中职对口升学资料-2020年高考数学模拟试卷-6份-9

合集下载

2020年职业教育对口数学模拟试题(带答案)

2020年职业教育对口数学模拟试题(带答案)

机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.已知集合A={ x 1≤x≤4},B={ x x- a>0}, 若A ⊆ B,则实数a的取值范围为()(A) (1,+∞) (B) (-∞,1)(C) [1,+∞) (D) (-∞,1]2.已知方程x2 +a x+ (a+3)=0有实根,则a的取值范围()(A) {a|a>6或a<- 2} (B) {a| -2≤a ≤6}(C) {a|a≥6或a≤- 2} (D) {a| -2< a < 6}3. 已知圆的方程为22-+-=,则点(1,2)(3)(5)16x y-().(A)在圆内(B)在圆上(C)在圆外(D)与圆心重合4.函数y=f (x) 的图象与直线x=k (k 是常数)的交点的个数()(A) 有且只有一个(B) 至少有一个(C) 至多有一个(D) 有一个或两个5.若x > y > 0, 0 < a < 1, 则下列各式成立的是()(A) a x≤a y(B) log a x < log a y(C) a x ≥a y(D) log a x > log a y6. 设a , b是实数,则a2+b2 ≠ 0的充要条件是()(A) a ≠ 0 (B) b ≠ 0 (C) a ≠ 0且b ≠ 0 (D) a ≠ 0或b ≠ 0 7.二次函数 y =x 2+px +q 的顶点在第二象限, 则p 和q 的符号是( )(A) p > 0, q >0 (B) p > 0, q < 0 (C) p < 0, q < (D) p < 0, q > 0 8.在数列3,4,7,12,x ,28, … 中,x 的值是( ).(A ) 18 (B ) 19 (C ) 20 (D ) 21 9. 过点()1,0且平行于y 轴的直线方程是( ).(A )1y = (B ) 1y =- (C )1x = (D ) 1x =-10.在四边形ABCD 中,若→A B = 2→a ,→C D = - 3 →a , ∣→A D ∣=∣→B C ∣ , 则 四边形ABCD 是( ) (A) 平行四边形 (B)菱形 (C) 等腰梯形 (D) 矩形 11.函数y =3 sin (ω x + π3 )(ω > 0)的最小正周期为π3, 则ω等于( )(A) 3 (B) 6 (C) 52(D) 912. 若平面α∥平面β,P 是平面α、β外一点,过P 的两条直线AB 、CD 交平面α于A 、C ,交平面β于B 、D ,且P A =6,AB =2,BD =12,则AC 的长是( ). (A ) 10 (B ) 9 (C ) 8 (D ) 713. 若双曲线的焦点在x 轴上,并且6a =、2b =,则双曲线的标准方程为( ). (A) 221364x y -= (B ) 221436x y -= (C ) 22162x y -= (D ) 22126x y -=14. 某数学兴趣小组成员的数学中考成绩如下:116 99 108 93 100 111 98 95 106 113 若102分以上(包括102)为优秀, 则优秀率为( ).(A ) 0.30 (B ) 0.40 (C ) 0.50 (D ) 0.60 15.0.3()log (2)f x x =,若()0f a =,则实数a 的值是( ).(A )16 (B ) 1 (C ) 0 (D ) 1216. 抛甲、乙两粒骰子,甲骰子点数不小于乙骰子点数的概率是( ). (A )512 (B ) 12 (C ) 712 (D ) 2317. 若椭圆的方程为224312x y +=,则它的焦点坐标为( ). (A ) ()()1,01,0-、 (B ) ()()0,10,1-、(C ) ((0,、 (D ))()、18.有四条线段,长度分别是2cm ,3cm ,4cm ,5cm ,从中任取两条, 长度之和不小于8cm 的概率是( ).(A) 14(B) 12(C) 13(D) 119.不等式 | 3- 2x | ≥ 5 的解集是( )(A) [-1, 4 ] (B) (- ∞, - 1]∪[ 4,+∞) (C) (- ∞, - 4)∪[ 1,+∞) (D) [- 4, 1]20.已知f (x )是奇函数,且x ≥ 0时,f (x )= 2x -x 2,则当x < 0时,f (x ) 的解析式为( )(A) f (x ) = x 2+2x (B) f (x ) = - x 2- 2x (C) f (x ) = x 2- 2x (D) f (x ) = - x 2+2x 21.设函数log ()4a x f x =,且1(16)2f =,则a 的值为( ). (A ) 4 (B ) 8 (C )18(D ) 1422.已知∣→a ∣= 4,→b 在 →a 方向上的射影的数量为- 3,则 →a ·→b =( ) (A) - 12 (B) - 7 (C) - 34 (D) 3423. 若抛物线的焦点在x 轴正半轴上,焦点到准线的距离是12,则它的 标准方程是( ).(A ) 2y x =- (B ) 2y x = (C ) 2x y =- (D ) 2x y = 24.5人参加4项比赛,每人限报一项,报名方法有( )(A) 45 (B) 54 (C) 20 (D) 25 25.函数y = 2sin 2x +4sin x +2 的最大值和最小值分别为( )(A) 6, 0 (B) 6, - 1 (C) 8, 0 (D) 8, - 1 26.等差数列前10项和1060S =,则110a a +等于( ).(A )10 (B ) 11 (C ) 12 (D ) 13 27. 函数()f x 在()5,5-上是增函数,下列选项错误的是( ).(A ) (2)(0)f f ->(B ) (1)(1)f f -< (C ) (2)(3)f f < (D ) (0)(4)f f < 28.△ABC 中:AB =10,S △= 160, 则边AC 的最小值为( )(A) 32 (B) 16 (C) 8 (D) 16 3 29.函数22y x x =+与22y x x =-的图像( ).(A ) 关于x 轴对称 (B ) 关于y 轴对称(C ) 关于原点对称 (D ) 关于x 轴和y 轴都不对称 30.在等比数列{a n }中,a 1+ a 2=30,a 3+ a 4=120,那么a 5+ a 6 =( ) (A) 210 (B) 240 (C) 480 (D) 700第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31. 某超市大米3.5元/千克,现设x表示购买大米的重量(千克),y表示应付款数(元),将,x y 的函数关系用列表法表示为:32.若正四棱锥的体积为12,底面对角线的长为_____.33. 若圆的方程222230x y by b+--=,则圆心坐标为_______,半径为_______.34.已知t anα是方程x2-2x-3=0的一个根,且α是第一象限的角,则cosα·tanα= . 三、解答题(本大题共4小题,共28分)35. (7分)设二次函数的图象的顶点是(-2, 32)与x轴的两个交点之间的距离是6,求这个二次函数的解析式.36. (7分) 角α.37.(7分) 如图,正三棱柱ABC —A 1B 1C 1的底面边长为a ,在侧棱BB 1上取BD =2a,在侧棱CC 1上截取CE =a ,过A 、D 、E 作棱柱的截面,试证明截面ADE 与侧面ACC 1A 1垂直。

中职数学 2024年湖南省对口招生高考数学模拟试卷

中职数学 2024年湖南省对口招生高考数学模拟试卷

2024年湖南省对口招生高考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)A .∅B .{d }C .{a ,c }D .{b ,e }1.(4分)已知全集U ={a ,b ,c ,d ,e },集合N ={b ,d ,e },M ={a ,c ,d },则∁U (M ∪N )=( )A .{x |x <1}B .{x |x >4}C .{x |1<x <4}D .{x |x <1或x >4}2.(4分)不等式-x 2+5x -4>0的解集是( )A .6B .-4C .4或-6D .6或-43.(4分)已知点P (a ,2)到直线4x -3y +2=0的距离等于4,则a =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(4分)已知直线m 、n 和平面α,且n ⊆α,则“m ⊥α”是“m ⊥n ”的( )A .4B .4+4C .4D .4+45.(4分)设正四棱锥的底面边长和侧棱长都是2,则该四棱锥的表面积为( )M 3M 3M 5M 5A .2B .-2C .1D .-16.(4分)已知向量a =(-2,1),b =(4,3),c =(-1,λ).若(a +b )∥c ,则λ的值为( )→→→→→→A .(0,]B .[0,]C .(-∞,]D .[,+∞)7.(4分)已知函数f (x )=log a x (a >0且a ≠1)满足f (2)=-1,则不等式f (x )≥3的解集是( )18181818二、填空题(本大题共5个小题,每小题4分,共20分)A .10B .9C .8D .78.(4分)从某小学随机抽取100名学生,将他们的身高数据绘制成频率分布直方图如图所示,若要从身高在[120,130)、[130,140)、[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为( )A .f (-π)>f (-2)>-f (3)B .-f (3)>f (-π)>f (-2)C .f (-2)>-f (3)>f (-π)D .f (-π)>-f (3)>f (-2)9.(4分)已知f (x )是R 上的奇函数,且在区间[0,+∞)上是减函数,则f (-2),f (-π),-f (3)的大小关系是(A .函数y =sin 2x 的周期为πB .函数y =sinx 在区间(,)内是减函数C .函数y =sinx +cosx 的值域是[-2,2]D .函数y =sin 2x 的图像可由y =sin (2x -)的图像向左平移个单位得到10.(4分)下列命题中错误的是( )3π45π4π5π1011.(4分)已知sin (π+α)=-,α∈(,π),则sin 2α= .45π212.(4分)不等式|x -a |<2的解集为{x |-1<x <3},则实数a = .13.(4分)从7名运动员中选出4人参加校运会的4×100米接力赛,则甲、乙两人都不跑中间两棒的方法有 种.14.(4分)过点P (2,-1)作圆C :(x -1)2+(y -2)2=2的切线,切点为A 、B .则|PA |= .15.(4分)已知等差数列{a n }中a 1=13,且S 3=S 11,则S n 的最大值为 .三、解答题(本大题共7个小题,其中第21、22小题为选做题.满分50分.解答应写出文字说明、证明过程或演算步选做题:请考生在第21、22题中选择一题作答.若两题都做,则按所做的第21题计分.作答时,请写清题号.老师建科类做第21题,服务类做22题.16.(10分)已知点(4,2)在函数f (x )=的图象上.(1)求a 的值,并画出函数f (x )的图象;(2)求不等式f (x )<1的解集.{x +4,x ≤0x ,x >0log a 17.(10分)我校学生心理咨询中心服务电话的接通率为.21机2班的3名同学分别就某一问题在某天咨询该服务中心,只拨打一次电话,设X 表示他们中成功咨询的人数.求:(1)恰有2人成功咨询的概率;(2)随机变量X 的概率分布和数学期望、方差.3418.(10分)已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N +).(1)求a 1,a 2,a 3的值;(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n .19.(10分)如图四棱锥P -ABCD 的底面是边长为2的菱形,且∠ABC =60°,PA =PC =2,PB =PD .(1)若O 是AC 与BD 的交点,证明:PO ⊥平面ABCD .(2)若点M 是PD 的中点,求异面直线AD 与CM 所成角的余弦值.20.(10分)已知椭圆C 的中心在坐标原点O ,焦点在x 轴上,离心率为,椭圆上一点P 到椭圆左右两焦点的距离之和为(1)求椭圆C 的标准方程;(2)已知直线l :y =x +m 与椭圆C 交于A 、B 两个不同的点,且弦AB 的中点恰好在圆+=上,求直线l 的方程.M 32x 2y 2172521.(10分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.M222.某公司计划在今年内同时出售变频空调机和智能洗衣机.由于这两种产品的市场需求量非常大,有多少就能销售多少,该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的是资金和劳动力.通过调查,得到关于这两种产品的有关数据如表:资金(表中单位:百元)单位产品所需资金月资金供应量空调机洗衣机成本3020300劳动力:工资510110单位利润6试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?。

中职对口升学资料--2020年高考数学模拟试卷6(2)

中职对口升学资料--2020年高考数学模拟试卷6(2)

第二部分 数学(模拟题6)一、单项选择题.(每题5分,共8小题,共40分)1.x +1=0是(x -2)(x +1)=0的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数2)(2-=x x f 的值域是( )A .RB .),(2-∞C .)2[∞+-,D .)2[∞+,3.下列函数在定义域内是增函数的是( )A .y =x 2+3 B. y =-2x +1 C.y =0.8x D .y =lgx4.=)(413-t πan ( )A .1B .-1C .±1D .3-5.已知→a =2,→b =4,→a ∙→b =-4,则→a 与→b 的夹角为( )A.1200B.600C. 32-π D.34π6.半径为2,且与x 轴相切于原点的圆的方程为( )A .(x +2)2+y 2=4B .(x -2)2+y 2=4C .x 2+(y +2)2=2D .x 2+(y -2)2=47.下列命题不正确的是( )A 在空间中,互相垂直的两条直线不一定是相交直线。

B 过空间一点与已知直线垂直的直线有无数条。

C 空间内垂直同一条直线的两条直线一定平行。

D 平行于同一条直线的两条直线必平行。

8.小明从一副54张的扑克牌中任抽取一张,抽中3的概率是( )A .541B .5413C .41D .272二、填空题(本大题共5小题,每题6分,共30分)9.已知某器械内的转子逆时针旋转,每秒钟旋转80圈,问该转子1分钟内转过的圆心角为 ;(用弧度制表示)10.已知直线l 1: x -y+2=0与l 2: x -2y -1=0的交点坐标为(a,b),则a -b= ;11.已知一副扑克牌有54张,那么任抽一张是红心的概率是= .(保留分数)12.已知矩形ABCD ,AB =4cm ,BC =3cm ,现以BC 为旋转轴旋转一周,得到一个几何体,那么这个几何体的表面积是 cm 2;13.已知⎩⎨⎧--=33)(2x x x f 00x x ≤>,则f(-2)= 。

中职对口升学-2020年高考数学模拟试卷选择题汇总

中职对口升学-2020年高考数学模拟试卷选择题汇总
第二部 数学(模拟题 1)
一、单项选择题
1.设集合 M={-2,0,2}, N={0}, 则 ( )
A.N=Ø B. N∈M C.N⊆M D.M⊆N
2.下列不等式中正确得到是 ( )
A.5a>3a
B.5+a>3+a
C.3+a>3-a
D. 5 3 aa
3.函数 y x 2 6x 5 的定义域为是( ) A. (-,1] [5,) B.(-,1)(5,) C.(-,1] (5,)
a
B. a - b 0
C. ab 0
5.下列相互垂直的向量是( )
) D. 1 1
ba
A. a =(3,-5), b =(-3,1) B. a =(-2,4), b =(8,4)
C. a =(0,-2), b =(0,2)
D. a =(3,-4), b =(-4,3)
6.在平面直角坐标中,已知点 A(-2,3),点 B(1,-1),则 AB 的距离是( )
面平行;
D.如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平 面互相平行。
8.体育课中,进行投 3 分篮比赛,甲同学投进 3 分的概率是 0.3,乙同学投进 3 分的概率是 0.2,问甲乙同学都投进 3 分的概率是( )
A.0.5
B.0.06
C.0.1
D.0
第二部分 数学(模拟题 3)
D.(-,1) [5,)
4.若 f(x) 2x 2 1,且x {1,0,1} 则 f(x)的值域是( )
A.{1,0,1}
B (1,3)
C. [1,3]
D.{3,1}
5.函数 y 3x 与y (1) x 的图像关于( ) 3

中职对口升学考试资料-2020年高考数学模拟试卷9

中职对口升学考试资料-2020年高考数学模拟试卷9

第二部分 数学(模拟题8)一、单项选择题(共8小题,每小题5分,共40分)1.下列表述中不正确的是( )A .{0,1,2,3}{0}∈B .1,2,3}{0,⊆φC .1,2,3}{00,∈D .}0x {x }5x {x >⊆>2.函数2-x 1-x f(x )=的定义域是( ) A .}0x 0x {x ≠≥且B .}1x {x ≥C .}0x 0x {x ≠≥且D .2x ≠3.若=f(x)那么f (15)=( )A .29 B. 5 C. 224 D .无法确定4.0cos390的值是( )A. 21B. 3C.23D.33 5.下列命题不正确的是( )A .已知直线21l l 及其对应的斜率21k k ,则有2121k k //l l ⇔;B .已知直线21l l 及其对应的斜率21k k ,则有1-k k l l 2121=⋅⇔⊥;C .已知向量a ρ,()()2211,,,y x y x a ==ρ,0x 2121=+=⋅⊥y y x a a ρρ若;D .已知向量a ρ,()()2211,,,y x y x a ==ρ,0//=⋅b a b a ρρ,则若. 6.圆4y 2-x 22=+)(的圆心到直线y=2的距离是( ) A. 4 B. 2 C. 1 D. 27.已知长方形的宽是个a ,现以长的一边为轴,旋转一周,得到一个几何体,那么这个几何体的体积是( );A. abB. πb a 2C. π2ab D .b a 28.甲乙丙丁考数学,他们偏高平均分情况是-2,+1,+2,-1,已知他们的总分是320分,那么它们的平均分是( )A .80B .81C .78D .79二、填空题(本大题共4小题,每题5分)9.角1000°与它在(0-360°)内终边相同角是 。

10.已知直线2x+y+5=0与直线y=kx+3互相垂直,那么k= 。

11.抛两颗骰子,两颗都是3的概率是 .12.已知正四棱锥的底边长与每条棱都是a ,则它的侧面积是 ,它的全面积是 。

中职对口升学考试资料-2020年高考数学模拟试卷6

中职对口升学考试资料-2020年高考数学模拟试卷6

第二部分 数学(模拟题6)一、单项选择题1.x>1是x>2的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数1x f(x )2+=的值域是( )A .RB .),(1-∞C .()∞+,1 D .)+∞,1[ 3.若函数x log f(x )2= ,那么f (8)=( )A .2 B. 4 C.3 D .84.已知=)(411-cos π( ) A .22 B .22- C .22± D .21 5.已知=== 4,4-6,3),则((( )A.18B.-16C. 12D.-126.23+和2-3的等比中项是( )A .1B .-1C .23 D .1± 7. 下列命题错误的是( );A.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

B.如果一个平面经过另一个平面的一条平行线,那么这两个平面互相平行。

C . 如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

D .垂直于同一个平面的两条直线互相平行。

8.经过点p (2,-4),且与x 轴平行的直线方程是( )A .X=2B .y=4C .y+4=x -2D .无法确定二、填空题(本大题共4小题,每题5分)9.=∞+==B A B A I ),则,(),集合2-8,5-[ ;=B A Y 。

10.已知数列:2,4,6,8,10...则第50项的值是 。

11.已知一副扑克牌有54张,那么任抽一张是红心的概率是= .(保留分数)12.已知直角三角形ABC ,角C 为直角,AC=4cm ,BC=3cm ,现以AC 为旋转轴旋转一周,得到一个几何体,那么这个几何体的体积是 cm ³。

三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;-x214.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)。

2020年对口高职高考数学预测模拟试卷

2020年对口高职高考数学预测模拟试卷

2020年对口高职高考数学模拟试卷一、 选择题1. 设集合M={ x |X 2>16},N={ x |log 3x >1},则M ∩N=( ).A. {x |x >3}B. {x |x >4}C. {x |x <−4}D. {x |x >4或x <4}2.下列函数既是奇函数又是增函数的是()A.y =x −1B. y =x 3C. y =log 2xD.y=2x 3.直线(√3−√2)x+y=3和x+(√2−√3)y=2的位置关系是( )A.相交不垂直B. 垂直C. 平行D.重合4.等差数列{a n }中, a 1+a 4+a 7=39, a 3+a 6+a 9=27,则数列{a n }的前9项和S n =( )A.66B. 99C. 144D.2975.若抛物线y 2=2px(p>0)过点M(4,4),则点M 到准线的距离d=( ).A.5B. 4C. 3D.26.设全集U={ x |4≤X ≤10,X ≥∈N },A={4,6,8,10},则C U A=( ).A.{5}B.{5,7}C. {5,7,9}D.{7,9} 7. “a>0且b>0”是“ab>0”的( )条件。

A. 充分不必要B.充分且必要C.必要不充分D. 以上答案都不对8.如果f(X)=a x 2+bx+c(a ≠0)是偶函数,那么g(X)=a x 3+b x 2−cx 是( ). A.偶函数 B.奇函数C.非奇非偶函数D. 既是奇函数又是偶函数9.设函数f(X)= log a x(a>0且a ≠1),f(4)=2,则f(8)=( ). A.2 B.3 C.3 D.13 10.sin 800-√3cos 800−2 sin 200的值为( )。

A.0 B.1 C.−sin200 D.4sin200 11.等比数列的前4项和是203,公比q=−13,则a 1=( ). A.-9 B.3 C.9 D.13 12.已知(23) y =(32) x2+1,则y 的最大值是( )。

中职对口升学资料-2020年高考数学模拟试卷-9份(2)

中职对口升学资料-2020年高考数学模拟试卷-9份(2)

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9.已知集合A ={x |0<x <4,x ∈N },B ={x |-1<x ≤7},则A ∩B= .10.|x -2|≥3的解集是 .11.若角a 的终边上的一点坐标为(-2,2),则sinα的值为 .12.在2和32之间插入3个数a ,b ,c ,使2,a ,b ,c ,32成等比数列,则b 的值是 .13.学校餐厅有8根底面周长为3πm ,高是4m 的圆柱形柱子,现在要刷上油漆,每平方米用油漆2kg ,则刷这些柱子需要用 kg 。

河北省2020年对口升学高考数学试题含答案

河北省2020年对口升学高考数学试题含答案

2020年河北省普通高等学校对口招生考试数学试题一、选择题(每题3分,15小题共45分)1.下列集合中不是空集的是( )A.{(x,y)||x|+|y|=0}B.}{054|x 2=++x xC.}0|{<x e xD.φ2.若0<a<b ,则下列式子恒成立的是( )A.b a >3B.b a <C.sina<sinbD.cosa<cosb3.设A,B 为两个集合,则B A ⊂是A B A =⋂的( )A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件4.已知函数2sin )(x x f =则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 5.直线ax+by+c=0仅过第一、第四象限,则下列关系成立的是( )A.a=0,bc<0B. b=0,ac<0C. a=0,bc>0D. b=0,ac>0 6.直线l 点P (0,1),且倾斜角是直线2x -y+2=0的倾斜角的2倍,则直线l 的方程为( )A.3x -4y+4=0B.4x -3y+3=0C.3x+4y -4=0D.4x+3y -3=0 7函数x x y sin 2sin 2-=的最大值与最小值分别为( )A.3,-1B. 4,0C. 5,1D. 2,-18.数列}{n a 的前n 项n S 3n 2n +=则=2a ( )A.10B.8C.6D.49. ABC ∆中,C B A ∠∠∠,,构成等差数列,则ABC ∆必为( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定 10.函数11y 22-+-=x x 的定义域是( )A.{-1,1}B.[-1,1]C.(-1,1)D.),1[]1,(+∞⋃--∞11.圆4x 22=+y 上到直线x+y+2=0的距离为1的点有( )A.0个B. 1个C. 2个D. 3个12.某医院为支援湖北疫情,从4名医生和6名护士中选派3名医生和3名护士参加援鄂医疗小分队,不同的选派方法共有( )A.20种B.40种C.60种D.80种13.设2020221020)56(x a x a x a a x +⋅⋅⋅+++=-,则=+⋅⋅⋅+++20210a a a a ( )A.0B. -1C.1D. 1-22014.若双曲线方程为1b 52222=-y x ,其渐近线方程为x 512y ±=,则其焦距为( )A.13B. 26C. 39D. 5215.已知抛物线方程为x y 62-=,过点(0,3)且倾斜为4π的直线交抛物线与A,B 两点,则线段AB 的中点坐标为( )A. (-6,-3)B. (-3,-6)C. (6,3)D. (3,6)二、填空题(每题2分,15小题共30分)16.若⎪⎩⎪⎨⎧>≤=0,log 0,2)(21x x x x f x ,则f[f(-3)]= .17.若{2a,1a 2+}为一个集合,则a 的取值范围是 .(用区间表示) 18.计算:=+++202020203067sin3log )-14.3(C ππ . 19.不等式02>++b ax x 解集为{x|x<2或x>3},则不等式01a 2<-+bx x 解集为 .(用区间表示) 20.向量)2,3(=→a ,)12,1(b +-=→m m ,若→a 与→b 互相垂直,则m= .21.计算:ππ125tan 1125tan-1+= . 22.已知αα2cos 12ta ,则=n = .23.椭圆16y 3x 22=+的离心率为 . 24.若)1-2log 1-21-3212121(,)(,)(===c b a ,则c b a ,,按由小到大的顺序排列为 .25.在长方体1111D C B A ABCD -中,底面边长AB=6,BC=2,高41=AA ,则对角线1DB 与棱1CC 所成角的正切值为 .26.某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场次序有 种.27.不等式25.025.0log)22(lo x x x g <++的解集为 .(用区间表示) 28.已知C B A ∠∠∠,,和a,b,c 分别为ABC ∆的三个内角及其对边,若cCb B a osA cos cosc ==则tanA= . 29.二项式71x )(x-展开式中,含5x 的项的系数是 . 30.同时掷两颗骰子,则掷出的点数之和为7的概率为 .三、解答题(7个小题,共45分)31.(6分)设集合}01|{}3|2||{>+=>-=mx x B x x A ,,若0≤m 为 某个实数,求B A ⋂. 32.(6分)某火车站计划使用36m 长的栏杆材料在靠墙(墙足够长)的位置设置一块平行四边行临时隔离区域,如图所示,由于地形 条件所限,要求︒=∠120DAB ,问AB 长为多少米时,所围成的 隔离区域的面积最大?最大面积是多少平方米?ABCD 第32题33.(6分)设数列}{n a 为等比数列,其中321a a a <<,125321=⋅⋅a a a ,且32151,52,a -a a 成等差数列,求(1)数列}{n a 的通项公式; (2)数列}a {n 的前6项和6S .34.(6分)已知函数x x y 2sin 2-2sin =(1)求该函数的最小正周期;(2)x 为何值时,函数取得最大值,最大值为多少?.35.(8分)已知椭圆1y x 2222=+ba (a>b>0)的右焦点为)0,32(2F ,长轴长和短轴长之和为12,过点),(32且倾斜角为3π的直线交椭圆与A,B 两点,求 (1)求椭圆的标准方程; (2)线段AB 的中点坐标.36.(7分)如图,PD ⊥矩形ABCD 所在平面,E,F 分别是CD,PB 的中点,|PD|=8,|BC|=5 (1)求证:EF//平面PAD.(2)求点P 到AB 的距离37.(6分)取一副扑克牌,去掉大小王牌,剩下梅花,黑桃,红桃,方块四种花色共52张。

中职对口升学-高考数学模拟考试卷

中职对口升学-高考数学模拟考试卷

岑 溪 市 中 等 专 业 学 校 2020春季期高考《数学》模拟试卷班级: 学号: 姓名:一、单项选择:(把正确答案填入下列表格中.每小题5分)1.下列数学表达式正确的是( ).A.(){}200,∈ B.φ∈0 C.{}20,⊆φ D.{}34>⊆x x 2.函数21)(-=x x f 的定义域是( ). A.2≠xB.2=xC.{}22><x x x 或D.)(+∞∞-,3.已知函数12)(2++=x x x f ,则=)2(f ( ).A.)(+∞∞-,B.5C.7D.94.已知21sin =α,且α是第二象限的角,则=αcos ( ),=αtan ( ). A.3323, B.3323--, C.3323,-D.3323-, 5.经过点)1,1(A ,且与直线0132=-+y x 平行的直线是( ).A. 3132+-=x y B.0532=-+y x C.032=+y x D.无法确定 6.已知圆的方程为06422=-++y x y x ,则这个圆的圆心是( ),半径是( ).A.1332;,- B.13)32(;,- C.1332);,(- D.1332;,- 7.已知)410(,-=→a ,)6(xb ,=→,且→→⊥b a ,则x 的值为( ). A.25 B.20 C.15 D.20-8.等比数列Λ,,,331中,327 是( ). A.第6项 B.第7项 C.第8项 D.第9项二、 填空题:(每小题5分)1.设{}2-≥=x x A ,{}10<=x x B ,求=B A I,=B A Y .2. 已知)42(,-=→a ,)13(-=→,b ,求=+→→b a 32 . 3. 已知56=x,86=y ,则=-yx 26.4. 直线12321=+y x l :与直线422=-y x l :的交点是 ,该点到直线124=+y x 的距离是 .三、解答题:(本大题共3小题,共40分)解答时要有符号格式,要有相应的文字说明有步骤,有过程,符合逻辑,只写结果不得分。

中职对口升学-2020年高考数学模拟试卷大题试集

中职对口升学-2020年高考数学模拟试卷大题试集

第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。

(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。

()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。

(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。

在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。

中职对口升学-2020年高考数学模拟试卷大题试集

中职对口升学-2020年高考数学模拟试卷大题试集

第二部数学(模拟题1)三、解答题(本大题共3小题)13.已知集合4}<x <0|{x =A ,5}<x 2|{x = B ≤,求B A B A ,.(10分){15.(1)甲乙二人同时射击,甲的命中率是0.79,乙的命中率为0.83,则至少一人命中的概率是多少?(10分)(2)求以P (4,1)为圆心且与直线5x-12y-60=0相切的圆的标准方程。

(10分)=)(x f .设14.0,23,01,2,1x x 2≥-<≤---<x x x 分)10(21f 3f 2-f )的值。

()(),(求第二部分数学(模拟题2)三、解答题(本大题共3小题)13.计算:(10分)(1)lg2+lg5(2)21414.某电影院有20排座位,第一排有16个座位,后排比前一排多一个座位,若每个座位票价为2元,问满座后营业额是多少?15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过10立方米时,按1.5元每立方米收费,超过10立方米时,超出部分按2元每立方收费,设某用户用水量为x 立方米,应每月缴费f (x )元,(1)列出f (x )的函数解析式?(10分)(2)若该用户某月用了15立方水要多少钱?如交了40元钱,可用多少立方水?(10分)第二部分数学(模拟题3)三、解答题(本大题共3小题)13.计算:(10分)(1)31-021125.02.8-94)()()(++;(2)1522log 5log 10lg 1log -33--+14.已知sina=-21,且a 是第三象限的角,求角a 的余弦和正切值。

(10分)15.某商品的价格为60元时,月销售量为5000件,价格每提高2元,月销量就会减少100件。

在不考虑其他因素的情况下,(20分)(1)试求这种商品的月销量与价格之间的函数关系;(2)当价格提高到多少时,这种商品会卖不出去?三、解答题(本大题共3小题)13.计算:(10分)(1)21169)(;(2)5log 2414.已知圆锥的侧面展开图的圆心角是120°,半径是4,求这个圆锥的全面积(10分)15.某服装厂生产一批某品牌运动服,总量为2000套,定价按80元每套销售,刚好能卖完,如果价格每提高10元,销售量就减少500套,设销售总量为y 套,每套价格定价为x 元:(10分)(3)求这批运动服的销售总量与每套销售价格之间的函数关系;(10分)(4)当价格定价为多少元时,这批运动服卖不出去?(10分)三、解答题(本大题共3小题)13.解不等式,解集用区间表示:(10分)(1)51-x 2≥;14.求值:)427sin(-π(10分)15.某模具厂生产某种模具,如果每日最多可生产200件,每日固定成本为600元,生产每件产品的可变成本为15元:(5)请写出该厂每日的生产成本与生产产量之间的函数关系式;(10分)(6)求产量为50件时生产成本?产量为100件时生产成本?(10分)三、解答题(本大题共3小题)13.解不等式:(10分)x2 ;x2-14.已知函数f(x)=1-3sin2x,求f(x)的最大值与最小值:(10分)15.某航空公司允许旅客随身携带一定质量的行李,如果超过规定,就需要购买行李票,要交钱,已知所需购买行李票的费用y(元)与行李(千克)成一次函数关系,旅客甲的行李质量为4千克,被告知要付款10元,旅客乙的行李质量为6千克,被告知要付款30元:(1)求所需要购买行李票的费用y(元)与行李(千克)所成的函数关系式;(10分)(2)旅客可以免费携带的行李最多是多少?(10分)三、解答题(本大题共3小题)13.解不等式,并把它的解集用区间表示出来:(10分)023x -x 2≥+;14.已知一个小球的体积为)cm (362π,现做一个垂直于这个球的直径的截面,求这个截面的最大面积可以是多少?(10分)15.某城市地铁按以下标准收费:在1到3站以内(包含3站),收费2元,7站以内(包含7站),收费4元,12站以内(包含12站),收费6元,12站以上全部收8元:(1)设搭地铁所需车费为y 元,搭地铁所经过的站数为x 个站,请写出y 与x 的解析式;(2)如果小张在地铁线路的第2个站上车,第13个站下车,小张要给多少车费?如果在第9个站下车,要给多少车费?三、解答题(本大题共3小题)13.已知()53x -2x x f 2+=,求()1-f ,()1f ,()0f 的值。

对口高考数学模拟试卷含答案

对口高考数学模拟试卷含答案

对口高考数学模拟试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分,考试用时120分钟。

第Ⅰ卷(选择题 共50分)参考公式:如果事件A 、B 互斥,那么柱体(棱柱、圆柱)的体积公式P (A+B )=P (A )+P(B ) 如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,P (A·B)=P (A)·P(B)表示柱体的高一、单项选择题:(每一小题仅有一个正确答案,请将正确答案的代号填入 答题表内.每小题5分,共计60分)1.下列关系中正确的是 ( ) A 。

B.a{a} C 。

{a ,b}{b,a} D 。

2. 不等式的解集为() A . B .C .D .3.对任意实数在下列命题中,真命题是()A .是的必要条件B .是的必要条件C .是的充分条件D .是的充分条件4.若平面向量与向量的夹角是,且,则()A .B .C .D .5.设P 是双曲线上一点,双曲线的一条渐近线方程为,、分别是双曲线的左、右焦点。

若,则()A . 或B . 6C . 7D .96、原点到直线y=kx+2的距离为,则k 的值为( ) A 。

1 B 。

—1 C.1 D 。

7、若,且是第二象限角,则的值为()A .B .C .D .8、在等差数列{a }中,a+a+a+a+a=15 , a= ( )A. 2B.3C. 4 D 。

59、已知函数的图象经过点,又其反函数的图象经过点,则函数的表达式是() A . B . C . D .10、已知向量与,则下列命题中正确的是 ( ) A 。

若||>||,则〉 B. 若||=||,则=C 。

若=,则∥D 。

若,则与就不是共线向量11.下列函数中为偶函数的是 ( )A .f(x )=1-x 3B 。

f(x)=2x —1 C.f (x )=x 2+2 D.f (x)=x 312。

一商场有三个大门,商场内有两部上楼的电梯,一顾客从商场外到商场二楼购物,不同的走法共有( )A 。

2020年职业教育对口数学模拟试题6(带答案)

2020年职业教育对口数学模拟试题6(带答案)

机密★启用前山东省高等职业教育对口招生数学模拟试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题共30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出) 1.设集合U = R ,M ={ x -1< x ≤ 2},则C U M =( ) (A){ x x <-1或x ≥2} (B) { x x ≤-1} (C) { x x ≤-1或x >2} (D) { x x ≥2} 2.不等式| 2x +1 |>0 的解集是( )(A)实数集R (B) {x |x < - 12 )(C) {x | x >- 12 ) (D) {x | x ≠ - 12 , x ∈R }3.已知3log 2a =,那么33log 82log 6-用a 表示是( ).(A ) 2a - (B ) 52a - (C ) 23(1)a a -+ (D ) 231a a -- 4. 椭圆2212011x y +=的焦距为( ). (A )6 (B ) 3(C ) (D )5. 有四位同学从编号为1~50的总体中抽取8个个体组成一个样本,他们选取的样本中个体编号分别为:①5,10,15,20,25,30,35,40;②43,44,45,46,47,48,49,50;③1,3,5,7,9,11,13,15,17;④43,25,2,17,35,9,24,19.你认为样本( )更具有随机性.(A ) ④ (B ) ③ (C ) ② (D ) ①6.在等差数列{}n a 中,已知354S =那么2a 为( ).(A ) 6 (B ) 12 (C ) 18 (D ) 247. 若双曲线的焦点坐标为()13,0F -、()23,0F ,并且5b =,则该双曲线的标准方程为( ). (A ) 22149x y -= (B ) 22149y x -=(C ) 22145x y -= (D ) 22145y x -=8.已知f (x ) =x 2+2x +1 ,则f [f (1) ] = ( )(A) 4 (B) 16 (C) 25 (D) 24 9. 函数()f x 用图像法表示为:则函数的定义域是( ). (A ) ()()3,33,4- (B ) []3,4--(C ) [)3,4- (D ) [)(]3,33,4-10.若函数 y = log a x 在( 0,+∞ )是增函数,则实数a 的取值范围是( )(A)a > 0 (B) 0 < a < 1 (C) a > 1 (D) a < 111.在一次问题抢答的游戏中,要求找出每个问题所列出的4个答案中唯一正确的答案. 某抢答者随意说出了其中一个问题的答案,这个答案恰好正确的概率为( ) (A) 12 (B) 14(C) 18 (D) 11612.在等比数列{a n }中,a n =3⨯2n , 则首项a 1和公比q 分别为( ) (A) 2,3 (B)6,2 (C) 6, 12(D) 3,213. 如果焦点在y 轴上,焦点到准线的距离等于6,那么抛物线的标准方程是( ). (A ) 212x y =或212x y =- (B ) 212x y =(C ) 26x y = (D ) 26x y =或26x y =-14. 一个盒子中有30颗围棋子,其中25颗黑子,5颗白子.从盒子中任取一颗,取到白子的概率是( ). (A )16 (B ) 14 (C ) 15(D ) 56 15.已知向量→a = (- 3,2),向量→b = ( - 1,- 2 ), 则 向 量∣→a - 2→b ∣的值为( ) (A) 35 (B) 37 (C) 39 (D) 4116.已知α= 265 π,则点P(tan α, sin α)所在的象限是( )(A) 第一象限(B) 第二象限(C) 第三象限 (D) 第四象限17. 若两个平行平面间的距离为8,一条直线和它们相交成30°角,则这条直线上夹在这两个平面间的线段的长等于( ).(A ) 8 (B )(C ) 16 (D ) 18. 圆22(1)(1)4x y -++=的圆心到直线20x y ++=的距离是( ).(A (B(C ) (D ) 219.某商场有4个门,一人从一门进,从另一门出,则不同的进出走法有( )(A) 4 (B) 8 (C) 12 (D) 16 20. x >5是 x >3的( )(A) 充分不必要条件 (B) 必要不充分条件 (C) 充要条件(D) 既不充分也不必要条件21. 直线10x +=与直线20x -=的位置关系是( ).(A )平行 (B ) 重合 (C )相交 (D ) 相交且垂直22.已知函数y = (m -1)x 2 + m x -3是偶函数, 则函数的单调递减区间是( ) (A) (-∞, 0) (B) (0, +∞) (C) (-∞, -1) (D) (1, +∞)23.若等差数列{a n }的前三项依次是a -1, a +1 ,2a +3 ,则此数列{a n }的通项a n 等于( )(A) 2n -5 (B) 2n -1 (C) 2n -3 (D) 2n +1 24.函数y = ∣sin x ∣的图象关于( )(A) x 轴对称 (B) y 轴对称 (C) 原点对称 (D) 直线x = π4 对称25.不等式3x -10≥-6 + a x 的解集是{x | x ≤-2},则a 的值是( ) (A) 5 (B) 7 (C) 6 (D) 426. 若二次函数 y = x 2+2(a – b )x +a 2 与x 轴有两个交点, 且b < 0,则a 与b 的关系是( )(A) a > b (B) a > 2b(C) a > b2 (D) a < b27.已知f (x ) = log a x (a >0且a ≠1), 则f (x ) + f (1x) =( )(A) log a (x + 1x ) (B) 2log a x(C) 0(D) 128.设→a ,→b 是非零向量,若→a + 2→b 与→a - 2→b 互相垂直,则∣→a ∣∣→b ∣= ( ) (A) 2 (B) 4(C) 12 (D) 1429.△ABC 中三边分别为a , b , a 2+ab +b 2 , 则△ABC 的最大角为( ) (A) 90° (B) 60° (C) 120° (D)150°30. 偶函数()f x 在区间[]7,1--上是减函数,且有最大值25,那么函数在区间[]1,7上是( ). (A ) 增函数且有最小值25 (B ) 减函数且有最大值25(C ) 减函数且有最小值25 (D ) 增函数且有最大值25第Ⅱ卷(非选择题,共40分)二、填空题(本大题共4小题,每小题3分,共12分)31.已知函数f (x) ={x+2 (x≤ -1)x2 (-1< x <2)2x (x≥2), 若f (x) = 3,则x的值是.32.函数y = 2cos 2x+4sin x+2 的最大值和最小值分别为。

中职对口升学资料-2020年高考数学模拟试卷-9份(7)

中职对口升学资料-2020年高考数学模拟试卷-9份(7)

第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。

B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。

C.两平行直线一定能够确定一个平面。

D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。

8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9.已知集合A ={x |0<x <4,x ∈N },B ={x |-1<x ≤7},则A ∩B= .10.|x -2|≥3的解集是 .11.若角a 的终边上的一点坐标为(-2,2),则sinα的值为 .12.在2和32之间插入3个数a ,b ,c ,使2,a ,b ,c ,32成等比数列,则b 的值是 .13.学校餐厅有8根底面周长为3πm ,高是4m 的圆柱形柱子,现在要刷上油漆,每平方米用油漆2kg ,则刷这些柱子需要用 kg 。

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学考前冲刺模拟试题含答案

2020年中职数学对口升学模拟试题一.选择题(本大题10小题,每小题3分,共30分) 1.集合M={x |x ≤4},15a =,那么正解的关系是( )A.M ⊆aB.M ∉aC. M ∈}a {D.M ⊆}a {2.“三角形一个内角是︒60”是“三角形三个内角成等差数列”的( )A.充分条件B.必要条件C.充要条件D.以上都不对3.12log x 3=,则x4=( )A.6B.9C.2l 34og D.44.已知向量→→→→→→+--==b -a b a ),1,8(b ),,1(a 与且x 相互垂直,则x=( )A.-8B.8±C.8D.不存在5.函数212)52()(f +-=x x x 的值域是( );A.),0[+∞B.),2[+∞C.),4[+∞D.),-[+∞∞6.直线ax+2y-8=0与直线x+(a+1)y+4=0平行,则a=( )A.1B.1或-2C.-2或-1D.-17.=︒︒-︒15cos 15sin 415cos 32( )A.2-B.22C.22-D.28.抛物线px 2y 2=与直线ax+y-4=0交于A,B 两点,其中点A(1,2),设抛物线焦点为F ,则|FA|+|FB|=( )A.4B.5C.6D.7 9.52)1(xx +的展开式中的系数之和是( )A.32B.12C.10D.1610.如果偶函数f(x)在区间[-6,-2]上是减函数且最大值为5,则函数f(x)在[2,6]上是( ) A.增函数且最小值为-5 B.增函数且最大值为5 C.减函数且最小值为-5 D.减函数且最大值为5二.填空题(本大题共8小题,每小题4分,共32分) 1.已知=<<<=-=βπαββαα则若,20,1413)cos(,71c os . 2.若实数x,y 满足=+==y1x 1,217,213则yx. 3.圆4x 22=+y 上的点到直线4x+3y+c=0的最小距离为5,则圆上的点到直线的最大距离为 4.用1,2,3,4,5五个数组成没有重复数字的四位数,从这四位数中任取一个数,不是5的倍数的概率是5.圆锥的侧面积是其底面积的2倍,则其母线与底面所有的角为 .6.过圆4x 22=+y 上一点P (1,-3)的切线方程是 .7.等比数列}{n a 中,173a a 和是方程016102=+-x x 的两根,则=10a .8.已知双曲线19y 16x 22=-,过右焦点2F 交双曲线右支的弦AB ,|AB |=5,双曲线另一个焦点为F 1, 则1ABF ∆点的周长是 . 三.解答题(本大题共6小题,共38分)1.求函数)352(log )(f 22--=x x x 的定义域,单调区间和值域.(6分)2.已知等差数列}{n a 中,14,5a 52==a (1)求}{n a 的通项公式(2)设}{n a 的前n 项和为n S =155,求n 的值.(6分)3.一个袋中有6个球,编号分别为1,2,3,4,5,6,现从中任取3只,求3只球中号码最大的编号X 的概率分布及其期望.(6分)4.已知→→→→→→→→→→-=+=︒>=<==bamdbacbaba3,53,60,,2,3,问(6分)(1)当m取何值时,→→dc与垂直;(2)当m为何值时→→dc与平行。

中职对口升学资料-2020年高考数学模拟试卷-6份-17

中职对口升学资料-2020年高考数学模拟试卷-6份-17

第二部分 数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1、设A ={a },则下列写法正确的是( )。

A .a =A B.a ∈A C. a ⊆A D.a ∉A2.函数f (x )=lg (1-x )的定义域为( )A .x ≠1B .{x |x ≠1 }C .(1,+∞)D .[1,+∞)3.如果函数f (x )=g (x )+2 ,已知g (2)=-2,那么f (2)=( )A .2B . 5C .4D .04.已知→a =(0,-2),→b =(-1,1),则→a ∙→b =( ) A .-2 B .0 C .-3 D .25.与角-450终边相同的角是 ( )A 、π45B 、-405ºC 、π47- D 、765º 6.已知直线l : 2x -y -1=0,那么这条直线的斜率和截距分别为( )A .2,1B .1,2C .2,-1D .-2,-17.下列命题中,正确的是( )A 、平面就是平行四边形 。

B 、过直线外一点有且只有一条直线与这条直线平行 。

C 、空间内不相交的两条直线一定是平行直线。

D 、垂直于同条直线的两条直线平行。

8. 书架上有语文、英语、数学、物理、化学共5本不同的书,现从中任抽一本,则没有抽到物理书的概率是( ).A .51B . 52C .53D .54 二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有种方法;13.已知圆柱体的模具的底面半径为10cm,高15cm,现在在模具中间挖空一个半径为4cm,高为15cm的小圆柱体,问剩下的这个模具的体积为;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二部分数学(模拟题1)一、单项选择题.(每题5分,共8小题,共40分)1.下列正确的是( )A.0 ⊈ØB.0⊆{0,-1}C.Ø∈{0}D.0∈{x|3x≥0}2.函数f (x)=-2x2-1,则函数的值域为( )A.[-2,+∞) B.[-1,+∞) C.[1,+∞) D.R3.已知→a=(-2,6),→b=(4,-2),则→a•→b=( )A.20 B.4 C.-20 D.-44.已知直线4x-3y-1=0与圆(x-2)2+y2=4,则它们的位置关系是( )A. 相交B. 相切C. 相离D. 以上都有可能5.已知cos x=2a-3,则实数a的取值范围是( )A. (-1,2)B.[-1,1]C.[1,2]D.[-5,-1]6.均值是17的样本是( )A .12,15,23 B. 9,16,27 C. 14,18,19 D. 3,19,287. 下列说法不正确的是( )A.两条相交直线一定能确定一个平面。

B.若平面α内不共线的三点到平面β的距离相等,则平面α∥平面β。

C.两平行直线一定能够确定一个平面。

D.一条直线与一个平面内的所有直线都垂直,则这条直线垂直该平面。

8. 已知点A(-2,3)和点B(1,-1),则AB两点的距离为( )A.-5B.3 C.4 D.5二、填空题(本大题共5小题,每小题6分,共30分)9.已知角α的终边经过点M(12,-5),则sinα=;10.若直线经过点(2,5)和(4,-3),那么直线方程为:;11.若三棱锥的棱长都是a,则它的表面积为:;12.从A,B,C三个球队中产生冠亚军各一队,共有种结果;13.某工厂生产一批产品,每月固定成本为12000元,每件产品的可变成本为60元,若某月生产5000件产品,则这个月的成本为元.三、解答题(本大题共2小题,共30分)14. 在4与24之间插入3个数,使这5个数成等差数列,求这3个数.(10分)15.某航空公司规定旅客可以携带一定重量的行李,如果超出规定就要付钱,假如行李费用为y元,行李质量为x千克,y与x成一次函数关系,已知小东携带40千克要付费2块钱,小明携带50千克行李要付费4块钱:(1)请写出y与x的函数关系式; (8分)(2)求旅客携带65千克行李需要付费多少?(6分)(3)求旅客最多可以免费携带多少千克行李?(6分)第二部分 数学(模拟题2)一、单项选择题.(每题5分,共8小题,共40分)1.设集合M ={-1,0,2}, N ={0,1}, 则 ( )A .M ∩N =ØB .N ∈MC .N ⊆MD .-1∉N2.下列不等式中正确得到是 ( )A .5a >3aB .5+a >3-aC .3-a >2-aD .a 3a 5> 3.函数23y 2+-=x x 的定义域为是( )A .(1,2)B .(-∞,1)∪(2,+∞)C .(-∞,1]∪(2,+∞)D .(-∞,1]∪[2,+∞)4.若f (x )=2x 2,且x ∈{-2,0,2} 则f (x ) 的值域是( )A .{-2,0,2}B .{1,9}C .[1,9]D .(1,9)5.函数与x x y y=)21(2=与的图像关于( )A .原点对称B .x 轴对称C .直线y =1对称D .y 轴对称6.若角α是第二象限角,则化简αα2sin 1tan -的结果为( ) A .sin α B .-sin α C .cos α D .-cos α7.已知点A (2,-3),点B (5,2),则向量的坐标为( )A .(3,5)B .(-3,-5)C .(-3,5)D .(3,-5)8.空间中平行于同一条直线的两条直线的位置关系是( )A .相交B .平行C .异面D .以上三种情况都有二、填空题(本大题共5小题,每小题6分,共30分)9.已知y =1-2cosα,则y 的最小值是 ,最大值是 ; 10.=-)314sin(π; 11.已知数列:...643-432321-,,,⨯⨯⨯则这个数列的通项公a n = . 12.已知一扇形的半径为5cm ,圆心角为1200,则此扇形的面积为 .13.若某学校高三一班有25个男生,30个女生,要从男女生中各选拔出一个同学作为学校代表参加比赛,共有 种选法。

三、解答题(本大题共2小题,共30分)14.已知成等差数列的三个数的和为15,积为80,求这3个数。

(10分)15.某旅馆有200套房间,如果定价不超过40元/间,则可以全部出租;如果每间定价高出1元,则会少出租4间。

设房间出租后成本费用为8元;(1)试建立旅馆一天的利润与房价间的函数关系。

(2)房价为多少时,旅馆一天的利润最高,最高为多少?第二部分 数学(模拟题3)一、单项选择题.(每题5分,共8小题,共40分)1.下列数学表达正确的是( )A. 0∈{(0,1)} B .Ø⊆{0,1,2,3} C .0∈Ø D .4⊆{x |x>3}2.函数21)(+=x x f 的定义域为是( ) A .x ≠2 B .(-∞,-2)∪(-2,+∞) C .{x |x<2或x>2} D .(-∞,+∞)3.函数f (x )=x 2-2x +1,则f (2)=( )A .1B .5C .7D .94.已知22sin =α,且α是第二象限角,则cos α=( )tan α=( ), A .33,22 B .33,22-- C .1,22- D .1,22-- 5.已知经过点A (2,2),且与直线2x -3y -1=0平行是直线是( ) A.3132--=x yB.2x +3y -5=0C.2x +3y =0D. 2x -3y +2=0 6.已知圆的方程为x 2+y 2+2x -4y =0,则这个圆的圆心是( ),半径是( )A .5),2,1(-B .5),2,1(-C .5),2,1(-D .5),2,1(-7. 下列不正确的是( );A.若一条直线有两个点在一个平面上,则这条直线在此平面内;B.平行于同一条直线的两直线平行,在空间中也是一样;C.若平面外的一条直线与平面内的所以直线平行,那么这条直线与这个平面平行;D.如果在一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行。

8.体育课中,进行投3分篮比赛,甲同学投进3分的概率是0.2,乙同学投进3分的概率是0.15,问甲乙同学都投进3分的概率是( )A .0.3B .0.15C .2D .0.03二、填空题(本大题共5小题,每题6分,共30分)9.设A =[-2,+∞),B ={x |x<3},求A ∪B = ;10.已知向量→a=(-2,4),→b=(3,-1),则2→a-3→b=;11.小王、小李、小张、小高的平均体重是40千克,已知小王体重为45千克,小李体重为40千克,小张比小高重2千克,则小高的体重为;12.若一个球的半径为R,现经过这个球的半径的中点,作一个垂直于这条半径的截面,那么这个截面的面积为.13.某商店搞活动,兵乓球拍原价每副20元,现在打6折,若小明有80元,则小明最多可以购买副兵乓球拍.三、解答题.(本大题共2小题,共30分)14.某电影院有20排座位,第一排有16个座位,后排比前排多一个座位,若每个座位票价为25元,问满座后营业额是多少?(10分)15.为了鼓励节约用水,某地方水费按这样的形式收费,每户每月用水不超过20立方时,按2.5元每立方收费,超过20立方时,超出部分按3元每立方收费,设某有户用水量为x立方,每月缴费为f (x)元:(1)列出f (x)的函数解析式;(10分)(2)若该户某月用了25立方水要用多少钱?如交了80元,可用多少立方水?(10分)第二部分 数学(模拟题4)一、单项选择题.(每题5分,共8小题,共40分)1、设A ={a },则下列写法正确的是( )。

A .a =A B.a ∈A C. a ⊆A D.a ∉A2.函数f (x )=lg (1-x )的定义域为( )A .x ≠1B .{x |x ≠1 }C .(1,+∞)D .[1,+∞)3.如果函数f (x )=g (x )+2 ,已知g (2)=-2,那么f (2)=( )A .2B . 5C .4D .04.已知→a =(0,-2),→b =(-1,1),则→a ∙→b =( ) A .-2 B .0 C .-3 D .25.与角-450终边相同的角是 ( )A 、π45B 、-405ºC 、π47- D 、765º 6.已知直线l : 2x -y -1=0,那么这条直线的斜率和截距分别为( )A .2,1B .1,2C .2,-1D .-2,-17.下列命题中,正确的是( )A 、平面就是平行四边形 。

B 、过直线外一点有且只有一条直线与这条直线平行 。

C 、空间内不相交的两条直线一定是平行直线。

D 、垂直于同条直线的两条直线平行。

8. 书架上有语文、英语、数学、物理、化学共5本不同的书,现从中任抽一本,则没有抽到物理书的概率是( ).A .51B . 52C .53D .54 二、填空题(本大题共5小题,每题6分,共30分)9. 已知集合A ={小于4的自然数},B ={0,1},则A ∩B = ;10.函数y =1+3sin (2x +1)的最小正周期是 ;11.已知两直线l 1: x -y+2=0与l 2: x -y -1=0,则这两条直线的距离为 ;12.假设某人从甲地到乙地有8种不同的方法,从乙地到丙地有5种不同的方法,则从甲地到丙地一共有种方法;13.已知圆柱体的模具的底面半径为10cm,高15cm,现在在模具中间挖空一个半径为4cm,高为15cm的小圆柱体,问剩下的这个模具的体积为;三、解答题(本大题共2小题,共30分)14.已知数列为:1,2,4,7,11...,求这个数列的第12项。

(10分)15.某电力公司采用分段计费的方法计算电费:每月用电不超过230度时,按每度0.51元计费;每月用电超过230度时,其中的230度仍然按原来的标准收费,超过部分按每度0.82元计费。

(1)设月用电x度时,应交电费y元,当x≤230和x>230时,分别写出y关于x的函数关系式。

(2)若小黑家第一季度缴纳的电费情况如下:问小黑家二月份的用电量为多少?第二部分 数学(模拟题5)一、单项选择题.(每题5分,共8小题,共40分)1.x +1=0是(x -2)(x +1)=0的( )A .充分条件B .必要条件C .充要条件D .无法确定2.函数2)(2-=x x f 的值域是( )A .RB .),(2-∞C .)2[∞+-,D .)2[∞+,3.下列函数在定义域内是增函数的是( )A .y =x 2+3 B. y =-2x +1 C.y =0.8x D .y =lgx4.=)(413-t πan ( )A .1B .-1C .±1D .3-5.已知→a =2,→b =4,→a ∙→b =-4,则→a 与→b 的夹角为( )A.1200B.600C. 32-π D.34π6.半径为2,且与x 轴相切于原点的圆的方程为( )A .(x +2)2+y 2=4B .(x -2)2+y 2=4C .x 2+(y +2)2=2D .x 2+(y -2)2=47.下列命题不正确的是( )A 在空间中,互相垂直的两条直线不一定是相交直线。

相关文档
最新文档