双螺纹管换热器结构特点

双螺纹管换热器结构特点
双螺纹管换热器结构特点

双螺纹管换热器结构特点

——换热设备推广中心

双螺纹管是一种强化传热元件,它可代替光管组装成各种规格的管壳式换热器系列产品,也可组装各种规格的冷凝器、冷却器、卧式重沸器,是一种节能产品;提高总传热系数50~70%;抗腐蚀能力高于光管换热器,可延长操作周期和使用寿命;管内外给热系数相差2倍时为理想使用场合。螺纹管材质:10#、不锈钢、碳钢渗铝、08Cr2AlMo、铜。

双螺纹管换热器是由芯体和壳体两部分组成,芯体是由换热管组成,壳体是由筒体和封头等组成,上下封头各设两个开口,同一封头上的开口中心呈90度角,使换热器全部参与换热,无死区。

产品特点:

1、体积小,重量轻,便于安装传统的换热器体积庞大,螺旋螺纹管换热器的螺旋缠绕方式,在满足相同热负荷的工况时,螺旋螺纹管换热器体积又只有传统管壳式换热器的1/10左右,占地面积小,节省空间;同时也因为体积小、重量轻,更加便于安装、拆卸。

2、结垢少,维护方便换热器结垢会直接降低换热效果,达不到工艺要求,影响生产效率,增加维护费用,因此尽量降低结构倾向是螺旋螺纹管式换热器设计重要因素。

3、耐温、耐压,寿命长

双螺纹管换热器的换热管束和壳体采用不锈钢材质,具有统一的膨胀系数,不会由于压力和温度变化而引起换热器的变形。换热器无需加装减温、减压装置,最高耐温400℃,耐压1.6MPa。

4、高效节能

双螺纹管换热器因其独特的设计,显著地提高换热能力,尤其在有相变的换热工况时,较传统换热器更有显著优势。在汽水交换如蒸汽加热水的工况下,常规的管壳式换热器换热系数k值一般最高为6000W/(m·2℃),SECESPOL螺旋螺纹管换热器其换热系数k值可高达14000W/(m·2℃)。

双螺纹管换热器是用于不同温度介质的热交换设备,应用十分广泛,其性能的每一份提高都会带来极大的经济效益,在世界科技工作者的共同努力下,热传导技术近40年来迅速发展,取得了令人鼓舞的成就。与此同时,也发现一些长期未能解决,制约设备传导性能的弱点,其中最突出的是换热器传热面积垢和达不到最佳传热状态。

双螺纹管是根据用户不同的循环水量,设计换热管螺旋线的螺距及螺纹的深度,扎制而成的螺旋换热管件。利用流体在特制螺旋槽管内以一定流速旋转流动,达到湍流状态,管壁附近的流速增加,横向冲刷管壁,使水垢附着不到管壁上;其二是该换热管是用特殊工艺制作的换热元件,本身带有热胀冷缩的能力,收缩和膨胀能起到自洁的作用;其三是该换热管在正常运行时,由于在特制的螺旋管通过。会产生固定范围高频颤动,使介质中的杂质处于悬浮状态,这也是使管壁不会积垢的重要因素。

铝制板翅式换热器使用说明书_secret

铝制板翅式换热器使用说明书 目录 前言第1页 1 铝板翅式换热器结构介绍第1页 2 板式安装第4页 2.1设备到达检查第4页 2.2存放第4页 2.3板式安装第4页 3 安装第5页 3.1系统试压第5页 3.2 热交换介质的要求第5页 3.3 热交换介质的要求第6页 4、技术性能、安装尺寸第6页 5、维护与保养第6页 6、制造、检验、验收标准第7页 前言 铝板翅式换热器广泛用于低温精馏装置,如空气分离与液化设备、天然气分离与液化、乙烯精馏;也用于化工处理、机车冷却和其它领域; 本使用说明为铝板翅式换热器安装、使用、维护的一般知识,对文中黑体字部份应特别注意,以免对设备或人员造成伤害。在使用过程中对不清楚的地方应向制造厂家咨询。

1. 铝板翅式换热器结构介绍 1.1 铝板翅式换热器属间壁式紧凑换热器; 1.2 铝板翅式换热器的材质为防锈铝合金;换热介质在工作温度下不能对铝合金产生腐蚀或与铝合金有化学反应;这样会降低换热器的使用寿命; 1.3 板式由接管、板束体、其它附属装置组成; 1.3.1 接管 连接换热器与外部接管,可采用焊接、法兰连接或双金属接头连接;接管与板束体相连是封头,封头用于流体分布; 接管材料通常是5A02或5083 1.3.2 板束体 板束体是热交换的场所,结构单位是层;每层由导流片、翅片、封条、隔板组成;层组合为板束体高度(厚度);整体为真空钎焊,不可拆卸; 1.3. 2.1导流片分进、出口导流片,引导流体进、出各层; 1.3. 2.2翅片为流体热交换提供扩展面积和支承强度;节距一般从1mm~4.2mm,故不清洁介质不能入内,以免堵塞,特别在试压、管道吹扫时应特别注意; 1.3. 2.3 封条在每层的四周,把介质与外界隔开;在流体进、出口处开口; 1.3. 2.4隔板把相邻两层隔开,热交换通过隔板进行,常用隔板一般厚1mm~2mm; 1.3.3 其它附属装置包括:支座、吊耳、保冷等; 1.3.3.1支座支承换热器,支架与支座相连;如果需要,支座要考虑隔热; 1.3.3.2 吊耳为换热器吊装使用; 1.3.3.3 当换热器工作温度高于、低于环境温度时换热器应保温以减少冷损。保冷通常采用聚胺脂发泡或干燥珠光砂保冷; 1.4 板式可根据需要进行并联或串联以解决装置需要与钎焊设备尺寸限制的矛盾;并联布置时应注意换热器间流量分配的均匀度; 2 板式安装 2. 1设备到达检查

螺纹基本尺寸对照表要点

英制管螺纹基本尺寸及公差(牙形角55o)BSPP 英制锥管螺纹基本尺寸及公差(牙形角55o)BSPT

美制管螺纹基本尺寸及公差(牙形角60o)UN(F)

公制螺纹基本尺寸及公差(牙形角60o) M

55°圆锥管螺纹基本尺寸对照表最新下载-汇兴达55°圆锥管螺纹基本尺寸对照表最新下载-汇兴达55°圆锥管螺纹(BSPT)

聊城市鑫茂祥管业有限公司专业经营钢管规格:5mm*1mm—1020mm*200mm合金钢管、外径22mm-127mm 冷轧无缝钢管、外径127mm-600mm,壁厚16mm-100mm,外径精度±0.5%,壁厚精度±5%热轧中厚壁无缝钢管、16Mn外径400—1600mm、壁厚20—60mm的大口径厚壁卷管,可定尺到16米及各种规格的无缝方管、异型无缝钢管等.常备钢管种类有:构造用无缝钢管、流体用无缝钢管、液压无缝钢管、电力用无缝钢管、石油输送用无缝钢管、化肥设备用无缝钢管、煤矿用无缝钢管、不锈钢无缝钢管、化工用无缝钢管、纺织机械用无缝钢管、汽车;水利用无缝钢管,精密无缝钢管、光亮无缝钢管、军工医疗用无缝钢管、管道用无缝钢管、支柱用无缝钢管、合金无缝管、高压无缝管、大口径直缝焊管等。适用于工程、煤矿、纺织、电力、锅炉、机械、军工等各个领域。公司以良好的信用、优质的产品、雄厚的实力、低廉的价钱享誉全国30多个省、市、自治区、直辖市及国外,产品深得用户依赖。 公司常年销售成都钢铁集团、冶钢集团、包头钢厂、宝钢集团、鞍钢集团、天津大无缝、西宁特钢厂、无锡钢厂、衡阳钢厂等各大钢厂生产的各种无缝钢管及合金管。主营材质:20#、35#、45#、20G、20A、40Mn2、45Mn2、27SiMn、

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

换热器的发展现状及前景

换热器的研究发展现状及前景 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现 1换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分,具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。

螺纹管换热器技术说明

空气预热器技术说明

空气换热器 1、前言 冶金行业是国家能源消耗大户,同时也是环境污染的主要制造者之一。国家制订的可持续发展的长期目标,其重要保证条件就是降低冶金行业能耗,提高能源利用率,减少污染排放,实现和谐发展。 冶金行业要降低能耗,除了改善生产工艺和条件,另外的一个重要途径就是充分利用排放掉的能源,从而提高能源利用效率。利用排放掉能源的主要设备就是换热器。 管壳式换热器是一种常见的换热设备,已经有近百年的历史。目前已经已经有非常多的种类,广泛应用于各种行业。管壳式换热器的特点是:换热空间是管束以及管束外面的壳体与管束形成的空间。一种流体走管内,另外的流体走管与壳之间。两种流体通过管壁进行换热。管壳换热器的优点是应用广泛,可以耐高温高压,可以大型化,它的缺点是传热系数比较低,单位换热面积消耗的金属材料比较多。为了解决这个问题,人们采取了很多方法来改善管壳换热器的传热条件。 2、螺纹管 螺纹管是上世纪末出现的一种异形传热管,它通过对光滑钢管进行压力加工,使其发生螺纹状形变,表面形成螺纹凹槽而成。螺纹管同光滑管比有非常明显的性能增强: ①由于螺纹凹槽的形成,可以使管内气流形成旋流,增强了紊流 状态下的对流传热能力;

②螺纹凹槽使得管子表面变得粗糙,破坏了气流边界层,使得在 层流状态下气体对流传热有明显提高; ③螺纹凹槽可使管子传热表面积有所增加; ④螺纹管比光滑管的固有频率提高,降低了换热器的振动。 但是螺纹管的阻力比光滑管大,管子刚度也比光滑管小,这是螺纹管存在的缺点。 AA2机组空气预热器的换热元件就采用单程轧槽螺纹管。 3、换热器结构 换热器采用高温列管式,风箱为方形,烟气走管外行程,空气走管内行程。整个换热器嵌入烟气通道内,没有外壳。烟气经过换热管外换热后直接排放掉,为一个行程。空气经过四个管行程被烟气加热,管束用风箱和连接管连接,连接管高温端有膨胀节。空气流与烟气流呈逆差流的流动分布。 4、换热器参数 4.1烟气参数: 入口温度:850℃出口温度:393℃ 烟气量:9636m3/h2℃阻力损失:62Pa 烟气放出热量:1.4053106kcal/h 4.2空气参数: 入口温度:20℃出口温度:550℃

换热器分类

换热器分类 夹套式换热器 结构如图所示。夹套空间是加热介质和 冷却介质的通路。这种换热器主要用于 反应过程的加热或冷却。当用蒸汽进行 加热时,蒸汽上部接管进入夹套,冷 凝水由下部接管流出作为冷却器时,冷 却介质(如冷却水)由夹套下部接管进 入,由上部接管流出。 夹套式换热器结构简单,但由于其加热 面受容器壁面限制,传热面较小,且传 热系数不高。 二.喷淋式换热器喷淋式换热器的结构 与操作如下图所示。这种换热器多用作 冷却器。热流体在管内自下而上流动, 冷水由最上面的淋水管流 出,均匀地分布在蛇管 上,并沿其表面呈膜状自 上而下流下,最后流入水 槽排出。喷淋式换热器常 置于室外空气流通处。冷 却水在空气中汽化亦可带 走部分热量,增强冷却效 果。其优点是便于检修, 传热

效果较好。缺点是喷淋不 易均 .套管式换热 器

套管式换热器的基本部件由 直径不同的直管按同轴线相 套组合而成。内管用180 暗 幕 * Сざ任?~ 6m。若管子太长,管中间会 向下弯曲,使环隙中的流体分布不均匀 套管换热器的优点是构造简单,内管能耐高压,传热面积可根据需要增减,适当选择两管的管径,两流体皆可获得适宜的流速,且两流体可作严格逆流。其缺点是管间接头较多,接头处易泄漏,单位换热器体积具有的传热面积较小。故适用于流量不大、传热面积要求不大但压强要求较高的场合。 四.管壳式换热器 1.固定管板式结构如图所示。管子两端与管板的连接方式可用焊接法或胀接法固定。壳体则同管板焊接。从而管束、管板与壳体成为一个不可拆的整体。这就是固定 管板式名称的由来

折流板主要是圆缺形与盘环形两 种,其结构如图所示。 操作时,管壁温度是由管程与壳程 流体共同控制的,而壳壁温度只与 壳程流体有关,与管程流体无关。 管壁与壳壁温度不同,二者线膨胀 不同,又因整体是固定结构,必产 生热应力。热应力大时可能使管子 压弯或把管子从管板处拉脱。所 以当热、冷流体间温差超过50℃时应有减小热应力的措施,称“热补偿”。 固定管板式列管换热 器常用“膨胀节” 结构进行热补偿。图 所示的为具有膨胀 节的固定管板式换 热器,即在壳体上焊 接一个横断面带圆弧 型的钢环。该膨胀节 在受到换热器轴向 体伸缩,从而减小热应力。但这种补偿方式仍不适用于热、冷流体 温差较大 大于70℃)的场合,且因膨胀节是承压薄弱处,壳程流体压强不宜超过6at 。 管式列管换热 器

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

螺纹基本尺寸对照表18780

螺纹基本尺寸对照表 (以及螺纹底孔相关尺寸) 参照机械设计师首册编制 OPMSM 2005年7月

螺纹代号 Thread code 一、英制螺纹(螺纹牙型角55度) BSW——英国标准惠氏螺纹(粗牙) BSF——英国标准惠氏螺纹(细牙) G——直管螺纹(外螺纹分A、B两级即在螺纹中径公差有所区别,丝锥分G、G-D)非密封性螺纹 R——锥管外螺纹(旧代号ZG;KG) RC——锥管螺纹(旧代号ZG;KG) 二、美制螺纹(螺纹牙型角60度) UNC——统一制粗牙螺纹(代替NC) UNF——统一制细牙螺纹(代替NF) UNEF——统一制超细牙螺纹 UN——统一制不变螺距螺纹 UNS——统一制特殊螺纹 三、美制螺纹(螺纹牙型角60度) NPT——一般用途锥管螺纹(旧代号Z、K)(斜角为1°47'即1:16)NPSC——管接头直管螺纹 NPSM——设备上自由配合,机械连接用直管螺纹 NPTF——干密封锥管螺纹 NPSF——干密封燃料螺纹 NGT——气瓶用螺纹 四、米制螺纹(螺纹牙型角60度,斜角为1°47'24"即1:16) ZM——米制锥管螺纹 五、其它螺纹 SM——缝纫机螺纹(螺纹牙型角60度,平顶、螺纹底部为园弧形) PZ——气瓶螺纹 5V1至20V1——气门芯螺纹(螺纹牙型角60度,平顶、螺纹底部为园弧形) 六、管螺纹(螺纹牙型角55度,螺纹顶、底部为园弧形约) RC——圆锥螺纹(螺纹牙型角55度,斜角为1°47'即1:16) RP——圆柱螺纹(螺纹牙型角55度) R——圆锥外螺纹(螺纹牙型角55度,斜角为1°47'即1:16) 七、普通螺纹(螺纹牙型角60度) M——普通螺纹代号

5mm管径内螺纹铜管换热器分析

Ф5与Ф7换热器比较分析 背景: 近年来,由于国际铜价节节攀升且居高不下,如果降低空调器铜用量各大厂家也是八仙过海,比如铝制换热器,ACC管,小管径铜管替代原有较大管径的铜管等。随着环保节能的考虑,家用空调用冷媒逐渐由R22过渡到R410A,整机中R410A运行压力要比R22高出60%,因此系统性能受冷媒压力损失的影响较小,更适合于采用小管径铜管换热器。 空调换热器采用小管径铜管后,管内换热和压降特性会随之改变,根据换热器试验研究表明:在冷媒质量流量相同情况下,Ф5铜管管内制冷剂的摩擦压降比Ф7的大20-40%。因此在实际应用Ф5铜管时,需要针对Ф5铜管的换热和压降特性,对换热器型式进行优化调整,如翅片或流路,同时制冷剂充注量可以减少了10-20%,需要对系统的其他部件,如膨胀阀的开度进行调整,以求系统的性能接近甚至优于原有系统性能。 一、行业Ф5翅片方面的应用情况: 1)日本应用情况 小结: ◆换热器越来越细管径化,Φ5换热器在室内机上有4家公司使用。2家是跟其他管径的组 合构成的圆弧换热器。大金使用的更细的φ4。 ◆φ5以下的細管各公司几乎都是用在能力2.2~7.1kW的室内机上。这是因为室内机箱体 从小到大共都是通用的,φ5可以使用在家用空调上限7.1kW。 ◆作为日本冷暖变频室外机,各企业的设计中没有使用φ5换热器,一般是Φ7或φ7.94。

因为用φ5的话分流回路数多分流太复杂。φ7换热器在4.0kW机上都要分4路,φ5的就太复杂了。 ◆室内机的φ5换热器几种管径(φ5和φ6.35等)组合,可以简化分流并提高性能。2)韩国应用情况 3)国内应用情况 Ф5管技术在2005年以后引入国内,在2007年国内相应的产品设计和生产工艺已经成熟。经向冲床及模具厂家调研,近3年以来美的、格力在Ф5换热器设备方面投入较大,Ф5换热器的产能各达到100万件/月的大批量生产规模。 ◆美的2009年以前陆续购入5条Ф5换热器生产线,2009~2010年进口了10条日本日高 公司Ф5换热器生产线,已经在今年旺季实现规模效益。2011年还将预计投入5条。 ◆格力2010年前陆续购入10条Ф5换热器生产线以后,2011年已经向日本日高公司一次 性订购了12条Ф5换热器生产线(今年12月开始陆续交货),预计在2012年旺季可实现规模效益。格力Ф5换热器生产线有3台为国产设备,其余19台均为进口设备。 ◆行业内其他竞争对手格兰仕、志高等均有3条以上Ф5换热器生产线,以面向国际市场 的生产订单为主,产能预计各将达到12万件以上/月的生产规模。 4)海信科龙的情况 海信科龙到目前为止,Ф7和Ф5换热器有以下几种:

中国换热器产业现状及发展趋势_黄庆军

第1期 中国换热器产业现状及发展趋势 黄庆军1 任俊超1 苏是2 黄蕾2 (1.四平市换热器协会, 吉林 四平 136000) (2.太原科技大学机电学院, 山西 太原 030024) [摘 要] 分析了国内换热器的市场规模、竞争格局、产业布局以及外资企业在华投资布局,介绍了国内换热器的技术现状和差距,预测了今后的产业发展趋势。 [关键词] 换热器;现状;发展趋势 1 市场规模分析 2008年,中国换热器产业市场规模在360亿元左右,主要集中在石油、化工、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场,其市场规模在100亿元以上;电力冶金领域换热器市场规模在60亿元左右;船舶工业换热器市场规模在30亿元以上;机械工业换热器市场规模约为30亿元;集中供热行业换热器市场规模超过25亿元。 2 市场竞争格局 按照产品类型的不同,我国换热器产业市场竞争主要集中在以下四大产品领域。 板式换热器领域,国内外企业竞争激烈,大量外资企业已经完成在中国的布局。其中,四平巨元瀚洋、兰石换热设备公司、四平维克斯是我国板式换热器领域内资企业中的龙头企业,其板式换热器年产值都在2亿元以上。外资企业主要包括阿法拉伐(江阴)、舒瑞普(北京、苏州)、APV(上海、北京)、丹佛斯(天津)、传特(北京)、桑德克斯(上海、宁波)、风凯(常州)等企业,世界著名的板式换热器企业大都已经进入中国市场。此外,沈阳太宇、蓝科高新(原兰石所)、上海艾克森、湖北登峰、山东北辰、佛山澜石、上海南华等企业也是我国重要的板式换热器企业。 管壳式换热器领域,我国生产企业众多,且规模都较小。其中,抚顺机械设备制造有限公司、兰石集团炼化设备公司、中石化南京化工机械是我国内资管壳式换热器的龙头企业,其管壳式换热器年产值都在2亿元以上;江苏中圣集团、无锡化工装备总厂、宝钛集团南京宝色股份、西安核设备制造厂(原国营524厂)、合肥通用特种材料设备有限公司是我国特种材料换热器领域的重要企业,其特种材料管壳式换热器年产值都在1.5亿元以上;中石化镇海石化建安工程有限公司、中石化北京燕化、中石化茂名重力石化机械制造有限公司等企业依托母公司中石化的市场优势,也形成了一定的换热器生产规模,年产值在1~2亿元左右;此外,张家港化工机械、大连金重公司、湖北长江石化设备公司、大连东方亿鹏、合肥通用特种材料设备有限公司、西安大秦化工机械(原西安化工机械厂)、林德工程(大连)、天津国际机械(原天津市换热装备总厂)、大连东方亿鹏等企业也是国内管壳式换热器的主要生产企业,管壳式换热器的年产值都在1亿元以上。相对而言,管壳式换热器外资企业在华布点不多,比较知名的有日本森松(上海)、林德工程(大连)、美国艾普尔(苏州)、德国风凯(常州),这主要缘于我国石油化工领域换热器企业众多,生产能力较强,国外企业进入中国市场较为困难。 空冷式换热器领域,哈空调是我国最大的空冷式换热器生产企业。此外,江苏双良股份、国电集团北京龙源冷却技术有限公司、四川简阳空冷器、蓝科高新(原兰石所)、兰州兰石集团长征机械、西安大秦化工机械(原西安化工机械厂)、湖北长江石化设备、江阴电力设备冷却器公司等企业也具有一定的竞争力。外资企业中,基伊埃(芜湖、廊坊)、斯必克(张家口)在空冷式换热器领域具有较强的竞争力。 板翅式换热器领域,杭州杭氧股份和开封空分集团是我国石油化工领域著名的板翅式换热器企业,浙江银轮股份、贵州永红航空机械、无锡马山 作者简介:黄庆军(1967—),男,1992年毕业于燕山大学,硕士研究生学历,高级工程师。主要从事换热器行业分析及产品研究。

螺旋螺纹管换热器的应用

螺旋螺纹管换热器的应用 工艺装备室陈金辉 【摘要】 中国原料药发展迅速,已经成为世界制药原料药第一大生产和出口国。我国现有医药企业6700多家,通过GMP的医药生产企业4000多家。在日益成熟的市场竞争中,先进的技术就显得尤为重要。而提高原料药生产车间溶媒回收率是各企业增强企业竞争力最直接有效的体现。本文介绍的螺旋螺纹管换热器,采用全不锈钢材质及先进的换热技术,在原料药行业的应用,大大的提高了溶媒回收率,提高了生产效率,有效地增强了企业的竞争力。 【关键词】:节能、换热器、原料药 众所周知换热器已经广泛的应用于各行各业,它是决定企业能耗水平的主 导性因素之一,也是行业节能挖潜的关键设备。 传热现象是由温度差引起的能量转移,即以温度差为动力而产生的能量由高 温向低温进行传递的过程。螺旋螺纹管换热器是管壳式换热器之一。综合其设计 理论依据,结构特点,性能分析,它同时具有安全、高效节能、体积小、表面光 洁维护费用低、使用寿命长等特点,相对于传统换热器它是具有划时代意义的 节能产品。本文将通过国内各行业的应用实例,来展现螺旋螺纹管换热器在节 能减排中起到的重要作用。 一.设计依据: 螺旋螺纹管换热器较传统换热器,依据国际先进设计理论,计算准确,设计合理。 1.螺旋螺纹管设计,双侧强化传热设计。 2.利用欧文(OWEN)湍流抖振频率准则原理,消除换热器湍流抖振现象,热应力自消除。 3.利用声共鸣许用准则(Eisinger准则和Bevins准则),抑制声驻波,降低运行噪音。 4.利用CFD(计算流体力学技术),FEM(有限元技术),提高计算精度。 二.独特设计及机理: 传热系数是传热设备的一个重要技术指标,强化换热表面对流传热是提高传热系数的有效措施。螺旋螺纹管换热器通过独特的结构设计,显著提高换热系数,实现高效节能。 1.材质: 螺旋螺纹管换热器,换热管为不锈钢316L材质,壳程为不锈钢316材质,以满足不同复杂物料的换热要求。最高耐温400℃,最高耐压1.6Mpa。 2.螺纹管束: 螺旋螺纹管换热器采用高效不锈钢双螺纹管。该管束表面设计周期变化的环形螺纹,当

管壳式换热器机械设计参考资料

1前言 (1) 1.1概述 (1) 1.1.1换热器的类型 (1) 1.1.2换热器 (1) 1.2设计的目的与意义 (2) 1.3管壳式换热器的发展史 (2) 1.4管壳式换热器的国内外概况 (3) 1.5壳层强化传热 (3) 1.6管层强化传热 (3) 1.7提高管壳式换热器传热能力的措施 (4) 1.8设计思路、方法 (5) 1.8.1换热器管形的设计 (5) 1.8.2换热器管径的设计 (5) 1.8.3换热管排列方式的设计 (5) 1.8.4 管、壳程分程设计 (5) 1.8.5折流板的结构设计 (5) 1.8.6管、壳程进、出口的设计 (6) 1.9 选材方法 (6) 1.9.1 管壳式换热器的选型 (6)

1.9.2 流径的选择 (8) 1.9.3流速的选择 (9) 1.9.4材质的选择 (9) 1.9.5 管程结构 (9) 2壳体直径的确定与壳体壁厚的计算 (11) 2.1 管径 (11) 2.2管子数n (11) 2.3 管子排列方式,管间距的确定 (11) 2.4换热器壳体直径的确定 (11) 2.5换热器壳体壁厚计算及校核 (11) 3换热器封头的选择及校核 (14) 4容器法兰的选择 (15) 5管板 (16) 5.1管板结构尺寸 (16) 5.2管板与壳体的连接 (16) 5.3管板厚度 (16) 6管子拉脱力的计算 (18) 7计算是否安装膨胀节 (20) 8折流板设计 (22)

9开孔补强 (25) 10支座 (27) 10.1群座的设计 (27) 10.2基础环设计 (29) 10.3地角圈的设计 (30) 符号说明 (32) 参考文献 (34) 小结 (35)

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构 随着科技高速发展的今天,换热器已广泛应用国内各个生产领域,换热器跟人们生活息息相关。换热器顾名思义就是用来热交换的机械设备。换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。换热器分为很多类型,管壳式换热器是很普遍的一种。管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。本文对管壳式换热器的原理进行简单介绍。 一、管壳式换热器的工作原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m (℃)。 二、管壳式换热器的形式与结构 管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为固

板翅式换热器新技术及应用_凌祥

第31卷 第2期2002年3月 石 油 化 工 设 备 PET RO-CHEM ICAL EQ U IPM EN T V o l.31 N o.2 M ar. 2002 试验研究 文章编号:1000-7466(2002)02-0001-04 板翅式换热器新技术及应用 凌 祥,周帼彦,邹群彩,涂善东 (南京工业大学过程装备先进制造技术重点实验室,江苏南京 210009) 摘要:介绍了作者近年来在板翅式换热器研究与开发方面所做的工作:①为提高铝板翅式换热器翅片和隔板表面的耐蚀性和亲水性,开发了一种表面处理技术。②开发的板翅式换热器快速创型系统,具有优化设计、参数化绘图和快速报价等功能,能降低产品成本,提高设计效率十几倍。③通过应用先进制造工艺和引进新材料开发了一系列具有抗强腐蚀、抗结垢、耐高温和耐高压能力的板翅式换热器系列新产品。④应用大型有限元分析系统对高压板翅式换热器的结构特性进行了初步分析,得出了一些提高产品可靠性的设计准则。 关 键 词:板翅式换热器;快速创型;表面处理;先进制造工艺;有限元分析 中图分类号:TQ051.51 文献标识码:A N ew techniques of plate-fin heat exchangers and its application LIN G Xiang,ZHO U Guo-ya n,ZO U Qun-cai,T U Sha n-do ng (Adv anced M a nufacturing Technolog y Lab.o f Process Equipment, N anjing Univ ersity o f Techno lo g y,N anjing210009,China) Abstract:The resear ches made o n plat e-fin heat exchang ers by author s w ere intro duced.Fir stly,a surface tr eatment me tho d for fins and pa rting sheet is propo sed in o rder to enha nce their resistance to co rr osio n and hydro philic ca pability.Secondly,a rapid innov ation sy stem which inv o lv ed a lo t of functio ns such a s optima l ther mal desig n,pa ramet ric dr awing and r apid quo tatio n is dev eloped.The practice applicatio n o f this sy stem sho ws the desig n efficiency increases8to10tim es and the cost decr ease va stly.Thir dly,sev eral new type o f pla te-fin heat ex cha ng ers with specia l perfo rma nce,such as co rro sio n-proo f,anti-fo uling a nd high temper ature resistant etc,w er e dev eloped th ro ug h ado pting new adva nced ma terials and new a dv anced manufac turing techno log y. Fina lly,the st reng th ana ly sis fo r plate-fin heat exchang ers subjected to hig h pr essur e w as car ried out.So me design criteria to ensure the reliability of pla te-fin heat ex chang er s a re o btained. Key words:pla te-fin heat ex chang er;r apid innov ation;sur face t reatme nt;adv anced manufac turing techno log y; finite element a naly sis 板翅式换热器具有结构紧凑、传热效率高等特点,与传统的管壳式换热器相比,其传热效率提高20%~30%,成本可降低50%,现已广泛应用于石油化工、航空航天、电子、原子能和机械等领域。目前板翅式换热器的制造材料主要使用铝合金,因此存在耐腐蚀性差、承压低等缺点。另外,板翅式换热器结构比较复杂,人工进行热力设计困难,特别是有相变、多股流体换热的情况,用手工进行精确热力设计计算几乎不可能。为了进一步拓宽其应用范围,近年来板翅式换热器的设计理论、试验研究、制造工艺及开拓应用的研究方兴未艾[1],特别是一些新技术的渗透,使板翅式换热器的应用范围更加广泛,下面将 收稿日期:2001-09-22  基金项目:江苏省教委自然科学研究项目(99K JB460005)  作者简介:凌 祥(1967-),男(汉族),江苏东台人,副教授,主要从事过程装备先进再制造技术、新型高效过程设备和计算机辅助工程(CA E)的研究与开发。

管壳式换热器的设计(化工机械课程设计)

北京理工大学珠海学院 课程设计任务书 2011~2012学年第2 学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目 管壳式换热器的设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器 法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定。 6. 编写设计说明书一份 7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。 三、设计条件 (1)气体工作压力 管程:半水煤气(1、0.80MPa;2、0.82 MPa;3、0.85Mpa;4、0.88 MPa ;5、0.90 MPa)壳程:变换气(1、0.75MPa;2、0.78 MPa;3、0.80Mpa;4、0.84 MPa ;5、0.85 MPa)(2)壳、管壁温差50℃,t t>t s 壳程介质温度为320-450℃,管程介质温度为280-420℃。 (3)由工艺计算求得换热面积为120m2,每组增加10 m2。

(4)壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。 (5)壳体与支座对接焊接,塔体焊接接头系数Φ=0.9 (6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。 四、进度安排 制图地点:暂定CC405 五、基本要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制; 3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔; 4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。 5.根据设计说明书、图纸、平时表现及答辩综合评分。

TEMA管壳式换热器设计原则

TEMA规格的管壳式换热器设计原则 ——摘引自《PERRY’S CHEMICAL ENGINEER’S HANDBOOK 1999》 设计中的一般考虑 流程的选择在选择一台换热器中两种流体的流程时,会采用某些通则。管程的流体的腐蚀性较强,或是较脏、压力较高。壳程则会是高粘度流体或某种气体。当管/壳程流体中的

某一种要用到合金结构时,“碳钢壳体+合金管侧部件”比之“接触壳程流体部件全用合金+碳钢管箱”的方案要较为节省费用。 清洗管子的内部较之清洗其外部要更为容易。 假如两侧流体中有表压超过2068KPa(300 Psig)的,较为节约的结构形式是将高压流体安排在管侧。 对于给定的压降,壳侧的传热系数较管侧的要高。 换热器的停运最通常的原因是结垢、腐蚀和磨蚀。 建造规则“压力容器建造规则,第一册”也就是《ASME锅炉及压力容器规范Section VIII , Division 1》, 用作换热器的建造规则时提供了最低标准。一般此标准的最新版每3年出版发行一次。期间的修改以附录形式每半年出一次。在美国和加拿大的很多地方,遵循ASME 规则上的要求是强制性的。最初这一系列规范并不是准备用于换热器制造的。但现在已包含了固定管板式换热器中管板与壳体间焊接接头的有关规定,并且还包含了一个非强制性的有关管子-管板接头的附件。目前ASME 正在开发用于换热器的其他规则。 列管式换热器制造商协会标准, 第6版., 1978 (通常引称为TEMA 标准*), 用在除套管式换热器而外的所有管壳式换热器的应用中,对ASME规则的补充和说明。TEMA “R级”设计就是“用于石油及相关加工应用的一般性苛刻要求。按本标准制造的设备,设计目的在于在此类应用时严苛的保养和维修条件下的安全性、持久性。”TEMA “C级”设计是“用于商用及通用加工用途的一般性适度要求。”而TEMA“B级”是“用于化学加工用途” *译者注:这已经不是最新版的,现在已经出到1999年第8版 3种建造标准的机械设计要求都是一样的。各TEMA级别之间的差异很小,并已由Rubin 在Hydrocarbon Process., 59, 92 (June 1980) 上做了归列。 TEMA标准所讨论的主题是:命名原则、制造公差、检验、保证、管子、壳体、折流板和支撑板,浮头、垫片、管板、管箱、管嘴、法兰连接端及紧固件、材料规范以及抗结垢问题。 API Standard 660, 4th ed., 1982*,一般炼油用途的管壳式换热器是由美国炼油协会出版的,以补充TEMA标准和ASME规范。很多从事化学和石油加工的公司都有其自己的标准以对以上各种要求作出补充。关于规范、标准和个客户的规定之间的关系已由F. L. Rubin编辑结集,由ASME 在1979年出版了(参见佩里化学工程师手册第6章关于压力容器规则的讨论)。 *译者注:这已经不是最新版的,现在已经出到2001年第6版 换热器的设计压力和设计温度通常在确定时都在预计的工作条件上又给了一个安全裕量。一般设计压力比操作中的预计最高压力或关泵时的最高压力要高大约172KPa(25 Psi);而设计温度则通常较最高工作温度高14°C (25°F)。 管束振动随着折流板换热器被设计用于流量和压降越来越高的场合,由管子振动带来的损 标准分享网 https://www.360docs.net/doc/684628042.html, 免费下载

板翅式换热器

铝制板翅式换热器介绍 1. 概述 板翅式换热器的出现把换热器的换热效率提高到了一个新的水平,同时板翅式换热器具有体积小、重量轻、可处理两种以上介质等优点。目前,板翅式换热器已广泛应用于石油、化工、天然气加工等行业。 2. 基本结构 板翅式换热器的板束单元结构如图所示,它的每一层都是由翅片、隔板和封条三部分组成。在相邻的两隔板间放置翅片及封条组成的夹层,称为通道。将这样的夹层根据介质的不同流动方式叠置起来钎焊成整体,即组成板束。再在板束上配置适当的介质进出口的导流片和封头,就组成了一个完整的板翅式换热器 。 由此可以看出,一台典型的板翅式换热器主要组成元件有翅片、隔板、封条、导流片和封头等。 a-翅片 翅片是铝板翅式换热器的基本元件,传热过程主要通过翅片热传导及翅片与流体之间的对流传热来完成。翅片的主要作用是扩大传热面积, 提高换热器得紧凑性,提高传热效率,兼做隔板的支撑,提高换热器的强度和承压能力。翅片间的节距一般从1mm~4.2mm ,翅片的种类和型式多种多样,常用的形式有锯齿型、多孔型、平直型、波纹型等,国外还有百叶窗式翅片、片条翅片、钉状翅片等。 b-隔板 隔板是二层翅片之间的金属平板,,它在母体金属表面覆盖有一层钎料合金,在钎焊时合金熔化而使翅片、封条与金属平板焊接成一体。隔板把相邻两层隔开,热交换通过隔板进行,常用隔板一般厚1mm~2mm 。 c-封条 封条在每层的四周,其作用是把介质与外界隔开。封条按其截面形状可分为燕尾槽形、槽钢形和腰鼓形三种。一般,封条的上下两个侧面应具有0.3/10的斜度,以便在与隔板组合成板束时形成缝隙,利于溶剂的渗透和形成饱满的焊缝。 d-导流片 导流片一般布置在翅片的两端,在铝板翅式 换热器中主要是起流体的进出口导向作用,以利于流体在换热器内的均匀分布,减少流动死区,提高换热效率。 e-封头 封头也叫集流箱,通常由封头体、接管、端板、法兰等零件经焊接组合而成。封头的作用是分布和集聚介质、连接板束与工艺管道。 另外,一台完整的板翅式换热器还应包括支

相关文档
最新文档