命题与证明知识讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《命题与证明》知识讲解

宋老师

【学习目标】

1.了解定义、命题、真命题、假命题的含义,会区分命题的题设(条件)和结论,会判断一个命题的真假;

2.了解综合法的证明步骤和书写格式.

3.运用平行线的判定与性质、三角形的内角和定理及其推论去解决一些简单的问题,用几何语言进行简单的推理论证.

4.了解逆命题的概念,会识别两个互逆命题,并知道原命题成立,逆命题不一定成立.会判断一个命题的

逆命题的真假.

【要点梳理】

要点一、定义、命题、真命题、假命题

定义:对名称或术语的含义进行描述或做出规定,就是给它们的定义.

命题:判断一件事情的句子叫命题.

真命题:如果条件成立,那么结论成立,这样的命题叫做真命题.

假命题:如果条件成立时,不能保证结论总是正确的,也就是说结论不成立,这样的命题叫做假命题.

要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以,即只需列出一个具备条件而不具备结论的例子即可.要说明一个真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理,证明它的正确性.

要点二、证明

根据已知真命题,确定某个命题的真实性的过程,叫做证明.经过证明的真命题称为定理.

证明过程必须做到言必有据.证明过程通常包含几个推理,每个推理都应包括因、果和有因得果的依据.其中,“因”是已知事项,“果”是推出的结论;“有因得果的依据”是基本事实、定义、已学过的定理以及等式性质、不等式性质.

证明的步骤:1.根据题意,画出图形;

2.根据命题的条件、结论,结合图形,写出已知、求证;

3.写出证明过程.

要点诠释:推理和证明是有区别的,推理是证明的组成部分,一个证明过程往往包含多个推理.

要点三、三角形的内角和定理及其推论

三角形的内角和定理:三角形的三个内角的和等于180°.

推论:三角形的外角等于与它不相邻的两个内角和.

要点诠释:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.

(2)三角形内角和定理的应用

主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.

(3)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.

三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.

(4)三角形的外角性质:

①三角形的外角和为360°.

②三角形的一个外角等于和它不相邻的两个内角的和.

③三角形的一个外角大于和它不相邻的任何一个内角.

(5)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.

要点四、互逆命题

在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题是另一个命题的逆命题.

把一个命题的条件与结论互换,就得到它的逆命题,我们能够判断一个命题及其它的逆命题的真假.证明一个命题是假命题,只需举出一个反例就可以了.

要点诠释:每一个命题都有对应的逆命题,一个真命题的逆命题不一定是真命题,同样一个假命题的逆命题也不一定仍为假命题.

反例就是复合命题的条件,但不符合命题的结论的例子,它可以是数值、图形,也可以是文字说明.一个命题的反例可以有很多个,解题时只需要举出其中最易懂的一个即可.

【典型例题】

类型一、逆命题与逆定理

1. 下列命题是真命题的是()

A.如果|a|=1,那么a=1

B.有两条边相等的三角形是等腰三角形

C.如果a为实数,那么a是有理数

D.相等的角是对顶角.;

【答案】B.

【解析】如果|a|=1,那么a=±1,故A错误;如果a为有理数,那么a是实数,故C错误;两个直角三角形中的两个直角相等,但不是对顶角,故D错误;而B根据等腰三角形的定义可判断正确;

【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.

举一反三:

【变式】(2016春?东平县期中)下列句子中,不是命题的是()

A.三角形的内角和等于180°B.对顶角相等

C.过一点作已知直线的平行线 D.两点确定一条直线

【答案】C.

C不是可以判断真假的陈述句,不是命题;

A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.

故选C.

2.下列命题中,逆命题正确的是()

A.对顶角相等

B.直角三角形两锐角互余

C.全等三角形面积相等

D.全等三角形对应角相等

【答案】B.

【解析】A选项逆命题是相等的角是对顶角,不对;B选项逆命题是两个锐角互余的三角形是直角三角形,对的;C选项逆命题是面积相等的三角形是全等三角形显然不对;D选项的逆命题是对应角相等的三角形是全等三角形,不一定,也可能是相似三角形.

【总结升华】判断逆命题是否正确,能举出反例即可.

举一反三:

【变式】试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真假.

(1)对顶角相等;

(2)两直线平行,同位角相等;

(3)若a=0,则ab=0;

(4)两条直线不平行,则一定相交;

【答案】(1)对顶角相等(真);相等的角是对顶角(假);

(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);

(3)若a=0,则ab=0(真);若ab=0,则a=0(假);

(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);

3. 对于同一平面内的三条直线a、b、c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;

⑤a⊥c,请你以其中两个作为题设,另一个作为结论,用“如果…,那么…”的形式,写出两个正确的命题.

【思路点拨】同一平面内,根据垂直于同一直线的两直线平行;平行于同一直线的两直线平行,则可由③⑤得到②;由①②得到④.

【答案与解析】

解:如果③a⊥b,⑤a⊥c,那么②b∥c;

如果①a∥b,②b∥c,那么④a∥c.

【总结升华】本题考查了命题:判断事物的语句叫命题,正确的命题叫真命题,错误的命题为假命题;命题分为题设与结论两部分.也考查了平行线的性质.

类型二、证明举例

(1)平行线的性质与判定进行几何证明:

4.(2015春?姜堰市期末)如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.已知AB⊥ BC、CD⊥ BC,BE∥ CF,,求证:∠ 1=∠ 2.

【思路点拨】由于AB⊥ BC、CD⊥ BC得到AB∥ CD,利用平行线的性质得到∠ ABC=∠ DCB,又BE∥CF,则∠ EBC=∠ FCB,可得到∠ ABC﹣∠ EBC=∠ DCB﹣∠ FCB,即有∠ 1=∠ 2.

【答案与解析】

证明:∵ AB⊥ BC、CD⊥ BC,

∴AB∥ CD,

∴∠ ABC=∠ CB,

又∵ BE∥ CF,

∴∠ EBC=∠ FCB,

∴∠ ABC﹣∠ EBC=∠ DCB﹣∠ FCB,

∴∠ 1=∠ 2.

【总结升华】本题考查的是平行线的判定和性质的综合应用.

举一反三:

【变式】如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.

【答案】∠A=∠F.

证明:∵∠AGB=∠DGF,∠AGB=∠EHF,

相关文档
最新文档