南方医科大学分生实验-绿色荧光蛋白(EGFP)的基因克隆
生化绿色荧光蛋白的基因克隆及表达开题报告

学号:班级:姓名:《生物化学与生物分子学实验》——分子生物学设计性实验开题报告实验课题:绿色荧光蛋白的基因克隆及表达指导老师:作者姓名:所在院系:小组编号:小组成员:完成时间:成都医学院Cheng Du Medical College题目:绿色荧光蛋白(GFP)基因的基因克隆及在大肠杆菌中的表达立题依据:随着分子生物学和基因工程技术的迅速发展和广泛应用,人们根据自己的意愿有目的、有计划、有根据、有预见地将外源基因导入动物细胞内, 使外源基因进行表达、阐明基因表达的调控机理或者通过与染色体基因组进行稳定整合,将生物性状传递给子代动物的研究方兴未艾[1].1.选材:大肠杆菌大肠杆菌是第一个用于重组蛋白生产的宿主菌,它不仅具有遗传背景清楚、培养操作简单、转化和转导效率高、生长繁殖快、成本低廉、可以快速大规模地生产目的蛋白等优点.而且其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌中蛋白量的30 %,因此大肠杆菌是目前应用最广泛的蛋白质表达系统。
2.基因标记技术基因标记技术是近年来发展起来的分子生物学技术。
荧光蛋白基因在标记基因方面由于具有独特的优点而引起了科学家的广泛关注,现已被普遍应用到分子生物学研究的各个方面。
荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白[2].3。
绿色荧光蛋白从水母(Aequorea victoria)体内发现的发光蛋白。
分子质量为26kDa,由238个氨基酸构成,第65~67位氨基酸(Ser-Tyr—Gly)形成发光团,是主要发光的位置。
其发光团的形成不具物种专一性,发出荧光稳定,且不需依赖任何辅因子或其他基质而发光.绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因.【实验目的】研究绿色荧光蛋白(Greed Fluorescent Protein,GFP)基因的基因克隆及在大肠杆菌中的表达.【研究意义】研究绿色荧光蛋白在大肠杆菌体内的基因克隆和表达.通过质粒重组形成所需要的重组质粒pET-28a-GFP,将重组质粒导入大肠杆菌体内,通过酶切、PCR及用IPTG诱导检测是否在大肠杆菌体内诱导表达成功。
绿色荧光蛋白GF基因的克隆表达和粗提取

绿色荧光蛋白G F基因的克隆表达和粗提取 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#绿色荧光蛋白(G F P)基因的克隆、表达和粗提取南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。
方法:从 DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。
然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。
再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。
将含有GFP基因的质粒转化到感受态细胞 BL-21中,用LB培养基对转化后的进行扩大培养。
用IPTG诱导GFP基因表达可以看到浅绿色菌落。
最后对绿色荧光蛋白进行粗提取。
结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。
关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP 发射绿色荧光。
它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。
1962 年,下村修等分离纯化了水母中发光蛋白水母素,并发现一种绿色的荧光蛋白。
1974 年,他们分离得到了这个蛋白,当时称绿色蛋白,以后称绿色荧光蛋白(GFP)[1]GFP 作为一种新的报告基因,其优点在于①荧光强度高,稳定性高;②GFP 分子量小,易于融合,适用于多种转化方式,对受体无毒害,安全可靠;③不需要反应底物与其他辅助因子,受蓝光激发产生绿色荧光,尤其适用于体内的即时检测;④GFP 不具有种属依赖性,在多种原核和真核生物细胞中都表达;⑤通过替换一些特殊氨基酸,可以使之产生不同颜色的光,从而适应不同的研究需要。
绿色荧光蛋白的克隆实验汇报.

6、重组DNA的鉴定
1、含目的基因质粒DNA的提取
实验原理:
在PH为12.6的碱性环境下,利用细菌 染色体完全变性而质粒DNA为完全分离的 性质,再将溶液PH调至中性,质粒DNA恢 复原状,细菌线性DNA变为沉淀而除去
1、含目的基因质粒DNA的提取
实验步骤:
1. 收集细胞
2. 悬浮细胞
1.5mL 菌液12000rpm 菌体沉淀 250μl 剧烈震荡
实验原理:
转化技术的关键在于制备感受态细胞, 本实验是利用CaCl2转化法,细菌在低温,低 渗的溶液中,菌体细胞膨胀成球形,局部失 去细胞壁,外来DNA可形成粘合物黏附在细 胞表面,经过42℃短暂热冲击,使DNA复合 物进入细胞。
4、重组DNA的转化
热
实验步骤:
激
感受态细菌 100 l
+
连接产物 混匀 10 l 冰浴中30分钟
它的这一些性质为生物学研究提供了 很好的标记分子,可以在黑暗的显微镜视 场中观察到细胞中的细胞器等结构,而且 还能够标记活细胞,使得活细胞中结构的 观察成为可能。
绿色荧光蛋白简介
下村修
马丁·沙尔菲
钱永健
他们因为在研究绿色荧光蛋白方面所作的 贡献而分享了2008年的诺贝尔化学奖
实验目的
掌握绿色荧光蛋白的基因克隆的一般步骤,加深 对基因克隆的认识,如:
2、PCR扩增目的基因
实验步骤:
① 94℃预变性5分钟后开始以下循环 ② 94℃ 30 秒
56℃ 30 秒 30 循环 72℃ 1 分钟 ③ 72℃ 7 分钟 ④ 4 ℃ 保温 实验过程约1小时50分钟
2、PCR扩增目的基因
电泳结果:
结果分析:
3、构建重组DNA
绿色荧光蛋白在大肠杆菌中的克隆表达

实验用品
PEGFP -N3模板、菌株E. coli DH5 α、E. coli BL21 、质粒 pET28a 、 限制性内切酶 EcoRⅠ、 Hind Ⅲ、T4 DNA连接酶、1 kb DNA ladder
DNA 凝胶回收试剂盒及质粒小提试剂盒、DNA 纯化试剂盒及 IPTG、 PCR用试剂、卡那霉素、琼脂糖及 PCR 合成引物等、蛋白胨、酵母浸出 粉、琼脂粉等。
转化 筛选及复筛及酶切验证
PCR检测 IPTG诱导表达
SDS-PAGE检测目的蛋白
包涵体检测 分离纯化
电泳检测 酶切
pET28a质粒酶切位点选择
实验用品及方法介绍
方法介绍
研究绿色荧光蛋白在大肠杆菌体内的基因克隆和表达。通过质粒重 组形成所需要的重组质粒pET-28a-GFP,将重组质粒导入大肠杆菌 体内,通过酶切、PCR及用IPTG诱导检测是否在大肠杆菌体内诱导 表达成功。根据电泳结果及荧光现象得出结论,重组质粒在大肠杆
目
1 实验背景
2 实验用品及方法介绍
录
3 实验流程
4 实验原理
5 具体实验步骤
6 实验结果预测
7 参考文献
实验背景
200810月8日,瑞典皇家科学院宣布,2008年诺贝尔化学奖由 日本科学家下村修、美国科学家马丁·沙尔菲和美籍华裔科学 家钱永健获得,他们三人在发现和研究绿色荧光蛋白(GFP)方 面取得了突出成就。
目前应用较多的是GFP的突变体—增强型绿色荧光蛋白(简称EGFP)。 EGFP将GFP的第64位氨基酸苯丙氨酸突变成为亮氨酸,从而发射出的荧光 强度比GFP大6倍以上。
所以,EGFP比GFP更适合作为报告基因来研究基因表达、调控、细胞 分化及蛋白质在生物体内的定位和转运等
绿色荧光蛋白GFP基因的克隆表达和粗提取

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。
方法:从E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。
然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。
再用限制性内切酶BamHI和NotI 对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。
将含有GFP基因的质粒转化到感受态细胞E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。
用IPTG诱导GFP基因表达可以看到浅绿色菌落。
最后对绿色荧光蛋白进行粗提取。
结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。
关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言 (3)2 实验目的 (5)3 实验设备 (5)4 材料及试剂 (6)5 实验操作步骤 (6)5.1操作流程 (6)5.2质粒DNA的分离与纯化 (7)5.2.1 质粒的培养 (7)5.2.2 质粒的DNA的碱提取法 (7)5.2.3 质粒DNA的鉴定与纯化 (8)5.3酶切及连接 (9)5.3.1 双酶切 (9)5.3.2 回收酶切产物(采用DNA回收试剂盒进行回收) (10)5.3.3 连接 (11)5.4大肠杆菌感受态细胞的制备及转化 (11)5.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附录) (11)5.4.2.感受态细胞的制备(CaCl2法) (11)5.4.3 转化涂板 (12)5.5GFP蛋白的诱导表达 (13)5.6绿色荧光蛋白的粗提取 (13)参考文献 (14)附录 (15)1LB培养基的配制: (15)2.溶液Ⅰ (15)3.溶液Ⅱ (15)4.溶液Ⅲ(100ML) (15)5.DN ASE-FREE RN ASE A (15)6.TE缓冲液(P H8.0) (15)7.20×TBE (16)8.G ENE F INDER-溴酚蓝上样缓冲液 (16)9.PEGFP-N3质粒全图谱 (16)10.P ET-28A质粒全图谱 (17)1 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳索引创编

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取欧阳家百(2021.03.07)南方医科大学2011预防医学(卫生检验检疫)摘要目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。
方法:从E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。
然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。
再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。
将含有GFP基因的质粒转化到感受态细胞E.coli BL-21中,用LB培养基对转化后的 E.coli进行扩大培养。
用IPTG诱导GFP基因表达可以看到浅绿色菌落。
最后对绿色荧光蛋白进行粗提取。
结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。
关键词:绿色荧光蛋白基因克隆重组表达转化粗提取目录1 前言32 实验目的43 实验设备44 材料及试剂55 实验操作步骤55.1操作流程55.2质粒DNA的分离与纯化65.2.1 质粒的培养65.2.2 质粒的DNA的碱提取法65.2.3 质粒DNA的鉴定与纯化75.3酶切及连接85.3.1 双酶切85.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)85.3.3 连接95.4大肠杆菌感受态细胞的制备及转化95.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附录)95.4.2.感受态细胞的制备 (CaCl2法)9 5.4.3 转化涂板105.5GFP蛋白的诱导表达105.6绿色荧光蛋白的粗提取11参考文献11附录121LB培养基的配制:122.溶液Ⅰ123.溶液Ⅱ124.溶液Ⅲ(100ML)125.DN ASE-FREE RN ASE A136.TE缓冲液(P H8.0)137.20×TBE138.G ENE F INDER-溴酚蓝上样缓冲液13 9.PEGFP-N3质粒全图谱1310.P ET-28A质粒全图谱141 前言绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
gfp基因的克隆与表达

基因工程实验设计题目:绿色荧光蛋白基因(gfp)的克隆及表达专业:生工1001 姓名:刘会淼2013年3月13实验目的:研究绿色荧光蛋白(Greed Fluorescent Protein,GFP)基因的基因克隆及在大肠杆菌中的表达。
实验方法; 通过分别将DH-5α(pEGFP-N3)和DH-5α(pET-28a)提取质粒、酶切并连接形成重组质粒pET-28a-GFP,将重组质粒导入DH-5α感受态细胞中进行转化,通过限制性核酸内切酶Not I与Bam H1和PCR对所建质粒进行分析鉴定后, 通过转化的方法把含绿色荧光蛋白(GFP)外源基因转入大肠杆菌体BL-21内进行表达,再用IPTG诱导GFP基因表达,如果可以看到显现绿色,判断GFP基因在大肠杆菌中成功表达。
1.材料与方法:1.1.1 实验材料克隆菌DH-5a、表达菌BL-21为本实验室收藏菌种,质粒pET-28a 和pEGFP-N3,引物,限制性内切酶Bam H1、Not Ⅰ1.1.2 仪器设备Eppendof离心机、电泳仪、电子天平、台式离心机、控温磁力搅拌器、调温电热套pH计、冰箱、台式冷冻恒温振荡器、紫外灯、生物洁净工作台、电热恒温水温箱、琼脂糖凝胶电泳电泳装置、凝胶成像分析系统、酒精灯、培养皿、、移液枪、枪头、接种环、酒精棉球、灭菌枪头、平板封口膜、离心管1.1.3 试剂及溶液分装后于121 ℃高压灭菌20 min。
(LB固体培养基是在液体LB中加琼脂粉至1 %);溶液Ⅰ50 mL葡萄糖50 mmol/LTris-Cl (pH 25 mmol/LEDTA (pH 10 mmol/L121℃高压灭菌15 min后置于0~4℃贮存;溶液Ⅱ100 mLNaOH mol/LSDS 1% (W/V)用时由母液2 mol/L NaOH、10%(W/V) SDS稀释现配;溶液Ⅲ100 mLKOAc (5 mol/L) 60 mL冰乙酸mLH2O mL121 ℃高压灭菌15 min后置于0~4 ℃贮存;氯仿;琼脂糖;灭菌的去离子水;10×酶切缓冲液;TaqDNA聚合酶;TaqDNA聚合酶缓冲。
分子生物学实验报告

分子生物学实验报告----绿色荧光蛋白(GFP)基因的克隆、表达和纯化一、实验背景绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。
当受到紫外或蓝光激发时,GFP发射绿色荧光。
它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。
GFP由3个外显子组成,长2.6kb;GFP是由238个氨基酸所组成的单体蛋白,相对分子质量为27.0 kMr,其蛋白性质十分稳定,能耐受60℃处理。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成。
1996年GFP的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由3个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。
实验使用的EGFP蛋白取自原核-真核穿梭质粒pEGFP-NB3B的蛋白质编码序列。
此质粒原本被设计于在原核系统中进行扩增,并可在真核哺乳动物细胞中进行表达。
本质粒主要包括位于PCMV真核启动子与SV40 真核多聚腺苷酸尾部之间的EGFP编码序列与位于EGFP上游的多克隆位点;一个由SV40 早期启动子启动的卡那霉素/新霉素抗性基因,以及上游的细菌启动子可启动在原核系统中的复制与卡那抗性。
在EGFP编码序列上下游,存在特异的BamH I及Not I限制性内切酶位点,可切下整段EGFP编码序列。
表达EGFP 蛋白使用的pET-28 原核载体包含有在多克隆位点两侧的His-tag polyHis 编码序列;用于表达蛋白的T7 启动子,T7 转录起始物以及T7 终止子;选择性筛选使用的lacI 编码序列及卡那霉素抗性序列,pBR322 启动子,以及为产生单链DNA 产物的f1 启动子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绿色荧光蛋白(EGFP)的基因克隆
南方医科大学学院
摘要
本实验旨在学习基因克隆并检验,绿色荧光蛋白基因转化入宿主细胞后很稳定,对多数宿主的生理无影响,是常用的报道基因,便于实验。
本实验通过将含有目的基因GFP的pEGFP-N1质粒和pMD18-T载体进行酶切、电泳、回收、连接、转入、筛选之后,把GFP基因成功导入到大肠杆菌DH5α(克隆菌)中,从而实现荧光蛋白基因的克隆和表达。
关键词:绿色荧光蛋白克隆表达
实验名称绿色荧光蛋白的基因克隆
2015- ~
实验日期
实验地点
2015-
合作者指导老师
评分教师签名批改日期
一、实验目的
1.学习使用限制性内切酶进行DNA酶切的原理和方法。
2.学习掌握琼脂糖凝胶电泳的基本原理和操作方法。
3.掌握PCR技术原理和PCR仪的操作方法。
4.学习PCR产物的TA克隆的基本原理和操作步骤。
5.了解和掌握大肠杆菌的制备方法的基本原理和操作要点以及DNA转化大肠杆菌的原理和方
法。
6.掌握双酶切法鉴定重组DNA的基本原理和操作步骤,以及菌落PCR鉴定重组DNA的基本原
理和方法。
7.掌握IPTG诱导GFP基因表达的基本原理和操作步骤
二、实验原理
1.pEGFP-N1质粒
2.T载体
三、材料与方法:
1.实验材料:
质粒:pEGFP-N1
T载体:pUCm-T
菌种:DH5(克隆菌)
PCR引物:
F——GGCATATGGTGAGCAAGGGCGA
R——CGGGATCCCTTGTACAGCTCGTC
Tm=56
实验试剂:
即用型蓝白T载体(pMD18-T vector cloning kit)
快速DNA连接试剂盒
限制性内切酶:EcoR I(Fermentas)
Axygen质粒提取试剂盒
抗生素:氨苄青霉素(Amp)、卡那霉素(Kan)
X-gal、IPTG等
实验仪器:
超净工作台,恒温摇床,高压灭菌锅,恒温培养箱,台式高速离心机,大容量冷冻离心机,PCR仪,紫外分光光度计,水平电泳槽,垂直电泳槽,电泳仪,凝胶成像系统,制冰机、超低温冰箱等
2.方法
分离目的基因→限制酶切割目的基因与载体→连接重组体→转入受体细胞→筛选重组体、转化子
四、实验具体流程
1.获取外源基因
1)碱裂解法提取质粒
使用Axygen质粒提取试剂盒
离心1300r pm,1min
瞬时离心
漩涡震荡颠倒数次
悬浮沉淀
颠倒数次离心
放置
3-5min 13000rpm,1min
离心
13000rpm,1min
2)
取0.2 ml PCR反应管一支,用微量加样枪按下述顺序分别加入各试剂(注意每换一种试剂换一个新吸头):
H
2
O 6μl
质粒DNA(pEGFP-N1)2μl
引物GFP1 (10μM) 1μl
引物GFP2 (10μM) 1μl
Premix Taq 10μl
总体积20μl
加完试剂后,将PCR反应管放到PCR仪上。
PCE参数设置:
① 94℃预变性5分钟后开始以下循环
② 94℃ 30 秒
56℃ 30 秒 30 循环
72℃ 1 分钟
③ 72℃ 7 分钟
④ 4 ℃保温
3)琼脂糖凝胶电泳检测所提取的质粒
凝胶准备→胶床准备→铺胶→静置→胶床置于电泳槽中→加电泳缓冲液→拔梳子→上样(1μlPCR产物,6μl loading buffer混合点样)→点marker→电泳→取出凝胶→拍照
2.构建重组DNA
使用即用型蓝白T载体和快速DNA连接试剂盒。
按下表加入试剂:为了检验转化是否成功,设置对照组实验
实验组①对照组②
即用型蓝白T载体 1 μl 1 μl
PCR扩增产物 1 μl —
Control Insert DNA — 1 μl
快速连接缓冲液(2X) 5 μl 5 μl
超纯水-ddH2O 2.5 μl 2.5 μl
Rapid T4 DNA ligase 0.5 μl 0.5 μl
总体积10 μl 10 μl
添加完成后,冰箱内16℃反应45分钟
3.重组DNA的转化
1)预先制备好感受态细胞。
2)转化DNA,为了检验转化是否成功,设置对照组实验
实验组:10μl PCR产物/蓝白T载体连接产物+ 100μl感受态细胞
阳性对照组:10μl Control Insert DNA/蓝白T载体连接产物+100μl感受态细胞
阴性对照组:10μl无菌双蒸水 + 100μl感受态细胞
步骤:(分别制作3组)将10μlDNA和100μl的感受态细胞加入试管中→冰浴30min →42℃水浴精确90s→迅速转移至冰浴冷却1-2min→加入800μlLB培养基→恒温
培养箱中37℃培养45min
3)检测重组DNA:涂布平板筛选
步骤:取适量体积的转化细胞转移到含有适当抗生素(Amp、X-gal、IPTG)的LB固体平板上,用灭过菌的玻璃棒涂布均匀。
室温放置几分钟,倒置平皿37℃培养过
夜。
4.重组DNA的筛选
培养的菌落在筛选培养基中,白色的菌落含有重组体pUC18,蓝色菌落则没有或只有载体pUC18。
挑选白色单菌落扩大培养:
用接种棒在白色单菌落上挑取菌落,接种于4mlLB/Amp+培养液中,37℃震荡培养过夜。
5.重组DNA的鉴定
从扩大培养的菌液中提取重组质粒DNA,再进行限制性内切酶酶切,经行琼脂糖凝胶水平电泳。
进行对照实验。
250μ
l 250μl
溶液S1 裂解液S2
取5μl加
1lloading
buffer混合
五、结果与讨论:
最后插入质粒中的DNA片段应为740bp,重组质粒大小应为3038bp+740bp=3778bp 实验结果现象与讨论
碱裂法提取质粒pEGFP-N1质粒大小为4.7kb,电泳
显示光带与marker5k相近,说明质
粒提取较成功。
电泳显示出两条带,可能原因:
1、加入S2时颠倒力度过大造成
DNA断裂。
2、加入S2变形时间过长。
3、加入S3复性时间过长。
4、提取的质粒不够纯净。
PCR扩增目的基因只出现两条带,
其中有接近
750bp的光带,
说明目的基因
在PCR扩增中
得到扩增。
重组DNA的筛选实验组培养基中:
1是蓝色菌落
2是白色菌落
阳性对照组培养基中只有白色菌落
阴性对照组培养基中无菌落
说明重组DNA较为成功。
1 2 5000
2000
750
2000
1 2
扩增中,虽然有接近750bp的光带,但亮度微弱,说明在实验过程中,
坏严重,所以到后面实验中,重组成功的细菌,量不多,光带亮度都微弱。
而在实验过程中,我们在需要颠倒的步骤发现我们颠倒完后的管中出现气泡,这是其他小组没有的。
所以经过总结,认为我们加入溶液时颠倒力度过大,导致质粒断裂,所以显示的光带亮度都比其他小组的暗。
最后鉴定中酶切DNA没有出现740bp的光带,可能原因也与上面所说的有关,在操作时我们也出现了气泡,认为是颠倒力度过大导致目的基因断裂。