°﹣∠A﹣∠B,且∠C1=∠C,∠B=∠B′.【解答】解:∵△ABC≌△A1B1C1,∴∠C1=∠C,∠B=∠B′,又∵∠C=180°﹣∠A﹣∠B=180°﹣∠A﹣∠B′=180°﹣35°25′﹣49°45′=94°50′.11.已知|x﹣13|+|y﹣12|+(z﹣5)2=0,则由此为三边的三角形是直角三角形.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方.【分析】本题可根据非负数的性质“几个非负数相加,和为0,这几个非负数的值都为0”解出x、y、z的值,再根据勾股定理的逆定理判断三角形的类型.【解答】解:依题意得:x﹣13=0,y﹣12=0,z﹣5=0,∴x=13,y=12,z=5,∵x2=y2+z2,∴此三角形为直角三角形,故填直角.12.观察下列规律:3=3,32=9,33=27,34=81,35=243,36=729…用你发现的规律写出32010个位数字为9【考点】规律型:数字的变化类.【分析】根据3的指数从1到4,末位数字从3,9,7,1进行循环,再用2010除以4得出余数,再写出32010个位数字.【解答】解:2010÷4=502…2,则32010个位数字为9,故答案为9.二、选择题(共8小题,每小题5分,满分40分)13.的算术平方根是()A.﹣3 B.3 C.±3 D.81【考点】算术平方根.【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出=9的算术平方根.【解答】解:∵=32=9,∴的算术平方根是3.故选:B.14.如图所示,直线l1,l2,l3表示三条相交的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【考点】角平分线的性质.【分析】根据到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角平分线两两相交的交点,共三处.故选:D.15.如果点A(﹣3,a)是点B(3,﹣4)关于y轴的对称点,那么点A关于x轴的对称点的坐标是()A.(3,﹣4)B.(﹣3,4)C.(3,4)D.(﹣3,4)【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,﹣y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:根据对称的性质,得已知点A(﹣3,a)是点B(3,﹣4)关于y轴对称的点的坐标,那么a=﹣4;则点A的坐标是(﹣3,﹣4),所以点A关于x轴对称的点的坐标是(﹣3,4).故选B.16.一次考试后对60名学生的成绩进行频率分布统计,以10分为一分数段,共分10组,若学生得分均为整数,且在69.5~79.5之间这组的频率是0.3,那么得分在这个分数段的学生有()A.30人B.18人C.20人D.15人【考点】频数与频率.【分析】根据频率、频数的关系:频率=,可得频数=频率×数据总和.【解答】解:根据题意,得0.3×60=18(人).故选B.17.已知一组数据含有三个不同的数12,17,25,它们的频率分别是,则这组数据的平均数是()A.19 B.16.5 C.18.4 D.22【考点】加权平均数.【分析】本题是加权平均数,根据加权平均数的公式即可求解.【解答】解:平均数=12×+17×+25×=16.5.故选B.18.如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A.4 B.3 C.2 D.1【考点】菱形的判定与性质;含30度角的直角三角形.【分析】过点P做PM∥CO交AO于M,可得∠CPO=∠POD,再结合题目推出四边形COMP为菱形,即可得PM=4,又由CO∥PM可得∠PMD=30°,由直角三角形性质即可得PD.【解答】解:如图:过点P做PM∥CO交AO于M,PM∥CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC∥OA∴四边形COMP为菱形,PM=4PM∥CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OA∴PD=PC=2.令解:作CN⊥OA.∴CN=OC=2,又∵∠CNO=∠PDO,∴CN∥PD,∵PC∥OD,∴四边形CNDP是长方形,∴PD=CN=2故选:C.19.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是()A.20°B.30°C.40°D.50°【考点】等腰三角形的性质.【分析】由题意知,△ABD和△ABC是等腰三角形,可求得顶角∠DAE的度数,及∠BAD=∠EAC,进而求得∠CAE的度数.【解答】解:∵AD=AE,BE=CD,∴△ABE和△ABC是等腰三角形.∴∠B=∠C,∠ADE=∠AED.∵∠1=∠2=110°,∴∠ADE=∠AED=70°.∴∠DAE=180°﹣2×70°=40°.∵∠1=∠2=110°,∠B=∠C,∴∠BAD=∠EAC.∵∠BAC=80°.∴∠BAD=∠EAC=(∠BAC﹣∠DAE)÷2=20°.故选A.20.若x2+2(m﹣3)x+16是完全平方式,则m的值是()A.﹣1 B.7 C.7或﹣1 D.5或1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍,故2(m﹣3)=±8,∴m=7或﹣1.【解答】解:∵(x±4)2=x2±8x+16,∴在x2+2(m﹣3)x+16中,2(m﹣3)=±8,解得:m=7或﹣1.故选:C.三、解答题(共5小题,满分50分)21.如图,已知直线l1:y=2x+1、直线l2:y=﹣x+7,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)联立两直线解析式,解方程即可得到点A的坐标,两直线的解析式令y=0,求出x的值,即可得到点A、B的坐标;(2)根据三点的坐标求出BC的长度以及点A到BC的距离,然后根据三角形的面积公式计算即可求解.【解答】解:(1)直线l1:y=2x+1、直线l2:y=﹣x+7联立得,,解得,∴交点为A(2,5),令y=0,则2x+1=0,﹣x+7=0,解得x=﹣0.5,x=7,∴点B、C的坐标分别是:B(﹣0.5,0),C(7,0);(2)BC=7﹣(﹣0.5)=7.5,=×7.5×5=.∴S△ABC22.如图,AB=DC,AC=BD,AC、BD交于点E,过E点作EF∥BC交CD于F.求证:∠1=∠2.【考点】全等三角形的判定与性质.【分析】根据AB=DC,AC=BD可以联想到证明△ABC≌△DCB,可得∠DBC=∠ACB,从而根据平行线的性质证得∠1=∠2.【解答】证明:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB.∴∠DBC=∠ACB.∵EF∥BC,∴∠1=∠DBC,∠2=∠ACB.∴∠1=∠2.23.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【考点】等腰三角形的判定与性质.【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△CEF,然后即可求证△DEF是等腰三角形.(2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△CEF,利用三角形内角和定理即可求出∠DEF的度数.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△CEF中,∴△DBE≌△CEF,∴DE=EF,∴△DEF是等腰三角形;(2)∵△DBE≌△CEF,∴∠1=∠3,∠2=∠4,∵∠A+∠B+∠C=180°,∴∠B==70°∴∠1+∠2=110°∴∠3+∠2=110°∴∠DEF=70°24.如表石山中学八年级某班25名男生100m跑成绩(精确到0.1秒)的频数分布表: 组别(秒)频数频数12.55~13.55 313.55~14.55 614.55~15.55 815.55~16.55 516.55~17.55 3(1)求各组频率,并填入上表;(2)求其中100m跑的成绩不低于15.55秒的人数和所占的比例.【考点】频数(率)分布表.【分析】(1)根据频率、频数的关系,频率=,可依次计算出各组的频率;(2)观察图表,可得其中100m跑的成绩不低于15.55秒的有8人,进而求得其所占的比例.【解答】解:(1)样本容量为25,且已知各组的频数,则各组的频率分别为0.12,0.24,0.32,0.2,0.12.(2)观察图表可得:有8人100m跑的成绩不低于15.55秒,所占的比例为=0.32.25.三江职业中学要印刷招生宣传材料,现有两家印刷厂可供选择:甲印刷厂提出:每份材料收0.2元的印刷费,另收500元的制版费;乙印刷厂提出:每份材料收0.4元的印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印刷数量x(份)之间的函数关系式;(2)若三江职业中学拿出2000元材料印刷费,你会选择哪家印刷厂,试说明理由?【考点】一次函数的应用.【分析】(1)根据“甲厂费用=单价×数量+制版费;乙厂费用=单价×数量”,即可得出y甲、y乙关于x之间的函数关系式;(2)分别令y甲、y乙=2000,求出与之对应的x的值,比较后即可得出结论.【解答】解:(1)根据题意可知:y甲=0.2x+500;y乙=0.4x.(2)选甲印刷厂,理由如下:当y甲=2000时,有0.2x+500=2000,解得:x=7500;当y乙=2000时,有0.4x=2000,解得:x=5000.∵7500>5000,∴若三江职业中学拿出2000元材料印刷费,应该选取甲印刷厂.。

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. 的值是( )A 、0B 、-2C 、2D 、 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形4. 若二次三项式26x ax +-可分解成,则a ,b 的值分别为( )A . 1,3B . 1-,3C . 1,3-D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。

8.如图,等边三角形△ABC 的边长是6,面积是,AD 是BC 边上的高,点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、D 、9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5=15分)11. 分解因式得正确结果为. 12. 满足的整数的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学八年级上数学竞
赛试题含答案
Newly compiled on November 23, 2020
0 1 2
-1
A 八年级(上)数学竞赛试题
一、填空题:(40分)
1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是 ;
2、计算:
=⋅27 311 ;3 3
13÷⨯= ;2 3 2 +-= ; 3、某位老师在讲实数时,画了一个图(如图1),即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明 ;
42,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按 后 才能拼一个完整图案,从而使图案自动消失(游戏机有此功能)。

5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;
6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为 ;
(6)
7、如图5,一块白色的正方形木板,边长是
cm 18,上面横竖各有两根
木条(阴影部分),宽都是cm 2,则白色部分面积是 2cm ;
8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是 ; 二、选择题:(30分)
9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为( )
A 、51
B 、5
2 C 、53
D 、54
10、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折
痕EF 的长为( )
A 、
B 、3.75
C 、
D 、 11、如

a a -=-1 1 ,则a 的取值范围
是( )
A 、1=a
B 、10<<a
C 、0≥a
D 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为( )
A 、2>x
B 、2<x
C 、2≤x
D 、2=x
13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为( ) A 、cm 20 B 、cm 220 C 、cm 10π D 、cm 25π
14、如上右图所示,设
ABCD 边上任意一点,设CMB ∆的面积为2S ,CDM ∆
的面积为S ,AMD ∆的面积为1S ,则有( )
A 、21S S S +=
B 、
21S S S +> C 、21S S S +< D 、不能确定 三、画图题:(12分)
15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动(在图形上画出来即可)
16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完
全一样的四块吗若能,请画出图形。

四、解答题
D
D
17、求2
3
1
2
9
4a
a
a
a-
-
-
+
-
-
+的值。

18、如图,一个六边形的六个内角都是︒
120,连续四边的长依次为1、3、3、2,求该六边形的周长.
19、如图,P是等边三角形ABC中的一个点,2
=
PA,
,求BC边的长.
20、要剪切如图1所示甲、乙两种直角梯形零件(尺寸单位:
mm),且使两种零件的数量相等,有两种面积相等的矩形铝板,第一种长mm
500,宽mm
300,第二种长
mm
600,宽mm
250(如图2)可供选用。

(1)填空:为了充分利用材料,应选用第种铝板,这时一块铝板最多能剪甲、乙零件共个,剪下这些零件后,剩余的边角料的面积是2
mm;
(2)画图:从图2的①或②中,选出你要用的铝板示意图,在上面画出剪切线,并把边21,点A到公路拉机的速度为h
km/
18,那么学校受影响的时间为多少秒
参考答案
一、填空题:
1、24;
2、6 ,1,3;
3、点A表示的实数为2;
4、向右转键,向下键;
5、3600;
6、1:1;
7、256;
8、2601;
二、选择题:
9-14 CBDDDA
C
·
·
P
M
N
A
E
三、画图题:
15、最下方左右两骑各自向上平移至第二行,第一行那一骑向下平移至第四行的下方。

16、 四、解答题:
17、由2a 得到,a=0,原式=2-3+1-0=0;
18、把△APC 饶点A 顺时针旋转600至△ADB 处,连结PD ,则△APD 可证得正△,△BPD 为Rt
△,因此∠APB 为1500,过点A 作AE ⊥BP 交BP 延长线于E ,则∠APE=300,AE=1,PE=3,
BP=33,所以BC=AB=72;
19、分别两边延长AB ,CD ,EF ,交于M ,N ,P 则可得到△PMN ,△PAF ,△BMC ,△NDE 都为正
△,△PMN 的边长为8,AF=8-1-3=4,EF=8-4-2=2,所以六边形的周长=1+3+3+2+4+2=15; 20、解:(1)选第一种,4,剩余的边角余料的面积=500×300-(100+300)×200-(100+300)×150=60000=10000(mm)2=100cm 2
(2)
21、由于80<100,所以有影响;影响时间为24秒。

相关文档
最新文档