2020中考数学说明
2020年吉林省中考数学试卷和答案解析
2020年吉林省中考数学试卷和答案解析一、单项选择题(每小题2分,共12分)1.(2分)﹣6的相反数是()A.6B.﹣6C.D.解析:根据相反数的定义,即可解答.参考答案:解:﹣6的相反数是6,故选:A.点拨:本题考查了相反数,解决本题的关键是熟记相反数的定义.2.(2分)国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:11090000=1.109×107,故选:B.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.解析:根据从左边看得到的图形是左视图,可得答案.参考答案:解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.点拨:本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.4.(2分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a解析:根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.参考答案:解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.点拨:本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.5.(2分)将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°解析:先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.参考答案:解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.点拨:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.(2分)如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°解析:运用圆内接四边形对角互补计算即可.参考答案:解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.点拨:本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.二、填空题(每小题3分,共24分)7.(3分)分解因式:a2﹣ab=a(a﹣b).解析:直接把公因式a提出来即可.参考答案:解:a2﹣ab=a(a﹣b).点拨:本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.(3分)不等式3x+1>7的解集为x>2.解析:移项、合并同类项、系数化为1即可得答案.参考答案:解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.点拨:此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.9.(3分)一元二次方程x2+3x﹣1=0根的判别式的值为13.解析:根据一元二次方程根的判别式△=b2﹣4ac即可求出值.参考答案:解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.点拨:本题考查了根的判别式,解决本题的关键是掌握根的判别式.10.(3分)我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为(240﹣150)x=150×12.解析:设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程,此题得解.参考答案:解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.点拨:本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.解析:根据垂线段的性质解答即可.参考答案:解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.点拨:本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.12.(3分)如图,AB∥CD∥EF.若=,BD=5,则DF=10.解析:利用平行线分线段成比例定理得到=,然后根据比例性质求DF的长.参考答案:解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.点拨:本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.(3分)如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.解析:根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE ∽△ABC,根据相似三角形的性质求出△ABC的面积,即可得到答案.参考答案:解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.点拨:本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.(3分)如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).解析:利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.参考答案:解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.点拨:本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.三、解答题(每小题5分,共20分)15.(5分)先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.解析:根据整式的混合运算顺序进行化简,再代入值即可.参考答案:解:原式=a2+2a+1+a﹣a2﹣1=3a.当a=时,原式=3.点拨:本题考查了整式的混合运算﹣化简求值,解决本题的关键是先进行整式的化简,再代入值.16.(5分)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.解析:根据题意列出图表得出所有等情况数和两张卡片中含有A 卡片的情况数,然后根据概率公式即可得出答案.参考答案:解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有5种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.点拨:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.17.(5分)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.解析:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.参考答案:解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.点拨:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.(5分)如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB 同侧,连接BE.求证:△DEB≌△ABC.解析:由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC.参考答案:证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).点拨:本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.四、解答题(每小题7分,共28分)19.(7分)图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB 关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.解析:(1)根据对称性在图①中,画一条不与AB重合的线段MN 与AB对称即可;(2)根据对称性即可在图②中,画一条不与AC重合的线段PQ 与AC对称;(3)根据对称性在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称即可.参考答案:解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.点拨:本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称性质.20.(7分)如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)解析:设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出AF,即可得出答案.参考答案:解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.点拨:本题考查了解直角三角形的应用,能借助仰角构造直角三角形并解直角三角形是解题的关键.21.(7分)如图,在平面直角坐标系中,O为坐标原点,点A,B 在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.解析:(1)将点A的坐标为(2,4)代入y=(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.参考答案:解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.点拨:本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.(7分)2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.解析:(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.参考答案:解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.点拨:本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.五、解答题(每小题8分,共16分)23.(8分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为3L,机器工作的过程中每分钟耗油量为0.5L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.解析:(1)根据函数图象中的数据,可以得到机器每分钟加油量和机器工作的过程中每分钟耗油量;(2)根据函数图象中的数据,可以得到机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)根据(2)中的函数解析式,令函数值为30÷2,即可得到相应的x的值.参考答案:解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即机器工作时y关于x的函数解析式为y=﹣0.5x+35(10<x≤60);(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.点拨:本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(8分)能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为56.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为72.解析:【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD 是菱形;【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.参考答案:解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=4,∴DG=8,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,∴四边形CDGF是矩形,∴S矩形DCFG=DG•DC=8×9=72,故答案为:72.点拨:本题是四边形的综合题,主要考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,解直角三角形,旋转的性质,矩形的面积计算,平行四边形的周长计算,【操作一】的关键是将所求图形的周长和转化为规则图形(平行四边形)的周长计算,体现了转化思想的重要性,【操作二】关键是解直角三角形求得矩形的边长.六、解答题(每小题10分,共20分)25.(10分)如图,△ABC是等边三角形,AB=4cm,动点P从点A 出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为2x cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.解析:(1)根据动点P从点A出发,以2cm/s的速度沿AB向点B 匀速运动,可得AP的长为2xcm;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,根据△PQD等边三角形,△ABC是等边三角形,证明△APQ≌△BDP,进而可得x的值;(3)根据题意分三个部分进行画图说明:①如图2,当0<x≤时,②如图3,当点Q运动到与点C重合时,当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,分别表示出y关于x的函数解析式即可.参考答案:解:(1)∵动点P从点A出发,以2cm/s的速度沿AB 向点B匀速运动,∴AP的长为2xcm;故答案为:2x;(2)当点D落在BC上时,如图1,BP=AB﹣AP=4﹣2x,∵PQ⊥AB,∴∠QPA=90°,∵△PQD等边三角形,△ABC是等边三角形,∴∠A=∠B=∠DPQ=60°,∴∠BPD=30°,∴∠PDB=90°,∴PD⊥BC,∴△APQ≌△BDP(AAS),∴BD=AP=2x,∵BP=2BD,∴4﹣2x=4x,解得x=;(3)①如图2,当0<x≤时,∵在Rt△APQ中,AP=2x,∠A=60°,∴PQ=AP•tan60°=2x,∵△PQD等边三角形,∴S△PQD=2x•3x=3x2cm2,所以y=3x2;②如图3,当点Q运动到与点C重合时,此时CP⊥AB,所以AP=AB,即2x═2,解得x=1,所以当<x≤1时,如图4,设PD、QD与BC分别相交于点G、H,∵AP=2x,∴BP=4﹣2x,AQ=2AP=4x,∴BG=BP=2﹣x∴PG=BG=(2﹣x),∴S△PBG=BG•PG=(2﹣x)2,∵AQ=2AP=4x,∴CQ=AC﹣AQ=4﹣4x,∴QH=CQ=(4﹣4x),∴S△QCH=CQ•QH=(4﹣4x)2,∵S△ABC=4×2=4,∴S四边形PGHQ=S△ABC﹣S△PBG﹣S△QCH﹣S△APQ=4﹣(2﹣x)2﹣(4﹣4x)2﹣×2x×2x=﹣x2+18x﹣6,所以y=﹣x2+18x﹣6;③如图5,当1<x<2时,点Q运动到BC边上,设PD与BC相交于点G,此时PG=BP•sin60°=(4﹣2x)×=(2﹣x),∵PB=4﹣2x,∴BQ=2BP=2(4﹣2x)=4(2﹣x),∴BG=BP=2﹣x,∴QG=BQ﹣BG=3(2﹣x),∴重叠部分的面积为:S△PQG=PG•QG=(2﹣x)•3(2﹣x)=(2﹣x)2.所以y=(2﹣x)2.综上所述:y关于x的函数解析式为:当0<x≤时,y=3x2;当<x≤1时,y=﹣x2+18x﹣6;当1<x<2时,y=(2﹣x)2.点拨:本题考查了三角形综合题,解决本题的关键是图形面积的计算.26.(10分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.解析:(1)利用待定系数法求解即可.(2)根据点M与点P的纵坐标相等构建方程求解即可.(3)根据PQ=MQ,构建方程求解即可.(3)当点P在直线l的左边,点M在点Q是下方下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x 的增大而减小,如图4﹣1中.当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中.参考答案:解:(1)把点A(3,0)代入y=﹣x2+bx+,得到0=﹣+3b+,解得b=1.(2)∵抛物线的解析式为y=﹣x2+x+,∴P(m,﹣m2+m+),∵M,Q重合,∴﹣m+=﹣m2+m+,解得m=0或4.(3)由题意PQ=MQ,且抛物线的顶点在该正方形内部,∴3﹣m=﹣m+﹣(﹣m2+m+)且﹣m+>2,得m<﹣解得m=1﹣或1+(不合题意舍弃),∴m=1﹣.(4)当点P在直线l的左边,点M在点Q下方时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,则有﹣m+<﹣m2+m+,∴m2﹣4m<0,解得0<m<4,观察图象可知.当0<m<3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中,当3<m<4时,抛物线不在矩形PQMN内部,不符合题意,当m>4时,点M在点Q的上方,也满足条件,如图4﹣2中,综上所述,满足条件的m的值为0<m<3或m>4.点拨:本题属于二次函数综合题,考查了二次函数的性质,待定系数法,矩形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.。
2020年四川省内江市中考数学试卷及答案解析
2020年四川省内江市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)的倒数是()A.2B.C.﹣D.﹣22.(3分)下列四个数中,最小的数是()A.0B.﹣C.5D.﹣13.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.4.(3分)如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°5.(3分)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,956.(3分)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3 7.(3分)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC =()A.30B.25C.22.5D.208.(3分)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°9.(3分)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.410.(3分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+511.(3分)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.12.(3分)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在函数y=中,自变量x的取值范围是.14.(5分)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为.15.(5分)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为.16.(5分)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.(7分)计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.18.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.19.(9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.20.(9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P 在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:b4﹣b2﹣12=.23.(6分)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为.24.(6分)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.25.(6分)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是.(填写所有正确结论的序号)五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.27.(12分)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD 交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.28.(12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.2020年四川省内江市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)的倒数是()A.2B.C.﹣D.﹣2【解答】解:∵×2=1,∴的倒数是2,故选:A.2.(3分)下列四个数中,最小的数是()A.0B.﹣C.5D.﹣1【解答】解:∵|﹣|<|﹣1|,∴﹣>﹣1,∴5>1>﹣>﹣1,因此最小的是﹣1,故选:D.3.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、是中心对称图形,故本选项符合题意;D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:C.4.(3分)如图,已知直线a∥b,∠1=50°,则∠2的度数为()A.140°B.130°C.50°D.40°【解答】解:∵直线a∥b,∴∠3=∠1=50°.又∵∠2+∠3=180°,∴∠2=130°.故选:B.5.(3分)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是()A.80,90B.90,90C.90,85D.90,95【解答】解:将数据重新排列为80,85,90,90,95,所以这组数据的中位数是90,众数为90,故选:B.6.(3分)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为()A.y=﹣2x﹣5B.y=﹣2x﹣3C.y=﹣2x+1D.y=﹣2x+3【解答】解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,故选:C.7.(3分)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC =()A.30B.25C.22.5D.20【解答】解:∵D、E分别是AB、AC边上的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴S△ADE:S四边形BCED=1:3,即S△ADE:15=1:3,∴S△ADE=5,∴S△ABC=5+15=20.故选:D.8.(3分)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是的中点,则∠D的度数是()A.30°B.40°C.50°D.60°【解答】解:连接OB,如图,∵点B是的中点,∴∠AOB=∠COB=∠AOC=×120°=60°,∴∠D=∠AOB=30°.故选:A.9.(3分)如图,点A是反比例函数y=图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为()A.B.C.3D.4【解答】解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,∴△AOC的面积为2,∵S△AOC=|k|=2,且反比例函数y=图象在第一象限,∴k=4,故选:D.10.(3分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.x=(x﹣5)﹣5B.x=(x+5)+5C.2x=(x﹣5)﹣5D.2x=(x+5)+5【解答】解:设绳索长x尺,则竿长(x﹣5)尺,依题意,得:x=(x﹣5)﹣5.故选:A.11.(3分)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3B.5C.D.【解答】解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD===5,∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴,设DE=x,则AE=EM=4﹣x,∴,解得x=,∴DE=,同理△DNF∽△DCB,∴,设DF=y,则CF=NF=3﹣y,∴,解得y=.∴DF=.∴EF===.故选:C.12.(3分)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t 的取值范围是()A.≤t<2B.<t≤1C.1<t≤2D.≤t≤2且t≠1【解答】解:∵y=tx+2t+2=t(x+2)+2(t>0),∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则3=2t+2,解得t=;当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则6=2t+2,解得t=2;当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,则4=2t+2,解得t=1;∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是≤t≤2且t≠1,故选:D.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)在函数y=中,自变量x的取值范围是x≠2.【解答】解:根据题意得2x﹣4≠0,解得x≠2;∴自变量x的取值范围是x≠2.14.(5分)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为7×108.【解答】解:7亿=700000000=7×108,故答案为:7×108.15.(5分)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为﹣.【解答】解:把x=﹣1代入原方程得,(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,解得,m=4,m=1(不合题意舍去),当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,由根与系数的关系得:x1•x2=,又x1=﹣1,∴x2=﹣故答案为:﹣.16.(5分)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≤A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.(7分)计算:(﹣)﹣1﹣|﹣2|+4sin60°﹣+(π﹣3)0.【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.18.(9分)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD=(180°﹣40°)=70°.19.(9分)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有5名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为72°,图中m的值为40;(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【解答】解:(1)3÷15%=20(名),20﹣3﹣8﹣4=5(名),故答案为:5;(2)360°×=72°,8÷20=40%,即m=40,故答案为:72°,40;(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:共有6种可能出现的结果,其中女生被选中的有4种,∴P(女生被选中)==.20.(9分)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P 在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°,∴PB=AB=60海里;(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=60,在Rt△PBH中,PH=PB•sin60°=60×=30,∵30>50,∴海监船继续向正东方向航行是安全的.21.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若DF=2,BC=4,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,∵OD⊥BC,∴CD=BD,即OD垂直平分BC,∴EC=EB,在△OCE和△OBE中,∴△OCE≌△OBE(SSS),∴∠OBE=∠OCE=90°,∴OB⊥BE,∴BE与⊙O相切;(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,在Rt△OBD中,BD=BC=2,∵OD2+BD2=OB2,∴(x﹣2)2+(2)2=x2,解得x=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴OE=2OB=8,∴EF=OE﹣OF=8﹣4=4.(3)∵∠BOE=60°,∠OBE=90°,∴在Rt△OBE中,BE=OB=4,∴S阴影=S四边形OBEC﹣S扇形OBC=2××4×4﹣,=16﹣.四、填空题(本大题共4小题,每小题6分,共24分.)22.(6分)分解因式:b4﹣b2﹣12=(b+2)(b﹣2)(b2+3).【解答】解:b4﹣b2﹣12=(b2﹣4)(b2+3)=(b+2)(b﹣2)(b2+3),故答案为:(b+2)(b﹣2)(b2+3).23.(6分)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.【解答】解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.24.(6分)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y=x+与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是.【解答】解:∵直线l:y=x+与x轴交于点B,∴B(﹣1,0),∴OB=1,∵A(﹣2,0),∴OA=2,∴AB=1,∵△ABA1是等边三角形,∴A1(﹣,),把y=代入y=x+,求得x=,∴B1(,),∴A1B1=2,∴A2(﹣,+×2),即A2(﹣,),把y=代入y=x+,求得x=,∴B2(,),∴A2B2=4,∴A3(3,+×4),即A3(3,),……,A n的纵坐标为,∴点A2020的纵坐标是,故答案为.25.(6分)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是②③④.(填写所有正确结论的序号)【解答】解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b的大小,故①错误.②如图1中,b=﹣3时,由,解得或,∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,③如图2中,b=﹣5时,图象如图所示,M=3时,y1=3,∴﹣x2+4x=3,解得x=1或3,故③正确,④当b=1时,由,消去y得到,x2﹣2x+1=0,∵△=0,∴此时直线y=2x+1与抛物线只有一个交点,∴b>1时,直线y=2x+b与抛物线没有交点,∴M随x的增大而增大,故④正确.五、解答题(本大题共3小题,每小题12分,共36分)26.(12分)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)=.例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)==.(1)填空:f(6)=;f(9)=1;(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;(3)填空:①f(22×3×5×7)=;②f(23×3×5×7)=;③f(24×3×5×7)=;④f(25×3×5×7)=.【解答】解:(1)6可分解成1×6,2×3,∵6﹣1>3﹣2,∴2×3是6的最佳分解,∴f(6)=,9可分解成1×9,3×3,∵9﹣1>3﹣3,∴3×3是9的最佳分解,∴f(9)==1,故答案为:;1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,根据题意得,t′﹣t=(10b+a)﹣(10a+b)=9(b﹣a)=54,∴b=a+6,∵1≤a≤b≤9,a,b为正整数,∴满足条件的t为:17,28,39;∵F(17)=,F(28)=,F(39)=,∵,∴F(t)的最大值为;(3)①∵22×3×5×7的是最佳分解为20×21,∴f(22×3×5×7)=,故答案为:;②∵23×3×5×7的最佳分解为24×35,∴f(23×3×5×7)=,故答案为;③∵24×3×5×7的最佳分解是35×48,∴f(24×3×5×7)=,故答案为:;④∵25×3×5×7的最佳分解是48×70,∴f(25×3×5×7)=,故答案为:.27.(12分)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD 交于点F.(1)连结CQ,求证:AP=CQ;(2)若AP=AC,求CE:BC的值;(3)求证:PF=EQ.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP.(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.∵AP=AC,∴可以假设AP=CQ=a,则PC=3a,∵四边形ABCD是正方形,∴∠BAC=∠ACB=45°,∵△ABP≌△CBQ,∴∠BCQ=∠BAP=45°,∴∠PCQ=90°,∴PQ===a,∵CH⊥PQ,∴CH==a,∵BP=BQ,BT⊥PQ,∴PT=TQ,∵∠PBQ=90°,∴BT=PQ=a,∵CH∥BT,∴===,∴=.(3)解:结论:PF=EQ,理由是:如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠F AP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.28.(12分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当△BCD的面积为3时,求点D的坐标;(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0)、B(4,0)、C(0,2)代入y=ax2+bx+c得:,解得:.故抛物线的解析式为y=﹣x2+x+2.(2)如图2,设点M的坐标为(0,m),使得△BCM的面积为3,3×2÷4=1.5,则m=2+1.5=,M(0,)∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2,∴DM的解析式为y=﹣x+,联立抛物线解析式,解得,.∴点D的坐标为(3,2)或(1,3).(3)分两种情况考虑:①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,如图3所示.∵OC=OF,OB⊥CF,∴∠ABC=∠ABF,∴∠CBF=2∠ABC.∵∠DCB=2∠ABC,∴∠DCB=∠CBF,∴CD∥BF.∵点B(4,0),F(0,﹣2),∴直线BF的解析式为y=x﹣2,∴直线CD的解析式为y=x+2.联立直线CD及抛物线的解析式成方程组得:,解得:(舍去),,∴点D的坐标为(2,3);②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.∵∠OCH=90°﹣∠OHC,∠OBF=90°﹣∠BHN,∠OHC=∠BHN,∴∠OCH=∠OBF.在△OCH与△OBF中,∴△OCH∽△OBF,∴=,即=,∴OH=1,H(1,0).设直线CN的解析式为y=kx+n(k≠0),∵C(0,2),H(1,0),∴,解得,∴直线CN的解析式为y=﹣2x+2.连接直线BF及直线CN成方程组得:,解得:,∴点N的坐标为(,﹣).∵点B(4,0),C(0,2),∴直线BC的解析式为y=﹣x+2.∵NP⊥BC,且点N(,﹣),∴直线NP的解析式为y=2x﹣.联立直线BC及直线NP成方程组得:,解得:,∴点Q的坐标为(,).∵点N(,﹣),点N,P关于BC对称,∴点P的坐标为(,).∵点C(0,2),P(,),∴直线CP的解析式为y=x+2.将y=x+2代入y=﹣x2+x+2整理,得:11x2﹣29x=0,解得:x1=0(舍去),x2=,∴点D的横坐标为.综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或.。
北京市2020年中考数学试题(含答案与解析)
2020年北京市中考数学试题一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( ) A.B.C.D.3.如图,AB 和CD 相交于点O ,则下列结论正确是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠54.下列图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.5.正五边形外角和为( ) A. 180°B. 360°C. 540°D. 720°6.实数在数轴上的对应点的位置如图所示.若实数满足,则的值可以是( )的的50.3610⨯53.610⨯43.610⨯43610⨯a b a b a -<<bA. 2B. -1C. -2D. -37.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A.B.C.D.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系二、填空题9.若代数式有意义,则实数的取值范围是_____. 10.已知关于的方程有两个相等的实数根,则的值是______. 11.______. 12.方程组的解为________.13.在平面直角坐标系中,直线与双曲线交于A ,B 两点.若点A ,B 的纵坐标分别为,则的值为_______.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD≌ACD ,这个条件可以是________(写出一个即可)1413122317x -x x 220x x k ++=k 137x y x y -=⎧⎨+=⎩xOy y x =my x=12,y y 12y y +15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:______(填“>”,“=”或“<”)16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:18.解不等式组:19.已知,求代数式的值. 20.已知:如图,ABC 为锐角三角形,AB=BC ,CD∥AB. 求作:线段BP ,使得点P 在直线CD上,且∠ABP=. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.ABC S ABD S 11(|2|6sin 453-+--︒5322132x x x x ->⎧⎪-⎨<⎪⎩2510x x --=(32)(32)(2)x x x x +-+- 12BAC ∠(1)使用直尺和圆规,依作法补全图形(保留作图痕迹) (2)完成下面的证明. 证明:∵CD∥AB, ∴∠ABP= . ∵AB=AC, ∴点B 在⊙A 上. 又∵∠BPC=∠BAC( )(填推理依据)∴∠ABP=∠BAC21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG 是矩形; (2)若AD=10,EF=4,求OE 和BG 的长.22.在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF⊥AD 于点E ,交CD 于点F . (1)求证:∠ADC=∠AOF;1212xOy (0)y kx b k =+≠y x =1x >x (0)y mx m =≠y kx b =+m(2)若sinC=,BD=8,求EF 的长.24.小云在学习过程中遇到一个函数.下面是小云对其探究过程,请补充完整:(1)当时,对于函数,即,当时,随的增大而 ,且;对于函数,当时,随的增大而 ,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而 .(2)当时,对于函数,当时,与的几组对应值如下表:1231综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.的1321||(1)(2)6y x x x x =-+≥-20x -≤<1||y x =1y x =-20x -≤<1y x 10y >221y x x =-+20x -≤<2y x 20y >y 20x -≤<y x 0x ≥y 0x ≥y x x 123252 y 116167169548720x ≥y x xOy 0x ≥y(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是 . 25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日厨余垃圾分出量统计图:.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段 1日至10日 11日至20日 21日至30日平均数 100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)的0m >x l l 21||(1)(2)6y x x x x =-+≥-m a b(2)已知该小区4月厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.26.在平面直角坐标系中,为抛物线上任意两点,其中.(1)若抛物线的对称轴为,当为何值时,(2)设抛物线的对称轴为.若对于,都有,求的取值范围. 27.在中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF⊥DE,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,求EF 的长(用含的式子表示);(2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.28.在平面直角坐标系中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦(分别为点A ,B 的对应点),线段长度的最小值称为线段AB 到⊙O 的“平移距离”.的21,s 22s 23s 222123,,s s s xOy 1122(,),(,)M x y N x y 2(0)y ax bx c a =++>12x x <1x =12,x x 12;y y c ==x t =123x x +>12y y <t ABC ,AE a BF b ==,a b xOy A B '',A B ''AA '(1)如图,平移线段AB 到⊙O 的长度为1的弦和,则这两条弦的位置关系是 ;在点中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线上,记线段AB 到⊙O 的“平移距离”为,求的最小值;(3)若点A 的坐标为,记线段AB 到⊙O 的“平移距离”为,直接写出的取值范围数学参考答案与解析一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D 【解析】 【分析】根据三视图都是长方形即可判断该几何体为长方体. 【详解】解:长方体的三视图都是长方形, 故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几12PP 34P P 1234,,,P P PP y =+1d 1d 32,2⎛⎫⎪⎝⎭2d 2d何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( ) A.B.C.D.【答案】C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数. 【详解】解: 36000=, 故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键.3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A 【解析】 【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案. 【详解】解:由两直线相交,对顶角相等可知A 正确; 由三角形的一个外角等于它不相邻的两个内角的和可知 B 选项为∠2>∠3, C 选项为∠1=∠4+∠5, D 选项为∠2>∠5.50.3610⨯53.610⨯43.610⨯43610⨯43.610⨯故选:A .【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.【答案】D 【解析】 【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A 、是轴对称图形,不是中心对称图形,故选项错误; B 、不是轴对称图形,也不是中心对称图形,故选项错误; C 、不轴对称图形,是中心对称图形,故选项错误; D 、既是轴对称图形,又是中心对称图形,故选项正确. 故选:D .【点睛】本题主要考查了中心对称图形和轴对称图形定义,正确理解定义是关键. 5.正五边形的外角和为( ) A. 180° B. 360° C. 540° D. 720°【答案】B 【解析】 【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为,与边数无关 故选:B .【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键. 6.实数在数轴上的对应点的位置如图所示.若实数满足,则的值可以是是的360︒a b a b a -<<b( )A. 2B. -1C. -2D. -3【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:又到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A. B. C. D. 【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:12a <<21a ∴-<-<-2a ∴<a b a -<< b ∴14131223所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是 故选C .【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】 设水面高度为 注水时间为分钟,根据题意写出与的函数关系式,从而可得答案.【详解】解:设水面高度为 注水时间为分钟,则由题意得:所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.21.42=,hcm t h t ,hcm t 0.210,h t =+二、填空题9.若代数式有意义,则实数的取值范围是_____. 【答案】【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∵代数式有意义,分母不能为0,可得,即, 故答案为:.【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于的方程有两个相等的实数根,则的值是______.【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式,∴,解得:.故答案为:【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】<2,34,2或3.17x -x 7x ≠17x -70x -≠7x ≠7x ≠x 220x x k ++=k 0= 440k -=1k =1.故答案为:2(或3)【点睛】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与12.方程组的解为________. 【答案】 【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得,∴,将代入,可得, 故答案为:. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键.13.在平面直角坐标系中,直线与双曲线交于A ,B 两点.若点A ,B 的纵坐标分别为,则的值为_______. 【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,137x y x y -=⎧⎨+=⎩21x y =⎧⎨=⎩48x =2x =2x =1x y -=1y =21x y =⎧⎨=⎩xOy y x =m y x=12,y y 12y y +120y y +=故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD≌ACD ,这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD(或BD=CD )【解析】【分析】证明ABD≌ACD ,已经具备 根据选择的判定三角形全等的判定方法可得答案.详解】解:要使则可以添加:∠BAD=∠CAD,此时利用边角边判定:或可以添加:此时利用边边边判定:故答案为:∠BAD=∠CAD 或()【点睛】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键.15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:______(填“>”,“=”或“<”)【 ,,AB AC AD AD ==,,AB AC AD AD == ∴,ABD ACD ≌,ABD ACD ≌,BD CD =,ABD ACD ≌.BD CD = ABC S ABD S【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得个平方单位, , 故有=.故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.14242ABC S =⨯⨯= 123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯= ABD S S S S ABC S ABD S【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.11(|2|6sin 453-+--︒326++-32=++-5.=18.解不等式组: 【答案】【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:解不等式①得:,解不等式②得:,∴此不等式组的解集为.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知,求代数式的值.【答案】,-2【解析】【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把变形后,整体代入求值即可.【详解】解:原式=∵,∴,∴,∴原式=.【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.5322132x x x x ->⎧⎪-⎨<⎪⎩12x <<5322132x x x x ->⎧⎪⎨-<⎪⎩①②1x >2x <12x <<2510x x --=(32)(32)(2)x x x x +-+-21024x x --2510x x --=22942x x x -+-2102 4.x x =--2510x x --=251x x -=21022x x -=242-=-20.已知:如图,ABC 为锐角三角形,AB=BC ,CD∥AB.求作:线段BP ,使得点P 在直线CD上,且∠ABP=. 作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP= .∵AB=AC,∴点B 在⊙A 上.又∵∠BPC=∠BAC( )(填推理依据) ∴∠ABP=∠BAC【答案】(1)见解析;(2)∠BPC,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半【解析】【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明: 再利用圆的性质得到:∠BPC=∠BAC,从而可得答案.【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD∥AB,∴∠ABP= .12BAC ∠1212,ABP BPC ∠=∠12BPC ∠∵AB=AC,∴点B 在⊙A 上.又∵∠BPC=∠BAC(在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据)∴∠ABP=∠BAC 故答案为:∠BPC;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO 是△DAB 的中位线,再结合已知条件OG ∥EF ,得到四边形OEFG 是平行四边形,再由条件EF ⊥AB ,得到四边形OEFG 是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=AB=AD=5,得到FG=5,最后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点,∵点E 为AD 中点,∴OE 为△ABD 的中位线,∴OE ∥FG ,12121212∵OG ∥EF ,∴四边形OEFG 为平行四边形∵EF ⊥AB ,∴平行四边形OEFG 为矩形.(2)∵点E 为AD 的中点,AD=10,∴AE= ∵∠EFA=90°,EF=4,∴在Rt△AEF 中,.∵四边形ABCD 为菱形,∴AB=AD=10,∴OE=AB=5, ∵四边形OEFG 为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.【答案】(1);(2)【解析】【分析】(1)根据一次函数由平移得到可得出k 值,然后将点(1,2)代入可得b 值即可求出解析式;(2)由题意可得临界值为当时,两条直线都过点(1,2),即可得出当时,都大于,根据,可得可取值2,可得出m 的取值范围.152AD =3===AF 12xOy (0)y kx b k =+≠y x =1x >x (0)y mx m =≠y kx b =+m 1y x =+2m ≥(0)y kx b k =+≠y x =y x b =+1x =12x m >>,(0)y mx m =≠1y x =+1x >m【详解】(1)∵一次函数由平移得到,∴,将点(1,2)代入可得,∴一次函数的解析式为;(2)当时,函数的函数值都大于,即图象在上方,由下图可知:临界值为当时,两条直线都过点(1,2),∴当时,都大于,又∵,∴可取值2,即,∴的取值范围为.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF;(2)若sinC=,BD=8,求EF 的长.【答案】(1)见解析;(2)2.【解析】【分析】(0)y kx b k =+≠y x =1k =y x b =+1b =1y x =+1x >(0)y mx m =≠1y x =+1y x =+1x =12x m >>,(0)y mx m =≠1y x =+1x >m 2m =m 2m ≥13(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO,即可证明;(2)设半径为r ,根据在Rt△OCD 中,,可得,AC=2r ,由AB 为⊙O 的直径,得出∠ADB=90°,再根据推出OF⊥AD,OF∥BD,然后由平行线分线段成比例定理可得,求出OE ,,求出OF ,即可求出EF . 【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线,∴OD⊥CD,∴∠ADC+∠ODA=90°,∵OF⊥AD,∴∠AOF+∠DAO=90°,∵OD=OA,∴∠ODA=∠DAO,∴∠ADC=∠AOF;(2)设半径r ,在Rt△OCD 中,,∴,∴,∵OA=r,为sin 13C =3OD r OC r ==,12OE OA BD AB ==34OF OC BD BC ==1sin 3C =13ODOC =3OD r OC r ==,∴AC=OC-OA=2r,∵AB 为⊙O 的直径,∴∠ADB=90°,又∵OF⊥AD,∴OF∥BD, ∴, ∴OE=4, ∵, ∴,∴.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完整: (1)当时,对于函数,即,当时,随的增大而 ,且;对于函数,当时,随的增大而 ,且;结合上述分析,进一步探究发现,对于函数,当时,随的增大而 .(2)当时,对于函数,当时,与的几组对应值如下表:0 1 2 30 1综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当时的函数的图象.12OE OA BD AB ==34OF OC BD BC ==6OF =2EF OF OE =-=21||(1)(2)6y x x x x =-+≥-20x -≤<1||y x =1y x =-20x -≤<1y x 10y >221y x x =-+20x -≤<2y x 20y >y 20x -≤<y x 0x ≥y 0x ≥y x x 123252 y 116167169548720x ≥y x xOy 0x ≥y(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数的图象有两个交点,则的最大值是 . 【答案】(1)减小,减小,减小;(2)见解析;(3) 【解析】【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当时,函数有最大值,代入计算即可得到答案.【详解】解:(1)根据题意,在函数中,∵,∴函数在中,随的增大而减小; ∵, ∴对称轴为:,∴在中,随的增大而减小; 综合上述,在中,随的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:0m >x l l 21||(1)(2)6y x x x x =-+≥-m 732x =-1y x =-10k =-<1y x =-20x -≤<1y x 222131()24y x x x =-+=-+1x =221y x x =-+20x -≤<2y x 21||(1)6y x x x =-+20x -≤<y x(3)由(2)可知,当时,随的增大而增大,无最大值;由(1)可知在中,随的增大而减小; ∴中,有 当时,, ∴m的最大值为; 故答案为:. 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日的厨余垃圾分出量统计图:.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日 11日至20日 21日至30日 平均数100 170 250在0x ≥y x 21||(1)6y x x x =-+20x -≤<y x 20x -≤<2x =-73y =7373a b(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.【答案】(1)173;(2)2.9倍;(3)【解析】【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:(千克); 故答案为:173;(2)倍;故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:;【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系中,为抛物线上任意两点,其中.(1)若抛物线的对称轴为,当为何值时,(2)设抛物线的对称轴为.若对于,都有,求的取值范围.【答案】(1);(2) 21,s 22s 23s 222123,,s s s 222123s s s >>1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=17360 2.9÷=222123s s s >>xOy 1122(,),(,)M x y N x y 2(0)y ax bx c a =++>12x x <1x =12,x x 12;y y c ==x t =123x x +>12y y <t 120,2x x ==32t ≤【解析】【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为,抛物线的对称轴为,可得点M ,N 关于对称,从而得到的值;(2)根据题意知,抛物线开口向上,对称轴为,分3种情况讨论,情况1:当都位于对称轴右侧时,情况2:当都位于对称轴左侧时,情况3:当位于对称轴两侧时,分别求出对应的t 值,再进行总结即可.【详解】解:(1)当x=0时,y=c ,即抛物线必过(0,c ),∵,抛物线的对称轴为,∴点M ,N 关于对称,又∵,∴,;(2)由题意知,a >0,∴抛物线开口向上∵抛物线的对称轴为,∴情况1:当都位于对称轴右侧时,即当时,恒成立情况2:当都位于对称轴左侧时,即<时,恒不成立情况3:当位于对称轴两侧时,即当时,要使,必有,即解得,∴3≥2t,∴ 综上所述,. 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思12y y c ==1x =1x =12,x x x t =12,x x 12,x x 12,x x 12y y c ==1x =1x =12x x <10x =22x =x t =12x x <12,x x 1x t ≥12y y <12,x x 1x 2,t x t ≤12y y <12,x x 1x <2,t x t >12y y <12x t x t -<-()()2212x t x t -<-122x x t +>32t ≤32t ≤想.27.在中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF⊥DE,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,求EF 的长(用含的式子表示);(2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(1;(2)图见解析,,证明见解析.【解析】【分析】(1)先根据中位线定理和线段中点定义可得,,,再根据平行四边形的性质、矩形的判定与性质可得,从而可得,然后利用勾股定理即可得;(2)如图(见解析),先根据平行线的性质可得,,再根据三角形全等的判定定理与性质可得,,然后根据垂直平分线的判定与性质可得,最后在中,利用勾股定理、等量代换即可得证.【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为的中位线,且∴, ∵∴ABC ,AE a BF b ==,a b 222EF AE BF =+//DE BC 12DE BC =CE AE a ==DE CF =CF BF b ==EAD GBD ∠=∠DEA DGB ∠=∠ED GD =AE BG =EF FG =Rt BGF ABC CE AE a ==//DE BC 12DE BC =90C ∠=︒18090DEC C ∠=︒-∠=︒。
2020年湖南省长沙市中考数学试卷及参考答案与试题解析
2020年湖南省长沙市中考数学试卷及参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)(2020•长沙)(﹣2)3的值等于()A.﹣6B.6C.8D.﹣82.(3分)(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)(2020•长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×10124.(3分)(2020•长沙)下列运算正确的是()A.√3+√2=√5B.x8÷x2=x6C.√3×√2=√5D.(a5)2=a7 5.(3分)(2020•长沙)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=106t B.v=106t C.v=1106t2D.v=106t26.(3分)(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A.42√3米B.14√3米C.21米D.42米7.(3分)(2020•长沙)不等式组{x +1≥−1x 2<1的解集在数轴上表示正确的是( ) A .B .C .D . 8.(3分)(2020•长沙)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )A .第一次摸出的球是红球,第二次摸出的球一定是绿球B .第一次摸出的球是红球,第二次摸出的不一定是红球C .第一次摸出的球是红球的概率是13D .两次摸出的球都是红球的概率是19 9.(3分)(2020•长沙)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day )”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是( )A .②③B .①③C .①④D .②④10.(3分)(2020•长沙)如图:一块直角三角板的60°角的顶点A 与直角顶点C 分别在两平行线FD 、GH 上,斜边AB 平分∠CAD ,交直线GH 于点E ,则∠ECB 的大小为( )A .60°B .45°C .30°D .25°11.(3分)(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( )A .400x−30=500x B .400x =500x+30 C .400x =500x−30 D .400x+30=500x12.(3分)(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t (单位:分钟)近似满足的函数关系为:p =at 2+bt +c (a ≠0,a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟二、填空题(本大题共4个小题,每小题3分,共12分)13.(3分)(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:次数 7次及以上6 5 4 3 2 1次及以下 人数 8 12 31 24 15 6 4这次调查中的众数和中位数分别是 , .14.(3分)(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A 、B 、C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A 同学拿出二张扑克牌给B 同学;第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学. 请你确定,最终B 同学手中剩余的扑克牌的张数为 .15.(3分)(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为 .16.(3分)(2020•长沙)如图,点P 在以MN 为直径的半圆上运动(点P 不与M ,N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F .(1)PF PQ +PE PM = .(2)若PN 2=PM •MN ,则MQ NQ = .三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2020•长沙)计算:|﹣3|﹣(√10−1)0+√2cos45°+(14)﹣1. 18.(6分)(2020•长沙)先化简再求值:x+2x 2−6x+9•x 2−9x+2−x x−3,其中x =4.19.(6分)(2020•长沙)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N .(2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC ,射线OC 即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是 .(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.20.(8分)(2020•长沙)2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取人;(2)m=,n=;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.21.(8分)(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.22.(9分)(2020•长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B 两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?23.(9分)(2020•长沙)在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2√3,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠F AE=β,求tanα+tanβ的值.24.(10分)(2020•长沙)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x();②y=m x(m≠0)();③y=3x﹣1().(2)若点A(1,m)与点B(n,﹣4)是关于x的“H函数”y=ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b﹣a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.̂上25.(10分)(2020•长沙)如图,半径为4的⊙O中,弦AB的长度为4√3,点C是劣弧AB的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;̂从点A开始,逆时针运动到点B时,求△ODE的外心P所经过(2)当点C沿着劣弧AB的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.2020年湖南省长沙市中考数学试卷参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)(2020•长沙)(﹣2)3的值等于()A.﹣6B.6C.8D.﹣8【解答】解:(﹣2)3=﹣8,故选:D.2.(3分)(2020•长沙)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.3.(3分)(2020•长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×1012【解答】解:632 400 000 000=6.324×1011,故选:A.4.(3分)(2020•长沙)下列运算正确的是()A.√3+√2=√5B.x8÷x2=x6C.√3×√2=√5D.(a5)2=a7【解答】解:A 、√3与√2不是同类项,不能合并,计算错误,故本选项不符合题意.B 、原式=x 8﹣2=x 6,计算正确,故本选项符合题意. C 、原式=√3×2=√6,计算错误,故本选项不符合题意.D 、原式=a 5×2=a 10,计算错误,故本选项不符合题意. 故选:B .5.(3分)(2020•长沙)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m 3土石方的任务,该运输公司平均运送土石方的速度v (单位:m 3/天)与完成运送任务所需时间t (单位:天)之间的函数关系式是( )A .v =106tB .v =106tC .v =1106t 2D .v =106t 2【解答】解:∵运送土石方总量=平均运送土石方的速度v ×完成运送任务所需时间t , ∴106=vt ,∴v =106t , 故选:A .6.(3分)(2020•长沙)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是( )A .42√3米B .14√3米C .21米D .42米【解答】解:根据题意可得:船离海岸线的距离为42÷tan30°=42√3(米)故选:A .7.(3分)(2020•长沙)不等式组{x +1≥−1x 2<1的解集在数轴上表示正确的是( ) A .B .C .D . 【解答】解:由不等式组{x +1≥−1x 2<1,得﹣2≤x <2,故该不等式组的解集在数轴表示为:故选:D .8.(3分)(2020•长沙)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是( )A .第一次摸出的球是红球,第二次摸出的球一定是绿球B .第一次摸出的球是红球,第二次摸出的不一定是红球C .第一次摸出的球是红球的概率是13D .两次摸出的球都是红球的概率是19 【解答】解:A 、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B 、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C 、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是13,故本选项正确;D 、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是19,故本选项正确; 故选:A .9.(3分)(2020•长沙)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day )”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是( )A .②③B .①③C .①④D .②④【解答】解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A .10.(3分)(2020•长沙)如图:一块直角三角板的60°角的顶点A 与直角顶点C 分别在两平行线FD 、GH 上,斜边AB 平分∠CAD ,交直线GH 于点E ,则∠ECB 的大小为( )A .60°B .45°C .30°D .25°【解答】解:∵AB 平分∠CAD , ∴∠CAD =2∠BAC =120°, 又∵DF ∥HG ,∴∠ACE =180°﹣∠DAC =180°﹣120°=60°, 又∵∠ACB =90°,∴∠ECB =∠ACB ﹣∠ACE =90°﹣60°=30°, 故选:C .11.(3分)(2020•长沙)随着5G 网络技术的发展,市场对5G 产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x 万件产品,依题意得( ) A .400x−30=500xB .400x=500x+30C .400x=500x−30D .400x+30=500x【解答】解:设更新技术前每天生产x 万件产品,则更新技术后每天生产(x +30)万件产品, 依题意,得:400x=500x+30.故选:B .12.(3分)(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P 与加工煎炸时间t (单位:分钟)近似满足的函数关系为:p =at 2+bt +c (a ≠0,a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A .3.50分钟B .4.05分钟C .3.75分钟D .4.25分钟【解答】解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p =at 2+bt +c 中,{9a +3b +c =0.816a +4b +c =0.925a +5b +c =0.6, 解得{a =−0.2b =1.5c =−1.9,所以函数关系式为:p =﹣0.2t 2+1.5t ﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标: t =−b 2a =− 1.52×(−0.2)=3.75, 则当t =3.75分钟时,可以得到最佳时间. 故选:C .二、填空题(本大题共4个小题,每小题3分,共12分)13.(3分)(2020•长沙)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表: 次数7次及以上654321次及以下 人数81231241564这次调查中的众数和中位数分别是 5 , 5 . 【解答】解:这次调查中的众数是5, 这次调查中的中位数是5+52=5,故答案为:5;5.14.(3分)(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为7.【解答】解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x﹣2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x﹣2)=x+5﹣x+2=7.故答案为:7.15.(3分)(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为3π.【解答】解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.故答案为:3π.16.(3分)(2020•长沙)如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)PFPQ +PEPM=1.(2)若PN2=PM•MN,则MQNQ=√5−12.【解答】解:(1)∵MN为⊙O的直径,∴∠MPN=90°,∵PQ ⊥MN ,∴∠PQN =∠MPN =90°, ∵NE 平分∠PNM , ∴∠MNE =∠PNE , ∴△PEN ∽△QFN , ∴PE QF=PN QN,即PEPN=QF QN①,∵∠PNQ +∠NPQ =∠PNQ +∠PMQ =90°, ∴∠NPQ =∠PMQ , ∵∠PQN =∠PQM =90°, ∴△NPQ ∽△PMQ , ∴PN MP=NQ PQ②,∴①×②得PEPM=QF PQ,∵QF =PQ ﹣PF , ∴PE PM =QF PQ =1−PFPQ , ∴PF PQ+PE PM=1,故答案为:1;(2)∵∠PNQ =∠MNP ,∠NQP =∠NPQ , ∴△NPQ ∽△NMP , ∴PN MN=QN PN,∴PN 2=QN •MN , ∵PN 2=PM •MN , ∴PM =QN , ∴MQ NQ=MQ PM,∵tan ∠M =MQPM =PMMN , ∴MQ NQ =PM MN,∴MQ NQ=NQ MQ+NQ,∴NQ 2=MQ 2+MQ •NQ ,即1=MQ 2NQ 2+MQNQ , 设MQ NQ=x ,则x 2+x ﹣1=0,解得,x =√5−12,或x =−√5+12<0(舍去),∴MQ NQ=√5−12, 故答案为:√5−12. 三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)(2020•长沙)计算:|﹣3|﹣(√10−1)0+√2cos45°+(14)﹣1.【解答】解:原式=3﹣1+√2×√22+4 =2+1+4 =7.18.(6分)(2020•长沙)先化简再求值:x+2x 2−6x+9•x 2−9x+2−xx−3,其中x =4.【解答】解:x+2x −6x+9•x 2−9x+2−xx−3=x+2(x−3)2⋅(x+3)(x−3)x+2−x x−3 =x+3x−3−xx−3 =3x−3,当x =4时,原式=34−3=3.19.(6分)(2020•长沙)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法: 已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N . (2)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C .(3)画射线OC ,射线OC 即为所求(如图). 请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是 ① .(填序号) ①SSS ②SAS ③AAS ④ASA(2)请你证明OC 为∠AOB 的平分线.【解答】解:(1)这种作已知角的平分线的方法的依据是①SSS . 故答案为:①(2)由基本作图方法可得:OM =ON ,OC =OC ,MC =NC , 则在△OMC 和△ONC 中, {OM =ON OC =OC MC =NC, ∴△OMC ≌△ONC (SSS ), ∴∠AOC =∠BOC , 即OC 为∠AOB 的平分线.20.(8分)(2020•长沙)2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取200人;(2)m=86,n=27;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.【解答】解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.21.(8分)(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD∥OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=√3,∴tan∠DAC=DCAD=√33,∴∠DAC=30°,∴AC=2DC=2√3,∵OE⊥AC,根据垂径定理,得AE=EC=12AC=√3,∵∠EAO=∠DAC=30°,∴OA =AEcos30°=2,∴⊙O 的半径为2.22.(9分)(2020•长沙)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A ,B 两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批 第二批 A 型货车的辆数(单位:辆) 1 2 B 型货车的辆数(单位:辆) 3 5 累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A 、B 两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A 种型号货车.试问至少还需联系多少辆B 种型号货车才能一次性将这批生活物资运往目的地?【解答】解:(1)设A 种型号货车每辆满载能运x 吨生活物资,B 种型号货车每辆满载能运y 吨生活物资,依题意,得:{x +3y =282x +5y =50,解得:{x =10y =6.答:A 种型号货车每辆满载能运10吨生活物资,B 种型号货车每辆满载能运6吨生活物资.(2)设还需联系m 辆B 种型号货车才能一次性将这批生活物资运往目的地, 依题意,得:10×3+6m ≥62.4, 解得:m ≥5.4, 又∵m 为正整数, ∴m 的最小值为6.答:至少还需联系6辆B 种型号货车才能一次性将这批生活物资运往目的地. 23.(9分)(2020•长沙)在矩形ABCD 中,E 为DC 边上一点,把△ADE 沿AE 翻折,使点D 恰好落在BC 边上的点F . (1)求证:△ABF ∽△FCE ;(2)若AB =2√3,AD =4,求EC 的长;(3)若AE ﹣DE =2EC ,记∠BAF =α,∠F AE =β,求tan α+tan β的值.【解答】(1)证明:∵四边形ABCD 是矩形, ∴∠B =∠C =∠D =90°, 由翻折可知,∠D =∠AFE =90°,∴∠AFB +∠EFC =90°,∠EFC +∠CEF =90°, ∴∠AFB =∠FEC , ∴△ABF ∽△FCE .(2)设EC =x ,由翻折可知,AD =AF =4,∴BF =√AF 2−AB 2=√16−12=2, ∴CF =BC ﹣BF =2, ∵△ABF ∽△FCE , ∴AB CF=BF EC,∴2√32=2x, ∴x =2√33, ∴EC =2√33.(3)∵△ABF ∽△FCE , ∴AF EF=AB CF,∴tan α+tan β=BFAB +EFAF =BFAB +CFAB =BF+CF AB=BCAB , 设AB =CD =a ,BC =AD =b ,DE =x , ∴AE =DE +2CE =x +2(a ﹣x )=2a ﹣x ,∵AD =AF =b ,DE =EF =x ,∠B =∠C =∠D =90°,∴BF =√b 2−a 2,CF =√x 2−(a −x)2=√2ax −a 2,∵AD 2+DE 2=AE 2,∴b 2+x 2=(2a ﹣x )2,∴a 2﹣ax =14b 2,∵△ABF ∽△FCE ,∴AB CF =BF EC , ∴22=√b 2−a 2a−x ,∴a 2﹣ax =√b 2−a 2•√2ax −a 2,∴14b 2=√b 2−a 2•√a 2−12b 2, 整理得,16a 4﹣24a 2b 2+9b 4=0,∴(4a 2﹣3b 2)2=0,∴b a =2√33, ∴tan α+tan β=BC AB =2√33.24.(10分)(2020•长沙)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图象上关于原点对称的两点叫做一对“H 点”.根据该约定,完成下列各题.(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”.①y =2x ( √ );②y =mx (m ≠0)( √ );③y =3x ﹣1( × ).(2)若点A (1,m )与点B (n ,﹣4)是关于x 的“H 函数”y =ax 2+bx +c (a ≠0)的一对“H 点”,且该函数的对称轴始终位于直线x =2的右侧,求a ,b ,c 的值或取值范围.(3)若关于x 的“H 函数”y =ax 2+2bx +3c (a ,b ,c 是常数)同时满足下列两个条件:①a +b +c =0,②(2c +b ﹣a )(2c +b +3a )<0,求该“H 函数”截x 轴得到的线段长度的取值范围.【解答】解:(1)①y =2x 是“H 函数”.②y =m x (m ≠0)是“H 函数”.③y =3x ﹣1不是“H 函数”.故答案为:√,√,×.(2)∵A ,B 是“H 点”,∴A ,B 关于原点对称,∴m =4,n =﹣1,∴A (1,4),B (﹣1,﹣4),代入y =ax 2+bx +c (a ≠0)得{a +b +c =4a −b +c =−4, ∴{b =4a +c =0, ∵该函数的对称轴始终位于直线x =2的右侧,∴−b 2a >2,∴−42a >2,∴﹣1<a <0,∵a +c =0,∴0<c <1,综上所述,﹣1<a <0,b =4,0<c <1.(3)∵y =ax 2+2bx +3c 是“H 函数”,∴设H (p ,q )和(﹣p ,﹣q ),代入得到{ap 2+2bp +3c =q ap 2−2bp +3c =−q, 解得ap 2+3c =0,2bp =q ,∵p 2>0,∴a ,c 异号,∴ac<0,∵a+b+c=0,∴b=﹣a﹣c,∵(2c+b﹣a)(2c+b+3a)<0,∴(2c﹣a﹣c﹣a)(2c﹣a﹣c+3a)<0,∴(c﹣2a)(c+2a)<0,∴c2<4a2,∴c2a<4,∴﹣2<ca<2,设t=ca,则﹣2<t<0,设函数与x轴交于(x1,0),(x2,0),∴x1,x2是方程ax2+2bx+3c=0的两根,∴|x1﹣x2|=√(x1+x2)2−4x1x2=√(−2b a)2−4⋅3c a=√4(a+c)2a2−12c a=√4[1+2c a+(c a)2−3c a]=2√1+2t+t2−3t=2√(t−12)2+34,∵﹣2<t<0,∴2<|x1﹣x2|<2√7.25.(10分)(2020•长沙)如图,半径为4的⊙O中,弦AB的长度为4√3,点C是劣弧AB̂上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧AB̂从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.【解答】解:(1)如图1中,过点O作OH⊥AB于H.∵OA=OB=4,OH⊥AB,∴AH=HB=12AB=2√3,∠AOH=∠BOH,∴sin∠AOH=AHAO=√32,∴∠AOH=60°,∴∠AOB=2∠AOH=120°.(2)如图2中,连接OC.∵OA=OC=OB,AD=DC,CE=EB,∴OD⊥AC,OE⊥CB,∴∠ODC=∠OEC=90°,∴∠ODC+∠OEC=180°,∴O,D,C,E四点共圆,∴OC是直径,∴OC的中点P是△OED的外接圆的圆心,∴OP=12OC=2,∴点P 的运动路径的长=120⋅π⋅2180=4π3. (3)如图3中,若AC <BC ,连接OC 交AB 于J ,过点O 作OH ⊥AB 于H ,过点C 作CK ⊥AB 于K .∵AD =CD ,CE =EB ,∴DE ∥AB ,AB =2DE ,∴△CDE ∽△CAB ,∴S △CDES △CAB =(DE AB )2=14, ∴S △ABC =4S 2,∵S △ADO =S △ODC ,S △OBE =S △OEC ,∴S 四边形ODCE =12S 四边形OACB ,∴S 1+S 2=12(4S 2+4√3)=2S 2+2√3,∴S 1=S 2+2√3,∵S 12﹣S 22=21,∴S 22+4√3S 2+12﹣S 22=21,∴S 2=3√34,∴S △ABC =3√3=12×AB ×CK ,∴CK =32,∵OH ⊥AB ,CK ⊥AB ,∴OH ∥CK ,∴△CKJ ∽△OHJ ,∴CK OH =CJ OJ ,∴CJOJ =322=34,∴CJ=37×4=127,OJ=47×4=167,∴JK=√CJ2−CK2=√(127)2−(32)2=3√1514,JH=√OJ2−OH2=√(167)2−22=2√157,∴KH=√15 2,∴AK=AH﹣KH=2√3−√15 2,∴AC=√AK2+CK2=(2√3−√152)2+(32)2=√18−6√5=√15−√3.若AC>BC时,同法可得AC=√15+√3,综上所述,AC的长为√15−√3或√15+√3.。
2020年中考数学必考考点专题32尺规作图含解析
专题32 尺规作图问题专题知识回顾1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法.尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。
2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。
3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。
4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线.(2)能利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形.(3)能过一点、两点和不在同一直线上的三点作圆.(4)了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明).专题典型题考法及解析【例题1】(2019•湖南长沙)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20°B.30°C.45°D.60°【答案】B【解析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°﹣∠B﹣∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC﹣∠DAB=30°。
【例题2】(2019山东枣庄)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【答案】见解析。
2020年北京市中考数学学科考试说明
2020年北京市中考数学学科考试说明数学2019年北京市中考数学学科《考试说明》(以下简称“2019年《考试说明》”)确定了《义务教育数学课程标准(2011年版)》规定的“课程目标”与“课程内容”为考试范围,明确了“考查目标与要求”和“考试内容的知识要求层次”,通过阐述“试卷的内容、题型及分数分配”体现了2019年中考数学学科的试卷结构,通过调整“参考样题”体现了近几年命题指导思想和考试内容改革成果。
01调整部分考试内容的知识层次要求依据《义务教育数学课程标准(2011年版)》的课程内容要求,对“考试内容的知识层次要求”进行优化,体现出知识结构体系的整体性与内在联系。
例如,将“数轴”的A级要求调整到“实数”的A级要求,B级要求调整到“有理数”的B级要求;将“科学记数法和近似数”的A级要求“会用科学记数法表示数”调整到“整式”的A级要求等。
02更换部分参考样题“参考样题”体现了近几年中考数学学科试题的命制思想。
用较好地体现学科改革方向的试题对原样题进行替换,使“参考样题”能更好地体现学科本质,贴近社会、贴近学生生活,凸显基础性、综合性、实践性和创新性的要求,引导学生积极思考,体现能力培养和价值观教育。
(1)关注四基要求 体现数学基础《义务教育数学课程标准(2011版)》指出:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
”在调整样题过程中,注重体现数与代数、图形与几何、统计与概率等基础知识,突出对基本技能、基本思想和基本活动经验考查的体现。
例如,将2018年中考数学卷第17题编入2019年《考试说明》中。
(2)关注教学过程 体现数学本质《义务教育数学课程标准(2011年版)》指出:“数学教学的重要目标之一是让学生亲身经历数学知识形成、发展和应用的过程,积累数学活动经验,感悟数学思想。
2020年陕西省中考数学试题(含答案解析)
2020年陕西省中考数学试卷(共25题,满分120)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.・18的相反数是( ) A. 18B. - 18C.1 1 Q1D.——1 C 2.若ZA = 23° , 则Z4余角的大小是( )A. 57°B. 67°C. 77°D. 157°3・2019年,我国国内生产总值约为990870亿元,将数字990870用科学记数法表示 为()A. 9.9087XKFB. 9.9087X 104C. 99.087X 104D. 99.087X1034.如图,是4市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最 6. 如图,在3X3的网格中,每个小正方形的边长均为1, 若是△ABC 的高,则的长为()C. 12°C D ・ 16°C8 C • -------点A, B, C 都在格点上,低气温的差)是(D.AA. -V13B. -V13 c. -V13 D. -V1312 12 1Q 127.在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=・2r交于点A、B,则ZLAOB的面积为()A. 2B. 3C. 4D. 68.如图,在「ABCD中,AB=5, BC=S. E是边BC的中点,F是Q ABCD内一点,且ZBFC=90°•连接AF并延长,交CD于点G.若EF//AB,则DG的长为()9•如图,AABC内接于OO, ZA = 50° • E是边BC的中点,连接OE并延长,交OO于点D,连接BD,则ZD的大小为()A. 55°B. 65°C. 60°D・ 75°10.在平面直角坐标系中,将抛物线『=齐・(〃厂l)x+加(加>1)沿),轴向下平移3个单位.则平移后得到的抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D・第四象限二、填空题(共4小题,每小题3分,计12分)11.________________________________ 计算:(2+V^)(2—— .12.如图,在正五边形ABCDE中,DW是边CD的延长线,连接BD,则ZBDM的度数是_______.13.在平面直角坐标系中,点A (・2, 1), B(3, 2), C ( - 6, m)分别在三个不同的象限.若反比例函数y=-(^0)的图象经过其中两点,则加的值为_____________ .14.如图,在菱形ABCD中,AB = 6, ZB = 60°,点E在边AD上,且AE=2.若直线/经过点E.将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF三、解答题(共11小题,计78分.解答应写出过程)(3 兀>6,15・(5分)解不等式组:\Y—9 216・(5分)解分式方程:—=1--V* v—017. (5分)如图,已知ZVIBC, AC>AB, ZC=45° .请用尺规作图法,在AC边上求作一点P使ZPBC=45°•(保留作图痕迹.不写作法)A18. (5分)如图,在四边形ABCD中,AD//BC, ZB=ZC. E是边BC上一点,且19.(7分)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)______________________________ 这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.佔讣王大伯近期售完鱼塘里的这种鱼可收入多少元?所捕捞鱼的质量统计图20.(7分)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的I S J MN.他俩在小明家的窗台B处,测得商业大厦顶部W的仰角Z1的度数,山于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角Z2的度数,竟然发现Z1与Z2恰好相等.已知A, B, C三点共线,CA丄AM, NM丄AM, AB=3\m, BC=18〃7,试求商业大厦的高MN.21.(7分)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20c枷时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度),(c/n)与生长时间x (天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80c加时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?22.(7分)小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球, 一个口球和一个黃球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黃球的概率.23.(8分)如图,△4BC是OO的内接三角形,ZBAC=75。
2020年河北省中考数学试卷和答案解析
2020年河北省中考数学试卷和答案解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条解析:根据垂直、垂线的定义,可直接得结论.参考答案:解:在同一平面内,与已知直线垂直的直线有无数条,所以作已知直线m的垂线,可作无数条.故选:D.点拨:本题考查了垂直和垂线的定义.掌握垂线的定义是解决本题的关键.2.(3分)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+B.﹣C.×D.÷解析:直接利用同底数幂的除法运算法则计算得出答案.参考答案:解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.点拨:此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.(3分)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x ﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解解析:根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.参考答案:解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.点拨:此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.(3分)如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同解析:根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.参考答案:解:解法一:从正面看,两个几何体均为第一层和第二层都是两个小正方形,故主视图相同;从左面看,两个几何体均为第一层和第二层都是两个小正方形,故左视图相同;从上面看,两个几何体均为第一层和第二层都是两个小正方形,故俯视图相同.解法二:第一个几何体的三视图如图所示第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故选:D.点拨:本题考查了简单组合体的三视图,利用三视图的意义是解题关键.5.(3分)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A.9B.8C.7D.6解析:根据统计图中的数据和题意,可以得到a的值,本题得以解决.参考答案:解:由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,∴a=8,故选:B.点拨:本题考查条形统计图、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b>DE的长C.a有最小限制,b无限制D.a≥0,b<DE的长解析:根据角平分线的画法判断即可.参考答案:解:以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.点拨:本题考查作图﹣基本作图,解题的关键是熟练掌握作角平分线的方法,属于中考常考题型.7.(3分)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=解析:根据a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.参考答案:解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.点拨:本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.熟练掌握分式的基本性质是解题的关键.8.(3分)在如图所示的网格中,以点O为位似中心,四边形ABCD 的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR解析:由以点O为位似中心,确定出点C对应点M,设网格中每个小方格的边长为1,则OC=,OM=2,OD=,OB=,OA=,OR=,OQ=2,OP=2,OH=3,ON=2,由=2,得点D对应点Q,点B对应点P,点A对应点N,即可得出结果.参考答案:解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.点拨:本题考查了位似变换、勾股定理等知识;熟练掌握位似中心,找出点C对应点M是解题的关键.9.(3分)若=8×10×12,则k=()A.12B.10C.8D.6解析:根据平方差公式和分式方程的解法,即可得到k的值.参考答案:解:方程两边都乘以k,得(92﹣1)(112﹣1)=8×10×12k,∴(9+1)(9﹣1)(11+1)(11﹣1)=8×10×12k,∴80×120=8×10×12k,∴k=10.经检验k=10是原方程的解.故选:B.点拨:此题考查了平方差公式和解分式方程,熟练掌握平方差公式和解分式方程的方法是解本题的关键.10.(3分)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且AB=CDC.应补充:且AB∥CDD.应补充:且OA=OC解析:根据两组对边分别相等的四边形是平行四边形判定即可.参考答案:解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故应补充“AB=CD”,故选:B.点拨:本题考查平行四边形的判定,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.11.(2分)若k为正整数,则=()A.k2k B.k2k+1C.2k k D.k2+k解析:根据乘方的定义及幂的运算法则即可求解.参考答案:解:=((k•k)k=(k2)k=k2k,故选:A.点拨:本题考查了幂的乘方.解题的关键掌握幂的乘方的运算法则:底数不变,指数相乘.12.(2分)如图,从笔直的公路l旁一点P出发,向西走6km到达l;从P出发向北走6km也到达l.下列说法错误的是()A.从点P向北偏西45°走3km到达lB.公路l的走向是南偏西45°C.公路l的走向是北偏东45°D.从点P向北走3km后,再向西走3km到达l解析:先作出图形,根据勾股定理和等腰直角三角形的性质即可求解.参考答案:解:如图,由题意可得△PAB是腰长6km的等腰直角三角形,则AB=6km,如图所示,过P点作AB的垂线PC,则PC=3km,则从点P向北偏西45°走3km到达l,选项A错误;则公路l的走向是南偏西45°或北偏东45°,选项B,C正确;则从点P向北走3km后到达BP中点D,此时CD为△PAB的中位线,故CD=AP=3,故再向西走3km到达l,选项D正确.故选:A.点拨:本题考查的是勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.13.(2分)已知光速为300000千米/秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A.5B.6C.5或6D.5或6或7解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.参考答案:解:当t=1时,光传播的距离为1×300000=300000=3×105(千米),则n=5;当t=10时,光传播的距离为10×300000=3000000=3×106(千米),则n=6.因为1≤t≤10,所以n可能为5或6,故选:C.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,∠A应有3个不同值解析:直接利用圆内接四边形的性质结合圆周角定理得出答案.参考答案:解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°﹣65°=115°.故选:A.点拨:此题主要考查了三角形的外接圆,正确分类讨论是解题关键.15.(2分)如图,现要在抛物线y=x(4﹣x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对解析:求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论.参考答案:解:y=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,∴抛物线的顶点坐标为(2,4),∴在抛物线上的点P的纵坐标最大为4,∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个,∴丙的说法不正确;故选:C.点拨:本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.16.(2分)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,4解析:根据题意可知,三块正方形的面积中,两个较小的面积之和等于最大的面积,再根据三角形的面积,分别计算出各个选项中围成的直角三角形的面积,比较大小,即可解答本题.参考答案:解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.点拨:本题考查勾股定理的逆定理,解答本题的关键是明确题意,利用勾股定理的逆定理解答.二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.(3分)已知:﹣=a﹣=b,则ab=6.解析:直接化简二次根式进而得出a,b的值求出答案.参考答案:解:原式=3﹣=a﹣=b,故a=3,b=2,则ab=6.故答案为:6.点拨:此题主要考查了二次根式的加减,正确化简二次根式是解题关键.18.(3分)正六边形的一个内角是正n边形一个外角的4倍,则n =12.解析:根据多边形的内角和公式求出正六边形的一个内角等于120°,再根据多边形的外角和是360°即可解答.参考答案:解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.点拨:本题主要考查了多边形的外角和定理,理解多边形外角和中外角的个数,以及正多边形的边数之间的关系,是解题关键.19.(6分)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1,则k=﹣16;(2)若L过点T4,则它必定还过另一点T m,则m=5;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有7个.解析:(1)由题意可求T1~T8这些点的坐标,将点T1的坐标代入解析式可求解;(2)将点T4的坐标代入解析式可求k的值,将点T5代入,可求解;(3)由曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,可得T1,T2,T7,T8与T3,T4,T5,T6在曲线L的两侧,即可求解.参考答案:解:(1)∵每个台阶的高和宽分别是1和2,∴T1(﹣16,1),T2(﹣14,2),T3(﹣12,3),T4(﹣10,4),T5(﹣8,5),T6(﹣6,6),T7(﹣4,7),T8(﹣2,8),∵L过点T1,∴k=﹣16×1=﹣16,故答案为:﹣16;(2)∵L过点T4,∴k=﹣10×4=﹣40,∴反比例函数解析式为:y=﹣,当x=﹣8时,y=5,∴T5在反比例函数图象上,∴m=5,故答案为:5;(3)若曲线L过点T1(﹣16,1),T8(﹣2,8)时,k=﹣16,若曲线L过点T2(﹣14,2),T7(﹣4,7)时,k=﹣14×2=﹣28,若曲线L过点T3(﹣12,3),T5(﹣8,5)时,k=﹣12×3=﹣36,若曲线L过点T4(﹣10,4),T5(﹣8,5)时,k=﹣40,∵曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,∴﹣36<k<﹣28,∴整数k=﹣35,﹣34,﹣33,﹣32,﹣31,﹣30,﹣29共7个,∴答案为:7.点拨:本题考查了反比例函数的应用,求出各点的坐标是本题的关键.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知两个有理数:﹣9和5.(1)计算:;(2)若再添一个负整数m,且﹣9,5与m这三个数的平均数仍小于m,求m的值.解析:(1)根据有理数的加法、除法法则计算即可;(2)根据平均数的定义列不等式,解不等式,由m是负整数即可求出m的值.参考答案:解:(1)==﹣2;(2)根据题意得,<m,∴﹣4+m<3m,∴m﹣3m<4,∴﹣2m<4,∴m>﹣2,∵m是负整数,∴m=﹣1.点拨:此题考查了有理数的运算,解不等式和平均数.熟练掌握有理数的运算法则,解不等式的方法是解本题的关键.21.(8分)有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和﹣16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.解析:(1)根据题意列出代数式即可;(2)根据题意得到25+4a2+(﹣16﹣12a),根据整式加减的法则计算,然后配方,根据非负数的性质即可得到结论.参考答案:解:(1)A区显示的结果为:25+2a2,B区显示的结果为:﹣16﹣6a;(2)这个和不能为负数,理由:根据题意得,25+4a2+(﹣16﹣12a)=25+4a2﹣16﹣12a=4a2﹣12a+9;∵(2a﹣3)2≥0,∴这个和不能为负数.点拨:本题考查了配方法的应用,非负数的性质,整式的加减,正确的理解题意是解题的关键.22.(9分)如图,点O为AB中点,分别延长OA到点C,OB到点D,使OC=OD.以点O为圆心,分别以OA,OC为半径在CD 上方作两个半圆.点P为小半圆上任一点(不与点A,B重合),连接OP并延长交大半圆于点E,连接AE,CP.(1)①求证:△AOE≌△POC;②写出∠1,∠2和∠C三者间的数量关系,并说明理由.(2)若OC=2OA=2,当∠C最大时,直接指出CP与小半圆的位置关系,并求此时S扇形EOD(答案保留π).解析:(1)①利用公共角相等,根据SAS证明三角形全等便可;②由全等三角形得∠C=∠E,再利用三角形外角性质得结论;(2)当CP与小半圆O相切时,∠C最大,求出∠DOE便可根据扇形的面积公式求得结果.参考答案:解:(1)①在△AOE和△POC中,,∴△AOE≌△POC(SAS);②∠1+∠C=∠2,理由是:∵△AOE≌△POC,∴∠E=∠C,∵∠1+∠E=∠2,∴∠1+∠C=∠2;(2)当∠C最大时,CP与小半圆相切,如图,∵OC=2OA=2,∴OC=2OP,∵CP与小半圆相切,∴∠OPC=90°,∴∠OCP=30°,∴∠DOE=∠OPC+∠OCP=120°,∴.点拨:本题主要考查了圆的切线的性质,全等三角形的判定与性质,三角形的外角性质,直角三角形的性质,扇形的面积计算,关键在于掌握各个定理,灵活运用这些性质解题.23.(9分)用承重指数w衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W =3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚﹣W薄.①求Q与x的函数关系式;②x为何值时,Q是W薄的3倍?[注:(1)及(2)中的①不必写x的取值范围]解析:(1)由木板承重指数W与木板厚度x(厘米)的平方成正比,可设W=kx2(k≠0).将x=3时,W=3代入,求出k=,即可得出W与x的函数关系式;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,将(1)中所求的解析式代入Q=W厚﹣W薄,化简即可得到Q与x的函数关系式;②根据Q是W薄的3倍,列出方程﹣4x+12=3×x2,求解即可.参考答案:解:(1)设W=kx2(k≠0).∵当x=3时,W=3,∴3=9k,解得k=,∴W与x的函数关系式为W=x2;(2)①设薄板的厚度为x厘米,则厚板的厚度为(6﹣x)厘米,∴Q=W厚﹣W薄=(6﹣x)2﹣x2=﹣4x+12,即Q与x的函数关系式为Q=﹣4x+12;②∵Q是W薄的3倍,∴﹣4x+12=3×x2,整理得,x2+4x﹣12=0,解得,x1=2,x2=﹣6(不合题意舍去),故x为2时,Q是W薄的3倍.点拨:本题考查了二次函数的应用,待定系数法求二次函数的解析式,求出W与x的函数关系式是解题的关键.24.(10分)表格中的两组对应值满足一次函数y=kx+b,现画出了它的图象为直线l,如图.而某同学为观察k,b对图象的影响,将上面函数中的k与b交换位置后得另一个一次函数,设其图象为直线l'.x﹣10y﹣21(1)求直线l的解析式;(2)请在图上画出直线l'(不要求列表计算),并求直线l'被直线l和y轴所截线段的长;(3)设直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,直接写出a的值.解析:(1)根据待定系数法求得即可;(2)画出直线l,求得两直线的交点,根据勾股定理即可求得直线l'被直线l和y轴所截线段的长;(3)求得两条直线与直线y=a的交点横坐标,分三种情况讨论求得即可.参考答案:解:(1)∵直线l:y=kx+b中,当x=﹣1时,y=﹣2;当x=0时,y=1,∴,解得,∴直线l的解析式为y=3x+1;(2)依题意可得直线l′的解析式为y=x+3如图,解得,∴两直线的交点为A(1,4),∵直线l′:y=x+3与y轴的交点为B(0,3),∴直线l'被直线l和y轴所截线段的长为:AB==;(3)把y=a代入y=3x+1得,a=3x+1,解得x=;把y=a代入y=x+3得,a=x+3,解得x=a﹣3;分三种情况:①当第三点在y轴上时,a﹣3+=0,解得a=;②当第三点在直l上时,2×=a﹣3,解得a=7;③当第三点在直线l'上时,2×(a﹣3)=,解得a=;∴直线y=a与直线l,l′及y轴有三个不同的交点,且其中两点关于第三点对称,则a的值为或7或.点拨:本题考查了一次函数图象与几何变换,两直线相交问题,待定系数法求一次函数的解析式,分类讨论是解题的关键.25.(10分)如图,甲、乙两人(看成点)分别在数轴﹣3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从如图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终停留的位置对应的数为m,试用含n的代数式表示m,并求该位置距离原点O 最近时n的值;(3)从如图的位置开始,若进行了k次移动游戏后,甲与乙的位置相距2个单位,直接写出k的值.解析:(1)利用概率公式计算即可.(2)根据题意可知乙答了10次,答对了n次,则打错了(10﹣n)次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果.参考答案:解:(1)∵经过第一次移动游戏,甲的位置停留在正半轴上,∴必须甲对乙错,因为一共有四种情形,都对或都错,甲对乙错,甲错乙对,∴P甲对乙错=.(2)根据题意可得,n次答对,向西移动4n,(10﹣n)次答错,向东移了2(10﹣n),∴m=5﹣4n+2(10﹣n)=25﹣6n.n=4时,离原点最近.(3)起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2,当甲乙同时答对打错时,二者之间的距离缩小2,∴当进行了k次移动游戏后,甲与乙的位置相距2个单位时,共缩小了6个单位或10个单位,∴6÷2=3或10÷2=5,∴k=3或k=5.点拨:本题考查概率公式,数轴,代数式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.26.(12分)如图1和图2,在△ABC中,AB=AC,BC=8,tanC =.点K在AC边上,点M,N分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N 时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P 到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.解析:(1)在图1中,过点A作AH⊥BC于H.解直角三角形求出AH即可.(2)如图1,证明△APQ∽△ABC,可得,根据=可得,可得,根据(1)中AB=5,即可解出MP;(3)分两种情形:当0≤x≤3时,当3≤x≤9时,分别画出图形求解即可.(4)求出CK的长度,以及CQ的最大值,利用路程与速度的关系求解即可.参考答案:解:(1)如图1中,过点A作AH⊥BC于H.∵AB=AC,AH⊥BC,∴BH=CH=4,∠B=∠C,∴tan∠B=tan∠C==,∴AH=3,AB=AC===5.∴当点P在BC上时,PA⊥BC时,点P到A的最短距离为3.(2)如图1中,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∵PQ将△ABC的面积分成上下4:5,∴=()2=,∴=,∴AP=,∴PM=AP﹣AM=﹣2=.(3)当0≤x≤3时,如图1﹣1中,过点P作PJ⊥CA交CA的延长线于J.∵PQ∥BC,∴=,∠AQP=∠C,∴=,∴PQ=(x+2),∵sin∠AQP=sin∠C=,∴PJ=PQ•sin∠AQP=(x+2).当3≤x≤9时,如图2中,过点P作PJ⊥AC于J.同法可得PJ=PC•sin∠C=(11﹣x).综上,PJ=;(4)由题意点P的运动速度==单位长度/秒.当3<x≤9时,设点P移动的路程为x,CQ=y.∵∠APC=∠B+∠BAP=∠APQ+∠CPQ,∠APQ=∠B,∴∠BAP=∠CPQ,∵∠B=∠C,∴△ABP∽△PCQ,∴=,∴=,∴y =﹣(x﹣7)2+,∵﹣<0,∴x=7时,y 有最大值,最大值=,∵AK =,∴CK=5﹣=<当y =时,=﹣(x﹣7)2+,解得x=7±,∴点K 被扫描到的总时长=(+6﹣3)÷=23秒.点拨:本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形,相似三角形的判定和性质,二次函数的性质等知识,解题的关键是理解题意,学会构建二次函数解决CQ的最值问题,属于中考压轴题.第31页(共31页)。
2020年云南省中考数学试卷及答案解析
2020年云南省中考数学试卷及答案解析2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家。
某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为-8吨。
2.(3分)如图,直线c与直线a、b都相交。
若a∥b,∠1=54°,则∠2=126°。
3.(3分)要使√(x+2)有意义,则x的取值范围是x≥-2.4.(3分)已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(-1,m),则m=-3/2.5.(3分)若关于x的一元二次方程x^2+2x+c=0有两个相等的实数根,则实数c的值为1.6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC。
若AB=6,AC=2,则DE的长是4.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,xxxxxxx人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报)。
xxxxxxx这个数用科学记数法表示为1.5×10^6.8.(4分)下列几何体中,主视图是长方形的是B。
9.(4分)下列运算正确的是3-1=-2.10.(4分)下列说法正确的是D。
一个抽奖活动中,中奖概率为1/20,表示抽奖20次就有1次中奖。
11.(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点。
则△DEO与△BCD的面积的比等于1/4.12.(4分)按一定规律排列的单项式:a,-2a,4a,-8a,16a,-32a,…,第n个单项式是(-2)^(n-1)a。
1.剔除格式错误和明显有问题的段落,无需改写。
2.15.先化简,再求值:$$\frac{(x+3)(x+2)}{(x+3)(x-2)}\div\frac{(x-3)(x+2)}{(x-3)(x+2)}$$化简后得:$$\frac{x+2}{x-2}$$代入$x=1$,得:$$\frac{3}{-1}=-3$$16.如图,已知$AD=BC$,$BD=AC$。
2020年北京市中考数学试卷(解析版)
2020年北京市中考数学一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D【解析】【分析】根据三视图都是长方形即可判断该几何体为长方体.【详解】解:长方体的三视图都是长方形,故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A. B. C. D. 50.3610⨯53.610⨯43.610⨯43610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数.【详解】解: 36000=,43.610⨯故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键.3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.【详解】解:由两直线相交,对顶角相等可知A 正确;由三角形的一个外角等于它不相邻的两个内角的和可知B 选项为∠2>∠3,C 选项为∠1=∠4+∠5,D 选项为∠2>∠5.故选:A .【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.【答案】D【解析】【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A 、是轴对称图形,不是中心对称图形,故选项错误;B 、不是轴对称图形,也不是中心对称图形,故选项错误;C 、不是轴对称图形,是中心对称图形,故选项错误;D 、既是轴对称图形,又是中心对称图形,故选项正确.故选:D .【点睛】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.5.正五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为,与边数无关360︒故选:B .【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键.6.实数在数轴上的对应点的位置如图所示.若实数满足,则的值可以是()a b a b a -<<bA . 2 B. -1 C. -2 D. -3【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又ab a-<< 到原点的距离一定小于2b ∴观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A. B. C. D. 14131223【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是 21.42=故选C .【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】设水面高度为 注水时间为分钟,根据题意写出与的函数关系式,从而可得答案.,hcm t h t 【详解】解:设水面高度为 注水时间为分钟,,hcm t 则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.二、填空题9.若代数式有意义,则实数的取值范围是_____.17x -x 【答案】7x ≠【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∵代数式有意义,分母不能为0,可得,即,17x -70x -≠7x ≠故答案为:.7x ≠【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于的方程有两个相等的实数根,则的值是______.x 220x x k ++=k 【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式,0=A ∴,440k -=解得:.1k =故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】【详解】∵1<2,34,∴小的整数是2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.12.方程组的解为________.137x y x y -=⎧⎨+=⎩【答案】21x y =⎧⎨=⎩【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得,48x =∴,2x =将代入,2x =1x y -=可得,1y =故答案为:.21x y =⎧⎨=⎩【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键.13.在平面直角坐标系中,直线与双曲线交于A ,B 两点.若点A ,B 的纵坐标分别为,xOy y x =m y x=12,y y 则的值为_______.12y y +【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∵正比例函数和反比例函数均关于坐标原点O 对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,120y y +=故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD ≌ACD ,A A A 这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD (或BD=CD )【解析】【分析】证明ABD ≌ACD ,已经具备 根据选择的判定三角形全等的判定方法可得答案.A A ,,AB AC AD AD ==【详解】解:,,AB AC AD AD == 要使∴,ABD ACD A A ≌则可以添加:∠BAD=∠CAD ,此时利用边角边判定:,ABD ACD A A ≌或可以添加:,BD CD =此时利用边边边判定:,ABD ACD A A ≌故答案为:∠BAD=∠CAD 或().BD CD =【点睛】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键.15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系A A 为:______(填“>”,“=”或“<”)ABC S A ABD S A【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得个平方单位,14242ABC S =⨯⨯=A ,123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯=A ABD S S S S 故有=.ABC S A ABD S A 故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∴顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:11(|2|6sin 453-+--︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=326++-32=++-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.18.解不等式组:5322132x x x x ->⎧⎪-⎨<⎪⎩【答案】12x <<【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:5322132x x x x ->⎧⎪⎨-<⎪⎩①②解不等式①得:,1x >解不等式②得:,2x <∴此不等式组的解集为.12x <<【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知,求代数式的值.2510x x --=(32)(32)(2)x x x x +-+-【答案】,-221024x x --【解析】【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把变形后,整体2510x x --=代入求值即可.【详解】解:原式=22942x x x-+-2102 4.x x =--∵,2510x x --=∴,251x x -=∴,21022x x -=∴原式=.242-=-【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.20.已知:如图,ABC 为锐角三角形,AB=BC ,CD ∥AB .A 求作:线段BP ,使得点P 在直线CD 上,且∠ABP=.12BAC ∠作法:①以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;②连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∵CD ∥AB ,∴∠ABP=.∵AB=AC ,∴点B 在⊙A 上.又∵∠BPC=∠BAC ( )(填推理依据)12∴∠ABP=∠BAC 12【答案】(1)见解析;(2)∠BPC ,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半【解析】【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明: 再利用圆的性质得到:∠BPC=∠BAC ,从而可得答案.,ABP BPC ∠=∠12【详解】解:(1)依据作图提示作图如下:(2)证明:∵CD ∥AB ,∴∠ABP= .BPC ∠∵AB=AC ,∴点B 在⊙A 上.又∵∠BPC=∠BAC (在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据)12∴∠ABP=∠BAC 12故答案为:∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF .(1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO 是△DAB 的中位线,再结合已知条件OG ∥EF ,得到四边形OEFG 是平行四边形,再由条件EF ⊥AB ,得到四边形OEFG 是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=AB=AD=5,得到FG=5,最1212后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点,∵点E 为AD 中点,∴OE 为△ABD 的中位线,∴OE ∥FG ,∵OG ∥EF ,∴四边形OEFG 为平行四边形∵EF ⊥AB ,∴平行四边形OEFG 为矩形.(2)∵点E 为AD 的中点,AD=10,∴AE=152AD =∵∠EFA=90°,EF=4,∴在Rt △AEF 中,.3===AF ∵四边形ABCD 为菱形,∴AB=AD=10,∴OE=AB=5,12∵四边形OEFG 为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点xOy (0)y kx b k =+≠y x =(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出1x >x (0)y mx m =≠y kx b =+m 的取值范围.【答案】(1);(2)1y x =+2m ≥【解析】【分析】(1)根据一次函数由平移得到可得出k 值,然后将点(1,2)代入可得b (0)y kx b k =+≠y x =y x b =+值即可求出解析式;(2)由题意可得临界值为当时,两条直线都过点(1,2),即可得出当时,1x =12x m >>,(0)y mx m =≠都大于,根据,可得可取值2,可得出m 的取值范围.1y x =+1x >m【详解】(1)∵一次函数由平移得到,(0)y kx b k =+≠y x =∴,1k =将点(1,2)代入可得,y x b =+1b =∴一次函数的解析式为;1y x =+(2)当时,函数的函数值都大于,即图象在上方,由下图可知:1x >(0)y mx m =≠1y x =+1y x =+临界值为当时,两条直线都过点(1,2),1x =∴当时,都大于,12x m >>,(0)y mx m =≠1y x =+又∵,1x >∴可取值2,即,m 2m =∴的取值范围为.m 2m ≥【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.23.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ;(2)若sinC=,BD=8,求EF 的长.13【答案】(1)见解析;(2)2.【解析】【分析】(1)连接OD ,根据CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据OF ⊥AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO ,即可证明;(2)设半径为r ,根据在Rt △OCD 中,,可得,AC=2r ,由AB 为⊙O 的直径,sin 13C =3OD r OC r ==,得出∠ADB=90°,再根据推出OF ⊥AD ,OF ∥BD ,然后由平行线分线段成比例定理可得,求12OE OA BD AB ==出OE ,,求出OF ,即可求出EF .34OF OC BD BC ==【详解】(1)证明:连接OD ,∵CD 是⊙O 的切线,∴OD ⊥CD ,∴∠ADC+∠ODA=90°,∵OF ⊥AD ,∴∠AOF+∠DAO=90°,∵OD=OA ,∴∠ODA=∠DAO ,∴∠ADC=∠AOF ;(2)设半径为r ,在Rt △OCD 中,,1sin 3C =∴,13OD OC =∴,3OD r OC r ==,∵OA=r ,∴AC=OC-OA=2r ,∵AB 为⊙O 的直径,∴∠ADB=90°,又∵OF ⊥AD ,∴OF ∥BD ,∴,12OE OA BD AB ==∴OE=4,∵,34OF OC BD BC ==∴,6OF =∴.2EF OF OE =-=【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数.下面是小云对其探究的过程,请补充完21||(1)(2)6y x x x x =-+≥-整:(1)当时,对于函数,即,当时,随的增大而 ,且;20x -≤<1||y x =1y x =-20x -≤<1y x 10y >对于函数,当时,随的增大而,且;结合上述分析,进一步探221y x x =-+20x -≤<2y x 20y >究发现,对于函数,当时,随的增大而.y 20x -≤<y x (2)当时,对于函数,当时,与的几组对应值如下表:0x ≥y 0x ≥y x x 0121322523y116167161954872综合上表,进一步探究发现,当时,随的增大而增大.在平面直角坐标系中,画出当0x ≥y x xOy 0x ≥时的函数的图象.y(3)过点(0,m)()作平行于轴的直线,结合(1)(2)的分析,解决问题:若直线与函数0m >x l l 的图象有两个交点,则的最大值是 .21||(1)(2)6y x x x x =-+≥-m【答案】(1)减小,减小,减小;(2)见解析;(3)73【解析】【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当时,函数有最大值,代入计算即可得到答案.2x =-【详解】解:(1)根据题意,在函数中,1y x =-∵,10k =-<∴函数在中,随的增大而减小;1y x =-20x -≤<1y x ∵,222131(24y x x x =-+=-+∴对称轴为:,1x =∴在中,随的增大而减小;221y x x =-+20x -≤<2y x 综合上述,在中,随的增大而减小;21||(1)6y x x x =-+20x -≤<y x 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当时,随的增大而增大,无最大值;0x ≥y x 由(1)可知在中,随的增大而减小;21||(1)6y x x x =-+20x -≤<y x ∴在中,有20x -≤<当时,,2x =-73y =∴m 的最大值为;73故答案为:.73【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:.小云所住小区5月1日至30日的厨余垃圾分出量统计图:a.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:b 时段1日至10日11日至20日21日至30日平均数100170250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为5月11日至20日的厨余垃圾分出量的方差为21,s ,5月21日至30日的厨余垃圾分出量的方差为.直接写出的大小关系.22s 23s 222123,,s s s 【答案】(1)173;(2)2.9倍;(3)222123s s s >>【解析】【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:(千克);1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=故答案为:173;(2)倍;17360 2.9÷=故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:;222123s s s >>【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系中,为抛物线上任意两点,其中xOy 1122(,),(,)M x y N x y 2(0)y ax bx c a =++>.12x x <(1)若抛物线的对称轴为,当为何值时,1x =12,x x 12;y y c ==(2)设抛物线的对称轴为.若对于,都有,求的取值范围.x t =123x x +>12y y <t 【答案】(1);(2)120,2x x ==32t ≤【解析】【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为,抛物线的对称轴为,可得点M ,N 12y y c ==1x =关于对称,从而得到的值;1x =12,x x (2)根据题意知,抛物线开口向上,对称轴为,分3种情况讨论,情况1:当都位于对称轴右x t =12,x x 侧时,情况2:当都位于对称轴左侧时,情况3:当位于对称轴两侧时,分别求出对应的t 值,再12,x x 12,x x 进行总结即可.【详解】解:(1)当x=0时,y=c ,即抛物线必过(0,c ),∵,抛物线的对称轴为,12y y c ==1x =∴点M ,N 关于对称,1x =又∵,12x x <∴,;10x =22x =(2)由题意知,a >0,∴抛物线开口向上∵抛物线的对称轴为,x t =12x x <∴情况1:当都位于对称轴右侧时,即当时,恒成立12,x x 1x t ≥12y y <情况2:当都位于对称轴左侧时,即<时,恒不成立12,x x 1x 2,t x t ≤12y y <情况3:当位于对称轴两侧时,即当时,要使,必有,即12,x x 1x <2,t x t >12y y <12x t x t -<-()()2212x t x t -<-解得,122x x t +>∴3≥2t ,∴32t ≤综上所述,.32t ≤【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想.27.在中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,ABC A 交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,求EF 的长(用含的式子表示);,AE a BF b ==,a b (2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(1;(2)图见解析,,证明见解析.222EF AE BF =+【解析】【分析】(1)先根据中位线定理和线段中点定义可得,,,再根据平行四边形//DE BC 12DE BC =CE AE a ==的性质、矩形的判定与性质可得,从而可得,然后利用勾股定理即可得;DE CF =CF BF b ==(2)如图(见解析),先根据平行线的性质可得,,再根据三角形全EAD GBD ∠=∠DEA DGB ∠=∠等的判定定理与性质可得,,然后根据垂直平分线的判定与性质可得,最ED GD =AE BG =EF FG =后在中,利用勾股定理、等量代换即可得证.Rt BGF A 【详解】(1)∵D 是AB 的中点,E 是线段AC 的中点∴DE 为的中位线,且ABC A CE AE a ==∴,//DE BC 12DE BC =∵90C ∠=︒∴18090DEC C ∠=︒-∠=︒∵DF DE ⊥∴90EDF ∠=︒∴四边形DECF 为矩形∴DE CF=11()22CF BC BF CF ∴==+∴CF BF b ==则在中,Rt CEF A EF ==(2)过点B 作AC 的平行线交ED 的延长线于点G ,连接FG ∵//BG AC∴,EAD GBD ∠=∠DEA DGB ∠=∠∵D 是AB 的中点∴AD BD=在和中,EAD A GBD △EAD GBDDEA DGBAD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()EAD GBD AAS ≅A A ∴,ED GD =AE BG =又∵DF DE⊥∴DF 是线段EG 的垂直平分线∴EF FG=∵,90C ∠=︒//BG AC ∴90GBF C ∠=∠=︒在中,由勾股定理得:Rt BGF A 222FG BGBF =+∴.222EF AE BF =+【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.28.在平面直角坐标系中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,xOy 得到⊙O 的弦(分别为点A ,B 的对应点),线段长度的最小值称为线段AB 到⊙O 的“平A B '',A B ''AA '移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦和,则这两条弦的位置关系是 ;在12PP 34P P 点中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;1234,,,P P P P(2)若点A ,B 都在直线上,记线段AB 到⊙O 的“平移距离”为,求的最小值;y =+1d 1d (3)若点A 的坐标为,记线段AB 到⊙O 的“平移距离”为,直接写出的取值范围.32,2⎛⎫⎪⎝⎭2d 2d【答案】(1)平行,P 3;(23)23722d ≤≤【解析】【分析】(1)根据圆的性质及“平移距离”的定义填空即可;(2)过点O 作OE ⊥AB 于点E ,交弦CD 于点F ,分别求出OE 、OF 的长,由得到的最1d OE OF =-1d 小值;(3)线段AB 的位置变换,可以看作是以点A 为圆心,半径为1的圆,只需在⊙O 内找到与之平行,32,2⎛⎫⎪⎝⎭且长度为1的弦即可.平移距离的最小值即点A 到⊙O 的最小值;平移距离的最大值即点A 到⊙O 2d 2d 的最大值,由此得出的取值范围.2d 【详解】解:(1)平行;P 3;(2)如图,线段AB 在直线上,平移之后与圆相交,得到的弦为CD ,CD ∥AB ,过点O 作y =+OE ⊥AB 于点E ,交弦CD 于点F ,OF ⊥CD ,令,直线与x 轴交点为(-2,0),直线与x 轴夹角为0y =60°,∴.2sin 60OE ︒==由垂径定理得:,OF ==∴;1d OE OF =-=21(3)线段AB 的位置变换,可以看作是以点A 为圆心,半径为1的圆,只需在⊙O 内找到与之平行,32,2⎛⎫ ⎪⎝⎭且长度为1的弦即可;点A 到O 的距离为.52AO ==如图,平移距离的最小值即点A 到⊙O 的最小值:;2d 53122-=平移距离的最大值即点A 到⊙O 的最大值:.2d 57122+=∴的取值范围为:.2d 23722d ≤≤【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、直线与圆的位置关系是解题的关键.。
山东省济南市2020年中考数学试题及答案解析
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前山东省济南市2020年中考数学试题试题副标题题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、单选题1.﹣7的相反数是( ) A .﹣7 B .﹣17C .7D .1【答案】C 【解析】 【分析】根据相反数的意义,只有符号不同的数为相反数. 【详解】-7的相反数是7, 故选C . 【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0. 2.以下给出的几何体中,主视图是矩形,俯视图是圆的是( )A. B. C. D.【答案】D 【解析】 【分析】根据几何体的正面看得到的图形,可得答案.试题第2页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【详解】A 、主视图是圆,俯视图是圆,故A 不符合题意;B 、主视图是矩形,俯视图是矩形,故B 不符合题意;C 、主视图是三角形,俯视图是圆,故C 不符合题意;D 、主视图是个矩形,俯视图是圆,故D 符合题意; 故选:D . 【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.3.2020年1月3日,“嫦娥四号”探测器成功着陆在月球背面东经177.6度、南纬45.5度附近,实现了人类首次在月球背面软着陆.数字177.6用科学记数法表示为( ) A .0.1776×103 B .1.776×102C .1.776×103D .17.76×102【答案】B 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 【详解】解:177.6=1.776×102. 故选B . 【点睛】本题考查用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.4.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A.20B.35C.55D.70【答案】B 【解析】 【分析】……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………根据平行线的性质可得170ABC ∠=∠=,再根据角平分线的定义可得答案. 【详解】 ∵//DE BC ,∴170ABC ∠=∠=, ∵BE 平分ABC ∠, ∴1352CBE ABC ∠=∠=, 故选:B . 【点睛】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.5.实数,a b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A.55a b ->-B.66a b >C.a b ->-D.0a b ->【答案】C 【解析】 【分析】根据数轴判断出,a b 的正负情况以及绝对值的大小,然后解答即可. 【详解】由图可知,0b a <<,且b a <,∴55a b ->-,66a b >,a b -<-,0a b ->, ∴关系式不成立的是选项C . 故选:C . 【点睛】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小. 6.化简24142x x +-+的结果是( ) A.2x - B.12x - C.22x - D.22x【答案】B 【解析】试题第4页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【分析】原式通分并利用同分母分式的加法法则计算即可求出值. 【详解】 原式4221(2)(2)(2)(2)(2)(2)2x x x x x x x x x -+=+==+-+-+--故选:B . 【点睛】本题考查分式的加减法;熟练掌握分式的运算法则,正确进行因式分解是解题的关键. 7.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是( )A.9.7m ,9.9mB.9.7m ,9.8mC.9.8m ,9.7mD.9.8m ,9.9m【答案】B 【解析】 【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可. 【详解】把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m , 平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m , 故选:B . 【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平. 8.函数y ax a =-+与ay x=(0a ≠)在同一坐标系中的图象可能是( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. B. C. D.【答案】D 【解析】 【分析】根据反比例函数与一次函数的图象特点解答即可. 【详解】0a >时,0a -<,y ax a =-+在一、二、四象限,a y x=在一、三象限,无选项符合.0a <时,0a ->,y ax a =-+在一、三、四象限,ay x=(0a ≠)在二、四象限,只有D 符合; 故选:D . 【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a 的取值确定函数所在的象限.9.如图,在菱形ABCD 中,点E 是BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点F ,连接,AE AF .若6AB =,60B ∠=,则阴影部分的面积为( )A.933πB.932πC.1839πD.1836π【答案】A 【解析】 【分析】连接AC ,根据菱形的性质求出BCD ∠和6BC AB ==,求出AE 长,再根据三角形的面积和扇形的面积求出即可. 【详解】试题第6页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………连接AC ,∵四边形ABCD 是菱形, ∴6AB BC ==,∵60B ∠=,E 为BC 的中点,∴3CE BE CF ===,ABC ∆是等边三角形,//AB CD , ∵60B ∠=,∴180120BCD B ∠=-∠=, 由勾股定理得:226333AE -= ∴11633 4.5322AEB AEC AFC S S S ∆∆∆==⨯⨯==, ∴阴影部分的面积212034.53 4.53933360AEC AFC CEFS S S S ππ∆∆⨯=+-==扇形,故选:A . 【点睛】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出AEC ∆、AFC ∆和扇形ECF 的面积是解此题的关键.10.某数学社团开展实践性研究,在大明湖南门A 测得历下亭C 在北偏东37°方向,继续向北走105m 后到达游船码头B ,测得历下亭C 在游船码头B 的北编东53°方向.请计算一下南门A 与历下亭C 之间的距离约为( )(参考数据:3tan 374≈,4tan 533≈)……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………A.225mB.275mC.300mD.315m【答案】C 【解析】 【分析】如图,作CE BA ⊥于E .设EC x =m ,BE y =m .构建方程组求出x ,y 即可解决问题. 【详解】如图,作CE BA ⊥于E .设EC x =m ,BE y =m .在Rt ECB ∆中,tan 53ECEB=,即43x y =,在Rt AEC ∆中,tan 37ECAE=,即34105x y =+, 解得180x =,135y =, ∴2222180240300AC EC AE =+=+=(m ), 故选:C . 【点睛】本题考查解直角三角形的应用﹣方向角等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程组解决问题,属于中考常考题型. 11.关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,若二次函数试题第8页,总31页212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是( ) A.1142t << B.114t -<≤ C.1122t -≤< D.112t -<< 【答案】D 【解析】 【分析】二次函数的图象过点(1,0)-,则102a b -+=,而2t a b =+,则216t a -=,226t b +=,二次函数的图象的顶点在第一象限,则02b a ->,21024b a->,即可求解. 【详解】∵关于x 的一元二次方程2102ax bx ++=有一个根是﹣1, ∴二次函数212y ax bx =++的图象过点(1,0)-, ∴102a b -+=, ∴12b a =+,2t a b =+, 则216t a -=,226t b +=, ∵二次函数212y ax bx =++的图象的顶点在第一象限, ∴02b a ->,21024b a->, 将216t a -=,226t b +=代入上式得: 22602126t t +>-⨯,解得:112t -<<,222()1602124()6t t +->-,解得:12t 或13t <<,故:112t -<<,故选:D .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用试题第10页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、解答题12.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线【答案】C 【解析】 【分析】根据把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可. 【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项正确;D 、不是轴对称图形,不是中心对称图形,故此选项错误; 故选:C . 【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 13.计算:101()(1)2cos6092π-++-+ 【答案】5. 【解析】……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 【详解】101()(1)2cos6092π-++-+ 121232=+-⨯+313=-+5=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.14.如图,在ABCD 中,,E F 分别是AD 和BC 上的点,DAF BCE ∠=∠.求证:BF DE =.【答案】见解析. 【解析】 【分析】由平行四边形的性质得出B D ∠=∠,BAD BCD ∠=∠,AB CD =,证出BAF DCE ∠=∠,证明ABF ∆≌CDE ∆(ASA ),即可得出BF DE =. 【详解】∵四边形ABCD 是平行四边形,∴B D ∠=∠,BAD BCD ∠=∠,AB CD =, ∵DAF BCE ∠=∠, ∴BAF DCE ∠=∠,试题第12页,总31页在ABF ∆和CDE ∆中,B D AB CD BAF DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABF ∆≌CDE ∆(ASA ), ∴BFDE =.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.15.为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本. (1)求A 和B 两种图书的单价;(2)书店在“世界读书日”进行打折促销活动,所有图书都按8折销售学校当天购买了A 种图书20本和B 种图书25本,共花费多少元?【答案】(1)A 种图书的单价为30元,B 种图书的单价为20元;(2)共花费880元. 【解析】 【分析】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合花3000元购买的A 种图书比花1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)根据总价=单价×数量,即可求出结论. 【详解】(1)设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元, 依题意,得:30001600201.5x x-=, 解得:20x ,经检验,20x是所列分式方程的解,且符合题意,∴1.530x =.答:A 种图书的单价为30元,B 种图书的单价为20元. (2)300.820200.825880⨯⨯+⨯⨯=(元). 答:共花费880元. 【点睛】……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 16.如图,AB 、CD 是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC 、BD .(1)求证:ABD CAB ∠=∠; (2)若B 是OE 的中点,12AC =,求O 的半径.【答案】(1)见解析;(2)O 的半径为3【解析】 【分析】(1)根据半径相等可知OAC OCA ∠=∠,ODB OBD ∠=∠,再根据对顶角相等和三角形内角和定理证明ABD CAB ∠=∠; (2)连接BC .由CE 为O 的切线,可得90OCE ∠=,因为B 是OE 的中点,得BC OB =,又OB OC =,可知OBC ∆为等边三角形,60ABC ∠=,所以333BC AC ==O 的半径为43 【详解】(1)证明:∵AB 、CD 是O 的两条直径,∴OA OC OB OD ===,∴OAC OCA ∠=∠,ODB OBD ∠=∠, ∵AOC BOD ∠=∠,∴OAC OCA ODB OBD ∠=∠=∠=∠, 即ABD CAB ∠=∠; (2)连接BC . ∵AB 是O 的两条直径,∴∠ACB =90°, ∵CE 为O 的切线,∴90OCE ∠=,试题第14页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∵B 是OE 的中点, ∴BC OB =, ∵OB OC =,∴OBC ∆为等边三角形, ∴60ABC ∠=, ∴30A ∠=, ∴3433BC AC ==, ∴43OB =, 即O 的半径为43.【点睛】本题考查了切线的性质、圆周角定理、含30角的直角三角形的性质,正确的作出辅助线是解题的关键.17.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下: 4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.1 5.2 5.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2 4.4 4.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1 4.2 4.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3 根据数据绘制了如下的表格和统计图: 等级视力(x )频数 频率 A4.2x < 4 0.1 B4.2 4.4x ≤≤ 120.3 C4.5 4.7x ≤≤a……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………D 4.8 5.0x ≤≤ bE5.1 5.3x ≤≤10 0.25 合计 401根据上面提供的信息,回答下列问题: (1)统计表中的a = ,b = ; (2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E 级”的有多少人? (4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率. 【答案】(1)8、0.15;(2)补全图形见解析;(3)估计该校八年级学生视力为“E 级”的有100人;(4)恰好选到1名男生和1名女生的概率23. 【解析】 【分析】(1)由所列数据得出a 的值,继而求出C 组对应的频率,再根据频率之和等于1求出b 的值;(2)总人数乘以b 的值求出D 组对应的频数,从而补全图形; (3)利用样本估计总体思想求解可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率. 【详解】(1)由题意知C 等级的频数8a =, 则C 组对应的频率为8400.2÷=,试题第16页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴1(0.10.30.20.25)0.15b =-+++=, 故答案为:8、0.15;(2)D 组对应的频数为400.156⨯=, 补全图形如下:(3)估计该校八年级学生视力为“E 级”的有4000.25100⨯=(人); (4)列表如下: 男 男 女 女 男(男,男) (女,男) (女,男) 男 (男,男)(女,男) (女,男) 女 (男,女) (男,女)(女,女) 女 (男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种, 所以恰好选到1名男生和1名女生的概率82123=. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.18.如图1,点(0,8)A 、点(2,)B a 在直线2y x b =-+上,反比例函数ky x=(0x >)的图象经过点B .……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求a 和k 的值;(2)将线段AB 向右平移m 个单位长度(0m >),得到对应线段CD ,连接AC 、BD . ①如图2,当3m =时,过D 作DF x ⊥轴于点F ,交反比例函数图象于点E ,求DEEF的值;②在线段AB 运动过程中,连接BC ,若BCD ∆是以BC 为腰的等腰三形,求所有满足条件的m 的值. 【答案】(1)4a =,8k;(2)①32DE EF =;②BCD ∆是以BC 为腰的等腰三形,满足条件的m 的值为4或5. 【解析】 【分析】(1)先将点A 坐标代入直线AB 的解析式中,求出a ,进而求出点B 坐标,再将点B 坐标代入反比例函数解析式中即可得出结论;(2)①先确定出点(5,4)D ,进而求出点E 坐标,进而求出DE ,EF ,即可得出结论; ②先表示出点C ,D 坐标,再分两种情况:Ⅰ、当BC CD =时,判断出点B 在AC 的垂直平分线上,即可得出结论;Ⅱ、当BC BD =时,先表示出BC ,用BC BD =建立方程求解即可得出结论. 【详解】(1)∵点(0,8)A 在直线2y x b =+上, ∴208b -⨯+=, ∴8b =,∴直线AB 的解析式为28y x =-+,将点(2,)B a 代入直线AB 的解析式28y x =-+中,得228a -⨯+=, ∴4a =,试题第18页,总31页∴(2,4)B ,将(2,4)B 在反比例函数解析式ky x=(0x >)中,得248k xy ==⨯=; (2)①由(1)知,(2,4)B ,8k ,∴反比例函数解析式为8y x=, 当3m =时,∴将线段AB 向右平移3个单位长度,得到对应线段CD , ∴(23,4)D +, 即:(5,4)D ,∵DF x ⊥轴于点F ,交反比例函数8y x=的图象于点E , ∴8(5,)5E ,∴812455DE =-=,85EF =,∴1235825DE EF ==; ②如图,∵将线段AB 向右平移m 个单位长度(0m >),得到对应线段CD , ∴CD AB =,AC BD m ==, ∵(0,8)A ,(2,4)B , ∴(,8)C m ,((2),4)D m +, ∵BCD ∆是以BC 腰的等腰三形, ∴Ⅰ、当BC CD =时, ∴BC AB =,∴点B 在线段AC 的垂直平分线上, ∴224m =⨯=, Ⅱ、当BC BD =时, ∵(2,4)B ,(,8)C m , ∴BC =, m =,……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………∴5m =,即:BCD ∆是以BC 为腰的等腰三形,满足条件的m 的值为4或5.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平移的性质,等腰三角形的性质,线段的垂直平分线的性质,用方程的思想解决问题是解本题的关键. 19.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由. (二)拓展应用如图3,在111A B C ∆中,118A B =,11160A B C ∠=,11175B A C ∠=,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A 按顺时针方向旋转75,得到线段1A Q ,连接1B Q .求线段1B Q 长度的最小值.【答案】(一)(1)结论:NAB MAC ∠=∠,BN MC =.理由见解析;(2)如图2试题第20页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………中,①中结论仍然成立.理由见解析;(二)1QB 的最小值为4342-. 【解析】 【分析】(一)①结论:NAB MAC ∠=∠,BN MC =.根据SAS 证明NAB ∆≌MAC ∆即可. ②①中结论仍然成立.证明方法类似.(二)如图3中,在11A C 上截取11A N A Q =,连接PN ,作11NH B C ⊥于H ,作111A M B C ⊥于M .理由全等三角形的性质证明1B Q PN =,推出当PN 的值最小时,1QB 的值最小,求出HN 的值即可解决问题.【详解】(一)(1)结论:NAB MAC ∠=∠,BN MC =. 理由:如图1中,∵MAN CAB ∠=∠,∴NAB BAM BAM MAC ∠+∠=∠+∠, ∴NAB MAC ∠=∠, ∵AB AC =,AN AM =, ∴NAB ∆≌MAC ∆(SAS ), ∴BNCM =.故答案为NAB MAC ∠=∠,BNCM =.(2)如图2中,①中结论仍然成立.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………理由:∵MAN CAB ∠=∠,∴NAB BAM BAM MAC ∠+∠=∠+∠, ∴NAB MAC ∠=∠, ∵AB AC =,AN AM =, ∴NAB ∆≌MAC ∆(SAS ), ∴BNCM =.(二)如图3中,在11A C 上截取11A N A Q =,连接PN ,作11NH B C ⊥于H ,作111A M B C ⊥于M .∵1111C A B PAQ ∠=∠, ∴111QA B PA N ∠=∠, ∵11A A A P =,11A B AN =, ∴11QA B ∆≌1PA N ∆(SAS ), ∴1B Q PN =,∴当PN 的值最小时,1QB 的值最小,在11Rt A B M ∆中,∵1160A B M ∠=,118A B =, ∴111sin6043AM A B =•=试题第22页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∵1111111753045MAC B AC B A M ∠=∠-∠=-=, ∴1146AC =,∴1111468NC AC A N =-=-, 在1Rt NHC ∆,∵145C ∠=, ∴4342NH =-,根据垂线段最短可知,当点P 与H 重合时,PN 的值最小, ∴1QB 的最小值为4342-. 【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,解直角三角形,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.20.如图1,抛物线2:C y ax bx =+经过点(4,0)A -、(1,3)B -两点,G 是其顶点,将抛物线C 绕点O 旋转180,得到新的抛物线'C .(1)求抛物线C 的函数解析式及顶点G 的坐标; (2)如图2,直线12:5l y kx =-经过点A ,D 是抛物线C 上的一点,设D 点的横坐标为m (2m <-),连接DO 并延长,交抛物线'C 于点E ,交直线l 于点M ,2DE EM =,求m 的值;(3)如图3,在(2)的条件下,连接AG 、AB ,在直线DE 下方的抛物线C 上是否存在点P ,使得DEP GAB ∠=∠?若存在,求出点P 的横坐标;若不存在,请说明理由.【答案】(1)24y x x =--,顶点为:(2,4)G -;(2)m 的值为﹣3;(3)存在,点P的横坐标为:74+-或74. 【解析】 【分析】(1)运用待定系数法将(4,0)A -、(1,3)B -代入2y ax bx =+中,即可求得a 和b 的值和抛物线C 解析式,再利用配方法将抛物线C 解析式化为顶点式即可求得顶点G 的坐标;(2)根据抛物线C 绕点O 旋转180,可求得新抛物线'C 的解析式,再将(4,0)A -代入125y kx =-中,即可求得直线l 解析式,根据对称性可得点E 坐标,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K ,由2DE EM =,即可得13ME MD =,再证明MEK ∆∽MDH ∆,即可得3DH EK =,建立方程求解即可; (3)连接BG ,易证ABG ∆是Rt ∆,90ABG ∠=,可得1tan tan 3DEP GAB ∠=∠=,在x 轴下方过点O 作OH OE ⊥,在OH 上截取13OH OE ==过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点;通过建立方程组求解即可. 【详解】(1)将(4,0)A -、(1,3)B -代入2y ax bx =+中,得16403a b a b -=⎧⎨-=⎩解得14a b =-⎧⎨=-⎩∴抛物线C 解析式为:24y x x =--,配方,得:224(2)4y x x x =--=-++,∴顶点为:(2,4)G -;(2)∵抛物线C 绕点O 旋转180,得到新的抛物线'C . ∴新抛物线'C 的顶点为:'(2,4)G -,二次项系数为:'1a = ∴新抛物线'C 的解析式为:22(2)44y x x x =--=-试题第24页,总31页将(4,0)A -代入125y kx =-中,得12045k =--,解得35k =-, ∴直线l 解析式为31255y x =--, ∵2(,4)D m m m --,∴直线DO 的解析式为(4)y m x =-+,由抛物线C 与抛物线'C 关于原点对称,可得点D 、V 关于原点对称, ∴2(,4)E m m m -+如图2,过点D 作//DH y 轴交直线l 于H ,过E 作//EK y 轴交直线l 于K , 则312(,)55H m m --,312(,)55K m m --, ∴2231217124()5555DH m m m m m =-----=--+,2231217124()5555EK m m m m m =+--=++,∵2DE EM = ∴13ME MD =, ∵//DH y 轴,//EK y 轴 ∴//DH EK ∴MEK ∆∽MDH ∆ ∴13EK ME DH MD ==,即3DH EK = ∴22171217123()5555m m m m --+=++ 解得:13m =-,225m =-, ∵2m <-∴m 的值为:﹣3;(3)由(2)知:3m =-,∴(3,3)D -,(3,3)E -,OE =,如图3,连接BG ,在ABG ∆中,∵222(14)(30)18AB =-++-=,22BG =,220AG =∴222AB BG AG +=∴ABG ∆是直角三角形,90ABG ∠=, ∴1tan 3BG GAB AB ∠===, ∵DEP GAB ∠=∠ ∴1tan tan 3DEP GAB ∠=∠=, 在x 轴下方过点O 作OH OE ⊥,在OH上截取13OH OE == 过点E 作ET y ⊥轴于T ,连接EH 交抛物线C 于点P ,点P 即为所求的点; ∵(3,3)E -, ∴45EOT ∠= ∵90EOH ∠= ∴45HOT ∠=∴(1,1)H --,设直线EH 解析式为y px q =+,则331p q p q +=-⎧⎨-+=-⎩,解得1232p q ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EH 解析式为1322y x =--, 解方程组213224y x y x x ⎧=--⎪⎨⎪=--⎩,得117458x y ⎧--=⎪⎪⎨⎪=⎪⎩,227458x y ⎧-+=⎪⎪⎨⎪=-⎪⎩, ∴点P 的横坐标为:试题第26页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【点睛】本题考查了二次函数图象和性质,待定系数法求函数解析式,旋转变换,相似三角形判定和性质,直线与抛物线交点,解直角三角形等知识点;属于中考压轴题型,综合性强,难度较大. 评卷人 得分三、填空题21.分解因式:244m m -+=_____.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】2(2)m - 【解析】 【分析】原式利用完全平方公式分解即可. 【详解】原式2(2)m =-,故答案为:2(2)m - 【点睛】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键. 22.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于_____.【答案】13. 【解析】 【分析】首先确定在图中红色区域的面积在整个面积中占的比例,根据这个比例即可求出指针落在红色区域的概率. 【详解】由于一个圆平均分成6个相等的扇形,而转动的转盘又是自由停止的, 所以指针指向每个扇形的可能性相等,即有8种等可能的结果,在这6种等可能结果中,指针指向红色部分区域的有2种可能结果,所以指针落在红色区域的概率是2163=; 故答案为13. 【点睛】此题考查了概率公式,用到的知识点为:概率=相应的面积与总面积之比. 23.一个n 边形的内角和是720°,则n =_____. 【答案】6试题第28页,总31页【解析】 【分析】多边形的内角和可以表示成(n-2)•180°,依此列方程可求解. 【详解】 依题意有:(n ﹣2)•180°=720°, 解得n =6. 故答案为:6. 【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理. 24.代数式213x -与代数式32x -的和为4,则x =_____. 【答案】﹣1. 【解析】 【分析】根据题意列出方程,求出方程的解即可得到x 的值. 【详解】 根据题意得:213243x x -+-=, 去分母得:219612x x -+-=, 移项合并得:44x -=, 解得:1x =-, 故答案为:﹣1. 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中1l 、2l 分别表示去年、今年水费y (元)与用水量x (3m )之间的关系.小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多_____元.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】210. 【解析】 【分析】根据函数图象中的数据可以求得120x >时,2l 对应的函数解析式,从而可以求得150x =时对应的函数值,由1l 的的图象可以求得150x =时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决. 【详解】设当120x >时,2l 对应的函数解析式为y kx b =+,120480160720k b k b +=⎧⎨+=⎩,得6240k b =⎧⎨=-⎩, 即当120x >时,2l 对应的函数解析式为6240y x =-, 当150x =时,6150240660y =⨯-=,由图象可知,去年的水价是4801603÷=(元/3m ),故小雨家去年用水量为1503m ,需要缴费:1503450⨯=(元), 660450210-=(元), 即小雨家去年用水量为1503m ,若今年用水量与去年相同,水费将比去年多210元, 故答案为:210. 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE为折痕,连接EF 并延长交BM 于点P ,若8AD =,5AB =,则线段PE 的长等于试题第30页,总31页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………_____.【答案】203. 【解析】 【分析】根据折叠可得ABNM 是正方形,5CD CF ==,90D CFE ∠=∠=,ED EF =,可求出三角形FNC 的三边为3,4,5,在Rt MEF ∆中,由勾股定理可以求出三边的长,通过作辅助线,可证FNC ∆∽PGF ∆,三边占比为3:4:5,设未知数,通过PG HN =,列方程求出待定系数,进而求出PF 的长,然后求PE 的长. 【详解】过点P 作PG FN ⊥,PH BN ⊥,垂足为G 、H , 由折叠得:ABNM 是正方形,5AB BN NM MA ====,5CD CF ==,90D CFE ∠=∠=,ED EF =,∴853NC MD ==-=,在Rt FNC ∆中,23534FN =-=, ∴541MF =-=,在Rt MEF ∆中,设EF x =,则3ME x =-,由勾股定理得,2221(3)x x +-=,解得:53x =, ∵90CFN PFG ∠+∠=,90PFG FPG ∠+∠=, ∴FNC ∆∽PGF ∆,∴::::3:4:5FG PG PF NC FN FC ==, 设3FG m =,则4PG m =,5PF m =,∴43GN PH BH m ===-,5(43)134HN m m PG m =--=+==, 解得:1m =,试题第31页,总31页 …………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○………… ∴55PF m ==, ∴520533PE PF FE =+=+=, 故答案为:203. 【点睛】 考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目. 27.解不等式组53291032x x x x -≤+⎧⎪⎨+>⎪⎩,并写出它的所有整数解. 【答案】原不等式组的所有整数解为3、4. 【解析】 【分析】 先求出不等式的解集,再求出不等式组的解集,即可得出答案. 【详解】 53291032x x x x -≤+⎧⎪⎨+>⎪⎩①② 解①得:4x ≤; 解②得:2x >; ∴原不等式组的解集为24x <≤; ∴原不等式组的所有整数解为3、4. 【点睛】 本题考查了解一元一次不等式组,一元一次不等式的应用,解此题的关键是能根据不等式的解集求出不等式组的解集.。
2020年年江苏省扬州市数学中考试题(解析版)
扬州市2020年初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号.3.所有的试题都必须在考用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效.4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答填卡相应位置上)1.的相反数是( )A .2 B . C . D .【答案】B .【考点】相反数。
【分析】利用绝对值的定义,直接得出结果。
2.下列计算正确的是( )A . B .C . D .【答案】C .【考点】积的乘方和幂的乘方运算法则。
【分析】利用积的乘方和幂的乘方运算法则,直接得出结果。
3.下列调查,适合用普查方式的是( )A .了解一批炮弹的杀伤半径B .了解扬州电视台《关注》栏目的收视率C.了解长江中鱼的种类 D .了解某班学生对“扬州精神”的知晓率【答案】D .【考点】普查方式的适用。
【分析】根据普查方式的适用范围,直接得出结果。
4.已知相交两圆的半径分别为4和7,则它们的圆心距可能是( )A .2 B .3 C .6 D .11【答案】C .【考点】两圆的位置与圆心距的关系。
【分析】根据两圆的位置与圆心距的关系知,相交两圆的圆心距在两圆的半径的差跟和之间,从而所求圆心距在3和11 之间,因此得出结果。
5.如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是( )12-122-12-236a a a =·()()2222a b a b a b+-=-()2326aba b =523a a -=【答案】A .【考点】三视图。
2020年四川省德阳市中考数学试题(教师版含解析)
2020年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(4分)的相反数是()A.3B.﹣3C.D.【分析】在一个数前面放上“﹣”,就是该数的相反数.【解答】解:的相反数为﹣.故选:D.2.(4分)下列运算正确的是()A.a2•a3=a6B.(3a)3 =9a3C.3a﹣2a=1D.(﹣2a2)3=﹣8a6【分析】利用同底数幂的乘法法则、积的乘方运算法则、合并同类项法则分别进行计算即可.【解答】解:A、a2•a3=a5,故原题计算错误;B、(3a)3 =27a3,故原题计算错误;C、3a﹣2a=a,故原题计算错误;D、(﹣2a2)3=﹣8a6,故原题计算正确;故选:D.3.(4分)如图所示,直线EF∥GH,射线AC分别交直线EF、GH于点B和点C,AD⊥EF 于点D,如果∠A=20°,则∠ACG=()A.160°B.110°C.100°D.70°【分析】利用三角形的内角和定理,由AD⊥EF,∠A=20°可得∠ABD=70°,由平行线的性质定理可得∠ACH,易得∠ACG.【解答】解:∵AD⊥EF,∠A=20°,∴∠ABD=180°﹣∠A﹣∠ABD=180°﹣20°﹣90°=70°,∵EF∥GH,∴∠ACH=∠ABD=70°,∴∠ACG=180°﹣∠ACH=180°﹣70°=110°,故选:B.4.(4分)下列说法错误的是()A.方差可以衡量一组数据的波动大小B.抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度C.一组数据的众数有且只有一个D.抛掷一枚图钉针尖朝上的概率,不能用列举法求得【分析】根据各个选项中的说法,可以判断是否正确,从而可以解答本题.【解答】解:方差可以衡量一组数据的波动大小,故选项A正确;抽样调查抽取的样本是否具有代表性,直接关系对总体估计的准确程度,故选项B正确;一组数据的众数有一个或者几个,故选项C错误;抛掷一枚图钉针尖朝上的概率,不能用列举法求得,故选项D正确;故选:C.5.(4分)多边形的内角和不可能为()A.180°B.540°C.1080°D.1200°【分析】多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的倍数,由此即可求出答案.【解答】解:因为在这四个选项中不是180°的倍数的只有1200°.故选:D.6.(4分)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【解答】解:这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C.7.(4分)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a【分析】根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=R.四边形的边心距为b=R×cos45°=R,正六边形的边心距为c=R×cos30°=R.∵R R R,∴c<b<a,故选:D.8.(4分)已知函数y=,当函数值为3时,自变量x的值为() A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣【分析】根据分段函数的解析式分别计算,即可得出结论.【解答】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,故选:A.9.(4分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【解答】解:这个几何体的表面积=π•22+π•3•2+2π•2•2=18π,故选:B.10.(4分)如图,Rt△ABC中,∠A=30°,∠ABC=90°.将Rt△ABC绕点B逆时针方向旋转得到△A'BC'.此时恰好点C在A'C'上,A'B交AC于点E,则△ABE与△ABC的面积之比为()A.B.C.D.【分析】由旋转的性质得出BC=BC',∠ACB=∠A'C'B=60°,则△BCC'是等边三角形,∠CBC'=60°,得出∠BEA=90°,设CE=a,则BE=a,AE=3a,求出,可求出答案.【解答】解:∵∠A=30°,∠ABC=90°,∴∠ACB=60°,∵将Rt△ABC绕点B逆时针方向旋转得到△A'BC',∴BC=BC',∠ACB=∠A'C'B=60°,∴△BCC'是等边三角形,∴∠CBC'=60°,∴∠ABA'=60°,∴∠BEA=90°,设CE=a,则BE=a,AE=3a,∴,∴,∴△ABE与△ABC的面积之比为.故选:D.11.(4分)已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2B.2﹣2C.2+2D.2【分析】根据等腰直角三角形的性质得到斜边AB=4,由已知条件得到点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,于是得到结论.【解答】解:∵等腰直角三角形ABC的腰长为4,∴斜边AB=4,∵点P为该平面内一动点,且满足PC=2,∴点P在以C为圆心,PC为半径的圆上,当点P在斜边AB的中线上时,PM的值最小,∵△ABC是等腰直角三角形,∴CM=AB=2,∵PC=2,∴PM=CM﹣CP=2﹣2,故选:B.12.(4分)已知不等式ax+b>0的解集为x<2,则下列结论正确的个数是()(1)2a+b=0;(2)当c>a时,函数y=ax2+bx+c的图象与x轴没有公共点;(3)当c>0时,抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方;(4)如果b<3且2a﹣mb﹣m=0,则m的取值范围是﹣<m<0.A.1B.2C.3D.4【分析】由不等式的解集得出a<0,﹣=2,即b=﹣2a,从而得出2a+b=0,即可判断(1);根据△=4a(a﹣c)>0即可判断(2);求得抛物线的顶点为(1,a﹣c)即可判断(3);求得0<﹣<3,得出不等式组的解集为﹣<m<0即可判断(4).【解答】解:(1)∵不等式ax+b>0的解集为x<2,∴a<0,﹣=2,即b=﹣2a,∴2a+b=0,故结论正确;(2)函数y=ax2+bx+c中,令y=0,则ax2+bx+c=0,∵即b=﹣2a,∴△=b2﹣4ac=(﹣2a)2﹣4ac=4a(a﹣c),∵a<0,c>a,∴△=4a(a﹣c)>0,∴当c>a时,函数y=ax2+bx+c的图象与x轴有两个公共点,故结论错误;(3)∵b=﹣2a,∴﹣=1,==c﹣a,∴抛物线y=ax2+bx+c的顶点为(1,c﹣a),当x=1时,直线y=ax+b=a+b=a﹣2a=﹣a>0当c>0时,c﹣a>﹣a>0,∴抛物线y=ax2+bx+c的顶点在直线y=ax+b的上方,故结论正确;(4)∵b=﹣2a,∴由2a﹣mb﹣m=0,得到﹣b﹣mb﹣m=0,∴b=﹣,如果b<3,则0<﹣<3,∴﹣<m<0,故结论正确;故选:C.二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13.(4分)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是9.75.【分析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.14.(4分)把ax2﹣4a分解因式的结果是a(x+2)(x﹣2).【分析】先提出公因式a,再利用平方差公式因式分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).故答案为:a(x+2)(x﹣2).15.(4分)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=2.【分析】根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB =CE,利用等腰三角形的性质可怎么BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.【解答】解:在平行四边形ABCD中,AB∥CD,∴∠ABE=∠BEC.∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠BEC,∴CB=CE.∵CF⊥BE,∴BF=EF.∵G是AB的中点,∴GF是△ABE的中位线,∴GF=BE,∵BE=4,∴GF=2.故答案为2.16.(4分)将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m组第n个数字,则m+n=65.【分析】根据题目中数字的特点,可知每组的个数依次增大,每组中的数字都是连续的偶数,然后即可求出2020是多少组第多少个数,从而可以得到m、n的值,然后即可得到m+n的值.【解答】解:∵将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,∴第m组有m个连续的偶数,∵2020=2×1010,∴2020是第1010个偶数,∵1+2+3+…+44==990,1+2+3+…+45==1035,∴2020是第45组第1010﹣990=20个数,∴m=45,n=20,∴m+n=65,故答案为:65.17.(4分)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是s≥9.【分析】由已知等式表示出y2,代入s中利用二次函数最值即可确定出s范围.【解答】解:由x+y2=3,得:y2=﹣x+3≥0,∴x≤3,代入得:s=x2+8y2=x2+8(﹣x+3)=x2﹣8x+24=(x﹣4)2+8,当x=3时,s=(3﹣4)2+8=9,∴s≥9;故答案为:s≥9.18.(4分)如图,海中有一小岛A,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B点测得小岛A在北偏东60°方向上,航行12海里到达D点,这时测得小岛A在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行 4.5海里就开始有触礁的危险.【分析】过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等角对等边得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AC即可.【解答】解:只要求出A到BD的最短距离是否在以A为圆心,以10.5海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°﹣30°=30°,∠ABD=90°﹣60°=30°,∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD=AD=6海里,由勾股定理得:AC==6(海里),如图,设渔船还需航行x海里就开始有触礁的危险,即到达点D′时有触礁的危险,在直角△AD′C中,由勾股定理得:(6﹣x)2+(6)2=10.52.解得x=4.5.渔船还需航行4.5海里就开始有触礁的危险.故答案是:4.5.三、解答题(本大题共7小题,共78分.答应写出文字说明、证明过程或推演步骤) 19.(7分)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°=﹣2++1﹣2﹣2×=﹣2.20.(8分)如图,四边形ABCD为矩形,G是对角线BD的中点.连接GC并延长至F,使CF=GC,以DC,CF为邻边作菱形DCFE,连接CE.(1)判断四边形CEDG的形状,并证明你的结论.(2)连接DF,若BC=,求DF的长.【分析】(1)证出GB=GC=GD=CF,由菱形的性质的CD=CF=DE,DE∥CG,则DE =GC,证出四边形CEDG是平行四边形,进而得出结论;(2)过点G作GH⊥BC于H,设DF交CE于点N,由等腰三角形的性质得CH=BH=BC=,证出△CDG是等边三角形,得∠GCD=60°,由三角函数定义求出CG=1,则CD=1,由菱形的性质得DN=FN,CN⊥DF,∠DCE=∠FCE=60°,由三角函数定义求出DN=,则DF=2DN=.【解答】解:(1)四边形CEDG是菱形,理由如下:∵四边形ABCD为矩形,G是对角线BD的中点,∴GB=GC=GD,∵CF=GC,∴GB=GC=GD=CF,∵四边形DCFE是菱形,∴CD=CF=DE,DE∥CG,∴DE=GC,∴四边形CEDG是平行四边形,∵GD=GC,∴四边形CEDG是菱形;(2)过点G作GH⊥BC于H,设DF交CE于点N,如图所示:∵CD=CF,GB=GD=GC=CF,∴CH=BH=BC=,△CDG是等边三角形,∴∠GCD=60°,∴∠DCF=180°﹣∠GCD=180°﹣60°=120°,∵四边形ABCD为矩形,∴∠BCD=90°,∴∠GCH=90°﹣60°=30°,∴CG===1,∴CD=1,∵四边形DCFE是菱形,∴DN=FN,CN⊥DF,∠DCE=∠FCE=∠DCF=×120°=60°,在Rt△CND中,DN=CD•sin∠DCE=1×sin60°=1×=,∴DF=2DN=2×=.21.(13分)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【分析】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m和n 的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.【解答】解:(1)本次参与调查的学生人数为:20÷5%=400(人),m=400×45%=180,∵400﹣20﹣60﹣180=140,∴n=140÷400×100%=35%;(2)5600×=1120(人),即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P(小明参加)==,P(小亮参加)=1﹣=,∵≠,∴这个游戏规则不公平.22.(11分)如图,一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A的横坐标为2,点B的纵坐标为1.(1)求a,b的值.(2)在反比例y2=第三象限的图象上找一点P,使点P到直线AB的距离最短,求点P的坐标.【分析】(1)首先确定A,B两点坐标,再利用待定系数法求解即可.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,构建方程组把问题转化为一元二次方程,利用判别式=0,构建方程求解即可.【解答】解:(1)∵一次函数y1=ax+b与反比例函数y2=的图象交于A、B两点.点A 的横坐标为2,点B的纵坐标为1,∴A(2,2),B(4,1),则有,解得.(2)过点P作直线PM∥AB,当直线PM与反比例函数只有一个交点时,点P到直线AB的距离最短,设直线PM的解析式为y=﹣x+n,由,消去y得到,x2﹣2nx+8=0,由题意,△=0,∴4n2﹣32=0,∴n=﹣2或2(舍弃),解得,∴P(﹣2,﹣).23.(12分)推进农村土地集约式管理,提高土地的使用效率是新农村建设的一项重要举措.某村在小城镇建设中集约了2400亩土地,计划对其进行平整.经投标,由甲乙两个工程队来完成平整任务.甲工程队每天可平整土地45亩,乙工程队每天可平整土地30亩.已知乙工程队每天的工程费比甲工程队少500元,当甲工程队所需工程费为12000元,乙工程队所需工程费为9000元时,两工程队工作天数刚好相同.(1)甲乙两个工程队每天各需工程费多少元?(2)现由甲乙两个工程队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过110000元.①甲乙两工程队分别工作的天数共有多少种可能?②写出其中费用最少的一种方案,并求出最低费用.【分析】(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,构建方程求解即可.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②把问题转化为不等式解决即可.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,利用函数的性质解答即可.【解答】解:(1)设甲每天需工程费x元、乙工程队每天需工程费(x﹣500)元,由题意,=,解得x=2000,经检验,x=2000是分式方程的解.答:甲每天需工程费2000元、乙工程队每天需工程费1500元.(2)①设甲平整x天,则乙平整y天.由题意,45x+30y=2400 ①,且2000x+1500y≤110000 ②,由①得到y=80﹣1.5x③,把③代入②得到,2000x+1500(80﹣1.5x)≤110000,解得,x≥40,∵y>0,∴80﹣1.5x>0,x<53.3,∴40≤x<53.3,∵x,y是正整数,∴x=40,y=20或x=42,y=17或x=44,y=14或x=46,y=11或x=48,y=8,或x =50,y=5或x=52,y=2.∴甲乙两工程队分别工作的天数共有7种可能.②总费用w=2000x+1500(80﹣1.5x)=﹣250x+120000,∵﹣250<0,∴w随x的增大而减小,∴x=52时,w的最小值=107000(元).答:最低费用为107000元.24.(13分)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.【分析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出=,证明△P AN∽△OAP,推出=,推出=可得结论.【解答】(1)证明:如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:∵CD⊥AB,∴P A=PB,∵OA=OB,OP=OP,∴△P AO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM===3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴=,∴=,∴OP=,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴=,∴=,∴PN=.(3)证明:∵PD=PH,∴∠PDH=∠PHD,∵∠PDH=∠POA+∠OND,∠PHD=∠APN+∠PND,∴∠POA+∠APO=90°,∠APN+∠APO=90°,∴∠POA=∠ANP,∴∠ANH=∠PND,∵∠PDN=∠PHD=∠AHN,∴△NAH∽△NPD,∴=,∵∠APN=∠POA,∠P AN=∠P AO=90°,∴△P AN∽△OAP,∴=,∴=,∴==,∴AH•OP=HP•AP.25.(14分)如图1,抛物线y=ax2﹣2ax﹣3a(a≠0)与x轴交于点A,B.与y轴交于点C.连接AC,BC.已知△ABC的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由.【分析】(1)先将抛物线解析式变形,可得A和B的坐标,从而得AB=1+3=4,根据三角形ABC的面积为2可得OC的长,确定点C的坐标,根据点C的坐标,利用待定系数法即可求出二次函数的解析式;(2)设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解方程可得P和Q两点的坐标,从而得G和H的坐标,再利用正方形的性质可得出关于m的方程,解之即可得出结论;(3)设点D(n,﹣n2+n+1),利用待定系数法求直线AD和BD的解析式,表示FN和OK的长,直接代入计算可得结论.【解答】解:(1)如图1,y=ax2﹣2ax﹣3a=a(x2﹣2x﹣3)=a(x﹣3)(x+1),∴A(﹣1,0),B(3,0),∴AB=4,∵△ABC的面积为2,即,∴,∴OC=1,∴C(0,1),将C(0,1)代入y=ax2﹣2ax﹣3a,得:﹣3a=1,∴a=﹣,∴该二次函数的解析式为y=﹣x2+x+1;(2)如图2,设点P的纵坐标为m,当y=m时,﹣x2+x+1=m,解得:x1=1+,x2=1﹣,∴点P的坐标为(1﹣,m),点Q的坐标为(1+,m),∴点G的坐标为(1﹣,0),点H的坐标为(1+,0),∵矩形PGHQ为正方形,∴1+﹣(1﹣)=m,解得:m1=﹣6﹣2,m2=﹣6+2,∴当四边形PGHQ为正方形时,边长为6+2或2﹣6;(3)如图3,设点D(n,﹣n2+n+1),延长BD交y轴于K,∵A(﹣1,0),设AD的解析式为:y=kx+b,则,解得:,∴AD的解析式为:y=(﹣)x﹣,当x=2时,y=﹣n+2﹣n+1=﹣n+3,∴F(2,3﹣n),∴FN=3﹣n,同理得直线BD的解析式为:y=(﹣)x+n+1,∴K(0,n+1),∴OK=n+1,∵N(2,0),B(3,0),∴,∵EN∥OK,∴,∴OK=3EN,∴3EN+FN=OK+FN=n+1+3﹣n=4,∴在点D运动过程中,3NE+NF为定值4.。
2020年浙江温州中考数学试卷及答案(word解析版)
2020温州市中考数学解析版数学说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
题序一二三四五六七八总分得分(满分:150分考试时间120分钟)一、选择题(本题有10小题,每个小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选均不给分)(2020浙江温州市,1,4分)计算:(-2)×3的结果是()A.-6 B.-1 C.1 D.6【答案】A(2020浙江温州市,2,4分)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图. 由图可知,该班同学最喜欢的球类项目是()A.羽毛球 B.乒乓球 C .排球 D.篮球【答案】D(2020浙江温州市,3,4分)下列个图中,经过折叠能围成一个立方体的是()【答案】A(2020浙江温州市,4,4分)下列各组数可能是一个三角形的边长的是( )A .1,2,4 B.4,5,9 C.4,6,8 D.5,5,11 【答案】C(2020浙江温州市,5,4分)若分式43+-x x 的值为0,则x 的值是( ) A .x =3 B.x =0 C.x =-3 D.x =-4 【答案】A(2020浙江温州市,6,4分)已知点P (1,-3)在反比例函数)0(≠=k xky 的图象上,则k 的值是( )A.3B.-3C.31 D.31- 【答案】B(2020浙江温州市,7,4分)如图,在⊙O 中,OC ⊥弦AB 于点C ,AB =4,OC =1,则OB 的长是( )A.3B.5C.15D.17【答案】B(2020浙江温州市,8,4分)如图,在△ABC 中,∠C =90°,AB =5,BC =3,则sinA 的值是( )A .43 B.34 C.53 D.54【答案】C(2020浙江温州市,9,4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC .已知AE =6,34AD DB =,则EC 的长是( )A.4.5B.8C.10.5D.14 【答案】B(2020浙江温州市,10,4分)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示,若AB =4,AC =2,12-S 4S π=,则S 3-S 4的值是( )A.429π B.423πC.411πD.45π【答案】D二、填空题(本题有6小题,每小题5分,共30分)(2020浙江温州市,11,5分)因式分解:m 2-5m = . 【答案】m (m-5)(2020浙江温州市,12,5分)在演唱比赛中,5位评委给一位歌手打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均分是 分. 【答案】8.0(2020浙江温州市,13,5分)如图,直线a ,b 被直线c 所截. 若a ∥b ,∠1=40°,∠2=70°,则∠3= 度.【答案】110(2020浙江温州市,14,5分)方程x 2-2x -1=0的解是 . 【答案】21,2121-=+=x x(2020浙江温州市,15,5分)如图,在平面直角坐标系中△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴. 将△ABC 以y 轴为对称轴对称变换,得到△A′B′C′(A 和A ′,B 和B′,C 和C ′分别是对应顶点).直线y =x +b 经过点A ,C ′,则点C ′的坐标是 .【答案】(1,3)(2020浙江温州市,16,5分)一块矩形木板,它的右上角有一个圆洞. 现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上,木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关的数据(单位:cm )后,从点N 沿折线NF —FM (NF ∥BC ,FM ∥AB )切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠,无缝隙,不计损耗),则CN ,AM 的长分别是 .【答案】18cm ,31cm三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程) (2020浙江温州市,17(1),5分)计算:0211-28)()(++ 解:0211-28)()(++=22+(2-1)+1=32.(2020浙江温州市,17(2),5分)化简:(1+a )(1-a )+a (a -3) 解:(1+a )(1-a )+a (a -3)=1-a 2+a 2-3a =1-3a .(2020浙江温州市,18,8分)如图,在△ABC 中,∠C =90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E .(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.(1)证明1:∵AD平分∠CAB.∴∠CAD=∠EAD.∵DE⊥AB, ∠C=90°,∴∠ACD=∠AED=90°.又∵AD=AD,∴△ACD≌△AED(AAS).证明2:∵∠C=90°,∴AC⊥CD,∵DE⊥AB,∴CD=DE,∵AD=AD,∴△ACD≌△AED(HL).(2)解:∵△ACD≌△AED∴DE=CD=1.∵∠B=30°, ∠DEB=90°,∴BD=2DE=2.(2020浙江温州市,19,9分)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部..,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部..,在图乙中画出示意图.解:(1)答案如图示:(2)答案如图示:(2020浙江温州市,20,10分)如图,抛物线y=a(x-1)2+4与x轴交于点A,B,与y轴交于点C. 过点C作CD∥x轴交抛物线的对称轴于点D,连结BD. 已知点A的坐标为(-1,0).(1)求抛物线的解析式; (2)求梯形COBD 的面积.解:(1)把A (-1,0)代入y =a (x -1)2+4, 得0=4a +4, ∴a =-1,∴y =-(x -1)2+4. (2)令x =0,得y =3, ∴OC =3.∵抛物线y=-(x -1)2+4的对称轴是直线x =1, ∴CD =1. ∵A (-1,0) ∴B (3,0), ∴OB =3. ∴.623)31(=⨯+=COBD S 梯形(2020浙江温州市,21,10分)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于31。
2020年浙江省绍兴市中考数学试卷含答案解析
2020年浙江省绍兴市中考数学试卷一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,﹣2,中,为负数的是()A.2B.0C.﹣2D.2.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.0.202×1010B.2.02×109C.20.2×108D.2.02×1083.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.4.如图.点A,B,C,D,E均在⊙O上.∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm6.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.78.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形9.如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km二、填空题(本大题有6小题,每小题5分,共30分)11.分解因式:1﹣x2=.12.若关于x,y的二元一次方程组的解为,则多项式A可以是(写出一个即可).13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为.14.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2,则m的值为.15.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.16.将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的(填序号).①,②1,③﹣1,④,⑤.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:﹣4cos45°+(﹣1)2020.(2)化简:(x+y)2﹣x(x+2y).18.(8分)如图,点E是▱ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2.求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验.并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?20.(8分)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC 上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m.参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(12分)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.23.(12分)如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC 为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)24.(14分)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O 逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.2020年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,﹣2,中,为负数的是()A.2B.0C.﹣2D.解:实数2,0,﹣2,中,为负数的是﹣2,故选:C.2.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.0.202×1010B.2.02×109C.20.2×108D.2.02×108解:2020000000=2.02×109,故选:B.3.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.4.如图.点A,B,C,D,E均在⊙O上.∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°解:连接BE,∵∠BEC=∠BAC=15°,∠CED=30°,∴∠BED=∠BEC+∠CED=45°,∴∠BOD=2∠BED=90°.故选:D.5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cm C.8cm D.3.2cm解:设投影三角尺的对应边长为xcm,∵三角尺与投影三角尺相似,∴8:x=2:5,解得x=20.故选:A.6.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.B.C.D.解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:;故选:C.7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4B.5C.6D.7解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.8.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.9.如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠P AH的度数()A.随着θ的增大而增大B.随着θ的增大而减小C.不变D.随着θ的增大,先增大后减小解:∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,∴BC=BP=BA,∴∠BCP=∠BPC,∠BP A=∠BAP,∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BP A=180°,∠ABP+∠CBP=90°,∴∠BPC+∠BP A=135°=∠CP A,∵∠CP A=∠AHC+∠P AH=135°,∴∠P AH=135°﹣90°=45°,∴∠P AH的度数是定值,故选:C.10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km.它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.故选:B.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:1﹣x2=(1+x)(1﹣x).解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).12.(5分)若关于x,y的二元一次方程组的解为,则多项式A可以是答案不唯一,如x﹣y(写出一个即可).解:∵关于x,y的二元一次方程组的解为,而1﹣1=0,∴多项式A可以是答案不唯一,如x﹣y.故答案为:答案不唯一,如x﹣y.13.(5分)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为4.解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,故直角三角形的另一条直角边长为:=,故阴影部分的面积是:=4,故答案为:4.14.(5分)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2,则m的值为2或2.解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=,当点D、B在AC的两侧时,如图,∵BD=2,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2,∴D′E=3,∴AD′==2,∴m=2,综上所述,m的值为2或2,故答案为:2或2.15.(5分)有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是100或85元.解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为:100或85.16.(5分)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的①②③④(填序号).①,②1,③﹣1,④,⑤.解:如图所示:则其中一个等腰三角形的腰长可以是①,②1,③﹣1,④,不可以是.故答案为:①②③④.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:﹣4cos45°+(﹣1)2020.(2)化简:(x+y)2﹣x(x+2y).解:(1)原式=2﹣4×+1=2﹣2+1=1;(2)(x+y)2﹣x(x+2y)=x2+2xy+y2﹣x2﹣2xy=y2.18.(8分)如图,点E是▱ABCD的边CD的中点,连结AE并延长,交BC的延长线于点F.(1)若AD的长为2.求CF的长.(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.解:(1)∵四边形ABCD是平行四边形,∴AD∥CF,∴∠DAE=∠CFE,∠ADE=∠FCE,∵点E是CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS),∴CF=AD=2;(2)∵∠BAF=90°,添加一个条件:当∠B=60°时,∠F=90°﹣60°=30°(答案不唯一).19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验.并将所得数据绘制成如图统计图表.4月份生产的羽毛球重量统计表组别重量x(克)数量(只)A x<5.0mB 5.0≤x<5.1400C 5.1≤x<5.2550D x≥5.230(1)求表中m的值及图中B组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?解:(1)550÷55%=1000(只),1000﹣400﹣550﹣30=20(只)即:m=20,360°×=144°,答:表中m的值为20,图中B组扇形的圆心角的度数为144°;(2)+==95%,12×10×(1﹣95%)=120×5%=6(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.20.(8分)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?解:(1)观察图象可知:x=7,y=2.75这组数据错误.(2)设y=kx+b,把x=1,y=0.75,x=2,y=1代入可得,解得,∴y=x+,当x=16时,y=4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC 上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∠AFE的度数和棚宽BC的长.(2)当∠AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m.参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)解:(1)∵AE=EF=AF=1,∴△AEF是等边三角形,∴∠AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵△AEF是等边三角形,∴AK=,∴FK==,∴FM=2FK=,∴BC=4FM=4≈6.92≈6.9(m);(2)∵∠AFE=74°,∴∠AFK=37°,∴KF=AF•cos37°≈0.80,∴FM=2FK=1.60,∴BC=4FM=6.40<6.92,6.92﹣6.40=0.5,答:当∠AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.22.(12分)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠AED=2∠C,①∵∠BAE=90°,∴∠BAD=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.23.(12分)如图1,排球场长为18m,宽为9m,网高为2.24m.队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m.即BA=2.88m.这时水平距离OB=7m,以直线OB为x轴,直线OC 为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.64>0,故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,y=﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.24.(14分)如图1,矩形DEFG中,DG=2,DE=3,Rt△ABC中,∠ACB=90°,CA=CB=2,FG,BC的延长线相交于点O,且FG⊥BC,OG=2,OC=4.将△ABC绕点O 逆时针旋转α(0°≤α<180°)得到△A′B′C′.(1)当α=30°时,求点C′到直线OF的距离.(2)在图1中,取A′B′的中点P,连结C′P,如图2.①当C′P与矩形DEFG的一条边平行时,求点C′到直线DE的距离.②当线段A′P与矩形DEFG的边有且只有一个交点时,求该交点到直线DG的距离的取值范围.解:(1)如图1中,过点C′作C′H⊥OF于H.∵∠HC′O=α=30°,∴C′H=C′O•cos30°=2,∴点C′到直线OF的距离为2.(2)①如图2中,当C′P∥OF时,过点C′作C′M⊥OF于M.∵C′P∥OF,∴∠O=180°﹣∠OC′P=45°,∴△OC′M是等腰直角三角形,∵OC′=4,∴C′M=2,∴点C′到直线DE的距离为2.如图3中,当C′P∥DG时,过点C′作C′N⊥FG于N.同法可证△OC′N是等腰直角三角形,∴′N=2,∴点C′到直线DE的距离为2+2.②设d为所求的距离.第一种情形:如图4中,当点A′落在DE上时,连接OA′,延长ED交OC于M.∵OA′=2,OM=2,∠OMA′=90°,∴A′M===4,∴A′D=2,即d=2,如图5中,当点P落在DE上时,连接OP,过点P作PQ⊥C′B′于Q.∵PQ=1,OQ=5,∴OP==,∴PM==,∴PD=﹣2,∴d=﹣2,∴2≤d≤﹣2.第二种情形:当A′P与FG相交,不与EF相交时,当点A′在FG上时,A′G=2﹣2,即d=2﹣2,如图6中,当点P落在EF上时,设OF交A′B′于Q,过点P作PT⊥B′C′于T,过点P作PR∥OQ交OB′于R,连接OP.∵OP=,OF=5,∴FP===1,∵OF=OT,PF=PT,∠F=∠PTO=90°,∴Rt△OPF≌Rt△OPT(HL),∴∠FOP=∠TOP,∵PQ∥OQ,∴∠OPR=∠POF,∴∠OPR=∠POR,∴OR=PR,∵PT2+TR2=PR2,∴12+(5﹣PR)2=PR2,∴PR=2.6,RT=2.4,∵△B′PR∽△B′QO,∴=,∴=,∴OQ=,∴QG=OQ﹣OG=,即d=∴2﹣2≤d<,第三种情形:当A′P经过点F时,如图7中,显然d=3.综上所述,2≤d≤﹣2或d=3.。
2020年河南省中考数学试卷解析版
2020年河南省中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.2的相反数是()A. -2B. -C.D. 22.如图摆放的几何体中,主视图与左视图有可能不同的是()A. B. C. D.3.要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第一课》的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程4.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A. 100°B. 110°C. 120°D. 130°5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频文件的大小约为1GB,1GB等于()A. 230BB. 830BC. 8×1010BD. 2×1030B6.若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-的图象上,则y1,y2,y3的大小关系是()A. y1>y2>y3B. y2>y3>y1C. y1>y3>y2D. y3>y2>y17.定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为()A. 500(1+2x)=7500B. 5000×2(1+x)=7500C. 5000(1+x)2=7500D. 5000+5000(1+x)+5000(1+x)2=75009.如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A. (,2)B. (2,2)C. (,2)D. (4,2)10.如图,在△ABC中,AB=BC=,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A. 6B. 9C. 6D. 3二、填空题(本大题共5小题,共15.0分)11.写出一个大于1且小于2的无理数______.12.已知关于x的不等式组其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为______.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是______.14.如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为______.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为______.三、解答题(本大题共8小题,共75.0分)16.先化简,再求值:(1-)÷,其中a=+1.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501[整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量频数机器485≤x<490490≤x<495495≤x<500500≤x<505505≤x<510510≤x<515甲224741乙135731[分析数据]根据以上数据,得到以下统计量.统计量机器平均数中位数方差不合格率甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=______,b=______;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具--三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB 足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,______.求证:______.21.如图,抛物线y=-x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.小亮在学习中遇到这样一个问题:如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0CD/cm8.07.77.2 6.6 5.9a 3.9 2.40FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为的中点时,BD=5.0cm”.则上表中a的值是______;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF 为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D作DE垂直于直线BB′,垂足为点E,连接DB′,CE.(1)如图1,当α=60°时,△DEB′的形状为______,连接BD,可求出的值为______;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出的值.答案和解析1.【答案】A【解析】解:2的相反数是-2.故选:A.利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数的概念,正确把握定义是解题关键.2.【答案】D【解析】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.分别确定每个几何体的主视图和左视图即可作出判断.本题考查了简单几何体的三视图,确定三视图是关键.3.【答案】C【解析】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【答案】B【解析】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°-∠3=180°-70°=110°,故选:B.根据平行线的性质即可得到结论.此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.5.【答案】A【解析】解:由题意得:210×210×210B=210+10+10=230B,故选:A.列出算式,进行计算即可.本题考查同底数幂的乘法,底数不变,指数相加是计算法则.6.【答案】C【解析】解:∵点A(-1,y1)、B(2,y2)、C(3,y3)在反比例函数y=-的图象上,∴y1=-=6,y2=-=-3,y3=-=-2,又∵-3<-2<6,∴y1>y3>y2.故选:C.根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.7.【答案】A【解析】解:由题意可知:1☆x=x2-x-1=0,∴△=1-4×1×(-1)=5>0,故选:A.根据新定义运算法则以及即可求出答案.本题考查根的判别式,解题的关键是正确理解新定义运算法则,本题属于基础题型.8.【答案】C【解析】解:设我国2017年至2019年快递业务收入的年平均增长率为x,由题意得:5000(1+x)2=7500,故选:C.根据题意可得等量关系:2017年的快递业务量×(1+增长率)2=2019年的快递业务量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.9.【答案】B【解析】解:如图,设正方形D′C′O′E′是正方形OCDE沿x轴向右平移后的正方形,∵顶点A,B的坐标分别为(-2,6)和(7,0),∴AC=6,OC=2,OB=7,∴BC=9,∵四边形OCDE是正方形,∴DE=OC=OE=2,∴O′E′=O′C′=2,∵E′O′⊥BC,∴∠BO′E′=∠BCA=90°,∴E′O′∥AC,∴△BO′E′∽△BCA,∴=,∴=,∴BO′=3,∴OC′=7-2-3=2,∴当点E落在AB边上时,点D的坐标为(2,2),故选:B.根据已知条件得到AC=6,OC=2,OB=7,求得BC=9,根据正方形的性质得到DE=OC=OE=2,求得O′E′=O′C′=2,根据相似三角形的性质得到BO′=3,于是得到结论.本题考查了正方形的性质,坐标与图形性质,相似三角形的判定和性质,正确的识别图形是解题的关键.10.【答案】D【解析】解:连接BD交AC于O,∵AD=CD,AB=BC,∴BD垂直平分AC,∴BD⊥AC,AO=CO,∵AB=BC,∴∠ACB=∠BAC=30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=,∴AD=CD=AB=3,∴四边形ABCD的面积=2×=3,故选:D.连接BD交AC于O,根据已知条件得到BD垂直平分AC,求得BD⊥AC,AO=CO,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据等边三角形的性质得到∠DAC=∠DCA=60°,求得AD=CD=AB=3,于是得到结论.本题考查了含30°角的直角三角形,等腰三角形的性质,等边三角形的判定和性质,熟练掌握直角三角形的性质是解题的关键.11.【答案】【解析】解:大于1且小于2的无理数是,答案不唯一.故答案为:.由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.此题主要考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.【答案】x>a【解析】解:∵b<0<a,∴关于x的不等式组的解集为:x>a,故答案为:x>a.根据关于x的不等式组的解集表示在数轴上表示方法求出x的取值范围即可.本题考查的是在数轴上表示不等式组的解集,先根据题意得出不等式组的解集是解答此题的关键.13.【答案】【解析】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种,∴P(两次颜色相同)==,故答案为:.用树状图或列表法表示所有可能出现的结果,进而求出相应的概率.考查树状图或列表法求随机事件发生的概率,列举出所有可能出现的结果是解决问题的关键.14.【答案】1【解析】解:设DF,CE交于O,∵四边形ABCDA是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵OC2=OF•OD,∴OC==,∴HG===1,故答案为:1.设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据射影定理即可得到结论.本题考查了射影定理,勾股定理,正方形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.15.【答案】【解析】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′===2,的长l==,∴阴影部分周长的最小值为2+=.故答案为:.利用轴对称的性质,得出当点E移动到点E′时,阴影部分的周长最小,此时的最小值为弧CD的长与CD′的长度和,分别进行计算即可.本题考查与圆有关的计算,掌握轴对称的性质,弧长的计算方法是正确计算的前提,理解轴对称解决路程最短问题是关键.16.【答案】解:==a-1,把a=+1代入a-1=+1-1=.【解析】先根据分式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.【答案】501 5%【解析】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=1÷20=0.05=5%,故答案为:501,5%;(2)选择甲机器,理由:甲的不合格率较小,(1)根据中位数的计算方法,求出乙机器分装实际质量的中位数;乙机器的不合格的(2)根据合格率进行判断.本题考查中位数、众数、平均数的意义和计算方法,理解中位数、众数、平均数的意义是正确解答的关键.18.【答案】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°===0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6-12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.【解析】(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,于是得到BC=MN=16m,DE=CN=BM=1.6m,求得CE=AE,设AE=CE=x,得到BE=16+x,解直角三角形即可得到结论;(2)建议为:为了减小误差可以通过多次测量取平均值的方法.本题考查了解直角三角形的应用--仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.19.【答案】解:(1)∵y1=k1x+b过点(0,30),(10,180),∴,解得,k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时,选择方案一所需费用:y1=15×8+30=150(元),选择方案二所需费用:y2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.【解析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;二每次健身费用按八折优惠,求出k2的值;(3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y1、y2关于x 的函数解析式.20.【答案】AB=OB,EN切半圆O于F EB,EO就把∠MEN三等分【解析】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.根据垂直的定义得到∠ABE=∠OBE=90°,根据全等三角形的性质得到∠1=∠2,根据切线的性质得到∠2=∠3,于是得到结论.本题考查了切线的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.【答案】解:(1)∵抛物线y=-x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=-c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=-x2+2x+3,∵y=-x2+2x+3=-(x-1)2+4,∴顶点G为(1,4);(2)∵y=-x2+2x+3=-(x-1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为-2或4,点N的横坐标为6,∴点M坐标为(-2,-5)或(4,-5),点N坐标(6,-21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴-21≤y Q≤4.【解析】(1)先求出点B,点A坐标,代入解析式可求c的值,即可求解;(2)先求出点M,点N坐标,即可求解.本题考查了待定系数法求二次函数解析式,二次函数的性质,二次函数图象上点的坐标特征,熟练运用二次函数的性质解决问题是本题的关键.22.【答案】5【解析】解:(1)∵点D为的中点,∴=,∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.(1)①由=可求BD=CD=a=5cm;②由“AAS”可证△BAD≌△CAF,可得BD=CF,即可求解;(2)由题意可画出函数图象;(3)结合图象可求解.本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,动点问题的函数图象探究题,也考查了函数图象的画法,解题关键是数形结合.23.【答案】等腰直角三角形【解析】解:(1)∵AB绕点A逆时针旋转至AB′,∴AB=AB',∠BAB'=60°,∴△ABB'是等边三角形,∴∠BB'A=60°,∴∠DAB'=∠BAD-∠BAB'=90°-60°=30°,∵AB'=AB=AD,∴∠AB'D=∠ADB',∴∠AB'D==75°,∴∠DB'E=180°-60°-75°=45°,∵DE⊥B'E,∴∠B'DE=90°-45°=45°,∴△DEB'是等腰直角三角形.∵四边形ABCD是正方形,∴∠BDC=45°,∴,同理,∴,∵∠BDB'+∠B'DC=45°,∠EDC+∠B'DC=45°,∴BDB'=∠EDC,∴△BDB'∽△CDE,∴.故答案为:等腰直角三角形,.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°-,∵∠B'AD=α-90°,AD=AB',∴∠AB'D=135°-,∴∠EB'D=∠AB'D-∠AB'B=135°-=45°,∵DE⊥BB',∴△DEB'是等腰直角三角形,∴,∵四边形ABCD是正方形,∴,∠BDC=45°,∴,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴.②=3或1.若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D=B'E,由(2)①可知△BDB'∽△CDE,且BB'=CE.∴=+1=+1=+1=+1=3.若CD为平行四边形的一边,如图3,点E与点A重合,∴=1.综合以上可得=3或1.(1)由旋转的性质得出AB=AB',∠BAB'=60°,证得△ABB'是等边三角形,可得出△DEB'是等腰直角三角形.证明△BDB'∽△CDE,得出.(2)①得出∠EDB'=∠EB'D=45°,则△DEB'是等腰直角三角形,得出,证明△B'DB∽△EDC,由相似三角形的性质可得出.②分两种情况画出图形,由平行四边形的性质可得出答案.本题是四边形综合题,考查了正方形的性质,等腰直角三角形的判定与性质,旋转的性质,等边三角形的判定与性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.。
2020年山东省聊城中考数学试卷(附答案与解析)
数学试卷 第1页(共26页)数学试卷 第2页(共8页)绝密★启用前2020年山东省聊城市初中学业水平考试数 学亲爱的同学,伴随着考试的开始,你又走到了一个新的人生驿站.请你在答题之前,一定要仔细阅读以下说明:1.试题由选择题与非选择题两部分组成,共8页。
选择题36分,非选择题84分,共120分。
考试时间120分钟.2.将姓名、考场号、座号、考号填写在试题和答题卡指定的位置.3.试题答案全部写在答题卡上,完全按照答题卡中的“注意事项”答题.4.考试结束,答题卡和试题一并交回.5.不允许使用计算器.愿你放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.选择题(共36分)一、选择题(本题共12个小题,每小题3分.在每小题给出的四个选项中,只有一个符合题目要求)1.在实数1-,0,14中,最小的实数是( )A .1-B .14C .0D.2.如图所示的几何体的俯视图是( )ABCD3.如图,在ABC △中,AB AC =,°65C ∠=,点D 是BC 边上任意一点,过点D 作DF AB 交AC 于点E ,则FEC ∠的度数是 ( )A .120°B .130°C .145°D .150° 4.下列计算正确的是( )A .236a a a =B .623a a a --÷=C .()323628ab a b -=-D .()22224a b a b +=+5.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30( )A .92分,96分B .94分,96分C .96分,96分D .96分,100分 6.( )A .1B .53C .5D .97.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC △的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为( )-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________ABC.35D.458.用配方法解一元二次方程22310x x--=,配方正确的是()A.2317416x⎛⎫-=⎪⎝⎭B.23142x⎛⎫-=⎪⎝⎭C.231324x⎛⎫-=⎪⎝⎭D.231124x⎛⎫-=⎪⎝⎭9.如图,AB是O的直径,弦CD AB⊥,垂足为点M.连接OC,DB.如果OC DB,OC=()A.πB.2πC.3πD.4π10.如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为()A.1m4B.3m4Cm Dm11.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图表示,那么图㊿中的白色小正方形地砖的块数是()…A.150B.200C.355D.50512.如图,在Rt ABC△中,2AB=,30C︒∠=,将Rt ABC△绕点A旋转得到Rt AB C''△,使点B的对应点B'落在AC上,在B C''上取点D,使2B D'=,那么点D到BC的距离等于()A.21⎫+⎪⎪⎝⎭B1+C1D1非选择题(共84分)二、填空题(本题共5个小题,每小题3分,共15分.只要求填写最后结果)13.因式分解:()22x x x--+=________.14.如图,在O中,四边形OABC为菱形,点D在AmC上,则ADC∠的度数是________.数学试卷第3页(共26页)数学试卷第4页(共26页)数学试卷 第5页(共26页)数学试卷 第6页(共8页)15.计算:2111a a a a⎛⎫+÷= ⎪--⎝⎭________. 16.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.17.如图,在直角坐标系中,点()11A ,,()33B ,是第一象限角平分线上的两点,点C 的纵坐标为1,且CA CB =,在y 轴上取一点D ,连接AC ,BC ,AD ,BD ,使得四边形ACBD 的周长最小,这个最小周长的值为________.三、解答题(本题共8个小题,共69分.解答题应写出文字说明、证明过程或推演步骤)18.(本题满分7分)解不等式组131722324.334x x x x x ⎧+-⎪⎪⎨--⎪+⎪⎩<,≥并写出它的所有整数解. 19.(本题满分8分)为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A “剪纸”、B “沙画”、C “葫芦雕刻”、D “泥塑”、E “插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a =________,b =________; (2)通过计算补全条形统计图;(3)该校共有2 500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.20.(本题满分8分)今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A 种树苗比每捆B 种树苗多10棵,每捆A 种树苗和每捆B 种树苗的价格分别是630元和600元,而每棵A 种树苗和每棵B 种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5 500棵,A 种树苗至多购进3 500棵,为了使购进的这批树苗的费用最低,应购进A 种树苗和B 种树苗各多少棵?并求出最低费用. 21.(本题满分8分)如图,已知ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F ,连接BF ,AC ,若AD AF =,求证:四边形ABFC 是矩形.22.(本题满分8分)如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB 的高度进行测量.先测得居民楼AB 与CD 之间的距离AC 为35m ,后站在M 点处测得居民楼CD 的顶端D 的仰角为45°.居民楼AB 的顶端B 的仰角为55°.已知居民楼CD 的高度为16.6m ,小莹的观测点N 距地面1.6m .求居民楼AB 的高度(精确到1m ).(参考数据:°sin550.82≈,°cos550.57≈,°tan55 1.43≈).毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------数学试卷 第7页(共26页)数学试卷 第8页(共26页)23.(本题满分8分)如图,已知反比例函数ky x=的图象与直线y ax b =+相交于点()23A -,,()1B m ,.(1)求出直线y ax b =+的表达式;(2)在x 轴上有一点P 使得PAB △的面积为18,求出点P 的坐标.24.(本题满分10分)如图,在ABC △中,AB BC =,以ABC △的边AB 为直径作O ,交AC 于点D ,过点D 作DE BC ⊥,垂足为点E . (1)试证明DE 是O 的切线;(2)若O 的半径为5,AC =DE 的长.25.(本题满分12分)如图,二次函数24y ax bx =++的图象与x 轴交于点()10A -,,()40B ,,与y 轴交于点C ,抛物线的顶点为D ,其对称轴与线段BC 交于点E .垂直于x 轴的动直线l 分别交抛物线和线段BC 于点P 和点F ,动直线l 在抛物线的对称轴的右侧(不含对称轴)沿x 轴正方向移动到B 点.(1)求出二次函数24y ax bx =++和BC 所在直线的表达式;(2)在动直线l 移动的过程中,试求使四边形DEFP 为平行四边形的点P 的坐标; (3)连接CP ,CD ,在动直线l 移动的过程中,抛物线上是否存在点P ,使得以点P ,C ,F 为顶点的三角形与DCE △相似,如果存在,求出点P 的坐标,如果不存在,请说明理由.数学试卷 第9页(共26页)数学试卷 第10页(共8页)2020年山东省聊城市初中学业水平考试数学答案解析选择题一、 1.【答案】D【解析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.1014-∵>>>∴在实数1-,0,14中,最小的实数是D . 【考点】实数大小比较的方法 2.【答案】C【解析】找到从几何体的上面看所得到的图形即可.从上面看几何体所得到的图形为俯视图,其中看得见的轮廓画实线,选项C 符合题意.故选:C . 【考点】简单几何体的三视图 3.【答案】B【解析】根据等腰三角形的性质得到B C ∠=∠,利用平行线的性质得到EDC B ∠=∠,利用三角形的外角性质即可求解.AB AC =∵, °65B C ∠=∠=∴,DF AB ∵,°65EDC B ∠=∠=∴,°°°6565130FEC EDC C ∠=∠+∠=+=∴.故选:B .【考点】等腰三角形的性质,平行线的性质,三角形的外角性质 4.【答案】C【解析】根据同底数幂的乘法、同底数幂的除法、积的乘方、完全平方公式逐一分析即可.A .23235a a a a +==,该项不符合题意;B .()62628a a a a ---==÷,该项不符合题意;C .()()()33323236228ab a b a b -=-=-,该项符合题意;D .()222244a b a ab b +=++,该项不符合题意; 故选:C .【考点】同底数幂的乘法,同底数幂的除法,积的乘方,完全平方公式 5.【答案】B【解析】根据中位数的定义和众数的定义分别求解即可.解:由统计表得共有30个数据,第15、16个数据分别是92,96,∴中位数是9296=942+; 由统计表得数据96出现的次数最多,∴众数为96.故选:B .【考点】求一组数据的中位数和众数 6.【答案】A【解析】利用二次根式的乘除法则计算即可得到结果.解:1===故选:A .【考点】二次根式的乘除法数学试卷 第11页(共26页)数学试卷 第12页(共26页)7.【答案】D【解析】过点A 作AD BC ⊥于点D ,在Rt ACD △中,利用勾股定理求得线段AC 的长,再按照正弦函数的定义计算即可.解:如图,过点A 作AD BC ⊥于点D ,则90ADC ︒∠=,5AC ==∴,4sin 5AD ACB AC ∠==∴, 故选:D .【考点】勾股定理的运用以及锐角三角函数 8.【答案】A【解析】按照配方法的步骤进行求解即可得答案. 解:22310x x --= 移项得2231x x -=,二次项系数化1的23122x x -=,配方得22233132424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭即2317416x ⎛⎫-= ⎪⎝⎭故选:A .【考点】配方法解一元二次方程 9.【答案】B【解析】根据AB 是O 的直径,弦CD AB ⊥,由垂径定理得CM DM =,再根据OCDB 证得MCO CDB ∠=∠,即可证明OMC BMD ≅△△,即可得出OBC S S =阴影扇形. 解:AB ∵是O 的直径,弦CD AB ⊥,90OMC ︒∠=∴,CM DM =. 90MOC MCO ︒∠+∠=∴OC DB ∵MCO CDB ∠=∠∴又12CDB BOC ∠=∠∵1902MOC MOC ︒∠+∠=∴60MOC ︒∠=∴在OMC △和BMD △中,OCM BDM CM DMOMC BMD ∠=∠⎧⎪=⎨⎪∠=∠⎩OMC BMD ≅∴△△, OMC BMD S S =△△∴(2602360OBC S S ππ⨯⨯===阴影扇形∴故选:B .【考点】垂径定理,圆周角定理,平行线的性质,全等三角形的判定,扇形的面积,等积变换 10.【答案】C【解析】首先利用扇形的弧长公式求得圆锥的底面周长,求得底面半径的长,然后利用勾股定理求得圆锥的高.数学试卷 第13页(共26页)数学试卷 第14页(共8页)解:设圆锥的底面周长是l ,则901m 1801802n r l πππ⨯⨯===, 则圆锥的底面半径是:()12m 24ππ÷=,m .故选:C .【考点】圆锥的计算11.【答案】C【解析】由图形可知图①中白色小正方形地砖有12块,图②中白色小正方形地砖有127+块,图③中白色小正方形地砖有1272+⨯块,…,可知图中白色小正方形地砖有()127175n n +-=+,再令50n =,代入即可.解:由图形可知图中白色小正方形地砖有()127175n n +-=+(块)当50n =时,原式7505355=⨯+=(块) 故选:C . 【考点】规律型 12.【答案】D【解析】根据旋转的性质和30°角的直角三角形的性质可得AB '的长,进而可得B C '的长,过点D 作DM BC ⊥于点M ,过点B '作B E BC '⊥于点E ,B F DM '⊥于点F ,如图,则四边形B EMF '是矩形,解Rt B EC '△可得B E '的长,即为FM 的长,根据三角形的内角和易得30B DN C ︒'∠=∠=,然后解Rt B DF '△可求出DF 的长,进一步即可求出结果.解:在Rt ABC △中,2AB =∵,30C ︒∠=,24AC AB ==∴,∵将Rt ABC △绕点A 旋转得到Rt A B C '''△,使点B 的对应点B '落在AC 上,2AB AB '==∴, 2B C '=∴,过点D 作DM BC ⊥于点M ,过点B '作B E BC '⊥于点E ,B F DM '⊥于点F ,交AC 于点N ,如图,则四边形B EMF '是矩形,FM B E '=∴,在Rt B EC '△中,1sin30212B E BC ︒''==⨯=,1FM =∴, 90DB N CMN ︒'∠=∠=∵,B ND MNC '∠=∠,∴30B DN C ︒'∠=∠=∴,在Rt B DF '△中,cos302DF B D ︒'=== 1DM FM DF =+=∴即点D 到BC 1.故选:D .【考点】直角三角形,矩形的判定和性质,旋转的性质非选择题二、13.【答案】()()21x x --【解析】先把二、三两项分为一组,提取一个负号,再提取公因式()2x -即可. 解:原式()()()()2221x x x x x =---=--【考点】提公因式法分解因式14.【答案】60°【解析】连接OB ,证明OAB △,OBC △都是等边三角形,得到°120AOC =△,进而求出ADC ∠. 解:连接OB , ∵四边形OABC 为菱形,OA OB =,数学试卷 第15页(共26页)数学试卷 第16页(共26页)OA OB OC AB BC ====∴, OAB ∴△,OBC △都是等边三角形, °60AOB BOC ∠=∠=∴, °120AOC ∠=∴, AC AC =∵,1602ADC AOC ︒∠=∠=∴.故答案为:60°.【考点】菱形的性质,圆的半径都相等,圆周角定理,等边三角形性质 15.【答案】a -【解析】分式的混合运算,根据分式的加减乘除混合运算法则可以解答本题,括号里先通分运算,再进行括号外的除法运算,即可解答本题.解:()2221111111111111a a a aaa a a a a a a a a a a a⎛⎫+÷ ⎪--⎝⎭⎛⎫=+÷ ⎪--⎝⎭=÷--=⨯--=--- 故答案是:a -. 【考点】分式的混合运算【解析】先画出树状图求出所有等可能的结果数,再找出抽到同一类书籍的结果数,然后根据概率公式求解即可.解:“科技”、“文学”、“艺术”三类书籍分别用A 、B 、C 表示,则所有可能出现的结果如下图所示:由上图可知:共有9种等可能的结果数,其中抽到同一类书籍的结果数有3种,∴抽到同一类书籍的概率3193==. 故答案为:13.【解析】先求出2AC BC ==,作点B 关于y 轴对称的点E ,连接AE ,交y 轴于D ,此时AE AD BD =+且AD BD +值最小,即此时四边形ACBD 的周长最小;作FG y 轴,AG x 轴,交于点G ,则GF AG ⊥,根据勾股定理求出AE 即可. 解:()11A ∵,,点C 的纵坐标为1,AC x ∴轴,∵点()11A ,,()33B ,是第一象限角平分线上的两点, °45BAC ∠=∴,CA CB =∵,°45BAC ABC ∠=∠=∴, °90C ∠=∴,BCy ∴轴,数学试卷 第17页(共26页)数学试卷 第18页(共8页)2AC BC ==∴,作点B 关于y 轴对称的点E ,连接AE ,交y 轴于D ,此时AE AD BD =+,且AD BD +值最小,∴此时四边形ACBD 的周长最小,作FGy 轴,AG x 轴,交于点G ,则GF AG ⊥,2EG =∴,4GA =,在Rt AGE △中,AE ===∴四边形ACBD的周长最小值为224++=+【考点】四条线段和最短问题 三、18.【答案】解:131722324334x x x x x ⎧+-⎪⎪⎨--⎪+⎪⎩<①≥②解不等式①,得3x <. 解不等式②,得45x -≥. 在同一数轴上表示出不等式①,②的解集:所以该不等式组的解集是435x -≤<. 它的所有整数解为0,1,2.【解析】分别求出两个不等式,确定不等式组的解集,写出整数解即可.具体解题过程参照答案.【考点】不等式组19.【答案】解:(1)1815%120÷=,12010%12a =⨯=,12030%36b =⨯=, 故答案为:120,12,36.(2)E 类别的人数为:1201812303624----=(人) 补全条形统计图如图所示:(3)C 类别所占的百分比为:3012025%÷=,302500625120⨯=(人) 答:全校喜爱“葫芦雕刻”的学生人数约为625人.【解析】(1)由A 所占的百分比及参加A 类活动课的人数可求得总人数,再由总人数及B 和D 所占的百分比即可求得a 和b 的值.具体解题过程参照答案.(2)先求得E 类活动课参加的人数,再补全条形统计图即可.具体解题过程参照答案. (3)先求出抽样调查中喜爱“葫芦雕刻”的学生所占的百分比,即可求得全校喜爱“葫芦雕刻”的学生人数.具体解题过程参照答案. 【考点】条形统计图和扇形统计图的综合运用20.【答案】解:(1)设这一批树苗平均每棵的价格是x 元, 根据题意,得630600100.9 1.2x x-=, 解之,得20x =.经检验知,20x =是原分式方程的根,并符合题意. 答:这一批树苗平均每棵的价格是20元.(2)由(1)可知A 种树苗每棵价格为0.12098⨯=元,B 种树苗每棵价格为20 1.224⨯=元,设购进A种树苗t棵,这批树苗的费用为w,则()182455006132000w t t t=+-=-+.w∵是t的一次函数,60k=-<,w随着t的增大而减小,又3500t≤,∴当3500t=棵时,w最小.此时,B种树苗有550035002000-=棵,35001320060111000w⨯+==-.答:购进A种树苗3 500棵,B种树苗2 000棵,能使得购进这批树苗的费用最低为111 000元.【解析】(1)设这一批树苗平均每棵的价格是x元,分别表示出两种树苗的数量,根据“每捆A种树苗比每捆B种树苗多10棵”列方程即可求解.具体解题过程参照答案.(2)设购进A种树苗t棵,这批树苗的费用为w,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.具体解题过程参照答案.【考点】分式方程的实际应用,一次函数实际应用,不等式应用21.【答案】∵四边形ABCD是平行四边形//AB CD∴,AB CD=,AD BC=BAE CFE∠=∠∴,ABE FCE∠=∠E∵为BC的中点EB EC=∴()ABE FCE AAS≅∴△△AB CF=∴AB CF∵∴四边形ABFC是平行四边形AF AD=∵BC AF=∴∴平行四边形ABFC是矩形.【解析】先根据平行四边形的性质、平行线的性质得到两角一边对应相等,再根据三角形全等的判定定理与性质可得AB CF=,然后根据平行四边形的判定可得四边形ABFC 是平行四边形,又根据等量代换可得BC AF=,最后根据矩形的判定(对角线相等的平行四边形是矩形)可得四边形ABFC是矩形.具体解题过程参照答案.【考点】平行四边形的判定与性质,三角形全等的判定定理与性质,矩形的判定22.【答案】解:过点N作EF AC交AB于点E,交CD于点F.则 1.6AE MN CF===35EF AC==,°90BEN DFN∠==,EN AM=,NF MC=,16.6 1.615DF CD CF=-=-=.在Rt DFN△中,°45DNF∠=∵,15NF DF==∴.351520EN EF NF=-=-=∴.在Rt BEN△中,tanBEBNEEN∠=∵,°tan20tan5520 1.4328.6BE EN BNE=∠=⨯≈⨯=∴.28.6 1.630AB BE AE=+=+≈∴.答:居民楼AB的高度约为30m.【解析】过点N作EF AC交AB于点E,交CD于点F,可得 1.6AE MN CF===,35EF AC==,再根据锐角三角函数可得BE的长,进而可得AB的高度.具体解题过程参照答案.【考点】直角三角形的应用-仰角俯角23.【答案】解:(1)()23A-∵,在kyx=的图象上,数学试卷第19页(共26页)数学试卷第20页(共26页)数学试卷 第21页(共26页)数学试卷 第22页(共8页)32k=-∴,6k =-, 又点()1B m ,在6y x -=的图象上,6m =-,即()16B -,. 将点A ,B 的坐标代入y ax b =+,得326a ba b =-+⎧⎨-=+⎩,解得33a b =-⎧⎨=-⎩.∴直线的表达式为33y x =--.(2)设直线33y x =--与x 轴的交点为E ,当0y =时,解得1x =-.即()10E -,. 分别过点A ,B 作x 轴的垂线AC ,BD ,垂足分别为C ,D .1136922222PAB S PE AC PE DB PE PE PE =+=+=△. 又18PAB S =△,即9182PE =,4PE =∴.当点P 在原点右侧时,()30P ,, 当点P 在原点左侧时,()50P -,. 【解析】(1)通过点A 的坐标确定反比例函数的解析式,再求得B 的坐标,利用待定系数法将A ,B 的坐标代入,可得到一次函数的解析式.具体解题过程参照答案.(2)直线33y x =--与x 轴的交点为()10E -,,过点A ,B 作x 轴的垂线AC ,BD ,垂足分别为C ,D ,得到9182PAB S PE ==△,即4PE =,分情况讨论即可解决.具体解题过程参照答案.【考点】反比例函数的性质,一次函数的性质 24.【答案】(1)证明:连接OD ,BD ,AB ∵为O 的直径, BD AD ⊥∴,又AB BC =∵,ABC △是等腰三角形,AD DC =∴,OD ∴是ABC △的中位线, ODBC ∴,又DE BC ⊥,DE OD⊥∴,DE ∴是O 的切线;(2)由(1)知,BD 是AC 边上的中线,AC = 得AD CD ==,O ∵的半径为5,10AB =∴,在Rt ABD△中,BD ==AB BC =∵, A C ∠=∠∴,在Rt CDE △和Rt ABD △中,°90DEC ADB ∠=∠=∵,C A ∠=∠,数学试卷 第23页(共26页)数学试卷 第24页(共26页)Rt CDE Rt ABD ∴△∽△, CD DEAB BD =∴= 解得:3DE =.【解析】(1)连接OD 、BD ,求出BD AD ⊥,AD DC =,根据三角形的中位线得出OD BC ,推出OD DE ⊥,根据切线的判定推出即可.具体解题过程参照答案.(2)先利用勾股定理求出BD 的长,证得Rt CDE △和Rt ABD △,利用对应边成比例即可求解.具体解题过程参照答案.【考点】切线的判定,圆周角定理,相似三角形的判定与性质,三角形中位线的判定与性质25.【答案】(1)由题意,将()10A -,,()40B ,代入24y ax bx =++,得 4016440a b a b -+=⎧⎨++=⎩,解得13a b =-⎧⎨=⎩, ∴二次函数的表达式为234y x x =-++,当0x =时,4y =,∴点C 的坐标为()04,,又点B 的坐标为()40,, 设线段BC 所在直线的表达式为y mx n =+,440n m n =⎧⎨+=⎩∴,解得14m n =-⎧⎨=⎩,BC ∴所在直线的表达式为4y x =-+;(2)DE x ⊥∵轴,PF x ⊥轴,DE PF ∴,只要DE PF =,此时四边形DEFP 即为平行四边形.由二次函数223253424y x x x ⎛⎫=-++=-+ ⎪⎝⎭,得D 的坐标为32524⎛⎫ ⎪⎝⎭,,将32x =代入4y x =-+,即35422y =-+=,得点E 的坐标为3522⎛⎫⎪⎝⎭,,25515424DE =-=∴. 设点P 的横坐标为t ,则()234P t t t ++,-,()4F t t -+,, ()223444PF t t t t t =-++--+=-+,由DE PF =,得21544t t -+=, 解之,得132t =(不合题意,舍去),252t =. 当52t =时,2255213434224t t ⎛⎫-++=-+⨯+= ⎪⎝⎭,P ∴的坐标为52124⎛⎫⎪⎝⎭,.(3)由(2)知,PFDE ,CED CFP ∠=∠∴,又PCF ∠与DCE ∠有共同的顶点C ,且PCF ∠在DCE ∠的内部,PCF DCE ∠≠∠∴,∴只有当PCF DCE ∠=∠时,CDE PCF △∽△,数学试卷 第25页(共26页)数学试卷 第26页(共8页)由32524D ⎛⎫ ⎪⎝⎭,,()04C ,,3522E ⎛⎫⎪⎝⎭,,利用勾股定理,可得CE =,25515424DE =-=,由(2)以及勾股定理知,24PF t t =-+,()4F t t -+,,CF ==,CDE PCF ∵△∽△,PF CFCE DE =∴24=, 0t ≠∵,()15434t -+=∴, 165t =∴.当165t =时,2216168434345525t t ⎛⎫-++=-+⨯+= ⎪⎝⎭.【解析】(1)运用待定系数法,利用A ,B 两点的坐标构建二元一次方程组求解二次函数的表达式,利用B ,C 两点的坐标确定直线BC 的表达式.具体解题过程参照答案. (2)先求得DE 的长,根据平行四边形的性质得到PF DE =,点P 与点F 的横坐标相同,故利用抛物线与直线的解析式表示它们的纵坐标,根据其差等于DE 长构建一元二次方程求解.具体解题过程参照答案.(3)结合图形与已知条件,易于发现若两三角形相似,只可能存在CDE PCF △∽△一种情况.CDE △的三边均可求,(2)中已表示PF 的长,再构建直角三角形或借助两点间距离公式,利用勾股定理表示出CF 的长,这样根据比例式列方程求解,从而可判断点P 是否存在,以及求解点P 的值.具体解题过程参照答案.【考点】一次函数的性质,二次函数的性质,相似三角形的判定和性质,平行四边形的判定和性质,勾股定理的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
$$
Hale Waihona Puke 命 题 指 要函数 一 函 数 #!探索简单实例中的数量关系 和 变化 规律了 解 常 量变 量的意义! !!结合实例了解函数的概念和三 种表示 法能举 出 函 数 的实例! '!能 结 合 图 象 对 简 单 实 际 问 题 中 的 函 数 关 系 进 行 分 析 ! &!能确定简单实 际 问 题 中 函 数 自 变 量 的 取 值 范 围并 会 求出函数值! $!能用适当的函数表示法刻画 简单实 际 问题 中变量 之 间 的关系! (!结合对函数关 系 的 分 析能 对 变 量 的 变 化 情 况 进 行 初 步讨论! 二 一 次 函 数 #!结合具体情境 体 会 一 次 函 数 的 意 义能 根 据 已 知 条 件 确定一次函数的表达式! !!会 利 用 待 定 系 数 法 确 定 一 次 函 数 的 表 达 式 ! '!能画出一次函 数 的 图 象根 据 一 次 函 数 的 图 象 和 表 达 式$+%&)#%#"探索并理解%$" 和%%" 时图 象 的 变 化 情况! &!理 解 正 比 例 函 数 !
$(
数 学
!!理解整式的概念掌握合并同类 项和去括号 的 法 则能 进行简单的整式 加 法 和 减 法 运 算能 进 行 简 单 的 整 式 乘 法 运 算其中多项式 相 乘 仅 指 一 次 式 之 间 以 及 一 次 式 与 二 次 式 相 乘!
'!能推导乘法公式")#"*#+"!*#!",#!+"!, !"#)#!了解公式的几何背景并能利用公式进行简单计算!
数 学
数!学
一 考 试 范 围 遵照教育部制订的全日制 义 务教 育数学 课程 标 准!"##
年 版 第 三 学 段 七 至 九 年 级 的 要 求 ! 二 考 试 形 式
考 试 形 式 为 闭 卷 笔 试 ! 三 试 卷 结 构
一 内 容 结 构 与 比 例 试题中数与代 数空 间 与 图 形统 计 与 概 率 内 容 所 占 分 数 的 百 分 比 分 别 约 为 $"% &"% 和 #"% ! 二 题 型 结 构 考试试卷由选择题填空题和解答 题三种题型 组 成!选 择 题是四选一型的单项选择题填 空题只 要求 直 接写 出结果不 必写出计算过程解答题应写出 文 字说 明必须 的演算 步骤 或 推证过程! 四 考 试 内 容 与 要 求
&!能用提公因式 法公 式 法 直 接 利 用 公 式 不 超 过 二 次 进 行 因 式 分 解 指 数 是 正 整 数 !
$!了解分式和最 简 分 式 的 概 念能 利 用 分 式 的 基 本 性 质 进 行 约 分 和 通 分 能 进 行 简 单 的 分 式 加 减 乘 除 运 算 !
$-
命 题 指 要
性质! !!能解数字系数 的 一 元 一 次 不 等 式并 能 在 数 轴 上 表 示
出解集会用数轴 确 定 由 两 个 一 元 一 次 不 等 式 组 成 的 不 等 式 组的解集!
'!能根据具体问题中的数量关 系列 出 一 元一 次 不 等 式 解决简单的问题!
方程与不等式 一 方程与方程组 #!能根据具体问 题 中 的 数 量 关 系 列 出 方 程体 会 方 程 是 刻画现实世界数量关系的有效模型! !!经 历 估 计 方 程 解 的 过 程 ! '!掌 握 等 式 的 基 本 性 质 ! &!能 解 一 元 一 次 方 程 可 化 为 一 元 一 次 方 程 的 分 式 方 程 ! $!掌 握 代 入 消 元 法 和 加 减 消 元 法 能 解 二 元 一 次 方 程 组 ! (!理解配方法能 用 配 方 法公 式 法因 式 分 解 法 解 数 字 系数的一元二次方程! -!会用一元二次方程根的判别 式判别 方 程是 否有实 根 和 两个实根是否相等! .!了解一元二次 方 程 的 根 与 系 数 的 关 系 不 要 求 应 用 这 个 关 系 解 决 其 他 问 题 ! /!能 根 据 具 体 问 题 的 实 际 意 义 检 验 方 程 的 解 是 否 合 理 ! 二 不 等 式 与 不 等 式 组 #!结合具体问题了解不等式的意 义探 索 不等 式 的 基 本
'!理解乘方的 意 义掌 握 有 理 数 的 加减乘除乘 方 及 简单的混合运算!
&!理 解 有 理 数 的 运 算 律 能 运 用 运 算 律 简 化 运 算 ! $!能 运 用 有 理 数 的 运 算 解 决 简 单 的 问 题 ! 二 实 数 #!了解平方根算 术 平 方 根立 方 根 的 概 念会 用 根 号 表 示 数 的 平 方 根 算 术 平 方 根 立 方 根 ! !!了解乘方与开 方 互 为 逆 运 算会 用 平 方 运 算 求 百 以 内 整数的平方根会 用 立 方 运 算 求 百 以 内 整 数 对 应 的 负 整 数 的立方根! '!了解无理数和 实 数 的 概 念知 道 实 数 与 数 轴 上 的 点 一 一 对 应 能 求 实 数 的 相 反 数 与 绝 对 值 ! &!能 用 有 理 数 估 计 一 个 无 理 数 的 大 致 范 围 ! $!了解近似数在解决实际问题中并 会 按 问题的 要 求 对 结果取近似值! (!了解二 次 根 式最 简 二 次 根 式 的 概 念了 解 二 次 根 式 根号下仅限于数加减乘除 运算法 则会用 它们进 行有 关 的简单四则运算! 三 代 数 式 #!借助现实情境 了 解 代 数 式进 一 步 理 解 用 字 母 表 示 数 的意义! !!能 分 析 简 单 问 题 中 的 数 量 关 系 并 用 代 数 式 表 示 ! '!会求代数式的值能根据特定的 问题查阅资 料找 到 所 需 要 的 公 式 并 会 代 入 具 体 的 值 进 行 计 算 ! 四 整 式 与 分 式 #!了解整数指数 幂 的 意 义 和 基 本 性 质会 用 科 学 计 数 法 表 示 数 包 括 在 计 算 器 上 表 示 !