第一章 运动生物力学学科概述
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章运动生物力学学科概述(李建设裘琴儿)
内容提要:
本章介绍了运动生物力学学科的演变历程;阐述了运动生物力学的学科特性;从当前运动生物力学亟待解决与发展的问题的角度对运动生物力学学科的未来进行展望。
教学目标:
使学生了解运动生物力学学科的发展历程,明确运动生物力学的学科特性、了解运动生物力学学科任务,了解运动生物力学学科中目前亟待解决的问题以及未来走向,使学生全面了解运动生物力学的学科概貌。
关键词:演变;特性;任务;展望
第一节运动生物力学学科演变
运动生物力学学科的形成时间并不长,但是人类注意、观察、分析、研究运动的历史却非常悠久。从整个学科的演变历程来看,大致可分为如下几个时期:
一、运动生物力学学科的萌芽时期(二次大战前)
运动生物力学作为正式的一门学科还是近代的事情。人们在很早以前就想知道活的有机体的运动。古希腊被称为“运动学之父”的亚里士多德(Aristotles公元前384—322)早已关注人和动物运动的材料,第一次分析了走的全过程,并开始认识了重心的作用和杠杆原理等。
文艺复兴前,代表人物克·加仑(C.Galenus公元前131-200)是一名医生,他通过实验证实了由脑发出冲动,肌肉紧张收缩产生关节运动,区别了原动肌和对抗肌,使用了动关节与不动关节的术语。
文艺复兴时期自然科学得到较快的发展,意大利科学家达·芬奇(L.D.Vinci 1452-1519)是有名的画家,数学家和力学家,又是一名医生,他极大地注意到解剖学和力学基础上的人体姿势分析,对人体步行的研究和近代身体运动学的研究相仿。他叙述了站立,上坡和下坡,坐姿起立和跳跃是身体的力学原理,并说“有运动能力的活体都按力学规律起作用”,在当时这是一个大胆的见解。进一步研究人和动物运动是意大利数学家和天文学家阿·鲍里利(A.Borelli 1608-1679),他是伟大的力学家伽利略的学生。他曾著《论动物的运动》一书,他曾探索各种肌肉发力的数值,利用杠杆原理测量人体重心的实验方案,指出了人体中心的位置,提出肌肉的作用符合数学、力学原理的论点,并将人体在空间的主动位移动作分为3种主要运动方式,即蹬离支点(走、跑、跳)、推离他体(划行,如游泳)、拉引(如攀登)。后来,美国生物力学家斯坦特勒(A.Steindler 1879-1959)称他是“现代运动解剖学和生物力学之父”。
18世纪人们发现了电现象,不久“生物电”的概念便被用来解释人体运动的调节功能。伽伐尼(Galvani)发现电刺激会引起肌肉收缩,完成了著名的论文《论肌肉运动中的电力》,
并得出了动物电与机器电完全一致的重要结论。1841年莱芒德(Du Bois Reymond)在前人研究的基础上确立了肌电测量的方法。生物电的研究导致肌电图仪的发明。肌电图目前已经广泛用来研究运动员运动时的肌肉工作。
19世纪初法国生理学家维伯尔兄弟用1/60s的发条时钟计时法,在研究走的实验中测定了躯干的倾斜以及垂直运动,得出提高走速必须减少双支撑时间的结论。缪勒是法国的生理学家,他利用空气压缩记录法研究了腿运动的支撑期和摆动期的时间关系,测定走时支撑时间和跑时双支撑时间的数据。1871年美国摄影师伊·梅布里奇用24只固定照相机和2只轻便蓄电池,拍摄了一匹马的奔跑状态并测量出马的步长,四足腾空的现象,其后又拍摄了人的走,跑等动作的连续照片。1901年,梅布里奇发表了《运动中的人体的图像集》,从而奠定了运动生物力学参数摄影分析测量的方法基础。为了纪念他对生物力学的贡献,从1987年第11届生物力学大会开始设立了“梅布里奇杰出贡献奖”以表彰在生物力学基础理论,研究方法和应用研究领域做出突出贡献的学者。
20世纪初,德国学者威·布拉温和奥·菲舍尔用实验方法测定了人体各环节相对重量和人体重心等惯性参数,这些材料时至今日仍被生物力学理论和实践广泛采用。
1916年法国人阿玛尔(Amar)研制了第一台可以测定垂直、水平方向两维测力台,为动力学分析提供了测试手段。
俄国学者谢切诺夫除了对生理学方面出贡献外,在他所著《人体功能运动概论》一书中详尽阐述了“人体运动装置的结构是骨杠杆,产生杠杆运动的是肌肉张力及其神经支配”等问题。同时代的俄国学者佛·列斯加夫特是一位机能解剖专家,他把人体形态结构功能与体育动作结合起来,开创了《身体运动的理论》,并于1877年讲授了他自己写的这部著作,而后更名为《体育练习生物力学教程》。由于谢切诺夫和列斯加夫特的突出贡献,他们被称为原苏联现代生物力学的奠基人。前苏联运动生物力学创始人伯恩斯坦从20世纪30年代开始注意用神经控制论的观点来研究人体运动,在所著的《论动作的结构》一书中就反映了系统论、控制论和信息论的观点。伯恩斯坦关于人体动作系和运动行为结构的思想原则,以及运动感觉反馈修正的理论对运动生物力学的学科发展具有重要的意义。
20世纪30年代,英国生理学家希尔(A.V.Hill)取青蛙的缝匠肌为试样,通过测量肌肉在缩短过程中的肌张力,肌缩短速度,肌肉产生的热量及肌肉维持挛缩状态所需的热量,并按热力学第一定律建立了与实验结果相当一致的希尔方程。他因为多肌肉力学的经典性工作成就获得了诺贝尔生理学奖。
运动生物力学在萌芽时期基本上没有和人体解剖学分开,多是应用尸体解剖材料分析人体运动,阐述运动动作的原理。运动生物力学在萌芽时期的研究基本是零散的,缺乏系统性。但这漫长的萌芽时期却为运动生物力学学科的形成奠定了基础。
二、运动生物力学学科的形成时期(二次大战到二十世纪八十年代)
第二次世界大战以后,随着体育运动的蓬勃发展,先进技术和军事科学的发展,运动解剖学和运动生物力学逐渐形成独立的学科。特别是20世纪40年代开始的以信息技术为标志的现代科学技术革命是运动生物力学学科形成的加速剂。20世纪60年代微型计算机的诞生为运动生物力学带来了革命性的变化,带来了运动生物力学测试仪器本质上的进步,促进了这一学科理论与实践的不断融合与发展。
这一时期的特征是较为先进技术的引进和应用,极大促进了运动生物力学的发展。例如