椭圆定义及其标准方程优秀教学设计
《椭圆及其标准方程》教学设计一等奖3篇
4、《椭圆及其标准方程》教学设计一等奖一、教学内容解析1、地位与作用:本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。
解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。
在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。
本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。
这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。
在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。
本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。
教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。
2、教材处理顺序教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。
这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。
教材在本节内容中只研究了中心在原点,焦点在轴上的椭圆的标准方程,让学生自己去归纳焦点在轴上的椭圆的标准方程。
这样的处理给学生提供了一次探究和交流的机会。
有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。
3、数学思想方法本节内容蕴含了:数形结合思想、转化化归思想等。
在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。
高中数学“椭圆的定义与标准方程”教学设计
精品案例高中数学“椭圆的定义与标准方程”教学设计文|景朝英一、教材分析对于本课内容,新课标提出要引导学生经历具体情境,并从中抽象出椭圆产生过程,概括并理解椭圆定义,并掌握标准方程。
椭圆的定义与标准方程的研究方法和之后需要学习的双曲线、抛物线并没有什么区别,而且教材对椭圆研究也非常重视,所以本部分知识起着承上启下的作用。
此外,本节内容还涉及数形结合意识、转化思想等,因此教师在对这部分内容进行教学时需要将这些数学思想融入其中。
二、教学目标1.理解椭圆概念,掌握椭圆标准方程,能够运用坐标法解决几何问题。
2.用坐标法推导椭圆标准方程,锻炼发现、概括、认知规律以及解决实际问题的能力。
3.感受椭圆具有的对称美和简洁美,并增强数形结合思想。
4.培养直观想象、数学建模和数学运算等数学学科素养。
三、教学重点椭圆定义和椭圆两种形式标准方程的理解、掌握,能够运用坐标法解决几何问题。
四、教学难点引导学生经历椭圆标准方程推导过程,培养学生的直观想象、数学建模和数学运算等数学学科素养。
五、学情分析高二学生在之前的学习中已经接触过一些圆锥曲线概念,如圆、椭圆等,但他们的抽象思维能力和数形结合意识还不太强,而椭圆的定义与标准方程这部分内容涉及的概念较为抽象,需要学生具备较强的抽象思维能力,而且本章学习重点是数形结合,需要学生建立代数方程与椭圆之间的联系,所以在本节教学中教师一定要注意这一点。
根据教材内容、学生实际情况以及课本要求,本课教学可采用如下策略:1.用问题探索活动引起学生学习兴趣,促使学生主动思考。
2.借助实验探究活动让学生亲身感受椭圆画图过程,帮助学生更好地理解椭圆定义。
3.引导学生动手、动脑推导椭圆标准方程,帮助学生更深刻地理解概念,掌握其标准方程。
4.引导学生回忆圆方程求解步骤,通过知识迁移建立椭圆直角坐标系,通过列式运算推导出椭圆标准方程。
5.对典型求解椭圆标准方程例题进行变式,引导学生采用不同的求解方法和思路,帮助学生掌握这类习题本质。
椭圆及其标准方程一优秀教学设计精选全文完整版
可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。
2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。
教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。
椭圆的定义与标准方程教案
椭圆的定义与标准方程教案教案标题:椭圆的定义与标准方程教案目标:1. 理解椭圆的定义及其特征性质。
2. 掌握椭圆的标准方程及其相关参数。
3. 能够应用椭圆的定义和标准方程解决相关问题。
教学准备:1. 教师准备:椭圆的定义、标准方程及其相关性质的教学材料、白板、白板笔、投影仪等。
2. 学生准备:笔、纸、教材等。
教学过程:步骤一:导入新知识(5分钟)1. 教师通过引入一个生活中的例子(如椭圆形的运动轨迹)引起学生对椭圆的兴趣。
2. 引导学生思考并回答问题:“你们对椭圆有什么了解?你们知道椭圆的定义吗?”步骤二:椭圆的定义与特征性质(15分钟)1. 教师向学生介绍椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
2. 教师解释椭圆的特征性质:椭圆的离心率小于1,焦点到椭圆上任意一点的距离之和等于常数2a。
3. 教师通过图示和示例帮助学生理解椭圆的定义和特征性质。
步骤三:椭圆的标准方程(20分钟)1. 教师向学生介绍椭圆的标准方程:(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别为椭圆的长半轴和短半轴。
2. 教师解释标准方程中各参数的含义,并通过示例演示如何确定椭圆的中心、长短半轴等参数。
3. 教师提供一些练习题,让学生通过给定的标准方程确定椭圆的相关参数。
步骤四:应用与解决问题(15分钟)1. 教师提供一些实际问题,引导学生运用椭圆的定义和标准方程解决问题。
2. 学生个别或小组合作完成问题,并展示解决过程和结果。
3. 教师对学生的解答进行点评和总结。
步骤五:课堂小结与作业布置(5分钟)1. 教师对本节课的重点内容进行总结,并强调学生需要掌握的知识点。
2. 布置相关的课后作业,包括练习题和思考题。
教学反思:通过本节课的教学,学生能够了解椭圆的定义和特征性质,并能够应用椭圆的标准方程解决相关问题。
《椭圆及其标准方程》教案(通用4篇)
《椭圆及其标准方程》教案(通用4篇)《椭圆及其标准方程》篇1教学目标:(一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.(二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.(三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.教学方法:探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.教具准备:多媒体和自制教具:绘图板、图钉、细绳.教学过程:(一)设置情景,引出课题问题:XX年10月12日上午9时,“神州六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神州六号”飞船的运行轨道是什么?多媒体展示“神州六号”运行轨道图片.(二)启发诱导,推陈出新复习旧知识:圆的定义是什么?圆的标准方程是什么形式?提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?引出课题:椭圆及其标准方程(三)小组合作,形成概念动画演示椭圆形成过程.提问:点m运动时,f1、f2移动了吗?点m按照什么条件运动形成的轨迹是椭圆?下面请同学们在绘图板上作图,思考绘图板上提出的问题:1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?3.当绳长小于两图钉之间的距离时,还能画出图形吗?学生经过动手操作→独立思考→小组讨论→共同交流的探究过程,得出这样三个结论:椭圆线段不存在并归纳出椭圆的定义:平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.(四)椭圆标准方程的推导:1.回顾:求曲线方程的一般步骤:建系、设点、列式、化简.2.提问:如何建系,使求出的方程最简?由各小组讨论,请小组代表汇报研讨结果.各组分别选定一种方案:(以下过程按照第一种方案)①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。
椭圆的定义及标准方程的教学设计
《椭圆及其标准方程》的教学设计一、教材分析1、椭圆定义的分析椭圆是常见的圆锥曲线,通过日常生活的体验,学生对椭圆已有一定的认识。
为了使学生掌握椭圆的本质特征,得到椭圆的定义,教材介绍了一种画椭圆的方法,通过画图过程揭示椭圆上的点所要满足的条件。
在讲解椭圆定义时,对“常数”加上了一个条件,即常数要大于|F1F2|。
这样规定是为了避免出现两种特殊情况,即轨迹为一条线段或无轨迹。
对于这两种情况,教学中可以及时加以说明,学生是不难理解的;而且可以加深对“常数要大于|F1F2|”的理解。
另一方面,还可以通过在ΔMF1F2中,两边之和大于第三边来理解。
当然这样做的弊端是忽略特殊情况,即点M位于椭圆长轴端点的情形。
在椭圆定义的教学中,一定要充分展示椭圆的产生过程,引导学生分析椭圆上的点所满足的几何条件,从而为坐标系的选择和椭圆方程的建立奠定基础。
2、椭圆标准方程建立的分析首先要建立坐标系。
曲线上同一个点在不同的坐标系中的坐标不同,曲线的方程也不同。
为了使方程简单,坐标系的选择要恰当。
怎样选择恰当的坐标系,要跟剧具体情况来确定。
一般情况下,应注意使已知点的坐标和曲线的方程尽可能简单,在求椭圆的标准方程时,注意到图形的对称性,不难想到使x轴经过两个定点F1、F2,并且使坐标原点与线段F1F2的中点重合,这样,两个定点的坐标比较简单,便于推导方程。
在求方程时,设椭圆的焦距为2c(c>0),椭圆上任意一点到两个焦点的距离的和为2a(a>0),当然a>c,这是为了使焦点及长轴的两个端点的坐标不出现分式,以便导出的椭圆方程形式简单。
带根式的方程的化简是学生感到困难的,是教学难点,特别是由点M 适合的条件所列出的方程为两个根式的和等于一个非零常数的形式,化简时要进行两次平方,方程中字母超过3个,且次数高、项数多,初中代数中没有做过这样的题目。
我们教学时,要注意说明这类方程化简的方法,一般来说:(1)方程中只有一个根式时,需将它单独留在方程的一边,把其他的各项移到另一边;(2)方程中有两个根式时,需将它们分散,放在方程的两边,使其中一边只有一个根式。
《椭圆及其标准方程》教学设计(精选3篇)
《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
椭圆的定义及其标准方程说课稿及教案
椭圆的定义及其标准方程说课稿及教案一、说课稿1. 椭圆的定义椭圆是一种平面内到两个固定点(焦点)距离之和为常数的点的轨迹。
这两个固定点称为椭圆的焦点,常数称为椭圆的长轴。
椭圆的焦点可以在平面上任意位置,但椭圆的对称轴必须通过焦点。
2. 椭圆的标准方程椭圆的标准方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]其中,a是椭圆的长轴的一半,b是椭圆的短轴的一半。
椭圆的长轴和短轴分别与x轴和y轴平行。
3. 焦点与椭圆的关系椭圆的焦点到椭圆上任意一点的距离之和等于椭圆的长轴的长度。
即\[ 2a = |PF_1| + |PF_2| \]其中,\( PF_1 \)和\( PF_2 \)分别是椭圆的两个焦点。
4. 椭圆的性质(1)椭圆的长轴和短轴互相垂直,且通过椭圆的中心点。
(2)椭圆的焦点在长轴上,且距离中心点的距离分别为\( c \)和\( -c \),其中\( c \)满足\( c^2 = a^2 b^2 \)。
(3)椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴的长度。
(4)椭圆的面积为\( S = \pi ab \)。
二、教学目标1. 了解椭圆的定义及其性质。
2. 掌握椭圆的标准方程及其求法。
3. 能够应用椭圆的知识解决实际问题。
三、教学内容1. 椭圆的定义及其性质。
2. 椭圆的标准方程及其求法。
3. 椭圆在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习相结合的方法进行教学。
2. 使用多媒体课件辅助教学,增强学生的直观感受。
3. 设置实例分析,引导学生运用椭圆知识解决实际问题。
五、教学步骤1. 导入:通过展示生活中常见的椭圆形状物体,引导学生关注椭圆的形状特征。
2. 讲解椭圆的定义及其性质,引导学生理解椭圆的基本概念。
3. 推导椭圆的标准方程,让学生掌握椭圆方程的求法。
4. 结合实际问题,让学生运用椭圆知识进行分析。
5. 课堂练习:设置相关练习题,让学生巩固所学知识。
高中数学《椭圆及其标准方程》教案(精选7篇)
高中数学《椭圆及其标准方程》教案作为一名专为他人授业解惑的人民教师,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。
教案要怎么写呢?下面是小编精心整理的高中数学《椭圆及其标准方程》教案,欢迎阅读与收藏。
高中数学《椭圆及其标准方程》教案篇1一、教材分析1、教材的地位及作用圆锥曲线是高考重点考查内容。
“椭圆及其标准方程”是《圆锥曲线与方程》第一节内容,是继学习圆以后运用“曲线和方程”理论解决具体的二次曲线的又一实例。
从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为后面研究双曲线、抛物线提供了基本模式;所以,无论从教材内容,还是从教学方法上都起着承上启下的作用,它是学好本章内容的关键。
因此搞好这一节的教学,具有非常重要的意义。
2、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)、知识目标:掌握椭圆的定义及其标准方程,通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。
(2)、能力目标:让学生通过自我探究、合作学习等,提高学生实际动手、合作学习以及运用知识解决实际问题的能力。
(3)、情感目标:在教学中充分揭示“数”与“形”的内在联系,体会数与形的统一,激发学生学习数学的兴趣,培养学生勇于探索,勇于钻研的精神。
3、教学重点、难点教学重点:椭圆的定义及椭圆的标准方程。
教学难点:椭圆标准方程的建立和推导。
在学习本课前,学生已学习了直线与圆的方程,对曲线和方程的概念有了一些了解与运用的经验,用坐标法研究几何问题也有了初步的认识。
但由于学生学习解析几何时间还不长、学习程度也较浅,对坐标法解决几何问题掌握还不够。
另外,学生对含有两个根式之和(差)等式化简的运算生疏,去根式的策略选择不当等是导致“标准方程的推导”成为学习难点的直接原因。
据以上对教材及学情的分析,确定椭圆的定义及其标准方程为本课的教学重点;椭圆标准方程的推导为本课的难点。
椭圆标准方程的教案6篇
椭圆标准方程的教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、演讲致辞、合同协议、规章制度、条据文书、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as insights, speeches, contract agreements, rules and regulations, policy documents, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!椭圆标准方程的教案6篇教案的编写需要充分考虑学生的学习特点和需求,教案能够帮助教师更好地设计评价方式,准确评估学生的学习成果和进步,本店铺今天就为您带来了椭圆标准方程的教案6篇,相信一定会对你有所帮助。
椭圆及其标准方程讲课教案
椭圆及其标准方程讲课教案第一章:引言1.1 椭圆的定义讲解椭圆的概念:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的集合。
通过实际例子演示椭圆的形成过程,让学生直观理解椭圆的定义。
1.2 椭圆的性质介绍椭圆的基本性质:椭圆有两个焦点,两个半轴,对称性等。
通过图形和数学公式展示椭圆的性质,让学生理解椭圆的特性。
第二章:椭圆的标准方程2.1 椭圆的标准方程定义讲解椭圆标准方程的概念:椭圆的标准方程是\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\) 是半长轴,\(b\) 是半短轴。
通过实际例子解释椭圆标准方程的含义和作用。
2.2 椭圆标准方程的推导讲解椭圆标准方程的推导过程:利用椭圆的定义和性质,通过几何方法和代数方法推导椭圆的标准方程。
分步解释推导过程,让学生理解并掌握椭圆标准方程的来源。
第三章:椭圆的长轴和短轴3.1 椭圆的长轴讲解椭圆的长轴的概念:长轴是椭圆上距离两个焦点最远的点的线段。
通过图形和数学公式展示椭圆长轴的性质和计算方法。
3.2 椭圆的短轴讲解椭圆的短轴的概念:短轴是椭圆上距离两个焦点最近的点的线段。
通过图形和数学公式展示椭圆短轴的性质和计算方法。
第四章:椭圆的焦点和焦距4.1 椭圆的焦点讲解椭圆的焦点的概念:焦点是椭圆上到两个固定点(焦点)距离之和为常数的点的集合。
通过图形和数学公式展示椭圆焦点的性质和计算方法。
4.2 椭圆的焦距讲解椭圆的焦距的概念:焦距是椭圆上两个焦点之间的距离。
通过图形和数学公式展示椭圆焦距的性质和计算方法。
第五章:椭圆的离心率5.1 椭圆的离心率定义讲解椭圆的离心率的概念:离心率是椭圆的焦距与长轴长度的比值,用\(e\) 表示。
通过图形和数学公式展示椭圆离心率的性质和计算方法。
5.2 椭圆的离心率的应用讲解椭圆的离心率的应用:离心率可以用来判断椭圆的形状和大小,以及与焦点和焦距的关系。
通过实际例子演示椭圆的离心率的应用,让学生理解并掌握椭圆离心率的重要性。
椭圆及其标准方程教学设计
椭圆及其标准方程(一)教学设计1 教学分析1.1 教材内容分析高中数学教学以发展学生数学学科核心素养为导向, 创设合适的教学情境, 启发学生思考, 引导学生会用数学的眼光观察世界, 会用数学的思维思考世界, 会用数学的语言表达世界。
要以数学学科知识为载体, 让学生掌握处理新问题的基本思想和方法并获得基本活动经验。
椭圆及其标准方程是圆锥曲线的起始课, 主要内容是研究椭圆的定义及其标准方程, 属于概念性知识。
从知识上讲, 本节是在必修课程《数学2》中直线和圆的基础上, 对解析法的又一次实际运用, 同时也是进一步研究椭圆几何性质的基础;从方法上讲, 为进一步研究双曲线、抛物线提供了基本模式和理论基础;从教材编排上讲, 三种圆锥曲线独编为一章, 体现椭圆的重要地位。
解析几何的意义主要表现在数形结合的思想上.在研究椭圆定义和方程的过程中, 几何直观观察和代数严格推导相互结合, 同时要借助圆作类比, 用类比的思想为学生的思维搭桥铺路.因此本节课内容起到了承上启下的重要作用, 是本章和本节的重点.1.2 学情分析学生已有认知基础: 学生已经学习了圆的概念及其方程, 还有曲线与方程, 初步认识了解析几何课程的特征, 即是一门借助坐标法研究几何的学科, 并且已经初步体验到了数形结合的基本思想;学生有动手体验和探究的兴趣, 有一定的观察分析和逻辑推理的能力;学生有建立圆的概念和方程的经历。
达成目标所需认知基础: 解析法的数形结合思想和解析法的步骤.已有基础与需要基础之间的差异:关于椭圆概念的获得, 学生容易通过几何图形发现轨迹上的点的特征。
但学生不容易形成概念体系并用精准的语言描述。
在概括椭圆的定义时, 需要教师作适当的启发, 然后再用数学语言进行精确的描述。
推导椭圆标准方程时会遇到两个困难, 首先是坐标系如何建立才能使椭圆方程更简单, 需要类比圆的方程的建立方法, 根据椭圆的对称性建立直角坐标系。
其次是如何化简方程使其最简洁, 学生已有的知识与能力不能完全胜任独立解决的要求, 需要教师作适当的讲解。
2.1.1《椭圆定义及其标准方程》教案
《椭圆定义及其标准方程》教学案例一、背景介绍解读大纲,结合新一轮课程改革的精神,我们不难发现数学教学“不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索,动手实践、合作交流、阅读自学等学习数学的方式,使学生的学习过程成为教师引导下的‘再创造’过程,要设立‘数学探索’教学建模等学习活动,让学生体验数学发现和创造的历程。
”二、教学过程1、创设情景,引出课题——椭圆定义及其标准方程。
教师:我们以前学习过圆,请同学们回忆一下圆的定义。
学生1:平面上到定点的距离等于定长的点的轨迹。
教师:我们是怎么画圆的呢?(课前要求学生每人准备一块硬纸板,两颗图钉及一根定长绳子)谁上黑板来演示呢?学生2:(上黑板来演示)教师:“圆是动点P到定点O的距离为常数的点的轨迹”说成“圆是动点P到定点O的来回距离之和为常数的点的轨迹”,行吗?学生:(齐声地)行。
教师:现在把这根绳子的两端分别系在两颗图钉上,并分开固定在两个点F1、F2上,并保持拉紧状态移动铅笔,请你们再画一画会是什么样的曲线?学生:(动手画椭圆)教师:(演示几位学生所画的椭圆)我们看到这个曲线的形状正是一个压扁了的圆,我们称为椭圆。
(黑板上写出课题:椭圆定义及其标准方程)大家看,椭圆是一个很美的图形,生活中你在哪里见过椭圆的这种曲线,能否举例呢?学生:地球运动轨迹,……等等。
2、通过实验,自主探究,椭圆的定义以及椭圆的扁圆与焦距定线段长之间的关系。
教师:刚才大家对椭圆有了形象上的认识,我们不仅作出了椭圆这个曲线,而且还在生活实践中找到它的应用,下面我们能否给出它的定义呢?学生3:椭圆是平面上到两个定点的距离之和为常数的点的轨迹。
(教师在黑板上写出学生总结的椭圆定义)教师:很好。
(教师拿起两个学生所画的椭圆展示)同学们画椭圆时,线段是一样长的,为什么我们所画出的椭圆不一样,有扁有圆呢?学生4:这与两定点F1、F2的位置有关。
教师:很好。
我们改变一下F1、F2的位置,大家画一画椭圆,看一看到底有何关系?学生5:F1、F2位置越近椭圆愈圆,F1、F2位置越远椭圆愈扁。
椭圆的定义与标准方程教学设计
2.1.1椭圆的定义与标准方程一、教材分析圆锥曲线是高中数学中十分重要的内容,它的许多几何性质在日常生活、生产和科学技术中都有着广泛的应用。
本节是《圆锥曲线与方程》的第一节课,主要学习椭圆的定义和标准方程。
它是本章也是整个解析几何部分的重要基础知识。
第一,在教材结构上,本节内容起到一个承上启下的重要作用。
前面学生用坐标法研究了直线和圆,而对椭圆概念与方程的研究是坐标法的深入,也适用于对双曲线和抛物线的学习,更是解决圆锥曲线问题的一种有效方法。
第二,对椭圆定义与方程的研究,将曲线与方程对应起来,体现了函数与方程、数与形结合的重要思想。
而这种思想,将贯穿于整个高中阶段的数学学习。
第三,对椭圆定义与方程的探究过程,使学生经历了观察、猜测、实验、推理、交流、反思等理性思维过程,培养了学生的思维方式,加强了运算能力,提高了他们提出问题、分析问题、解决问题的能力,为后续知识的学习奠定了基础。
二、学生情况分析1.在学习本节内容以前,学生已经学习了直线和圆的方程,初步了解了用坐标法求曲线的方程及其基本步骤,经历了动手实验、观察分析、归纳概括、建立模型的基本过程,这为进一步学习椭圆及其标准方程奠定了基础。
2.在本节课的学习过程中,椭圆定义的归纳概括、方程的推导化简对学生是一个考验,可能会有一部分学生探究学习受阻,教师要适时加以点拨指导。
三、教学目标1.知识目标①熟记椭圆的定义,知道什么是焦点和焦距,并能根据椭圆的定义推导椭圆的标准方程。
②明确a、b、c之间的关系,并能指出焦点坐标。
2.能力目标培养观察能力、归纳能力、探索发现能力3.情感目标通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨.四、教学重点和难点重点:感受椭圆形成的基本过程,知道椭圆的标准方程及其推导方法. 难点:椭圆的标准方程的推导。
五、教法与学法1.教法为了使学生更主动地参加到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。
椭圆及其标准方程教学设计共3篇 椭圆的标准方程教学设计
椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计下面是分享的椭圆及其标准方程教学设计共3篇椭圆的标准方程教学设计,供大家品鉴。
椭圆及其标准方程教学设计共1《椭圆及其标准方程》教学设计山西省太原师范学院附属中学薛翠萍一、教学内容解析椭圆的定义是一种发生性定义,教学内容属概念性知识,是通过描述椭圆形成过程进行定义的作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线是平面解析几何研究的主要对象圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为后面利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础学习过程启发学生能够发现问题和提出问题,善于思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力二、教学目标设置:1.知识与技能目标(1)学生能掌握椭圆的定义明确焦点、焦距的概念.(2)学生能推导并掌握椭圆的标准方程.(3)学生在学习过程中进一步感受曲线方程的概念,体会建立曲线方程的基本方法,运用数形结合的数学思想方法解决问题.2.过程与方法目标:(1)学生通过经历椭圆形成的情境感知椭圆的定义并亲自参与归纳.培养学生发现规律、认识规律的能力.(2)学生类比圆的方程的推导过程尝试推导椭圆标准方程,培养学生利用已知方法解决实际问题的能力.(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等价转化等数学思想方法.3.情感态度与价值观目标:(1)通过椭圆定义的获得让学生感知数学知识与实际生活的密切联系培养学生探索数学知识的兴趣并感受数学美的熏陶.(2)通过标准方程的推导培养学生观察,运算能力和求简意识并能懂得欣赏数学的“简洁美”.(3)通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识.三、学生学情分析1.能力分析①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱.2.认知分析①学生已初步熟悉求曲线方程的基本步骤,②学生已经掌握直线和圆的方程,对曲线的方程的概念有一定的了解,③学生已经初步掌握研究直线和圆的基本方法.3.情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.四、教学策略分析教学中通过创设情境,充分调动学生已有的学习经验,让学生经历“创设情境——总结概括——启发引导——探究完善——实际应用” 的过程,发现新的知识,又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质.课堂教学中创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生思维品质,这是本节课的教学原则.根据这样的原则及所要完成的教学目标,我采用如下的教学方法和手段:1.引导发现法:用课件演示动点的轨迹,启发学生归纳、概括椭圆定义.2.探索讨论法:由学生通过联想、归纳把原有的求轨迹方法迁移到新情况中,有利于学生对知识进行主动建构;有利于突出重点,突破难点,发挥其创造性.这两种方法是适应新课程体系的一种全新教学模式,它能更好地体现学生的主体性,实现师生、生生交流,体现课堂的开放性与公平性.在教学中适当利用多媒体课件辅助教学,增强动感及直观感,增大教学容量,提高教学质量.五、教学过程:(一)复习引入1.说一说你对生活中椭圆的认识.伴随图片展示使同学们感到椭圆就在我们身边.意图:(1)、从学生所关心的实际问题引入,使学生了解数学来源于实际.(2)、使学生更直观、形象地了解后面要学的内容;2.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上同一定点,套上笔拉紧绳子,移动笔尖画出的轨迹是圆.再将这一条定长的细绳的两端固定在画图板上的两定点,当绳长大于两点间的距离时,用铅笔把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆随后动画呈现.意图:(1)通过画图给学生提供一个动手操作、合作学习的机会;调动学生学习的积极性(2)多媒体演示向学生说明椭圆的具体画法,更直观形象.(二)讲解新课由学生画图及教师演示椭圆的形成过程,引导学生归纳定义.1 椭圆定义:平面内与两个定点的距离之和等于常数2a的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距练习1:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于8,则P点的轨迹是练习2:已知两个定点坐标分别是(-4,0)、(4,0),动点P到两定点的距离之和等于6,则P点的轨迹是通过两个练习思考:椭圆定义需要注意什么(2a大于意图:让学生通过练习反思画图,归纳定义,理解定义,突破了重点.(1)、当2a|F1F2|时,是椭圆;(2)、当2a=|F1F2|时,是线段;(3)、当2a)2.根据定义推导椭圆标准方程:要求(1)学生在画板上建立适当的坐标系,(2)根据定义推导椭圆的标准方程.同时引导学生类比圆回顾解析几何研究问题的特点及求轨迹方程步骤意图:让学生自己去建系推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输简洁美”为“发现简洁美”.教师结合猜想加以引导.化简无理方程为难点通过发现问题解决问题突破难点.正确推导过程如下:解:取过焦点设则,又设M与距离之和等于()(常数)为椭圆上的任意一点,椭圆的焦距是().的直线为轴,线段的垂直平分线为轴,,化简,得由定义义)令代入,得,,(学生通过自己画图建系的过程找到的几何意,两边同除得此即为椭圆的一个标准方程它所表示的椭圆的焦点在轴上,焦点是程学生思考:若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,中心在坐标原点的椭圆方,只要将方程中的调换,即可得,也是椭圆的标准方程请学生观察归纳两个方程的特征,从而区别焦点在不同坐标轴上的椭圆标方程;过程中要渗透数学对称美教学.理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在个轴上即看与这两个标准方程中,都有分母的大小的要求,因而焦点在哪3.精心设计课堂练习使学生在实际应用中进一步巩固知识,运用知识突破重难点:(1)判断下列方程是否表上椭圆,若是,求出的值① ;②;③;④意图:学生感悟椭圆标准方程的结构特点.(2)椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为)A.5B.6 C.4D.10意图:学生理解椭圆定义与标准方程关系.(3)椭圆的焦点坐标是()A.(±5,0)B.(0,±5) C.(0,±12)意图:学生感悟椭圆标准方程中焦点位置以及a,b,c的关系.(4)化简方程:意图:培养学生运用知识解决问题的能力..(±12,0) (D椭圆及其标准方程教学设计共2椭圆及其标准方程教学反思椭圆及其标准方程这节分为两课时,第一课时主要讲解椭圆定义及标准方程的推导;第二课时主要介绍椭圆定义及其标准方程的应用。
教学比赛教案椭圆的定义与标准方程
教学比赛教案-椭圆的定义与标准方程教学目标:1. 了解椭圆的定义及其性质。
2. 掌握椭圆的标准方程及其求法。
3. 培养学生的数学思维能力和解决问题的能力。
教学内容:1. 椭圆的定义2. 椭圆的性质3. 椭圆的标准方程4. 椭圆方程的求法5. 椭圆的应用教学准备:1. 教学PPT2. 教学素材(图形、例题等)3. 练习题教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆的图形。
2. 引导学生思考:椭圆有哪些特点?与圆有何区别?二、椭圆的定义与性质(15分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为常数的点的轨迹。
2. 介绍椭圆的性质:椭圆的两个焦点距离、长轴、短轴等。
3. 通过PPT展示椭圆的性质示意图,引导学生理解并记忆。
三、椭圆的标准方程(15分钟)1. 引入椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)。
2. 解释椭圆标准方程的含义:a为椭圆的长半轴,b为椭圆的短半轴。
3. 引导学生通过性质推导椭圆标准方程的求法。
四、椭圆方程的求法(15分钟)1. 给出椭圆方程的求法:根据椭圆的性质,列出方程组,求解得到椭圆的标准方程。
2. 通过例题讲解椭圆方程的求法,引导学生掌握解题思路。
五、椭圆的应用(10分钟)1. 介绍椭圆在实际生活中的应用,如地球绕太阳的运动、卫星绕地球的运动等。
2. 给出一些与椭圆相关的实际问题,引导学生运用椭圆的知识解决问题。
教学评价:1. 课堂问答:检查学生对椭圆定义、性质、标准方程的理解。
2. 练习题:评估学生对椭圆方程求法的掌握。
3. 课后作业:布置与椭圆应用相关的问题,检验学生对知识的综合运用能力。
六、椭圆的参数方程与图形变换(15分钟)1. 引入椭圆的参数方程:\(\begin{cases}x=a\cos t\\y=b\sin t\end{cases}\),其中\(t\)为参数。
2. 解释椭圆参数方程的含义:通过参数\(t\)的变化,可以得到椭圆上的点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
件找到相等关系, 并列出等式;(3) 化简,得到所求方 程;(4)注意不满 足去掉不满足条件 的点。
M 的轨迹方程。( x2 y2 1) 25 100 9
1、设点 A、B 的坐标分别为(—1,0),(1,0)。直线
进一步巩固学生求
①使学生进一步掌握椭圆的定义;掌握焦点、焦点位置、焦距与方程关系; ②进一步强化学生对求轨迹方程的方法、步骤的掌握。 2、过程与方法: 通过例题、习题的评练结合,促使学生掌握求椭圆轨迹方程的方法。 3、情感态度与价值观: 通过讲解求椭圆轨迹方程,使学生认识到辨证联系地看问题,学会在解题过程中抓住 题目中条件与结论的联系。 【教学重点】:知识与技能①、② 【教学难点】:知识与技能② 【课前准备】:课件 【教学过程设计】:
C x2 y2 1
25 9
D x2 y2 1
20 4
x2
4. P 为椭圆
5
y2 4
1 上的点, F1, F2 是两焦点,若
F1PF2 30 ,则 F1PF2 的面积是(
B
头头 头头头头头头
/wxc/
头头头头 头头头 wxckt@
段 PD,D 为垂足。当点 P 在圆上运动时,线段 PD 的中点
M 的ห้องสมุดไป่ตู้迹是什么?为什么?
(
通过两个典型例 题,使学生明确设 点求轨迹方程的方 法、步骤:(1)设 动点(x , y); (2)根据题目的条
三、巩固 练习
四、小结 五、作业
六、补充 训练
x2 y2 1) 4
例 2 设点 A、B 的坐标分别为(—5,0),(5,0)。直线
2
通过回忆性质的提 问,明示这节课所 要学的内容与原来 所学知识之间的内 在联系。并为后面 的题目做好准备。
x2
③与椭圆
y2
1共焦点,且过点(3,-2)的椭圆
94
方程是
④椭圆 2x 2 +3y 2 =6 的焦距是
二、例 题、
例 1 在圆 x2 y2 4 上任取一点 P,过点 P 做 x 轴的垂线
2.2 椭圆
【课题】:椭圆的定义及其标准方程 2 方案一: 【设计与执教者】:广州市第 89 中学,田鹰,tianyingtian@。 【教学时间】:40 分钟 【学情分析】:(适用于特色班)学生已经学过了轨迹方程、椭圆的定义及其标准方程的 概念。本节课将主要通过例题、练习明确求轨迹方程的步骤,进一步加强学生对于知识的 掌握。 【三维目标】: 1、知识与技能:
82
17 17
D 或 x 2 y 2 1
4 y2 x2 1
82
17 17
3 若椭圆两焦点为 F 1 (-4,0),F 2 (4,0),P 在椭圆上,且
△PF 1 F 2 的最大面积是 12.则椭圆方程是( C )
A x2 y2 1 B x2 y2 1
36 20
28 12
教学环节
教学活动
设计意图
一、复习
1、动点轨迹的一般求法?
2、请讲出椭圆的标准方程?
3、讲出椭圆的标准方程中 a、b、c 之间的关系
4、完成下面的题目(答案略)
①设 a+c=10,a-c=4,则椭圆的标准方程是
9
9
②动点 M 到两个定点 A(0,- )、B(0, )的距离
4
4
25
的和是 ,则动点 M 的轨迹方程是
1.椭圆 2x 2 +3y 2 =6 的焦距是( A )
A. 2
B.2( 3 2 )
C 25
D.2( 3 2 )
2.已知椭圆经过点(2,1),且满足 a 2 ,则它的标准方 b
程是( D )
A. x2 y2 1 82
B. 4 x2 y 2 1
17 17
C x2 y2 1或 4x2 y2 1
①使学生进一步掌握椭圆的定义;掌握焦点、焦点位置、焦距与方程关系; ②进一步强化学生对求轨迹方程的方法、步骤的掌握。 2、过程与方法: 通过例题、习题的评练结合,促使学生掌握求椭圆轨迹方程的方法。 3、情感态度与价值观: 通过讲解求椭圆轨迹方程,使学生认识到辨证联系地看问题,学会在解题过程中抓住 题目中条件与结论的联系。 【教学重点】:知识与技能①、② 【教学难点】:知识与技能② 【课前准备】:课件 【教学过程设计】:
x2 y2 1) 16 7
*3、在面积为 1 的△PMN 中,tanM= 1 ,tanN=-2,建立适当
2
的坐标系,求出以 M,N 为焦点且过 P 点的椭圆的方程。(
4x2 y2
+ =1)
15 3
本节课重点是设动点求轨迹方程。要着重体会四个步 骤:(1)设动点(x , y);(2)根据题目的条件找到相等 关系,并列出等式;(3)化简,得到所求方程;(4)注 意不满足去掉不满足条件的点。 P49 6、7 *B 1、2、3、
AM、BM 相交于点 M, 且直线 AM 的斜率与直线 BM 的 轨迹方法的掌握。
斜率的商是 2,点 M 的轨迹是什么?为什么?( x=—3 ,
(y≠0) )
2、若 P(-3,0)是圆 x 2 +y 2 -6x-55=0 内一定点,动圆 M 与已
知圆相内切且过 P 点,求动圆圆心 M 的轨迹方程。(
C (1, 2) D (1, 2]
x2 y2 6.已知 F1、F2 是椭圆 16 + 9 =1 的两个焦点,过 F1 的
直线与椭圆交于 M、N 两点,则△MNF2 的周长为( B)
A.8
B.16
C.25
D.32
【课题】:椭圆的定义及其标准方程 2 方案二: 【设计与执教者】:广州市第 89 中学,田鹰,tianyingtian@。 【教学时间】:40 分钟 【学情分析】:(适用于平行班)学生已经学过了轨迹方程、椭圆的定义及其标准方程的 概念。本节课将主要通过例题、练习明确求轨迹方程的步骤,进一步加强学生对于知识的 掌握。 【三维目标】: 1、知识与技能:
头头 头头头头头头
/wxc/
头头头头 头头头 wxckt@
)
16 3
A
3
B 4(2 3)
C 16(2 3)
D 16
x2 5 已知 c 是椭圆
y2
1(a b 0) 的半焦距,则
a2 b2
bc
的取值范围是
a
(D)
A (1, +∞) B ( 2, )